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APPROXIMATION IN WEIGHTED BERGMAN SPACES ON INFINITE
DOMAINS

1. Introduction and some auxiliary results

Let G be a simple connected domain in the complex plane C and let ω be a weight
function given on G. For functions f analytic in G we set

A1(G) :=

{

f :

∫∫

G

|f(z)| dσz <∞

}

and

A2(G, ω) :=

{

f :

∫∫

G

|f(z)|2 ω(z)dσz <∞

}

,

where dσz denotes the Lebesgue measure in the complex plane C.
If ω = 1, we denote A2(G) := A2(G, 1). The space A2(G) is called the Bergman space

on G. We refer to the spaces A2(G, ω) as ”weighted Bergman spaces”. It becomes a
normed spaces if we define

‖f‖A2(G,ω) :=

(
∫∫

G

|f(z)|2 ω(z)dσz

)1/2

.

Now, let L be a finite quasiconformal curve in the complex plane C. We recall that L
is called a quasiconformal curve if there exists a quasiconformal homeomorphism of the
complex plane onto itself that maps a circle onto L. We denote by G1 and G2 the bounded
and unbounded complements of C \L, respectively. It is clear that if f ∈ A2(G2), then
it has zero in ∞ at least second order. As in the bounded case [7], p. 5. A2(G2) is a

Hilbert space with the inner product

〈f, g〉 :=

∫∫

G2

f(z)g(z)dσz ,

which can be easily verified. Moreover, the set of polynomials of 1/z are dense in A2(G2)
with respect to the norm

‖f‖A2(G2) := (〈f, f〉)1/2 .

Also, for n = 1, 2, . . . there exists a polynomial P ∗

n(1/z) of 1/z, of degree≤ n, such that
En(f, G2) = ‖f − P ∗

n‖A2(G2) (see, for example: [6], p. 59, Theorem 1.1. ), where

En(f, G2) := Inf
{

‖f − P‖A2(G2) : P is a polynomial of 1/z, of degree ≤ n
}

denotes the minimal error of approximation of f by polynomials of 1/z of degree at most
n. The polynomial P ∗

n(1/z) is called the best approximated polynomial to f ∈ A2(G2).

2000 Mathematics Subject Classification: 30E10, 41A10, 41A25, 41A58.
Key words and phrases. Weighted Bergman space, quasiconformal curve, generalized

Faber series.

120



121

Let D be the open unit disc and w = ϕ(z) the conformal mapping of G1 onto CD := C

\D, normalized by conditions

ϕ(0) = ∞ and lim
z→0

zϕ(z) > 0,

and let ψ be the inverse of ϕ. For an arbitrary fixed number R > 1 we put

LR := {z : |ϕ(z)| = R} , G2,R := {z : z ∈ G1, 1 < |ϕ(z)| < R} ∪G2

If a function g(z) is analytic in G1 and g(0) > 0, then the function g(z)ϕm(z) has a
pole of order m at the origin, i.e. this expansion holds

g(z)ϕm(z) = Fm(1/z, g) +Qm(z, g) for z ∈ G1,

where Fm(1/z, g) denotes the polynomial of negative powers of z and the term Qm(z, g)
contains non-negative powers of z; hence Qm(z, g) is a function analytic in the domain
G1. The polynomial Fm(1/z, g) of negative powers of z is called the generalized Faber
polynomial of order m for the domain G2. These polynomials satisfy the following ex-
pansion

g [ψ(w)]ψ′(w)

ψ(w) − z
=

∞
∑

m=1

Fm (1/z)
1

wm+1

for z ∈ G2 and w ∈ CD, which converges absolutely and uniformly on compact subsets
of G2 × CD. Differentiation of this equality with respect to z gives

z2g [ψ (w)]ψ′(w)

[ψ (w) − z]2
=

∞
∑

m=1

− F ′

m (1/z)
1

wm+1
(1)

for every (z,w) ∈ G2× CD, where the series converges absolutely and uniformly on com-

pact subsets of G2× CD. More information for Faber and generalized Faber polynomials
can be found in [11], p. 44 and p. 255 and [7], p. 42.

In [4], V. I. Belyi gave the following integral representation for the functions f analytic
and bounded in the domain G1

f(z) = −
1

π

∫ ∫

G2

(f ◦ y)(ζ)

(ζ − z)2
yζ(ζ)dσζ , z ∈ G1. (2)

Here y(z) is a K-quasiconformal reflection across the boundary L, i.e., a sense-reversing
K-quasiconformal involution of the extended complex plane keeping every point of L
fixed, such that y(G1) = G2, y(G2) = G1, y(0) = ∞ and y(∞) = 0. Such a mapping
of the plane does exist [10], p. 99. As follows from Ahlfors’ theorem [1], p. 80, the
reflection y(z) can always be chosen canonical in the sense that it is differentiable on C

almost everywhere, except possibly at the points of the curve L, and for any sufficiently
small fixed δ > 0 it satisfies the relations

|yς | + |yς | ≤ c1, δ < |ς| <
1

δ
for ς /∈ L,

|yς | + |yς | ≤ c2 |ς|
−2 , |ς| ≥

1

δ
for |ς| ≤ δ.

with some constants c1 and c2, independent of ζ.
Let g be an analytic function in G1, g(0) > 0, and let

∫∫

G1

|g(z)|2 |yz|
2 dσz < ∞,

where y is a canonical reflection across the boundary L. For every such g we define a
weight function ω in the following way

ω(z) :=
1

|(g ◦ y) (z)|2
, z ∈ G2.

We denote by W 2(G2) the set all of weight functions ω defined as above.
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In this work, for the first time, we obtain (Lemma 1) an integral representation on
the domain G2 for a function f ∈ A1(G2). By means of this integral representation we
define a generalized Faber series of a function f ∈ A1(G2) to be of the form

∞
∑

m=1

am(f, g)F ′

m (1/z, g) ,

with the generalized Faber coefficients am(f, g), m = 1, 2, . . . . Then, we investigate the
convergence, the uniqueness and the approximation rate of this series.

For the bounded domains the results presented here were stated and proved in [9] and

[5], respectively. Similar problems in A(G), where A(G) denotes the class of functions

which are continuous in G and analytic in G were studied in [8].
Considering only the canonical quasiconformal reflections, I. M. Batchaev [3] general-

ized the integral representation in (2) to functions f ∈ A1(G1). The accurate proof of the
Batchaev’s result is given in [2], p. 110, Theorem 4.4. A similar integral representation
can also be obtained for functions f ∈ A1(G2). The following result holds.

Lemma 1. Let f ∈ A1(G2). If y(z) is a canonical quasiconformal reflection with
respect to L, then

f(z) = −
1

π

∫∫

G1

(f ◦ y)(ζ)z2

(ζ − z)2[y(ζ)]2
yζ(ζ)dσζ , z ∈ G2. (3)

From now on, the reflection y(z) will be a canonical K-quasiconformal reflection with
respect to L.

Let f ∈ A1(G2). Substituting ζ = ψ(w) in (3), for z ∈ G2 we get

f(z) = −
1

π

∫∫

CD

(f ◦ y) [ψ (w)]ψ′(w)yζ [ψ (w)]

[(y ◦ ψ) (w)]2g [ψ (w)]

g [ψ (w)] z2ψ′(w)

[ψ (w) − z]2
dσw . (4)

Thus, if we define the coefficients am(f, g) by

am(f, g) :=
1

π

∫∫

CD

(f ◦ y) [ψ (w)]ψ′(w)

wm+1g [ψ (w)] [(y ◦ ψ) (w)]2
yζ [ψ (w)] dσw, m = 1, 2, . . .

then, by (1) and (4), we can associate a formal series
∑

∞

m=1 am(f, g)F ′

m(1/z, g) with the

function f ∈ A1(G2), i.e.,

f(z) ∼
∞
∑

m=1

am(f, g)F ′

m (1/z, g) .

We call this formal series a generalized Faber series of f ∈ A1(G2), and the coefficients
am(f, g) are called generalized Faber coefficients of f .

2. Main results

Theorem 1. Let f ∈ A2(G2, ω), ω ∈W 2(G2). If

∞
∑

m=1

am(f, g)F ′

m (1/z, g)

is a generalized Faber series of f, then this series converges uniformly to f on the compact
subsets of G2.

A uniqueness theorem for the series
∞
∑

m=1

am(f, g)F ′

m (1/z, g)

which converges to f ∈ A2(G2, ω) with respect to the norm ‖·‖A2(G2,ω) is the following.
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Theorem 2. Let g be an analytic function, bounded and non-vanishing in G1, let
{bm} be a complex number sequence. If the series

∞
∑

m=1

bmF
′

m (1/z, g)

converges to a function f ∈ A2(G2, ω) in the norm ‖·‖A2(G2,ω), then the bm, m =

1, 2, . . . , are the generalized Faber coefficients of f .

Let yR be KR-quasiconformal reflection across the boundary LR. Then the following
theorem estimates the error of the approximation of f ∈ A2(G2,R) by the partial sums
of the series

∞
∑

m=1

am(f)F ′

m (1/z)

in the norm ‖·‖A2(G2,ω) regarding to En(f, G2,R) for the special case ω(z) = 1/ |z|4 of

the weighted function ω given on G2.

Theorem 3. If f ∈ A2(G2,R) for R > 1, ω(z) := 1/ |z|4 and

Sn (f, 1/z) =

n+1
∑

m=1

am(f)F ′

m (1/z)

is the n-th partial sum of its generalized Faber series

∞
∑

m=1

am(f)F ′

m (1/z) ,

then for all natural numbers n

‖f − Sn(f, ·)‖A2(G2,ω) ≤
c

√

(

1 − k2
R

)

(R2 − 1)

En(f, G2,R)

Rn+1

with a constant c independent of n, where kR := (KR − 1) / (KR + 1) .
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