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A more precise system of equations of stability for long orthotropic shells of rotation,
close by their form to cylindrical ones, is obtained. In an isotropic case, when a midsurface
generatrix of the shell is a parabolic function, the obtained equation differs from the well-
known ([1]) by additive terms which may be of the same order as another terms.

The shells with midsurface formed by the rotation of some sufficiently smooth curve
around the z-axis of the rectangular system of coordinates x, y, z and origin at the middle
of the segment of the axis of rotation, are considered. Note that the radius of midsurface
cross-section of the shell is defined by the equality R = r + δ0F (ξ), where ξ = z/r;
F (ξ) is the positive function given on the interval (−l/r; l/r), such that F (±l/r) = 0;
max F (ξ) = 1, |F ′(ξ)| <

∼

1; L = 2l is the length of the shell, r is the radius of the edge

cross-section, δ0 is a small parameter characterizing maximal deviation from the cylinder.
For δ0 > 0, the midsurface generatrix is convex, while for δ0 < 0, it is concave. It is
assumed that

(δ0/r)2, (δ0/l)2 ≪ 1. (1.1)

The midsurface equation has parametrically the form x = R(ξ) cos ϕ, y = R(ξ) sin ϕ,
z = rξ, where ϕ is the angular coordinate. This implies that the coefficients of the first
quadratic midsurface form are A2 = r2 + δ0(F ′)2 and B2 = R(ξ)2. On the basis of our
assumptions, the second term in the expression for A2 can be neglected. Consequently,
A ≈ r, B = R(ξ). The principle radii of curvature have the forms

k1 = 1/R1 = −R′′/r2, k2 = 1/R2 = 1/R(ξ). (1.2)

It is assumed that the shell is under the action of normal load which is distributed
uniformly over the whole lateral surface of the shell and of meridional stresses distributed
over the edge sections of the shell. The stressed state induced by that load is called basic
state. The stability of that state is investigated.

In deducing the equations of stability of long shells we proceed from the nonlinear
equations of equilibrium with regard for midsurface deformations ([2]). Further lineariza-

tion together with the use of improved relations of elasticity for orthotropic shells ([3]),
as well as taking into account the fact that for the forms of stability loss there takes place
the relation

∂2f

∂ξ2
≪

∂2f

∂ϕ2
(f = u, v, w), (1.3)

where u, v and w are, respectively, the axial, angular and radial components of dis-
placement, characterizing the form of stability loss, we obtain the following system of
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equations of stability of orthotropic shells:

∂4u

∂ϕ4
=

[

(

−
R′′

r

) E1

E2

+ ν1

]

∂3w

∂ξ3
+

[

( E1

G
− ν1

)(

−
R′′

r

)

− 1

]

R

r

∂3w

∂ξ ∂ϕ2
, (1.4)

∂4v

∂ϕ4
=

[

1 + ν1

(

−
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r

)

]

∂3w

∂ϕ3
+

[

( E1

G
− ν1

)

−
(

−
R′′

r
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E2

]

∂3w

∂ξ2 ∂ϕ
, (1.5)

ε
( ∂8w

∂ϕ8
+ 2

∂6w

∂ϕ6
+

∂4w

∂ϕ4

)

+
E1

E2

{

∂4w

∂ξ4
+

∂2

∂ξ2
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r
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]

−

−
R′′

r

∂4w

∂ξ2ϕ2
+

( R′′

r
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2 ∂4w

∂ϕ4

}

+
T 0

1

E2h

( ∂6w

∂ξ2 ϕ4
−

∂4w

∂ξ2 ϕ2

)

+

+
T 0

2

E2h

( ∂6w

∂ϕ6
+

∂4w

∂ϕ4

)

+
S0

E2h

( ∂6w

∂ξ ∂ϕ5
+

∂4w

∂ξ ϕ3

)

= 0, (1.6)

where E1, E2, ν1, ν2 are the elasticity moduli and Poisson coefficients in the axial and
angular directions (E1ν2 = E2ν1), G are displacement moduli, T 0

1
, T 0

2
, S0 are the normal

and shear stresses of the basic state.
For the shells whose midsurface generatrix is defined by the parabolic function

F (ξ) = 1 − ξ2(r/l)2,

the resolving equation (1.6) takes the form

ε
( ∂8w

∂ϕ8
+2

∂6w

∂ϕ6
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∂4w

∂ϕ4

)

+
E1

E2

( ∂4w
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+4δ
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∂ξ2 ∂ϕ2
+4δ2

∂4w

∂ϕ4

)

+t01

( ∂6w

∂ξ2 ∂ϕ4
−

∂4w

∂ξ2 ∂ϕ2

)

+

+ t02

( ∂6w

∂ϕ6
+

∂4w

∂ϕ4

)

+ 2s0

( ∂6w

∂ξ ∂ϕ5
+

∂4w

∂ξ ∂ϕ3

)

= 0,

ε = h2/12r2(1 − ν1ν2), δ = δ0r/l2, t0
i

= T 0

i
/E2h (i = 1, 2), s0 = S0/E2h.

The additive terms in the above equation as compared to the well-known equation
for isotropic shell ([1]), are the sixth term which, owing to the equation (1.2), are of the
same order as the fifth term, and moreover, the additive are also the eighth and the last
terms.
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