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Introduction

In this talk we give one–weight estimates for multi(sub)linear Hardy–
Littlewood maximal and multilinear Calderón–Zygmund operators in
weighted grand Lebesgue spaces under the vector Muckenhoupt condition
on weights. We note that operators are defined on metric measure spaces.

Nowadays the theory of grand Lebesgue spaces introduced by T. Iwaniec
and C. Sbordone [15] is one of the intensively developing directions of the
modern analysis. It was realized the necessity for the study of these spaces
because of their rather essential role and applications in various fields. These
spaces naturally arise, for example, in the integrability problems of the
Jacobian under minimal hypothesis (see [15] for the details).

Structural properties of grand Lebesgue spaces were studied in the pa-
pers [5], [1]. In [6] the authors proved that for the boundedness of the
Hardy–Littlewood maximal operator defined on [0, 1] in weighted grand
Lebesgue spaces L

p)
w ([0, 1]) it is necessary and sufficient that the weight w

belongs to the Muckenhoupt’s class Ap([0, 1]). The same phenomenon was
noticed by the first and third authors of this paper for the Hilbert trans-
form in [18]. We refer to the papers [17], [16], [21] for one–weight results
regarding maximal and singular integrals of various type in these spaces.

Multisublinear maximal operators appeared naturally in connection with
multilinear Calderón-Zygmund theory. A multisublinear maximal operator
that acts on the product of m-Lebesgue spaces and is smaller than the m-
fold product of the Hardy–Littlewood maximal function was studied in [19].
It was used to obtain a precise control on multilinear singular integral oper-
ators of Calderón-Zygmund type and to build a theory of weights adapted
to the multilinear setting.

Multilinear analysis on spaces of homogeneous type (SHT ) was devel-
oped in [9]. In particular, the results of that work treats with Hardy–
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Littlewood maximal functions and Calderón-Zygmund operators defined on
metric spaces with doubling measure.

It should be stressed that the results of this paper are new even for
Euclidean spaces.

1. Preliminaries

Let X be a set and let d : X×X 7→ R+ be a quasi-metric, i.e., d satisfies
the following conditions:
(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) ≤ κ(d(x, z) + d(z, y)) for every x, y, z ∈ X;
(iii) d(x, y) = d(y, x) for every x, y ∈ X.

The couple (X, d) is called a quasi-metric space. If κ = 1, then d is called
a metric and (X, d) is a metric space. For all x ∈ X and r > 0, as usual
B(x, r) := {y ∈ X : d(x, y) < r} is called a ball.

Suppose that µ is a measure defined on a σ-algebra of subsets that con-
tains the balls of X. Then the triple X := (X, d, µ) is called a quasi-metric
measure space. Throughout the paper we assume that 0 < µ(B(x, r)) < ∞
and µ{x} = 0 for all x ∈ X and r > 0.

If µ satisfies the doubling condition

µ(B(x, 2r)) ≤ Cµ(B(x, r)),

with the positive constant C independent of x ∈ X and r > 0, then (X, d, µ)
is called a space of homogeneous type (SHT ). For the definition, examples
and some properties of an SHT see, e.g., monographs [22], [3], [4], [9].

Let ℓ := diam (X) = supx,y∈X d(x, y). Notice that the condition ℓ < ∞
implies that µ(X) < ∞.

Definition A. The triple (X, d, µ) is called an RD-space if it is an SHT
and µ satisfies the reverse doubling condition: there exist constants a, b > 1
such that for all x ∈ X and 0 < r < ℓ/a,

bµ(B(x, r)) ≤ µB(x, ar).

It is known that (X, d, µ) is an RD- space if and only if it is an SHT
and there is a constant a0 such that for all x ∈ X and 0 < r < ℓ/a0,

B(x, a0r) \B(x, r) ̸= 0.

Let 1 ≤ r < ∞. We denote by Lr(X,µ) the Lebesgue space on X with
an exponent r.

If w is a weight (locally integrable, µ- a.e. positive function on X), then
then we denote the Lebesgue spaces with weight w by Lr

w(X).
Let µ(X) < ∞, 1 < p < ∞ and let φ be a continuous positive function

on (0, p−1) such that it is non-decreasing on (0, σ) for some small positive σ
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and satisfies the condition lim
x→0+

φ(x) = 0. The generalized grand Lebesgue

space Lp),φ(X,µ) is the class of those f : X → R for which the norm

∥f∥Lp),φ(X,µ) = sup
0<ε<p−1

(
φ(ε)

∫
X

|f(x)|p−εdµ(x)

)1/(p−ε)

is finite. If w is a weight on X, then the weighted grand Lebesgue space with
weight w is denoted by L

p),φ
w (X) and coincides with the class Lp),φ(X,wdµ).

In this case we assume that ∥f∥
L

p),φ
w (X)

= ∥f∥Lp),φ(X,wdµ).
If φ(x) = xθ, where θ is a positive number, then we denote Lp),φ(X,µ)

(resp. L
p),φ
w (X)) by Lp),θ(X,µ) (resp. by L

p),θ
w (X)).

The space Lp),θ(X,µ) is a Banach space.
It is easy to check that the following continuous embeddings hold:

Lp(X,µ) ↪→ Lp),θ1(X,µ) ↪→ Lp),θ2(X,µ) ↪→ Lp−ε(X,µ),

where 0 < ε ≤ p− 1 and θ1 < θ2.
It turns out that in the theory of PDEs the generalized grand Lebesgue

spaces are appropriate to the solutions of existence and uniqueness, and,
also, the regularity problems for various nonlinear differential equations.
The space Lp),θ (defined on bounded domains in Rn) for arbitrary positive
θ was introduced in the paper [12], where the authors studied the nonhomo-
geneous n-harmonic equation div A(x,∇u) = µ. If θ = 1, then Lp),θ(X,µ)
coincides with the Iwaniec–Sbordone space, which we denote by Lp)(X,µ).

In the sequel the following notation will be used:

−→p := (p1, . . . , pm),

where pi ∈ (0,∞) for each 1 ≤ i ≤ m.
−→
f = (f1, . . . , fm),

where fi are µ− measurable functions defined on X.

dµ(−→y ) := dµ(y1) · · · dµ(ym); d−→y = dy1 · · · dym.

ν−→w :=

m∏
j=1

w
p/pj

j ; Bxy := µ(B(x, d(x, y)).

Let s ∈ [1,∞]. As usual we put s′ := s
s−1 if s ∈ (1,∞) and s′ := ∞ for

s = 1 and s′ := 1 for s = ∞.
Let µ(X) < ∞ and let 1 < pj < ∞ for each 1 ≤ j ≤ m, 1

p =
∑m

j=1
1
pj

.
We define the class

∏m
j=1 Lpj),φ(X,µj) of vector functions −→

f as follows:
−→
f ∈

∏m
j=1 Lpj),φ(X,µj) if
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∥
−→
f ∥∏m

j=1 Lpj),φ(X,µj)
=

= sup
1<r<p

{
φ
( p

r′

) r
p

m∏
j=1

∥fj∥Lpj/r(X,µj)

}
=

= sup
1<r<p

{ m∏
j=1

φ
( p
r′
) r

pj ∥fj∥Lpj/r(X,µj)

}
< ∞.

The expression ∥
−→
f ∥∏m

j=1 Lpj),φ(X,µj)
can be rewritten as follows:

∥
−→
f ∥∏m

j=1 Lpj),φ(X,µj)
=

= sup
0<η<p−1

{ m∏
j=1

φ
(
η
) 1

pj−ηj ∥fj∥Lpj−ηj (X,µj)
:

p

p− η
=

=
pj

pj − ηj
, j = 1, . . . ,m

}
.

It is easy to check that

m∏
j=1

Lpj)φ(X,µj) ↪→
m∏
j=1

Lpj),φ(X,µj),

in particular,

∥
−→
f ∥∏m

j=1 Lpj),φ(X,µj)
≤ ∥

−→
f ∥∏m

j=1 Lpj),φ(X,µj)
.

Let 1 < r < ∞. We say that a weight function w belongs to the Muck-
enhoupt class Ar(X) if

∥w∥Ar := sup
B

(
1

µ(B)

∫
B

wdµ

)(
1

µ(B)
w1−r′dµ

)r−1

< ∞.

Let us recall the definition of the vector Muckenhoupt condition (see [19]
for Euclidean spaces and [9] for metric measure spaces).

Definition B. Let 1 ≤ pi < ∞, 0 < p < ∞. We say that −→w satisfies the
A−→p condition (−→w ∈ A−→p ) if

∥−→w ∥A−→p :=

= sup
B⊂X

(
1

µ(B)

∫
B

ν−→w (x)dµ(x)

) m∏
j=1

(
1

µ(B)

∫
B

w1−p′

j (x)dµ(x)

)p/p′
j

< ∞,
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where the supremum is taken over all balls B in X. For pj = 1, the expres-

sion
(

1
µ(B)

∫
B

w1−p′

j (x)dµ(x)
)1/p′

j is understood as (infB wj)
−1.

The expression ∥−→w ∥A−→p is called A−→p characteristic of −→w .
The following fact gives so called openness property of the vector Muck-

enhoupt condition holds (see [19] for Euclidean spaces but the proof allows
us to formulate it for an SHT ).

Let 1 < pi < ∞, i = 1, · · · ,m. If that −→w ∈ A−→p (X), then there is a
constant r > 1 such that −→w ∈ A−→p /r(X).

In the same paper (see Remark 7.3) the authors showed that the classes
A−→p are not increasing under the natural partial order; however it is noticed
in [2] that the classes As−→p are strictly increasing as s increases, in particular,
the following estimate holds:

∥−→w ∥As1
−→p ≤ ∥−→w ∥As2

−→p , s2 ≤ s1. (1)

In the linear case (m = 1) the class A−→p coincides with the well- known
Muckenhoupt class Ap.

2. Main Results

Regarding the Hardy–Littlewood maximal operator

(M
−→
f )(x) = sup

B∋x

m∏
i=1

1

µ(B)

∫
B

|fi(yi)|dµ(yi), x ∈ X

we have the following result:

Theorem 2.1. Let µ(X) < ∞, 1 < pi < ∞ for each 1 ≤ i ≤ m, and let
θ > 0. Suppose that 1

p =
∑m

j=1
1
pj

and that −→w ∈ A−→p . Then M is bounded
from

∏m
j=1 L

pj),θ
wj (X) to L

p),θ
ν−→w (X) (hence, from

∏m
j=1 L

pj),θ
wj (X) to L

p),θ
ν−→w (X)).

Let 1 < pi < ∞ for each 1 ≤ i ≤ m, and let wj , j = 1, · · · ,m be weight
functions on X. Let us denote by M−→p the class of multilinear bounded
operators from

∏m
j=1 L

pj
wj (X) to Lp

ν−→w
(X).

To get the one-weight estimate for the Calderón-Zygmund singular inte-
grals we proved the general-type theorem for multilinear operators.

Theorem 2.2 (General Statement). Let µ(X) < ∞ and let 1 < pi < ∞ for
each 1 ≤ i ≤ m. Suppose that 1 < p < ∞, where 1

p =
∑m

j=1
1
pj

. Let θ > 0.
Suppose that a multilinear operator K belongs to M−→p ∩ M−→p

r

for some r

satisfying the condition 1 < r < minj{pj}. Then the operator K is bounded
from

∏m
j=1 L

pj),θ
wj (X) to L

p),θ
ν−→w (hence, from

∏m
j=1 L

pj),θ
wj (X) to L

p),θ
ν−→w (X)).
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Let (X, d, µ) be an RD space (X., d, µ) with metric d. We give the
definition of the Calderón-Zygmund singular integrals on (X, d, µ). First let
us introduce some classes of functions.

We denote by Cb(X) the class of continuous functions on X with bounded
support (it is clear that if diameter of X is finite, then Cb(X) is the class of
all continuous functions on X and is denoted by C(X)). For any η ∈ (0, 1],
let Cη(X) be the set of all functions g : X → C such that

∥g∥Ċη(X) := sup
x ̸=y

|f(x)− f(y)|
d(x, y)η

< ∞.

Further,
Cη

b := {g ∈ Cη(X) : g ∈ BS(X)},

where BS(X) is the class of functions on X with bounded support.
L∞
b denotes the class of all bounded functions on X with bounded sup-

port;
Given m ∈ N, set

Ωm := Xm+1 \ {(y0, y1, . . . , ym) : y0 = yj , 1 ≤ j ≤ m}.

Suppose that k : Ωm 7→ C is locally integrable. The function k is called
a Calderón-Zygmund kernel if there exist constants Ck > 0 and δ ∈ (0, 1]
such that for every (y0, . . . , ym) ∈ Ωm,

(i)

|k(y0, y1, . . . , yk, . . . , ym)| ≤ Ck(∑m
k=1 µBy0yk

)m ; (2)

(ii) for each 1 ≤ k ≤ m,

|k(y0, y1, . . . , yk, . . . , ym)− k(y0, y1, . . . , y
′
k, . . . , ym)| ≤

≤ Ck

[
d(yk, y

′
k)

max0≤k≤m d(y0, yk)

]δ
1

[
∑m

k=1 µBy0yk
]m

,

whenever d(yk, y
′
k) ≤ max0≤k≤m d(y0, yk)/2.

In this case, write k ∈ Ker(m,Ck, δ).

Definition C ([9]). Let η ∈ (0, 1]. An m-linear Calderón-Zygmund
operator is a continuous operator

T : Cη
b (X)× · · · × Cη

b (X) 7→ (Cη
b (X))′

such that for every f1, . . . , fm ∈ Cη
b (X) and x /∈

∩m
i=1 supp fj ,

T (f1, . . . , fm)(x) =

∫
Xm

k(x, y1, . . . , ym)

m∏
i=1

fi(yi)dµ(
−→y ), (3)
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where the kernel k ∈ Ker(m,Ck, δ) for some Ck, δ ∈ (0, 1]. As an m-
linear operator, T has m formal transposes. The j-the transpose T ∗j of T
is defined by

⟨T ∗j(f1, . . . , fm), g⟩ = ⟨T (f1, . . . , fj−1, g, fj+1, . . . , fm), fj⟩

for all f1, . . . , fm, g ∈ Cη
b (X). The kernel k∗j is related to one of T by

k∗j(x, y1, . . . , yj−1, yj , yj+1, . . . , ym) = k(yj , y1, . . . , yj−1, x, yj+1, . . . , ym).

The next statement gives the one-weight inequality for the Calderón-
Zygmund operator T (see [9]).

Theorem A. Let 1 < pj < ∞ for each 1 ≤ i ≤ m, and let 1
p =∑m

j=1
1
pj

. If −→w ∈ A−→p (X), then T can be extended to a bounded operator
from

∏m
j=1 L

pj
wj (X) to Lp

ν−→w
(X).

Our result regarding the operator T reeds as follows:

Theorem 2.3. Let (X, d, µ) be an RD space with metric d, µ(X) < ∞,
1 < pi < ∞ for each 1 ≤ i ≤ m, 1

p =
∑m

j=1
1
pj

and that θ > 0. Suppose
that T is a Calderón-Zygmund operator and that −→w ∈ A−→p . Then there is a
positive constant C such that for all fj ∈ L∞

b , the following inequality holds:

∥T
−→
f ∥

L
p),θ

ν−→w (X)

≤ C∥
−→
f ∥∏m

j=1 L
pj),θ
wj

(X)
.

Let

H
−→
f (x) = p.v.

∫
(a,b)m

∑m
j=1(xj − yj)(∑m

j=1 |xj − yj |2
)m+1

2

f1(y1) . . . fm(ym)d−→y

be the multilinear Hilbert transform.
As a corollary of Theorem 2.3 we have

Corollary 2.4. Let 1 < pi < ∞ for for each 1 ≤ i ≤ m, and let 1
p =∑m

i=1
1
pi

. Suppose that θ > 0. Let wj be weights on a bounded interval
(a, b). Suppose that −→w ∈ A−→p ((a, b)). Then the following condition

sup
I

(
1

|I|

∫
I

ν−→w (x)dx

)1/p m∏
i=1

(
1

|I|

∫
I

w
1−p′

i
i (ti)dti

)1/p′
i

< ∞,

where I is a subinterval of (a, b) and |I| denotes the Lebesgue measure of I,
guarantees the one-weight inequality:

∥H
−→
f ∥

L
p),θ
ν−→w

((a,b))
≤ C∥

−→
f ∥∏m

j=1 L
pj),θ
wj

((a,b))
, fj ∈ C∞

0 ((a, b)).
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