G. Oniani

ON THE INTEGRABILITY OF A MAXIMAL FUNCTION CORRESPONDING TO A TRANSLATION INVARIANT BASIS COMPOSED OF CUBIC INTERVALS

(Reported on 18.05.2011)

Let us call a family B of measurable subsets of \mathbb{R}^n a basis if for each $x \in \mathbb{R}^n$ there exists a sequence of sets from B containing x and having diameters which tend to zero. The maximal operator M_B corresponding to B is defined as follows: for $f \in L(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$

$$M_B(f)(x) = \sup_{E \in B, x \in E} \frac{1}{|E|} \int_E |f|.$$

The basis B is said to be translation invariant if for every $E \in B$ any translation of the set E belongs to the basis B. The basis composed of all cubic intervals of \mathbb{R}^n is denoted by \mathbf{Q}_n . $M_{\mathbf{Q}_n}$ is called the Hardy–Littlewood maximal operator.

Assume that an increasing and continuous function Φ defined on $[0, \infty)$ is such that $\Phi(0) = 0$, $\Phi(t) > 0$ (t > 0) and $\lim_{t \to \infty} \frac{\Phi(t)}{t} > 0$. Then the class

$$\Phi(L)(\mathbb{R}^n) = \left\{ f: \mathbb{R}^n \to T: \ f \ \text{ is measurable and } \int\limits_{\mathbb{R}^n} \Phi(|f|) < \infty \right\}$$

is called an integral class.

Denote by $\Phi(L)(I^n)$, where $I^n = (0,1)^n$, the class of all functions $f \in \Phi(L)(I^n)$ whose support is in I^n .

The following theorem is valid.

Theorem A. For a function $f \in L(I^n)$ the following conditions are equivalent:

$$f \in L \ln^+(I^n), \tag{1}$$

$$M_{\mathbf{Q}_n}(f) \in L(I^n).$$
 (2)

²⁰¹⁰ Mathematics Subject Classification: 42B25.

The implication $(1)\Rightarrow(2)$ was proved by G. Hardy and J. Littlewood [1] for n=1, and by Wiener for any $n\geq 2$. The inverse implication $(2)\Rightarrow(1)$ was proved by E. Stein [3] and also by O. Tsereteli [4] for n=1.

K. Hare and A. Stokolos [5] showed that the above-presented theorem does not extend to the maximal operator corresponding to a translation invariant basis composed of cubic intervals. In particular they proved the following

Theorem B. There exists a translation invariant basis B composed of cubic intervals, for which there is a function $f \in L(I^1)$ such that $M_B(f) \in L(I^1)$ but $f \notin L \ln^+ L(I^1)$.

Therefore for translation invariant basis composed of cubic intervals, the integrability of a maximal function, as different from the case of the basis (or a Hardy–Littlewood maximal function) composed of all cubic intervals, does not lead to the improvement of integral properties so that it could belong to the class $L \ln^+ L(I^n)$.

There arises the question: does there exist nontrivial (i.e. narrower than $L(I^n)$) class $\Phi(L)(I^n)$ wider than the class $L \ln^+ L(I^n)$ such that for a translation invariant basis B composed of cubic intervals the integrability of $M_B(f)$ makes f belong to the class $\Phi(L)(I^n)$?

The following theorem gives a negative answer to this question.

Theorem. For any integral class $\Phi(L)(I^n)$ narrower than $L(I^n)$ there exists a translation invariant basis B composed of cubic intervals for which there exists a function f such that $M_B(f) \in L(I^n)$, but $f \notin \Phi(L)(I^n)$.

Therefore the influence of the integrability condition of the maximal function corresponding to a translation invariant basis B composed of cubic intervals on integral properties of the function itself can be arbitrarily weak.

ACKNOWLEDGEMENT

The work was supported by the Georgian National Science Foundation Grant No. $\rm GNSF/ST08/3\text{--}385.$

References

- G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications. Acta Math. 54 (1930), No. 1, 81–116.
- 2. N. Wiener, The ergodic theorem. Duke Math. J. 5 (1939), No. 1, 1-18.
- 3. E. M. Stein, Note on the class L log L. Studia Math. 32 (1969), 305-310.
- O. D. Tsereteli, The converse of some theorems of Hardy and Littlewood. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 56 (1969), 269–271.
- K. Hare and A. Stokolos, On weak type inequalities for rare maximal functions. Collog. Math. 83 (2000), No. 2, 173–182.

Author's address:

Department of Mathematics Faculty of Exact and Natural Sciences Akaki Tsereteli State University 59, Tamar Mepe St., Kutaisi 4600, Georgia E-mail: oniani@atsu.edu.ge