D. M. ISRAFILOV AND B. OKTAY

APPROXIMATION PROPERTIES OF THE GENERALIZED BIEBERBACH POLYNOMIALS IN THE CLOSED DINI-SMOOTH DOMAINS

1. INTRODUCTION

Let G be a finite simply connected domain in the complex plane \mathbb{C} , bounded by a rectifiable Jordan curve L, and let $z_0 \in G$. By the Riemann mapping theorem, there exists a unique conformal mapping $w = \varphi_0(z)$ of G onto $D(0, r_0) := \{w : | w | < r_0\}$ with the normalization $\varphi_0(z_0) = 0$, $\varphi'_0(z_0) = 1$.

Without loss of generality, we may assume that the conformal radius of G with respect to z_0 equals 1.

Let $\psi_0(w)$ be the inverse to $w = \varphi_0(z)$. Let also $G^- := \text{ext } L, D := D(0, 1) = \{w : |w| < 1\}, T := \partial D, D^- := \{w : |w| > 1\}$, and let φ be the conformal mapping of G^- onto D^- , normalized by

$$\varphi(\infty) = \infty$$
, lim $\varphi(z)/z > 0$.

We denote by ψ the inverse mapping to φ .

For an arbitrary analytic function f given on G and p > 0, we set

$$\|f\|_{L_p(G)}^p := \iint_G |f(z)|^p \, d\sigma_z.$$

If the analytic function f has a continuous extension to \overline{G} , we also use the uniform norm

$$\|f\|_{\overline{G}} := \sup\left\{ \left| f(z) \right|, z \in \overline{G} \right\}.$$

It is well known that the function $\varphi_p(z) := \int_{z_0}^{z} [\varphi'_0(\zeta)]^{2/p}, p > 0$, minimizes the integral $\|f'\|_{L_p(G)}^p$ in the class of all analytic functions in G with the normalization $f(z_0) = 0, f'(z_0) = 1$. On the other hand, let Π_n be the class of all polynomials p_n of degree at most n satisfying the conditions $p_n(z_0) = 0, p'_n(z_0) = 1$. Then the integral $\|\varphi'_p - p'_n\|_{L_p(G)}, 1 , is minimized in <math>\Pi_n$ by an unique polynomial $\pi_{n,p}$ which is called [6] the n^{th} generalized Bieberbach polynomial for the pair (G, z_0) . As it is known, in case of p = 2 they are the usual Bieberbach polynomials π_n . By the results due to Markushevich and Farrel, if G is a Caratheodory domain, then $\|\varphi'_p - \pi'_{n,p}\|_{L_p(G)} \to 0 \ (n \to \infty)$ and this implies the convergence $\pi_{n,p}(z) \to \varphi_p(z) \ (n \to \infty)$ for $z \in G$, uniformly on compact subsets of G. The approximation properties of the polynomials $\pi_{n,p}, n = 1, 2, \ldots$ on the various closed domains were investigated in [12], [13], [17], [16], [15], [1], [2], [3], [5], [4], [6], [7], [8], [9], [10], [11].

116

In this work, we investigate the convergence of the polynomials $\pi_{n,p}$, n = 1, 2, ... on a subclass of closed Dini-smooth domains.

²⁰⁰⁰ Mathematics Subject Classification: 30E10; 41A10, 30C40.

Key words and phrases. Generalized Bieberbach polynomials; Conformal mapping; Dini-smooth domain.

Let $\psi_0(e^{it})$, $0 \le t \le 2\pi$, be the conformal parametrization of the smooth boundary L and let $\beta(t)$ be its tangent direction angle at the point $\psi_0(e^{it})$.

Definition 1. We say that $L \in \mathfrak{B}(\alpha, \mu)$ if

$$\omega(\beta,\delta) := \sup_{|h| \le \delta} \|\beta(\cdot) - \beta(\cdot+h)\|_{[0,2\pi]} \le c\delta^{\alpha} \ln^{\mu} \frac{1}{\delta}$$

for some parameters $\alpha \in (0, 1]$, $\mu \in [0, \infty)$ and for a positive constant c independent of δ .

In particular the class $\mathfrak{B}(\alpha, 0)$, $0 < \alpha < 1$, coincides with the class of Lyapunov curves. Furthermore, it is easy to verify that if $0 < \alpha_1 < \alpha_2 \leq 1$, then

$$\mathfrak{B}(\alpha_1,\mu) \supset \mathfrak{B}(\alpha_2,\mu), \ \mu \in [0,\infty)$$

and also

$$\mathfrak{B}(\alpha,\mu_1) \subset \mathfrak{B}(\alpha,\mu_2), \, \alpha \in (0,1]$$

for $0 \leq \mu_1 < \mu_2 < \infty$.

It is easily seen from the definition 1 that every curve $L \in \mathfrak{B}(\alpha, \beta)$ with $\alpha \in (0, 1]$ and $\beta \in [0, \infty)$ is Dini-smooth.

If L is Dini-smooth, then [14], p. 48, φ_0' has a continuous extension to \overline{G} . Hence the following definition is correct.

Definition 2. Let G be a domain with a smooth boundary L, and let $\Phi_p(w) := (\varphi'_0)^{2/p} (\psi(w))$. The function

$$\omega(\Phi_p, \delta) := \sup_{|h| \le \delta} \| \Phi_p(we^{ih}) - \Phi_p(w) \|_T, \ p > 1$$

is called the generalized integral modulus of continuity for $(\varphi'_0)^{2/p} \in E^p(G)$.

The following lemma holds.

Lemma 1. If $L \in \mathfrak{B}(\alpha, \mu)$ with $\alpha \in (0, 1]$ and $\mu \in [0, \infty)$, then

$$\begin{split} \omega((\psi_0')^{2/p}, \delta) &:= \sup_{|h| \le \delta} \left\| \left(\psi_0'\right)^{2/p} \left(w e^{ih}\right) - \left(\psi_0'\right)^{2/p} (w) \right\|_T \\ &\le \begin{cases} c \delta^{\alpha} \ln^{\mu} \frac{1}{\delta}, & \alpha \in (0, 1); \\ c \delta \ln^{\mu+1} \frac{1}{\delta}, & \alpha = 1. \end{cases} \end{split}$$

Lemma 2. If $L \in \mathfrak{B}(\alpha, \mu)$ with $\alpha \in (0, 1]$ and $\mu \in [0, \infty)$, then

$$\omega\left(\Phi_p,\delta\right) \leq \left\{ \begin{array}{ll} c\delta^\alpha \ln^\mu \frac{1}{\delta}, & \alpha\in(0,1);\\ \\ c\delta \ln^{\mu+1} \frac{1}{\delta}, & \alpha=1. \end{array} \right.$$

We will use the following theorem which can be easily obtained from [8], Theorem 3.

Theorem 1. Let G be a domain with a Dini-smooth boundary L, p > 1 and let

$$S_n(\varphi'_p, z) := \sum_{k=0}^n a_k(\varphi'_p) F_k(z), \qquad n = 0, 1, 2, \dots$$

be the n^{th} partial sums of the Faber series of φ_p' . Then

$$\| \varphi_p' - S_n \left(\varphi_p', \cdot \right) \|_{L^p(L)} \leq c \ \omega(\Phi_p, 1/n)$$

with a some constant c > 0.

3. MAIN RESULT

Theorem 2. If $L \in \mathfrak{B}(\alpha, \mu)$ with $\alpha \in (0, 1]$ and $\mu \in [0, \infty)$, then for $p \geq 2$,

$$\|\varphi_p - \pi_{n,p}\|_{\overline{G}} \leq c_1 \begin{cases} n^{-\alpha - 1/p} \ln^{\mu} n, & \alpha \in (0,1); \\ \\ n^{-1 - 1/p} \ln^{\mu + 1} n, & \alpha = 1 \end{cases}$$

t $c_1 > 0$ and for $1 .$

with a constan

$$\|\varphi_p - \pi_{n,p}\|_{\overline{G}} \le c_2 \begin{cases} n^{-\alpha - 1 + \frac{1}{p} + \varepsilon} \ln^{\mu} n, & \alpha \in (0, 1), \\\\ n^{-2 + \frac{1}{p} + \varepsilon} \ln^{\mu + 1} n, & \alpha = 1 \end{cases}$$

with a constant $c_2 = c_2(\varepsilon) > 0$.

This result, in case of p = 2, was obtained in [10] which improves the result given by Wu-Xue-Mou in [17].

References

- 1. F. G. Abdullaev, Uniform convergence of the generalized Bieberbach polynomials in domains of complex plane. Approximation theory and its applications (Ukrainian) (Kiev, 1999), 5-18, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 31, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2000.
- 2. V. V. Andrievskii, Convergence of Bieberbach polynomials in domains with a quasiconformal boundary. (Russian) Ukrain. Mat. Zh. 35(1983), No. 3, 273-277.
- 3. V. V. Andrievskiĭ, Uniform convergence of Bieberbach polynomials in domains with piecewise-quasiconformal boundary. (Russian) Theory of mappings and approximation of functions, 3-18, Naukova Dumka, Kiev, 1983.
- 4. V. V. Andrievskiĭ and I. E. Pritsker, Convergence of Bieberbach polynomials in domains with interior cusps. J. Anal. Math. 82(2000), 315-332.
- 5. D. Gaier, On the convergence of the Bieberbach polynomials in regions with corners. Constr. Approx. 4(1988), No. 3, 289-305.
- 6. D. M. Israfilov, Uniform convergence of some extremal polynomials in domains with quasi-conformal boundary. East J. Approx. 4(1998), No. 4, 527-539.
- 7. D. M. Israfilov, Approximation by p-Faber polynomials in the weighted Smirnov class $E^p(G,\omega)$ and the Bieberbach polynomials. Constr. Approx. 17(2001), No. 3, 335 - 351.
- 8. D. M. Israfilov, Uniform convergence of the Bieberbach polynomials in closed smooth domains of bounded boundary rotation. J. Approx. Theory 125(2003), No. 1, 116-130
- 9. D. M. Israfilov, Uniform convergence of Bieberbach polynomials in closed Radon domains. Analysis (Munich) 23(2003), No. 1, 51-64.
- 10. D. M. Israfilov and B. Oktay, Approximation properties of the Bieberbach polynomials in closed Dini-smooth domains. Bull. Belg. Math. Soc. (accepted for publication).
- 11. D. M. Israfilov and B. Oktay, Approximation properties of the Bieberbach polynomials. 17th National Mathematics Symposium, Bolu, 2004, 32-24.
- 12. M. Keldych, M. Sur l'approximation en moyenne quadratique des fonctions analytiques. Rec. Math. [Mat. Sbornik] N S. 5 (47)(1939), 391-401.
- 13. S. N. Mergelyan, Certain questions of the constructive theory of functions. (Russian) Trudy Mat. Inst. Steklov., 37. Izdat. Akad. Nauk SSSR, Moscow, 1951.
- 14. Ch. Pommerenke, Boundary behaviour of conformal maps. Grundlehren der Mathematischen Wissenschaften, 299. Springer-Verlag, Berlin, 1992.
- 15. I. B. Simonenko, Convergence of Bieberbach polynomials in the case of a Lipschitz domain. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 42(1978), No. 4, 870-878.

118

- P. K. Suetin, Polynomials orthogonal over a region and Bieberbach polynomials. (Translated from the Russian) Proceedings of the Steklov Institute of Mathematics, No. 100 (1971). American Mathematical Society, Providence, R.I., 1974.
- Xue-mou Wu, On Bieberbach polynomials. (Chinese) Acta Math. Sinica 13(1963) 145–151; English transl.: Chinese Math. 4(1963), 161–168.

Authors' address:

Balikesir University Faculty of Art and Sciences Department of Mathematics 10100 Balikesir Turkey