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M. Ashordia and G. Ekhvaia

ON THE CRITERIA OF WELL-POSED OF THE PERIODIC
PROBLEM FOR LINEAR SYSTEMS OF IMPULSIVE

EQUATIONS WITH FINITE AND FIXED POINTS OF
IMPULSES ACTIONS

Let P ∈ L([0, ω];Rn×n), p ∈ L([0, ω];Rn), Qj ∈ Rn×n (j = 1, . . . ,m),
qj ∈ Rn (j = 1, . . . ,m), 0= τ0<τ1< · · ·<τm< τm+1=ω and ω be a fixed
positive number.

Consider the linear the impulsive system
dx

dt
= P (t)x+ p(t), (1)

x(τj+)− x(τj−) = Qjx(τj) + qj (j = 1, . . . ,m). (2)
For the system (1), (2) consider the ω periodic problem

x(0) = x(ω).

Let the system (1), (2) has the unique ω periodic solution x0.
Consider sequences of matrix- and vector-functions Pk ∈ L([0, ω];Rn×n)

(k = 1, 2, . . .) and pk ∈ L([0, ω];Rn) (k = 1, 2, . . .), sequences of constant
matrices Qkj ∈ Rn×n (j = 1, . . . ,m; k = 1, 2, . . .) and constant vectors
qkj ∈ Rn (j = 1, . . . ,m; k = 1, 2, . . .).

In this paper necessary and sufficient conditions as well as effective suffi-
cient conditions are established for a sequence of boundary value problems

dx

dt
= Pk(t)x+ pk(t), (3)

x(τj+)− x(τj−) = Qkjx(τj) + qkj (j = 1, . . . ,m), (4)
(k = 1, 2, . . .) to have a unique ω solution xk for sufficiently large k and

lim
k→∞

xk(t) = x0(t) (5)

uniformly on [a, b].
Analogous questions for the general linear boundary value problems and

ω-periodic problems are investigated e.g. in [1], [2], [6], [7] (see the references
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therein, too) for systems of ordinary differential equations, in [3], [4] for
systems of generalized ordinary differential equations, and in [5] for systems
of impulsive equations.

Throughout the paper, the following notation and definitions will be used.
R = ]−∞,∞[ . Rn×l is the space of all real n× l-matrices X = (xij)

n,l
i,j=1

with the norm

∥X∥ = max
j=1,...,l

n∑
i=1

|xij |.

On×l is the zero n× l-matrix.
det(X) is the determinant of a matrix X ∈ Rn×n.
In is the identity n× n-matrix.
δij is the Kroneker symbol, i.e. δii = 1 and δij = 0 for i ̸= j (i, j = 1, . . . ).
Rn = Rn×1 is the space of all real column n-vectors x = (xi)

n
i=1.

BVC([0, ω]; τ1, . . . , τm;Rn×l) is the normed space of all continuous on
the intervals [0, τ1], ]τk, τk+1] (k = 1, . . . ,m) matrix-functions of bounded
variation X : [0, ω] → Rn×l with the norm

∥X∥s = sup
{
∥X(t)∥ : t ∈ [0, ω]

}
.

L([0, ω];Rn×l) is the set of all measurable and Lebesgue integrable on
[0, ω] matrix-functions.

C([0, ω];Rn×l) is the set of all continuous on [0, ω] matrix-functions.
C̃([0, ω];Rn×l) is the set of all absolutely continuous on [0, ω] matrix-

functions.
C̃([0, ω] \ {τj}mj=1;Rn×l) is the set of all matrix-functions restrictions of

which on every closed interval [c, d] from [0, ω] \ {τj}mj=1 belong to C̃([0, ω];

Rn×l).
On the set C([0, ω];Rn×l)×Rn×l × · · · × Rn×l︸ ︷︷ ︸

m

×L([0, ω];Rl×k) we intro-

duce the operator

B0(Φ, G1, . . . , Gm, X)(t) ≡
t∫

0

Φ(s)X(s) ds+
m∑

j=0, τj∈[0,t[

Gj

t∫
τj

X(s) ds,

where G0 = On×n.
Under a solution of the system (1), (2) we understand a continuous from

the left vector-function x ∈ C̃([0, ω] \ {τj}mj=1;Rn×l) ∩ BVC([0, ω]; τ1, . . . ,
τm;Rn) satisfying the system (1) for a.e. t ∈ [0, ω] and the equality (2) for
every j ∈ {1, . . . , n}.

We assume everywhere that

det(In +Qj) ̸= 0 (j = 1, . . . ,m).
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Note that this condition guarantees the unique solvability of the system
(1), (2) under the Cauchy condition x(t0) = c0.

Definition 1. We say that a sequence (Pk, pk, {Qkj}mj=1, {qkj}mj=1) (k =
1, 2, . . .) belongs to the set S(P, p, {Qj}mj=1, {qj}mj=1) if the system (3), (4)
has the unique ω-periodic solution xk for any sufficiently large k and the
condition (5) holds uniformly on [0, ω].

Theorem 1. The include(
(Pk, pk, {Qkj}mj=1, {qkj}mj=1, ℓk)

)∞
k=1

∈ S(P, p, {Qj}mj=1, {qj}mj=1, ℓ) (6)

holds if and only if there exist sequences of matrix-functions Φ, Φk ∈
C̃([a, b];Rn×n) (k = 1, 2, . . .) and constant matrices Gj , Gkj ∈ Rn×n, G0 =
Gk0 = On×n (j = 0, . . . ,m; k = 1, 2, . . .) such that

lim
k→∞

sup
m∑
j=0

τj+1∫
τj

∥∥∥∥Φ′
k(t) +

(
Φk(t) +

j∑
i=0

Qkj

)
Pk(t)

∥∥∥∥ dt < ∞, (7)

inf
{∣∣∣∣det

(
Φ(t) +

j∑
i=0

Gi

)∣∣∣∣ : t ∈ ]τj , τj+1]

}
> 0 (j = 0, . . . ,m), (8)

lim
k→∞

Gkj = Gj (j = 1, . . . ,m), (9)

lim
k→∞

Qkj = Qj , lim
k→∞

qkj = qj (j = 1, . . . ,m), (10)

and the conditions

lim
k→∞

Φk(t) = Φ(t), (11)

lim
k→∞

B0(Φk, Gk1, . . . , Gkm, Pk)(t) = B0(Φ, G1, . . . , Gm, P )(t), (12)

lim
k→∞

B0(Φk, Gk1, . . . , Gkm, pk)(t) = B0(Φ, G1, . . . , Gm, p)(t) (13)

are fulfilled uniformly on [a, b].

Remark 1. The conditions (12) and (13) are fulfilled uniformly on [a, b]
if and only if the conditions

lim
k→∞

t∫
τj

(
Φk(s) +

j∑
i=0

Gki

)
Pk(s) ds =

t∫
τj

(
Φ(s) +

j∑
i=0

Gi

)
P (s) ds,

lim
k→∞

t∫
τj

(
Φk(s) +

j∑
i=0

Gki

)
pk(s) ds =

t∫
τj

(
Φ(s) +

j∑
i=0

Gi

)
p(s) ds,

are fulfilled uniformly on [τj , τj+1] for every j ∈ {0, . . . ,m}.
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Corollary 1. Let the condition (10) hold. Let, moreover, there exist
matrix-functions Φ, Φk ∈ C̃([a, b];Rn×n) (k = 1, 2, . . .) such that the condi-
tions (7) and

inf
{∣∣det

(
Φ(t) + (1− δ0j)jIn

)∣∣ : t ∈ ]τj , τj+1]
}
> 0 (j = 0, . . . ,m)

hold and the conditions (11),

lim
k→∞

t∫
τj

(
Φk(s) + (1− δ0j)jIn

)
Pk(s) ds =

t∫
τj

(
Φ(s) + (1− δ0j)jIn

)
P (s) ds

and

lim
k→∞

t∫
τj

(
Φk(s) + (1− δ0j)jIn

)
pk(s) ds =

t∫
τj

(
Φ(s) + (1− δ0j)jIn

)
p(s) ds

be fulfilled uniformly on [τj , τj+1] for every j ∈ {0, . . . ,m}. Then the con-
dition (6) holds.

Corollary 2. Let the condition (10) hold. Let, moreover, there exist
matrix-functions Φ, Φk ∈ C̃([a, b];Rn×n) (k = 1, 2, . . .) such that

lim
k→∞

sup
b∫

a

∥∥Φ′
k(t)+Φk(t)Pk(t)

∥∥ dt < ∞, inf
{∣∣det(Φ(t))

∣∣ : t ∈ [a, b]
}
> 0

and the conditions (11) and

lim
k→∞

t∫
a

Φk(s)Pk(s) ds =

t∫
a

Φ(s)P (s) ds,

lim
k→∞

t∫
a

Φk(s)pk(s) ds =

t∫
a

Φ(s)p(s) ds

are fulfilled uniformly on [a, b]. Then the condition (6) holds.

Corollary 3. Let the conditions (9) and (10) hold. Let, moreover, there
exist constant matrices Gj , Gkj ∈ Rn×n, G0 = Gk0 = On×n (j = 0, . . . ,m;
k = 1, 2, . . .) such that

lim
k→∞

sup
m∑
j=0

τj+1∫
τj

∥∥∥∥(In +

j∑
i=0

Qki

)
Pk(t)

∥∥∥∥ dt < ∞, (14)

det
(
In +

j∑
i=1

Gi

)
̸= 0 (j = 1, . . . ,m)
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and the conditions

lim
k→∞

t∫
τj

(
In +

j∑
i=0

Gki

)
Pk(s) ds =

t∫
τj

(
In +

j∑
i=0

Gi

)
P (s) ds,

lim
k→∞

t∫
τj

(
In +

j∑
i=0

Gki

)
pk(s) ds =

t∫
τj

(
In +

j∑
i=0

Gi

)
p(s) ds

are fulfilled uniformly on [τj , τj+1] for every j ∈ {0, . . . ,m}. Then the
condition (6) holds.

Corollary 4. Let the conditions (10) and (14) hold and the conditions

lim
k→∞

t∫
a

Pk(s) ds =

t∫
a

P (s) ds, lim
k→∞

t∫
a

pk(s) ds =

t∫
a

p(s) ds (15)

be fulfilled uniformly on [a, b]. Then the condition (6) holds.
Corollary 5. Let the condition (10), and (14) hold and the condition

(15) be fulfilled uniformly on [a, b]. Then the condition (6) holds.
Remark 2. In Theorem 1 and Corollaries 1–5 we can assume without loss

of generality that Φ(t) ≡ In and Gj = On×n (j = 1, . . . ,m) everywhere they
appear. So that the condition (8) in Theorem 1 as well as the analogous
conditions in the corollaries are valid automatically.

These results follow from analogous results for a system of so-called gen-
eralized differential equations contained in [4] because the system (1), (2) is
its particular of one.
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