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APPROXIMATION PROPERTIES OF THE GENERALIZED

BIEBERBACH POLYNOMIALS IN THE CLOSED DINI-SMOOTH
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1. Introduction

Let G be a finite simply connected domain in the complex plane C, bounded by a
rectifiable Jordan curve L, and let z0 ∈ G. By the Riemann mapping theorem, there
exists a unique conformal mapping w = ϕ0 (z) of G onto D (0, r0) := {w :| w |< r0} with
the normalization ϕ0 (z0) = 0, ϕ′

0
(z0) = 1.

Without loss of generality, we may assume that the conformal radius of G with respect
to z0 equals 1.

Let ψ0 (w) be the inverse to w = ϕ0 (z) . Let also G− := ext L, D := D(0, 1) = {w :
| w |< 1}, T := ∂D, D− := {w : | w |> 1} , and let ϕ be the conformal mapping of G−

onto D−, normalized by

ϕ (∞) = ∞, lim
z→∞

ϕ (z) /z > 0.

We denote by ψ the inverse mapping to ϕ.
For an arbitrary analytic function f given on G and p > 0, we set

‖f‖p
Lp(G)

:=

∫∫

G

|f (z)|p dσz .

If the analytic function f has a continuous extension to G , we also use the uniform
norm

‖f‖G := sup
{

|f (z)| , z ∈ G
}

.

It is well known that the function ϕp (z) :=
z
∫

z0

[

ϕ′
0 (ζ)

]2/p
, p > 0, minimizes the

integral ‖ f ′ ‖p
Lp(G)

in the class of all analytic functions in G with the normalization

f (z0) = 0, f ′ (z0) = 1. On the other hand, let Πn be the class of all polynomials
pn of degree at most n satisfying the conditions pn (z0) = 0, p′n (z0) = 1. Then the
integral ‖ ϕ′

p − p′n ‖Lp(G), 1 < p < ∞, is minimized in Πn by an unique polynomial

πn,p which is called [6] the nth generalized Bieberbach polynomial for the pair (G, z0).
As it is known, in case of p = 2 they are the usual Bieberbach polynomials πn. By the
results due to Markushevich and Farrel, if G is a Caratheodory domain, then ‖ ϕ′

p −

π′
n,p ‖

Lp(G)
→ 0 (n→ ∞) and this implies the convergence πn,p (z) → ϕp (z) (n→ ∞)

for z ∈ G, uniformly on compact subsets of G. The approximation properties of the
polynomials πn,p, n = 1, 2, . . . on the various closed domains were investigated in [12],
[13], [17], [16], [15], [1], [2], [3], [5], [4], [6], [7], [8], [9], [10], [11].

In this work, we investigate the convergence of the polynomials πn,p, n = 1, 2, . . . on
a subclass of closed Dini-smooth domains.
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2. Definitions and Auxiliary results

Let ψ0(eit), 0 ≤ t ≤ 2π, be the conformal parametrization of the smooth boundary
L and let β (t) be its tangent direction angle at the point ψ0(eit).

Definition 1. We say that L ∈ B(α, µ) if

ω(β, δ) := sup
|h|≤δ

‖β (·) − β (· + h)‖[0,2π] ≤ cδα lnµ 1

δ

for some parameters α ∈ (0, 1], µ ∈ [0,∞) and for a positive constant c independent of δ.

In particular the class B(α, 0), 0 < α < 1, coincides with the class of Lyapunov
curves. Futhermore, it is easy to verify that if 0 < α1 < α2 ≤ 1, then

B(α1,µ) ⊃ B(α2,µ), µ ∈ [0,∞)

and also

B(α, µ1) ⊂ B(α, µ2) , α ∈ (0, 1]

for 0 ≤ µ1 < µ2 <∞.
It is easily seen from the definition 1 that every curve L ∈ B(α, β) with α ∈ (0, 1] and β ∈

[0,∞) is Dini-smooth.

If L is Dini-smooth, then [14], p. 48, ϕ′
0 has a continuous extension to G. Hence the

following definition is correct.

Definition 2. Let G be a domain with a smooth boundary L, and let Φp (w) :=
(

ϕ′
0

)2/p
(ψ (w)) . The function

ω(Φp, δ) := sup
|h|≤δ

‖ Φp(weih) − Φp(w) ‖T , p > 1

is called the generalized integral modulus of continuity for
(

ϕ′
0

)2/p
∈ Ep (G) .

The following lemma holds.

Lemma 1. If L ∈ B(α, µ) with α ∈ (0, 1] and µ ∈ [0,∞), then

ω((ψ′
0)2/p, δ): = sup

|h|≤δ

∥

∥

∥

(

ψ′
0

)2/p
(

weih
)

−
(

ψ′
0

)2/p
(w)

∥

∥

∥

T

≤







cδα lnµ 1
δ
, α ∈ (0, 1);

cδ lnµ+1 1
δ
, α = 1.

Lemma 2. If L ∈ B(α, µ) with α ∈ (0, 1] and µ ∈ [0,∞), then

ω (Φp, δ) ≤







cδα lnµ 1
δ
, α ∈ (0, 1);

cδ lnµ+1 1
δ
, α = 1.

We will use the following theorem which can be easily obtained from [8], Theorem 3.

Theorem 1. Let G be a domain with a Dini-smooth boundary L, p > 1 and let

Sn
(

ϕ′
p, z

)

:=
n

∑

k=0

ak

(

ϕ′
p

)

Fk (z) , n = 0, 1, 2, . . .

be the nth partial sums of the Faber series of ϕ′
p. Then

‖ ϕ′
p − Sn

(

ϕ′
p, ·

)

‖Lp(L)≤ c ω(Φp, 1/n)

with a some constant c > 0.
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3. Main Result

Theorem 2. If L ∈ B(α, µ) with α ∈ (0, 1] and µ ∈ [0,∞), then for p ≥ 2,

‖ ϕp − πn,p ‖G≤ c1







n−α−1/p lnµ n, α ∈ (0, 1);

n−1−1/p lnµ+1 n, α = 1

with a constant c1 > 0 and for 1 < p < 2,

‖ ϕp − πn,p ‖G≤ c2











n
−α−1+ 1

p
+ε

lnµ n, α ∈ (0, 1);

n
−2+ 1

p
+ε

lnµ+1 n, α = 1

with a constant c2 = c2 (ε) > 0.

This result, in case of p = 2, was obtained in [10] which improves the result given by
Wu-Xue-Mou in [17].
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