M. Ashordia and G. Ekhvaia

ON THE CRITERIA OF WELL-POSED OF THE PERIODIC PROBLEM FOR LINEAR SYSTEMS OF IMPULSIVE EQUATIONS WITH FINITE AND FIXED POINTS OF IMPULSES ACTIONS

Let $P \in L\left([0, \omega] ; \mathbb{R}^{n \times n}\right), p \in L\left([0, \omega] ; \mathbb{R}^{n}\right), Q_{j} \in \mathbb{R}^{n \times n}(j=1, \ldots, m)$, $q_{j} \in \mathbb{R}^{n}(j=1, \ldots, m), 0=\tau_{0}<\tau_{1}<\cdots<\tau_{m}<\tau_{m+1}=\omega$ and ω be a fixed positive number.

Consider the linear the impulsive system

$$
\begin{align*}
\frac{d x}{d t} & =P(t) x+p(t) \tag{1}\\
x\left(\tau_{j}+\right)-x\left(\tau_{j}-\right) & =Q_{j} x\left(\tau_{j}\right)+q_{j} \quad(j=1, \ldots, m) \tag{2}
\end{align*}
$$

For the system (1), (2) consider the ω periodic problem

$$
x(0)=x(\omega)
$$

Let the system (1), (2) has the unique ω periodic solution x_{0}.
Consider sequences of matrix- and vector-functions $P_{k} \in L\left([0, \omega] ; \mathbb{R}^{n \times n}\right)$ $(k=1,2, \ldots)$ and $p_{k} \in L\left([0, \omega] ; \mathbb{R}^{n}\right)(k=1,2, \ldots)$, sequences of constant matrices $Q_{k j} \in \mathbb{R}^{n \times n}(j=1, \ldots, m ; k=1,2, \ldots)$ and constant vectors $q_{k j} \in \mathbb{R}^{n}(j=1, \ldots, m ; k=1,2, \ldots)$.

In this paper necessary and sufficient conditions as well as effective sufficient conditions are established for a sequence of boundary value problems

$$
\begin{align*}
\frac{d x}{d t} & =P_{k}(t) x+p_{k}(t) \tag{3}\\
x\left(\tau_{j}+\right)-x\left(\tau_{j}-\right) & =Q_{k j} x\left(\tau_{j}\right)+q_{k j} \quad(j=1, \ldots, m) \tag{4}
\end{align*}
$$

$(k=1,2, \ldots)$ to have a unique ω solution x_{k} for sufficiently large k and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} x_{k}(t)=x_{0}(t) \tag{5}
\end{equation*}
$$

uniformly on $[a, b]$.
Analogous questions for the general linear boundary value problems and ω-periodic problems are investigated e.g. in [1], [2], [6], [7] (see the references

[^0]therein, too) for systems of ordinary differential equations, in [3], [4] for systems of generalized ordinary differential equations, and in [5] for systems of impulsive equations.

Throughout the paper, the following notation and definitions will be used.
$\mathbb{R}=]-\infty, \infty\left[. \mathbb{R}^{n \times l}\right.$ is the space of all real $n \times l$-matrices $X=\left(x_{i j}\right)_{i, j=1}^{n, l}$ with the norm

$$
\|X\|=\max _{j=1, \ldots, l} \sum_{i=1}^{n}\left|x_{i j}\right|
$$

$O_{n \times l}$ is the zero $n \times l$-matrix.
$\operatorname{det}(X)$ is the determinant of a matrix $X \in \mathbb{R}^{n \times n}$.
I_{n} is the identity $n \times n$-matrix.
$\delta_{i j}$ is the Kroneker symbol, i.e. $\delta_{i i}=1$ and $\delta_{i j}=0$ for $i \neq j(i, j=1, \ldots)$.
$\mathbb{R}^{n}=\mathbb{R}^{n \times 1}$ is the space of all real column n-vectors $x=\left(x_{i}\right)_{i=1}^{n}$.
$\operatorname{BVC}\left([0, \omega] ; \tau_{1}, \ldots, \tau_{m} ; \mathbb{R}^{n \times l}\right)$ is the normed space of all continuous on the intervals $\left.\left.\left[0, \tau_{1}\right],\right] \tau_{k}, \tau_{k+1}\right](k=1, \ldots, m)$ matrix-functions of bounded variation $X:[0, \omega] \rightarrow \mathbb{R}^{n \times l}$ with the norm

$$
\|X\|_{s}=\sup \{\|X(t)\|: t \in[0, \omega]\}
$$

$L\left([0, \omega] ; \mathbb{R}^{n \times l}\right)$ is the set of all measurable and Lebesgue integrable on $[0, \omega]$ matrix-functions.
$C\left([0, \omega] ; \mathbb{R}^{n \times l}\right)$ is the set of all continuous on $[0, \omega]$ matrix-functions.
$\widetilde{C}\left([0, \omega] ; \mathbb{R}^{n \times l}\right)$ is the set of all absolutely continuous on $[0, \omega]$ matrixfunctions.
$\widetilde{C}\left([0, \omega] \backslash\left\{\tau_{j}\right\}_{j=1}^{m} ; \mathbb{R}^{n \times l}\right)$ is the set of all matrix-functions restrictions of which on every closed interval $[c, d]$ from $[0, \omega] \backslash\left\{\tau_{j}\right\}_{j=1}^{m}$ belong to $\widetilde{C}([0, \omega]$; $\mathbb{R}^{n \times l}$).

On the set $C\left([0, \omega] ; \mathbb{R}^{n \times l}\right) \times \underbrace{\mathbb{R}^{n \times l} \times \cdots \times \mathbb{R}^{n \times l}}_{m} \times L\left([0, \omega] ; \mathbb{R}^{l \times k}\right)$ we introduce the operator

$$
\mathcal{B}_{0}\left(\Phi, G_{1}, \ldots, G_{m}, X\right)(t) \equiv \int_{0}^{t} \Phi(s) X(s) d s+\sum_{j=0, \tau_{j} \in[0, t[}^{m} G_{j} \int_{\tau_{j}}^{t} X(s) d s
$$

where $G_{0}=O_{n \times n}$.
Under a solution of the system (1), (2) we understand a continuous from the left vector-function $x \in \widetilde{C}\left([0, \omega] \backslash\left\{\tau_{j}\right\}_{j=1}^{m} ; \mathbb{R}^{n \times l}\right) \cap \operatorname{BVC}\left([0, \omega] ; \tau_{1}, \ldots\right.$, $\tau_{m} ; \mathbb{R}^{n}$) satisfying the system (1) for a.e. $t \in[0, \omega]$ and the equality (2) for every $j \in\{1, \ldots, n\}$.

We assume everywhere that

$$
\operatorname{det}\left(I_{n}+Q_{j}\right) \neq 0 \quad(j=1, \ldots, m)
$$

Note that this condition guarantees the unique solvability of the system (1), (2) under the Cauchy condition $x\left(t_{0}\right)=c_{0}$.

Definition 1. We say that a sequence $\left(P_{k}, p_{k},\left\{Q_{k j}\right\}_{j=1}^{m},\left\{q_{k j}\right\}_{j=1}^{m}\right)(k=$ $1,2, \ldots)$ belongs to the set $S\left(P, p,\left\{Q_{j}\right\}_{j=1}^{m},\left\{q_{j}\right\}_{j=1}^{m}\right)$ if the system (3), (4) has the unique ω-periodic solution x_{k} for any sufficiently large k and the condition (5) holds uniformly on $[0, \omega]$.

Theorem 1. The include

$$
\begin{equation*}
\left(\left(P_{k}, p_{k},\left\{Q_{k j}\right\}_{j=1}^{m},\left\{q_{k j}\right\}_{j=1}^{m}, \ell_{k}\right)\right)_{k=1}^{\infty} \in S\left(P, p,\left\{Q_{j}\right\}_{j=1}^{m},\left\{q_{j}\right\}_{j=1}^{m}, \ell\right) \tag{6}
\end{equation*}
$$

holds if and only if there exist sequences of matrix-functions $\Phi, \Phi_{k} \in$ $\widetilde{C}\left([a, b] ; \mathbb{R}^{n \times n}\right)(k=1,2, \ldots)$ and constant matrices $G_{j}, G_{k j} \in \mathbb{R}^{n \times n}, G_{0}=$ $G_{k 0}=O_{n \times n}(j=0, \ldots, m ; k=1,2, \ldots)$ such that

$$
\begin{gather*}
\lim _{k \rightarrow \infty} \sup \sum_{j=0}^{m} \int_{\tau_{j}}^{\tau_{j+1}}\left\|\Phi_{k}^{\prime}(t)+\left(\Phi_{k}(t)+\sum_{i=0}^{j} Q_{k j}\right) P_{k}(t)\right\| d t<\infty, \tag{7}\\
\left.\left.\inf \left\{\left|\operatorname{det}\left(\Phi(t)+\sum_{i=0}^{j} G_{i}\right)\right|: t \in\right] \tau_{j}, \tau_{j+1}\right]\right\}>0(j=0, \ldots, m), \tag{8}\\
\lim _{k \rightarrow \infty} G_{k j}=G_{j}(j=1, \ldots, m), \tag{9}\\
\lim _{k \rightarrow \infty} Q_{k j}=Q_{j}, \quad \lim _{k \rightarrow \infty} q_{k j}=q_{j} \quad(j=1, \ldots, m), \tag{10}
\end{gather*}
$$

and the conditions

$$
\begin{align*}
\lim _{k \rightarrow \infty} \Phi_{k}(t) & =\Phi(t) \tag{11}\\
\lim _{k \rightarrow \infty} \mathcal{B}_{0}\left(\Phi_{k}, G_{k 1}, \ldots, G_{k m}, P_{k}\right)(t) & =\mathcal{B}_{0}\left(\Phi, G_{1}, \ldots, G_{m}, P\right)(t) \tag{12}\\
\lim _{k \rightarrow \infty} \mathcal{B}_{0}\left(\Phi_{k}, G_{k 1}, \ldots, G_{k m}, p_{k}\right)(t) & =\mathcal{B}_{0}\left(\Phi, G_{1}, \ldots, G_{m}, p\right)(t) \tag{13}
\end{align*}
$$

are fulfilled uniformly on $[a, b]$.
Remark 1. The conditions (12) and (13) are fulfilled uniformly on $[a, b]$ if and only if the conditions

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \int_{\tau_{j}}^{t}\left(\Phi_{k}(s)+\sum_{i=0}^{j} G_{k i}\right) P_{k}(s) d s=\int_{\tau_{j}}^{t}\left(\Phi(s)+\sum_{i=0}^{j} G_{i}\right) P(s) d s \\
& \lim _{k \rightarrow \infty} \int_{\tau_{j}}^{t}\left(\Phi_{k}(s)+\sum_{i=0}^{j} G_{k i}\right) p_{k}(s) d s=\int_{\tau_{j}}^{t}\left(\Phi(s)+\sum_{i=0}^{j} G_{i}\right) p(s) d s
\end{aligned}
$$

are fulfilled uniformly on $\left[\tau_{j}, \tau_{j+1}\right]$ for every $j \in\{0, \ldots, m\}$.

Corollary 1. Let the condition (10) hold. Let, moreover, there exist matrix-functions $\Phi, \Phi_{k} \in \widetilde{C}\left([a, b] ; \mathbb{R}^{n \times n}\right)(k=1,2, \ldots)$ such that the conditions (7) and

$$
\left.\left.\inf \left\{\left|\operatorname{det}\left(\Phi(t)+\left(1-\delta_{0 j}\right) j I_{n}\right)\right|: t \in\right] \tau_{j}, \tau_{j+1}\right]\right\}>0(j=0, \ldots, m)
$$

hold and the conditions (11),
$\lim _{k \rightarrow \infty} \int_{\tau_{j}}^{t}\left(\Phi_{k}(s)+\left(1-\delta_{0 j}\right) j I_{n}\right) P_{k}(s) d s=\int_{\tau_{j}}^{t}\left(\Phi(s)+\left(1-\delta_{0 j}\right) j I_{n}\right) P(s) d s$
and

$$
\lim _{k \rightarrow \infty} \int_{\tau_{j}}^{t}\left(\Phi_{k}(s)+\left(1-\delta_{0 j}\right) j I_{n}\right) p_{k}(s) d s=\int_{\tau_{j}}^{t}\left(\Phi(s)+\left(1-\delta_{0 j}\right) j I_{n}\right) p(s) d s
$$

be fulfilled uniformly on $\left[\tau_{j}, \tau_{j+1}\right]$ for every $j \in\{0, \ldots, m\}$. Then the condition (6) holds.

Corollary 2. Let the condition (10) hold. Let, moreover, there exist matrix-functions $\Phi, \Phi_{k} \in \widetilde{C}\left([a, b] ; \mathbb{R}^{n \times n}\right)(k=1,2, \ldots)$ such that
$\lim _{k \rightarrow \infty} \sup \int_{a}^{b}\left\|\Phi_{k}^{\prime}(t)+\Phi_{k}(t) P_{k}(t)\right\| d t<\infty, \quad \inf \{|\operatorname{det}(\Phi(t))|: t \in[a, b]\}>0$ and the conditions (11) and

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \int_{a}^{t} \Phi_{k}(s) P_{k}(s) d s & =\int_{a}^{t} \Phi(s) P(s) d s \\
\lim _{k \rightarrow \infty} \int_{a}^{t} \Phi_{k}(s) p_{k}(s) d s & =\int_{a}^{t} \Phi(s) p(s) d s
\end{aligned}
$$

are fulfilled uniformly on $[a, b]$. Then the condition (6) holds.
Corollary 3. Let the conditions (9) and (10) hold. Let, moreover, there exist constant matrices $G_{j}, G_{k j} \in \mathbb{R}^{n \times n}, G_{0}=G_{k 0}=O_{n \times n}(j=0, \ldots, m$; $k=1,2, \ldots)$ such that

$$
\begin{gather*}
\lim _{k \rightarrow \infty} \sup \sum_{j=0}^{m} \int_{\tau_{j}}^{\tau_{j+1}}\left\|\left(I_{n}+\sum_{i=0}^{j} Q_{k i}\right) P_{k}(t)\right\| d t<\infty \tag{14}\\
\operatorname{det}\left(I_{n}+\sum_{i=1}^{j} G_{i}\right) \neq 0 \quad(j=1, \ldots, m)
\end{gather*}
$$

and the conditions

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \int_{\tau_{j}}^{t}\left(I_{n}+\sum_{i=0}^{j} G_{k i}\right) P_{k}(s) d s=\int_{\tau_{j}}^{t}\left(I_{n}+\sum_{i=0}^{j} G_{i}\right) P(s) d s, \\
& \lim _{k \rightarrow \infty} \int_{\tau_{j}}^{t}\left(I_{n}+\sum_{i=0}^{j} G_{k i}\right) p_{k}(s) d s=\int_{\tau_{j}}^{t}\left(I_{n}+\sum_{i=0}^{j} G_{i}\right) p(s) d s
\end{aligned}
$$

are fulfilled uniformly on $\left[\tau_{j}, \tau_{j+1}\right]$ for every $j \in\{0, \ldots, m\}$. Then the condition (6) holds.

Corollary 4. Let the conditions (10) and (14) hold and the conditions

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{a}^{t} P_{k}(s) d s=\int_{a}^{t} P(s) d s, \quad \lim _{k \rightarrow \infty} \int_{a}^{t} p_{k}(s) d s=\int_{a}^{t} p(s) d s \tag{15}
\end{equation*}
$$

be fulfilled uniformly on $[a, b]$. Then the condition (6) holds.
Corollary 5. Let the condition (10), and (14) hold and the condition (15) be fulfilled uniformly on $[a, b]$. Then the condition (6) holds.

Remark 2. In Theorem 1 and Corollaries 1-5 we can assume without loss of generality that $\Phi(t) \equiv I_{n}$ and $G_{j}=O_{n \times n}(j=1, \ldots, m)$ everywhere they appear. So that the condition (8) in Theorem 1 as well as the analogous conditions in the corollaries are valid automatically.

These results follow from analogous results for a system of so-called generalized differential equations contained in [4] because the system (1), (2) is its particular of one.

Acknowledgement

The present paper was supported by the Shota Rustaveli National Science Foundation (Grant No. FR/182/5-101/11).

References

1. M. Ashordia, On the stability of solutions of linear boundary value problems for the system of ordinary differential equations. This paper also appears in Georgian Math. J. 1 (1994), No. 2, 115-126.
2. M. Ashordia, Criteria of correctness of linear boundary value problems for systems of ordinary differential equations. Rep. Enlarged Sess. Semin. I. Vekua Appl. Math. 15 (2000), No. 1-3, 40-43.
3. M. Ashordia, On the correctness of linear boundary value problems for systems of generalized ordinary differential equations. Georgian Math. J. 1 (1994), No. 4, 343-351.
4. M. Ashordia, Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. Czechoslovak Math. J. 46(121) (1996), No. 3, 385-404.
5. M. Ashordia and G. Ekhvaia, Criteria of correctness of linear boundary value problems for systems of impulsive equations with finite and fixed points of impulses actions. Mem. Differential Equations Math. Phys. 37 (2006), 154-157.
6. I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30. (Russian) 3-103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987; traranslation in J. Soviet Math. 43 (1988), No. 2, 2259--2339.
7. I. Kiguradze, The initial value problem and boundary value problems for systems of ordinary differential equations. Vol. I. (Russian) Metsniereba, Tbilisi, 1997.

Authors' addresses:
M. Ashordia
A. Razmadze Mathematical Institute
Iv. Javakhishvili Tbilisi State University

6, Tamarashvili St., Tbilisi 0177, Georgia
Sukhumi University 12
Politkovskaia St., Tbilisi, 0186,
Georgia
E-mail: ashord@rmi.ge
G. Ekhvaia

Sukhumi University 9
Politkovskaia St., Tbilisi, 0186
Georgia
E-mail: goderdzi.ekhvaia@mail.ru

[^0]: 2010 Mathematics Subject Classification: 34B37.
 Key words and phrases. Linear impulsive systems, periodic problem, criteria of wellposedness.

