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UNIFORM CONVERGENCE OF THE GENERALIZED BIEBERBACH
POLYNOMIALS IN CLOSED SMOOTH DOMAINS

1. Introduction and main results

Let G be a finite domain in the complex plane C, bounded by a rectifiable Jordan curve
L, and let G− := ExtL. Further let T : = {w ∈ C : |w| = 1} , D := Int T and D− := Ext T.
By the Riemann conformal mapping theorem, there exists a unique conformal mapping
w = ϕ(z) of G onto D (0, r

0
) := {w :| w |< r

0
} with the normalization ϕ (z

0
) = 0,

ϕ
′

(z0 ) = 1. Without loss of generality, we may assume that r0 = 1. The inverse mapping
of ϕ we denote by ψ.

Let also ϕ0 be the conformal mapping of G− onto D− normalized by

ϕ0 (∞) = ∞, lim
z→∞

ϕ0 (z) /z > 0,

and ψ0 := ϕ−1
0 . For an arbitrary function f given on G we set

‖ f ‖p
Lp(G)

:=

∫∫

G

| f (z) |p dσz , p > 0.

It is well known (see [11], p. 433) that the function

ϕp (z) :=

z
∫

z0

[

ϕ′ (ζ)
]2/p

dζ, z ∈ G, p > 0

minimizes the integral ‖ f ′ ‖p
Lp(G)

(p > 0) in the class of all functions analytic in G with

the normalization f (z0) = 0, f
′

(z0) = 1. In this work we study the approximation of
ϕp by the extremal polynomials defined below.

Let Πn be the class of all polynomials pn of degree at most n satisfying the conditions
pn (z0) = 0, p′n (z0) = 1. Then we can prove that the integral ‖ ϕ′

p− p′n ‖p
Lp(G)

(p > 1) is

minimized in Πn by an unique polynomial πn,p. We call [6] these extremal polynomials
πn,p the generalized Bieberbach polynomials for the pair (G, z0). In case of p = 2 they
are the usual Bieberbach polynomials πn, n = 1, 2, . . . . The approximation problems
for ϕ2 = ϕ in closed domains with various boundary conditions, where approximation is
conducted by the usual Bieberbach polynomials were intensively studied in [9, 10, 13,
12, 2, 3, 7, 8].

Similar problems for ϕp (p > 1) using the generalized Bieberbach polynomials were
investigated in [6, 1]. In the above cited works the rate of convergence to zero of the
quantity ‖ ϕp−πn,p ‖G (n → ∞) has been estimated by means of the geometric properties
of G.
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One of the interesting problem in this direction is the problem connected with a
conjecture due to S. N. Mergelyan, who in [10] showed that the Bieberbach polynomials
satisfy

‖ ϕ− πn ‖G≤ c (ε) �n1/2 (1)

for every ε > 0, whenever L is a smooth Jordan curve and stated it as a conjecture that
the exponent 1/2 − ε in (1) could be replaced by 1 − ε.

In [7] it has been possible for us to obtain some improvement of the above cited
Mergelyan’s estimation (1). For its formulation, it is necessary to give some definitions
as follows.

For a weight function ω given on L, and p > 1 we set

Lp (L,ω) := {f ∈ L1 (L) :| f |p ω ∈ L1 (L)},
Ep (G, ω) := {f ∈ E1 (G) : f ∈ Lp (L, ω)}.

Let g ∈ Lp (T, ω) and let gh(w) be the mean value function for g defined as:

gh(w) :=
1

2h

h
∫

−h

g(weit)dt, 0 < h < π, w ∈ T .

The function Ωp,ω (g, ·) : [0,∞) → [0,∞) defined by

Ωp,ω (g, δ) := sup{‖ g − gh ‖Lp(T,ω), h ≤ δ}, 1 < p < ∞

is called the integral modulus of continuity in Lp (T, ω) for g.
The improvement obtained in [7] can be formulated in the following way: If the

boundary L is a smooth Jordan curve, then

‖ ϕ0 − πn ‖G≤ const

(

lnn

n

)1/2

Ω2,|ψ′

0
|

(

(ϕ′ ◦ ψ0) ·
(

ψ′
0

)1/2
, 1/n

)

, (2)

for n ≥ 2, where Ω2,|ψ′

0
| (·, 1/n) is the integral modulus of continuity in L2(T, | ψ′

0 |) for

ϕ′ ◦ ψ0) ·
(

ψ′
0

)1/2
. From this result in particular it follows that if G is a finite domain

with a smooth Jordan boundary, then

‖ ϕ− πn ‖G≤ const

(

lnn

n

)1/2

, n ≥ 2 (3)

which improves the estimation (1) .
In this work, developing the idea used in [6, 7, 8] we shall obtain a new estimation for

the approximation of ϕp, 1 < p <∞, by means of the generalized Bieberbach polynomials
πn,p. This estimation in case of p = 2 appears simpler than (2).

We begin with the following definition.

Definition 1. Let G be a domain with a smooth boundary L, p > 1, and let

Φp := (ϕ
′

p ◦ ψ0) on T. The function

ω∗
r (ϕ

′

p, δ) := sup
|h|≤δ

‖ Φp(we
ih) − Φp(w) ‖Lr(T)=: ωr(Φp, δ), r > 1

is called the generalized integral modulus of continuity for ϕ
′

p = (ϕ
′

)2/p ∈ Er(G).

This definition is correct, because by [14] for the smooth domains ϕ
′

, ϕ
′

0 ∈ Lr(L)

and ψ
′

, ψ
′

0 ∈ Lr(T), and hence Φp ∈ Lr(T) for every r > 1.
Our main results are the following.
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Theorem 1. Let G be a finite domain with a smooth boundary L and let p > 1. Then

‖ ϕp − πn,p ‖G≤































c1

√

lnn
n
ω∗

2+ε(ϕ
′

, 1/n), p = 2;

c2n−1/pω∗
p+ε(ϕ

′

p, 1/n), p > 2;

c3n1/p−1+εω∗
p+ε(ϕ

′

p, 1/n), 1 < p < 2,

for every ε > 0 and with the constants ci = ci (ε) > 0, i = 1, 2, 3.

In spite of the fact that the function ϕp is defined on G it has [6] a continuous extension

to G. Therefore, the uniform norm in the above inequality is well defined.
From this theorem in case of p = 2 we have the following result.

Corollary 1. Let G be a domain with a smooth boundary L. Then

‖ ϕ− πn ‖G≤ c1

(

lnn

n

)1/2

ω∗
2+ε(ϕ

′

, 1/n) n ≥ 1

with a constant c1 = c1 (ε) > 0.

As it follows from Definition 1 the modulus of continuity ω∗
2+ε(ϕ

′

, 1/n) is simpler

than Ω2,|ψ′

0
|((ϕ

′ ◦ ψ0) ×
(

ψ′
0

)1/2
, 1/n).

If L is sufficiently smooth and p ≥ 2, then ε > 0 may be omitted ın Theorem 1. In
particular, for domain G with a Dini-smooth boundary L the following theorem holds.

Theorem 2. If L is Dini-smooth and p > 1, then

‖ ϕp − πn,p ‖G≤



























c4

√

lnn
n
ω∗

2(ϕ
′

, 1/n) p = 2;

c5n−1/pω∗
p(ϕ

′

p, 1/n), p > 2;

c6n1/p−1+εω∗
p(ϕ

′

p, 1/n), 1 < p < 2,

for every ε > 0 and with the constants c4, c5 > 0, c6 = c6 (ε) > 0 .

If L ∈ C(1, α), 1 < α < 1, then by virtue of the Kellogg-Warschawski theorem

ω∗
2(ϕ

′

, 1/n) ≤ c7/nα and hence the following result holds.

Corollary 2. Let L ∈ C(1, α), 1 < α < 1. Then

‖ ϕ− πn ‖G≤ c8
√

lnn�n1/2+α, n ≥ 1

with a constant c8 > 0.

Earlier, the last result was proved in [13].

2. Auxiliary Results

For the function ϕp and a weight ω we set

εn
(

ϕ′
p

)

r
:= inf

pn

‖ ϕ′
p − pn ‖Lr(G), E◦

n

(

ϕ′
p

)

r
:= inf

pn

‖ ϕ′
p − pn ‖Lr(L),

E◦
n

(

ϕ′
p, ω

)

r
:= inf

pn

‖ ϕ′
p − pn ‖Lr(L,ω) ,

where inf is taken over all polynomials pn of degree at most n and

‖ ϕ′
p − pn ‖Lr(L,ω):=





∫

L

| ϕ′
p (z) − pn (z) |r ω (z) | dz |





1/r

.

One of the important step in the proofs of the main results is the following theorem.
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Theorem 3. Let G be a domain with a smooth boundary L and let p > 1. Then

εn
(

ϕ′
p

)

p
≤ c9n

−1/pE◦
n

(

ϕ′
p, 1/ | ϕ′

0 |
)

p

with a constant c9 > 0.

The following theorem gives an estimation for the quantity E◦
n

(

ϕ′
p, 1/ | ϕ′

0 |
)

p

Theorem 4. Let G be a domain with a smooth boundary L, and let 1 < p < ∞.

Then

E◦
n

(

ϕ′
p, 1/ | ϕ′

0 |
)

p
≤ c10ω

∗
p+ε(ϕ

′
p, 1/n

for every ε > 0 and with a constant c10 = c(ε).

Corollary 3. Let G be a domain with a Dini-smooth boundary L and let p > 1. Then

E◦
n

(

ϕ′
p, 1/ | ϕ′

0 |
)

p
≤ c11ω

∗
p(ϕ

′
p, 1/n)

with a constant c11 > 0.
The approximation properties of the polynomials π′

n,p, n = 1, 2, . . . , are given in the
following lemmas.

Lemma 1. Let G be a domain with a smooth boundary L and let p > 1. Then

‖ ϕ′
p − π′

n,p ‖Lp(G)≤ c12n
−1/pω∗

p+ε(ϕ
′
p, 1/n), n = 1, 2, . . .

for every ε > 0 and with c12 = c12 (ε) > 0.

Lemma 2. Let G be a domain with a Dini-smooth boundary L and let p > 1. Then

‖ ϕ′
p − π′

n,p ‖Lp(G)≤ c13n
−1/pω∗

p(ϕ
′
p, 1/n), n = 1, 2, . . .

with a constant c13 > 0.

The following result is a particular case of the more general result proved in [3] (for
p = 2) and [6] (in case of 1 < p < ∞).

Lemma 3. Let G be a finite domain with a smooth boundary L and let pn be any
polynomial of degree ≤ n with pn(z0) = 0. Then

‖ pn ‖
G
≤























c14
√

log n ‖ p′n ‖Lp(G) , p = 2;

c15 ‖ p′n ‖Lp(G) , p > 2;

c16n2/p−1+ε ‖ p′n ‖Lp(G) , 1 < p < 2

for every ε > 0, and with c14, c15 > 0 and c16 = c16(ε) > 0.

The following lemma was proved in [3], Lemma 15 in case of p = 2 treating the
Bieberbach polynomials πn, n = 1, 2, . . . . The proof in case of p ∈ (1,∞), goes similarly.

Lemma 4. Let G be a finite simple connected domain, and let pn be a polynomial of
degree ≤ n satisfying the condition pn(z0) = 0. Assume that

‖ pn ‖
G
≤ c17αn ‖ p′n ‖Lp(G)

and
‖ ϕ′

p − π′
n,p ‖Lp(G)≤ c18βn,

with some positive constants c20 and c21, where

{αn} ր, {βn} ց and {γn := αn · βn} ց .

If in addition, there exists a sequence of indexes {nk} such that

γnk+1
≤ εγnk

, αnk+1
≤ c19αnk

, k = 1, 2, . . .

for some ε ∈ (0, 1) and a constant c19 ≥ 1, then

‖ ϕp − πn,p ‖G≤ c20γn.
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3. Proof of Main Results

We apply the familar method of Simonenko [12] and Andrievskii [3] for p = 2, its
modification in case of 1 < p <∞ given in [6] and also Theorem 3.

Proof of Theorem 1. The proof goes similarly to that of the main result of [8], by
using Theorems 3, 4 and Lemmas 1, 3, and with a suitable choice of αn, βn and nk in
Lemma 4.

Proof of Theorem 2. The same method of proof is valid also in this case; merely we
apply Corollary 3 and Lemma 2 instead of Theorem 4 and Lemma 1, respectively.
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