## D. M. Israfilov and B. Oktay

## APPROXIMATION PROPERTIES OF THE GENERALIZED BIEBERBACH POLYNOMIALS IN THE CLOSED DINI-SMOOTH DOMAINS

## 1. Introduction

Let $G$ be a finite simply connected domain in the complex plane $\mathbb{C}$, bounded by a rectifiable Jordan curve $L$, and let $z_{0} \in G$. By the Riemann mapping theorem, there exists a unique conformal mapping $w=\varphi_{0}(z)$ of $G$ onto $D\left(0, r_{0}\right):=\left\{w:|w|<r_{0}\right\}$ with the normalization $\varphi_{0}\left(z_{0}\right)=0, \varphi_{0}^{\prime}\left(z_{0}\right)=1$.

Without loss of generality, we may assume that the conformal radius of $G$ with respect to $z_{0}$ equals 1 .

Let $\psi_{0}(w)$ be the inverse to $w=\varphi_{0}(z)$. Let also $G^{-}:=\operatorname{ext} L, D:=D(0,1)=\{w$ : $|w|<1\}, T:=\partial D, D^{-}:=\{w:|w|>1\}$, and let $\varphi$ be the conformal mapping of $G^{-}$ onto $D^{-}$, normalized by

$$
\varphi(\infty)=\infty, \lim _{z \rightarrow \infty} \varphi(z) / z>0
$$

We denote by $\psi$ the inverse mapping to $\varphi$.
For an arbitrary analytic function $f$ given on $G$ and $p>0$, we set

$$
\|f\|_{L_{p}(G)}^{p}:=\iint_{G}|f(z)|^{p} d \sigma_{z}
$$

If the analytic function $f$ has a continuous extension to $\bar{G}$, we also use the uniform norm

$$
\|f\|_{\bar{G}}:=\sup \{|f(z)|, z \in \bar{G}\}
$$

It is well known that the function $\varphi_{p}(z):=\int_{z_{0}}^{z}\left[\varphi_{0}^{\prime}(\zeta)\right]^{2 / p}, \quad p>0$, minimizes the integral $\left\|f^{\prime}\right\|_{L_{p}(G)}^{p}$ in the class of all analytic functions in $G$ with the normalization $f\left(z_{0}\right)=0, f^{\prime}\left(z_{0}\right)=1$. On the other hand, let $\Pi_{n}$ be the class of all polynomials $p_{n}$ of degree at most $n$ satisfying the conditions $p_{n}\left(z_{0}\right)=0, p_{n}^{\prime}\left(z_{0}\right)=1$. Then the integral $\left\|\varphi_{p}^{\prime}-p_{n}^{\prime}\right\|_{L_{p}(G)}, 1<p<\infty$, is minimized in $\Pi_{n}$ by an unique polynomial $\pi_{n, p}$ which is called [6] the $n^{t h}$ generalized Bieberbach polynomial for the pair $\left(G, z_{0}\right)$. As it is known, in case of $p=2$ they are the usual Bieberbach polynomials $\pi_{n}$. By the results due to Markushevich and Farrel, if $G$ is a Caratheodory domain, then $\| \varphi_{p}^{\prime}-$ $\pi_{n, p}^{\prime} \|_{L_{p}(G)} \rightarrow 0(n \rightarrow \infty)$ and this implies the convergence $\pi_{n, p}(z) \rightarrow \varphi_{p}(z)(n \rightarrow \infty)$ for $z \in G$, uniformly on compact subsets of $G$. The approximation properties of the polynomials $\pi_{n, p}, n=1,2, \ldots$ on the various closed domains were investigated in [12], [13], [17], [16], [15], [1], [2], [3], [5], [4], [6], [7], [8], [9], [10], [11].

In this work, we investigate the convergence of the polynomials $\pi_{n, p}, n=1,2, \ldots$ on a subclass of closed Dini-smooth domains.

[^0]
## 2. Definitions and Auxiliary Results

Let $\psi_{0}\left(e^{i t}\right), 0 \leq t \leq 2 \pi$, be the conformal parametrization of the smooth boundary $L$ and let $\beta(t)$ be its tangent direction angle at the point $\psi_{0}\left(e^{i t}\right)$.

Definition 1. We say that $L \in \mathfrak{B}(\alpha, \mu)$ if

$$
\omega(\beta, \delta):=\sup _{|h| \leq \delta}\|\beta(\cdot)-\beta(\cdot+h)\|_{[0,2 \pi]} \leq c \delta^{\alpha} \ln ^{\mu} \frac{1}{\delta}
$$

for some parameters $\alpha \in(0,1], \mu \in[0, \infty)$ and for a positive constant $c$ independent of $\delta$.
In particular the class $\mathfrak{B}(\alpha, 0), 0<\alpha<1$, coincides with the class of Lyapunov curves. Futhermore, it is easy to verify that if $0<\alpha_{1}<\alpha_{2} \leq 1$, then

$$
\mathfrak{B}\left(\alpha_{1}, \mu\right) \supset \mathfrak{B}\left(\alpha_{2}, \mu\right), \mu \in[0, \infty)
$$

and also

$$
\mathfrak{B}\left(\alpha, \mu_{1}\right) \subset \mathfrak{B}\left(\alpha, \mu_{2}\right), \alpha \in(0,1]
$$

for $0 \leq \mu_{1}<\mu_{2}<\infty$.
It is easily seen from the definition 1 that every curve $L \in \mathfrak{B}(\alpha, \beta)$ with $\alpha \in(0,1]$ and $\beta \in$ $[0, \infty)$ is Dini-smooth.

If $L$ is Dini-smooth, then [14], p. 48, $\varphi_{0}^{\prime}$ has a continuous extension to $\bar{G}$. Hence the following definition is correct.

Definition 2. Let $G$ be a domain with a smooth boundary $L$, and let $\Phi_{p}(w):=$ $\left(\varphi_{0}^{\prime}\right)^{2 / p}(\psi(w))$. The function

$$
\omega\left(\Phi_{p}, \delta\right):=\sup _{|h| \leq \delta}\left\|\Phi_{p}\left(w e^{i h}\right)-\Phi_{p}(w)\right\|_{T}, p>1
$$

is called the generalized integral modulus of continuity for $\left(\varphi_{0}^{\prime}\right)^{2 / p} \in E^{p}(G)$.
The following lemma holds.
Lemma 1. If $L \in \mathfrak{B}(\alpha, \mu)$ with $\alpha \in(0,1]$ and $\mu \in[0, \infty)$, then

$$
\begin{aligned}
& \omega\left(\left(\psi_{0}^{\prime}\right)^{2 / p}, \delta\right):=\sup _{|h| \leq \delta}\left\|\left(\psi_{0}^{\prime}\right)^{2 / p}\left(w e^{i h}\right)-\left(\psi_{0}^{\prime}\right)^{2 / p}(w)\right\|_{T} \\
& \quad \leq \begin{cases}c \delta^{\alpha} \ln ^{\mu} \frac{1}{\delta}, & \alpha \in(0,1) ; \\
c \delta \ln ^{\mu+1} \frac{1}{\delta}, & \alpha=1 .\end{cases}
\end{aligned}
$$

Lemma 2. If $L \in \mathfrak{B}(\alpha, \mu)$ with $\alpha \in(0,1]$ and $\mu \in[0, \infty)$, then

$$
\omega\left(\Phi_{p}, \delta\right) \leq \begin{cases}c \delta^{\alpha} \ln ^{\mu} \frac{1}{\delta}, & \alpha \in(0,1) \\ c \delta \ln ^{\mu+1} \frac{1}{\delta}, & \alpha=1\end{cases}
$$

We will use the following theorem which can be easily obtained from [8], Theorem 3.
Theorem 1. Let $G$ be a domain with a Dini-smooth boundary $L, p>1$ and let

$$
S_{n}\left(\varphi_{p}^{\prime}, z\right):=\sum_{k=0}^{n} a_{k}\left(\varphi_{p}^{\prime}\right) F_{k}(z), \quad n=0,1,2, \ldots
$$

be the $n^{\text {th }}$ partial sums of the Faber series of $\varphi_{p}^{\prime}$. Then

$$
\left\|\varphi_{p}^{\prime}-S_{n}\left(\varphi_{p}^{\prime}, \cdot\right)\right\|_{L^{p}(L)} \leq c \omega\left(\Phi_{p}, 1 / n\right)
$$

with a some constant $c>0$.

## 3. Main Result

Theorem 2. If $L \in \mathfrak{B}(\alpha, \mu)$ with $\alpha \in(0,1]$ and $\mu \in[0, \infty)$, then for $p \geq 2$,

$$
\left\|\varphi_{p}-\pi_{n, p}\right\|_{\bar{G}} \leq c_{1} \begin{cases}n^{-\alpha-1 / p} \ln ^{\mu} n, & \alpha \in(0,1) \\ n^{-1-1 / p} \ln ^{\mu+1} n, & \alpha=1\end{cases}
$$

with a constant $c_{1}>0$ and for $1<p<2$,

$$
\left\|\varphi_{p}-\pi_{n, p}\right\|_{\bar{G}} \leq c_{2} \begin{cases}n^{-\alpha-1+\frac{1}{p}+\varepsilon} \ln ^{\mu} n, & \alpha \in(0,1) \\ n^{-2+\frac{1}{p}+\varepsilon} \ln ^{\mu+1} n, & \alpha=1\end{cases}
$$

with a constant $c_{2}=c_{2}(\varepsilon)>0$.
This result, in case of $p=2$, was obtained in [10] which improves the result given by Wu-Xue-Mou in [17].

## REFERENCES

1. F. G. Abdullaev, Uniform convergence of the generalized Bieberbach polynomials in domains of complex plane. Approximation theory and its applications (Ukrainian) (Kiev, 1999), 5-18, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 31, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2000.
2. V. V. Andrievskiĭ, Convergence of Bieberbach polynomials in domains with a quasiconformal boundary. (Russian) Ukrain. Mat. Zh. 35(1983), No. 3, 273-277.
3. V. V. Andrievskiĭ, Uniform convergence of Bieberbach polynomials in domains with piecewise-quasiconformal boundary. (Russian) Theory of mappings and approximation of functions, 3-18, Naukova Dumka, Kiev, 1983.
4. V. V. Andrievskiĭ and I. E. Pritsker, Convergence of Bieberbach polynomials in domains with interior cusps. J. Anal. Math. 82(2000), 315-332.
5. D. Gaier, On the convergence of the Bieberbach polynomials in regions with corners. Constr. Approx. 4(1988), No. 3, 289-305.
6. D. M. Israfilov, Uniform convergence of some extremal polynomials in domains with quasi-conformal boundary. East J. Approx. 4(1998), No. 4, 527-539.
7. D. M. Israfilov, Approximation by $p$-Faber polynomials in the weighted Smirnov class $E^{p}(G, \omega)$ and the Bieberbach polynomials. Constr. Approx. $\mathbf{1 7}(2001)$, No. 3, 335-351.
8. D. M. Israfilov, Uniform convergence of the Bieberbach polynomials in closed smooth domains of bounded boundary rotation. J. Approx. Theory $\mathbf{1 2 5}(2003)$, No. 1, 116130.
9. D. M. Israfilov, Uniform convergence of Bieberbach polynomials in closed Radon domains. Analysis (Munich) 23(2003), No. 1, 51-64.
10. D. M. Israfilov and B. Oktay, Approximation properties of the Bieberbach polynomials in closed Dini-smooth domains. Bull. Belg. Math. Soc. (accepted for publication).
11. D. M. Israfilov and B. Oktay, Approximation properties of the Bieberbach polynomials. 17th National Mathematics Symposium, Bolu, 2004, 32-24.
12. M. Keldych, M. Sur l'approximation en moyenne quadratique des fonctions analytiques. Rec. Math. [Mat. Sbornik] N S. 5 (47)(1939), 391-401.
13. S. N. Mergelyan, Certain questions of the constructive theory of functions. (Russian) Trudy Mat. Inst. Steklov., 37. Izdat. Akad. Nauk SSSR, Moscow, 1951.
14. Ch. Pommerenke, Boundary behaviour of conformal maps. Grundlehren der Mathematischen Wissenschaften, 299. Springer-Verlag, Berlin, 1992.
15. I. B. Simonenko, Convergence of Bieberbach polynomials in the case of a Lipschitz domain. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 42(1978), No. 4, 870-878.
16. P. K. Suetin, Polynomials orthogonal over a region and Bieberbach polynomials. (Translated from the Russian) Proceedings of the Steklov Institute of Mathematics, No. 100 (1971). American Mathematical Society, Providence, R.I., 1974.
17. Xue-mou Wu, On Bieberbach polynomials. (Chinese) Acta Math. Sinica 13(1963) 145-151; English transl.: Chinese Math. 4(1963), 161-168.

Authors' address:
Balikesir University
Faculty of Art and Sciences
Department of Mathematics
10100 Balikesir
Turkey


[^0]:    2000 Mathematics Subject Classification: 30E10; 41A10, 30C40.
    Key words and phrases. Generalized Bieberbach polynomials; Conformal mapping; Dini-smooth domain.

