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ON SOME INTEGRAL EQUATIONS FOR SURFACES WITH A
CONICAL POINT

As is known, the classical method of proving the theorems on the existence of a
solution in different boundary value problems of mathematical physics consists in the
reduction of a solution of such problems to the solution of integral equations.

For elliptic equations, the boundary value problems, in particular, different bound-
ary value problems of three-dimensional theory of elasticity in a domain with a smooth
boundary have been studied thoroughly in the monograph ”Three-Dimensional Problems
of the Mathematical Theory of Elasticity” by V. Kupradze, T. Gegelia, M. Basheleishvili
and T. Burchuladze ([1]) by the method of integral equations.

A great number of works dealing with elliptic equations in the case of a non-smooth
surface appeared during the last decade (see, for example, [3], [4], [5], [6] and references
therein).

The aim of our paper is to extend the method of integral equations to the case of a
surface with a conical point.

Let Sk be a curvilinear conical surface with maximal angle, less than π, with vertex
at the origin of the coordinates system Ox1x2x3. The conical surface is given by the
equation x3 = φ(x1, x2), where φ(x1, x2) is the homogeneous function of the first order.

When
√

x2
2 + x2

2 > a, a > 0 we have
∂φ(x1,x2)

∂xk
∈ C(0,λ), λ ≤ 1, k = 1, 2. Obviously, ∂φ

∂xk

is the homogeneous function of zero order. The domain bounded by Sk is denoted by
Dk.

Let D be the domain bounded by the surface S, everywhere smooth, of the class
L1(λ), outside the neighbourhood of the point 0 and coinciding with Sk at C(0, A),
A > 0, C(0, A) is a sphere of radius A and center at 0 and D ∩ C(0, A) = Dk ∩ C(0, A).

Consider the integral equation

ϕ(x) − σ

∫

S

K(x, y)ϕ(y)dSy = f(x), x ∈ S − {0}. (1)

The kernel K satisfies the following conditions:

1. K(x, y) = ψ(x,y)
|x−y|2

, x, y ∈ S − {0}, |ψ| < M is the homogeneous function of zero

order on Sk.
2. |ψ(x, y)| < M |x− y|λ, x, y ∈ S − {0}, |x| > a, |y| > a, 0 < a < A

2
.

3. On a smooth portion of the surface S, ϕ(x, y) is of the class C(0,γ) with respect to
x and y.

We call such a kernel of the class B. The kernel of the double layer potential and of
a normal derivative of a single layer potential belongs to B [2].
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We approach the surface S by some smooth surface Sh, 0 < h < A. Let, for example,

x3h =

{

φ2(x1,x2)
2h

+ h
2
, if φ(x1, x2) < h

φ(x1, x2), if φ(x1, x2) ≥ h.

For h > a, a > 0 Sh is the Ljapunov surface. For every h we define the kernel Kh(x, y)
in such a way that at the general part of the surfaces Sh and S it coincides with K and
satisfies the conditions analogous to 1, 2 and 3.

1′. Kh(x, y) = ψh(x,y)
|x−y|2

, |ψh| < M , ψh is the homogeneous function of zero order.

2′. If x, y ∈ Sh, h > a > 0 then |ψh| < M |x− y|λ.

3′. On Sh, h > a, ψh(x, y) ∈ C(0,λ) with respect to x and y.
Let, for example, K be the kernel of the double layer potential. Assume Kh(x, y) =

cos(x−y,nh(y))

|x−y|2
, x, y ∈ Sh. The kernel defined in such a manner satisfies the conditions

1′, 2′, 3′. On the general part of the surfaces S and Sh K(x, y) = Kh(x, y).

Theorem 1. We can represent Kh(x, y) as follows:

Kh(x, y) =
ψh(x, y)

|x|y|y|β|x− y|2−α−β
, α ≥ 0, β ≥ 0, α+ β ≤ λ, |ψh| < M,

where M does not depend on h.

Along with equation (1), let us consider an auxiliary equation

ϕh(x) − σ

∫

Sh

Kh(x, y)ϕh(y)dSy = fh(x), fh(x1, x2, x3h) = f(x1, x2, x3). (2)

After p− 1 iterations of equations (1) and (2) we obtain

ϕ(x) − σ

∫

S

Kp(x, y)ϕ(y)dSy = F (x), x ∈ S − {0},

where σ = σp, F (x) = f + σKf + σ2K2f + · · · + σp−1Kp−1f , Kp =
ψp(x,y)

|x|α|y|β
, α > 0,

β > 0, α+ β = 2 and the equation with the continuous kernel

ϕh(x) − σ

∫

Sh

Kph(x, y)ϕh(y)dSy = Fh(x),

Fh(x) = fh(x) + σKhfh + · · · + σp−1Kh(p−1)fh, Khp =
ψph(x, y)

|x|α|y|β
,

α > 0, β > 0, α+ β = 2,

Theorem 2. For every p, lim
h→0

ψhp(x, y) = ψp(x, y), x(x1, x2, x3), y(y1, y2, y3) ∈

S − {0}, x(x1, x2x3h), y(y1, y2, y3h) ∈ Sh.
The tending is uniform on {x, y ∈ S||x| ≥ a, |y| ≥ a}, a > 0.

For the continuous kernel Kph we construct the Fredholm series Dh(σ), Dh(x, g, σ).
The dependence of these functions on h is of interest.

Theorem 3. There exists the function α(h), lim
h→0

α(h) = 0, α(h) > chε, ε is an ar-

bitrarily small number, such that the series α(h)Dh(σ) converges uniformly with respect

to h, σ, h ≤ A
2
.

Theorem 4. There exists the function A(h) lim
h→0

A(h) = 0, A(h) > chε, ε is an

arbitrarily small number, such that the series |x|α|y|βA(h)Dhp(x, y, σ) = |x|α|y|βA(h) ·
∞
∑

n=1

σndhn(x,y)
n!

converges uniformly with respect to x, y, h.
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On the basis of these theorems we prove the theorem on the alternative.

Theorem 5. If K is the kernel of the double layer potential, then either the equation
has an eigne function of the class C(0,γ), γ < γ

2
, or there exists the resolvent R(x, y, σ)

satisfying the equations

R(x, y, σ) = K(x, y) + σ

∫

S

K(x, t)R(t, y, σ)dSt

R(x, y, σ) = K(x, y) + σ

∫

S

R(x, t, σ)K(t, y)dSt.

(3)

The solution of equation (1) is unique and given by the formula

ϕ(x) = f(x) + σ

∫

S

R(x, y, σ)f(y)dSy . (4)

If f ∈ C(0,γ), γ < λ
2

then ϕ ∈ C(0,γ′), where ∀γ′ < γ, γ − γ′ is an arbitrarily small
number.

Theorem 6. Let K ∈ B. Then either equation (1) has an eigne function of the
class Cα+ε, ε > 0 is an arbitrarily small number, or there exists the resolvent R(x, y, σ)
satisfying equations (3), and the solution of equation (1) is unique and given by formula

(4). In this case, if f(x) ∈ C
(0,γ)
α,γ , γ < λ then ϕ(x) ∈ C

(c,γ)
α′,γ

, where α′ > α, α′ −α is an

arbitrarily small number.

The obtained results can be used for investigation of the boundary value problems.
On the basis of Theorem 5 we have

Theorem 7. There exists the solution u(x) of the Dirichlet problem with the bound-

ary function f(x) ∈ C(0,γ), γ < λ
2

and u(x) ∈ C0,γ′ , ∀γ′ < γ, γ − γ′ is an arbitrarily
small number, x ∈ D + S.

The problem on the existence of a quasi-regular solutions also studied.
On the basis of Theorem 6 we obtain.

Theorem 8. If f(x) ∈ C
(0,γ)
α,γ , γ < λ, α < λ, α+γ < 1 and

∫

S

f(x)dx = 0, then there

exists the solution u(x) of the Neumann problem with the boundary function f(x) and

u(x) ∈ C
(1,γ)
α′,γ

, where α′ > α, α′ − α is an arbitrarily small number.

Let us consider the boundary problems of statics of the theory of elasticity. The
equation of statics of the isotropic elastic medium written in the vector form is

µ∆u+ (λ+ µ) grad divu = 0. (5)

Problem I of Statics. Find in D a solution u(x) of equation (5) by the boundary
condition u(x)|i = f(x), x ∈ S.

Problem II of Statics. Find in D a solution u(x) of equation (5) by the boundary

condition T
(

∂
∂x
, n

)

u(x)|i = f(x), x ∈ S.

Solutions of Problems I and II will be sought in the form of the double and single layer
potentials of the theory of elasticity. We obtain the system of singular integral equations

ϕ(x) −

∫

S

K(x, y)ϕ(y)dSy = f(x) (6)



106

where, for example, in the case of Problem II, K(k, y) = K1(x, y)+K2(x, y) ([1], pp.171-
181)

K1 =
1

2π

µ

λ+ 2µ

1

|x− y|2
‖σkj‖3×3, σkj =

xk − yk

|x− y|
cos(n(y), xj) −

xj − yj

|x− y|
cos(ny , xk)

K2(x, y) =
1

2π

1

λ+ 2µ

∥

∥

∥

[

µδjk + 3(λ+ µ)
(xj − yj)(xk − yk)

|x− y|2

] ∂

∂ny

1

|x− y|

∥

∥

∥

3×3
.

In the case of a smooth surface is constructed a regularizer for (6) [1, p. 170-190],
while in the case of a surface with a conical point we construct a regularizer in such a
way that the kernel in the equation obtained after regularization is of the class B. For
that kernel the obtained results are valid.

The theorems analogous to Theorems 7 and 8 are proved.
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Otdel. Mat. Inst. Steklov. (LOMI) 3(1967).

6. B. A. Plamenevskii, Algebras of pseudo-differential operators. (Russian) Nauka,
Moscow, 1968.

Author’s address:

I. Javakhishvili Tbilisi State University
1, Chavchavadze avenue,
Tbilisi 0128
Georgia


