V. Georgiev and A. Meskhi

ON A WEIGHTED STRICHARTZ ESTIMATE FOR INHOMOGENEOUS WAVE EQUATIONS

In this note we look for sufficient condition on a weight pair (V, W) governing the two-weight Strichartz estimate

$$
\begin{gather*}
\|V(t-|x|, t+|x|) \omega\|_{L^{q}(t \geq|x|)} \leq \\
\leq C\|W(t-|x|, t+|x|) F\|_{L^{q^{\prime}}(t \geq|x|)}, \quad q^{\prime}=\frac{q}{q-1} \tag{1}
\end{gather*}
$$

for the solution of inhomogeneous wave equation

$$
\left\{\begin{array}{l}
\square \omega(t, x)=F(t, x), \quad(t, x) \in R_{+}^{1+n} \tag{2}\\
0=\omega(0, \cdot)=\partial_{t} \omega(0, \cdot)
\end{array}\right.
$$

Here $\square=\frac{\partial^{2}}{\partial t^{2}}-\Delta_{x}$ denotes the D'Alemberian and n is odd.
Two-weight Strichartz estimates with power-type weights has been established in [G], [GLS], [KO]. In these papers existence of global weak solution for the semilinear wave equation

$$
\begin{cases}\square \omega=|u|^{p}, & (t, x) \in R_{+}^{1+n} \\ u(0, x)=\varepsilon f(x), & \partial_{t} u(0, x)=\varepsilon g(x)\end{cases}
$$

where ε is small and p is more that critical exponent p_{c} in the sense of Strauss (see [S1-S2], [J]) have been proved.

To formulate our main results we need the following.
Definition. We say that the weight $\rho(s, \tau)$ defined on $R_{+}^{2}:=(0, \infty) \times(0, \infty)$ satisfies the doubling condition in the first variable uniformly to another one ($\rho \in D C(s)$) if there exists a positive constant c such that for all $t, \tau>0$ the inequality

$$
\int_{0}^{2 t} \rho(s, \tau) d s \leq c \int_{0}^{t} \rho(s, \tau) d s
$$

holds. Analogously can be defined the class $D C(\tau)$.
Theorem 1. Let n be odd and let $\frac{2 n}{n-1}<q \leq \frac{2(n+1)}{n-1}$. Suppose that F is spherically symmetric and supp $F \subset\left\{(t, x) \in R_{+}^{1+n}:|x|<t\right\}$. Assume that two-dimensional weights V and W are increasing in each variable uniformly with respect to another one. In addition, suppose that $W^{-q} \in D C(s) \cap D C(\tau)$ or $W(s, \tau)=W_{1}(s) W_{2}(\tau)$. If ω solves

[^0](2), then the condition
\[

$$
\begin{gather*}
\sup _{a, b>0}\left(\int_{a}^{\infty} \int_{b}^{\infty} \frac{V^{q}(s, \tau)}{(s \tau)^{q(n-1)(1 / 2-1 / q)}} d s d \tau\right) \times \\
\times\left(\int_{0}^{a} \int_{0}^{b} W^{-q}(s, \tau) d s d \tau\right)<\infty \tag{3}
\end{gather*}
$$
\]

implies the inequality (1) with the constant C depending only on V, W, q and n.
Theorem 2. Let n be odd and let $2<q<\frac{2 n}{n-1}$. Suppose that F is spherically symmetric and $\operatorname{supp} F \subset\left\{(t, x) \in R_{+}^{1+n}:|x|<t\right\}$. Assume that two-dimensional weight W is increasing in each variable uniformly with respect to another one. In addition, suppose that $W^{-q} \in D C(s) \cap D C(\tau)$ or $W(s, \tau)=W_{1}(s) W_{2}(\tau)$. Then if ω solves (2), condition (3) implies the inequality (1) with the constant C depending only on V, W, q and n.

The proofs of these statements are based on the integral representation of the solution ω for equation (2)

$$
\begin{equation*}
\omega(t, r)=r^{-(n-1) / 2} \int_{0}^{t} \int_{|t-r-s|}^{t+r-s} P_{m}(\mu) F(s, \sigma) \sigma^{(n-1) / 2} d \sigma d s \tag{4}
\end{equation*}
$$

where $P_{m}(\mu)$ are Legendre polynomials of degree $m=(n-3) / 2$ and $\mu=\left(r^{2}+\sigma^{2}-(t-\right.$ $\left.s)^{2}\right) / 2 r \sigma$ satisfies $-1 \leq \mu \leq 1$ in the domain of integration (see e.g. [LS]), and weighted boundedness criterion for the Riemann-Liouville operator with product kernels

$$
R_{\alpha, \beta} f(x, y)=\int_{0}^{x} \int_{0}^{y} \frac{f(t, \tau)}{(x-t)^{1-\alpha}(y-\tau)^{1-\beta}} d t d \tau
$$

(for some two-weight inequalities for this operator see [KM1-KM3]).
Theorem 3. Let n be odd and let $\frac{2 n}{n-1}<q \leq \frac{2(n+1)}{n-1}$. Suppose that F is spherically symmetric and supp $F \subset\left\{(t, x) \in R_{+}^{1+n}:|x|<t\right\}$. Assume that two-dimensional weights V and W are increasing in each variable uniformly with respect to another one. In addition, suppose that $W^{-q} \in D C(s)$ and

$$
\int_{2^{k}}^{2^{k+1}} V^{q}(s, \tau) d s \leq c \int_{2^{k-1}}^{2^{k}} V^{q}(s, \tau) d s
$$

for all $k \in Z$ and $\tau>0$. If ω solves (2), then the condition

$$
\begin{gathered}
\sup _{\substack{a, k, a>2^{k}, k \in Z}}\left(\int_{a}^{\infty}\left(\int_{2^{k}}^{2^{k+1}} \frac{V^{q}(s, \tau)}{s^{q(n-1)(1 / 2-1 / q)}} d s\right)\left(\tau-2^{k}\right)^{q(n-1)(1 / 2-1 / q)} d \tau\right) \times \\
\times\left(\int_{2^{k}}^{a}\left(\int_{0}^{2^{k}} W^{-q}(s, \tau) d s\right) d \tau\right)<\infty
\end{gathered}
$$

implies inequality (1) with the constant C depending only on V, W, q and n.
The proof of the latter theorem follows from the integral representation (4) of the solution of equation (2) and the following

Theorem 4. Let $1<p \leq q<\infty$ and let $0<\alpha, \beta<1 / p$. Suppose that the two-dimensional weight functions v and w are increasing in each variable uniformly to another ones. Suppose also that $w^{1-p^{\prime}}(s, \tau) \in D C(s)$ and

$$
\int_{2^{k}}^{2^{k+1}} v(s, \tau) d s \leq c \int_{2^{k-1}}^{2^{k}} v(s, \tau) d s
$$

for all $k \in Z$ and $\tau>0$. Then the two-weight inequality

$$
\begin{gathered}
{\left[\iint_{y<x} v(y, x)\left(\int_{0}^{y} \int_{y}^{x} \frac{f(\tau, t) d \tau d t}{(x-\tau)^{1-\alpha}(y-\tau)^{1-\beta}}\right)^{q} d y d x\right]^{1 / q} \leq} \\
\leq c\left(\iint_{y<x} w(y, x)(f(y, x))^{p} d y d x\right)^{1 / p}
\end{gathered}
$$

holds with the positive constant c independent of $f \in L_{w}^{p}(y<x), f \geq 0$, if and only if

$$
\begin{aligned}
& \sup _{\substack{a, k, a>2^{k}, k \in Z}}\left(\int_{a}^{\infty}\left(\int_{2^{k}}^{2^{k+1}} \frac{v(s, \tau)}{s^{(1-\beta) q}} d s\right)\left(\tau-2^{k}\right)^{(\alpha-1) q} d \tau\right)^{1 / q} \times \\
& \times\left(\int_{2^{k}}^{a}\left(\int_{0}^{2^{k}} w^{1-p^{\prime}}(s, \tau) d s\right) d \tau\right)^{1 / p^{\prime}}<\infty
\end{aligned}
$$

Now we give some corollaries of the statements formulated above:
Corollary 1 [GLS]. Let n be odd and let $2<q \leq \frac{2(n+1)}{(n-1)}$. Suppose that $\operatorname{supp} F \subset$ $\left\{(t, x) \in R_{+}^{1+n}:|x|<t\right\}$. If ω solves (2), then

$$
\left\|\left(t^{2}-|x|^{2}\right)^{-\alpha} \omega\right\|_{L^{q}\left(R_{+}^{1+n}\right)} \leq C_{\gamma}\left\|\left(t^{2}-|x|^{2}\right)^{\beta} F\right\|_{L^{q^{\prime}}\left(R_{+}^{1+n}\right)}
$$

where $\beta<1 / q, \alpha+\beta+\gamma=2 / q, \gamma=(n-1)(1 / 2-1 / q)$.
Corollary 2. Let n be odd and let $q=\frac{2(n+1)}{n-1}$. Suppose that F is spherically symmetric and supported in the light cone $\left\{(t, x) \in R_{+}^{1+n}:|x|<t\right\}$. Then the inequality

$$
\begin{aligned}
& \left\|\left(t^{2}-|x|^{2}\right)^{\gamma-1 / q} \log ^{\beta} \frac{4 T^{2}}{t^{2}-|x|^{2}} \omega\right\|_{L^{q}(t+|x| \leq T)} \leq \\
& \leq C\left\|\left(t^{2}-|x|^{2}\right)^{1 / q} \log ^{\lambda} \frac{4 T^{2}}{t^{2}-|x|^{2}} F\right\|_{L^{q^{\prime}}(t+|x| \leq T)}
\end{aligned}
$$

holds, where $\beta=\lambda-4 / q, \lambda>3 / q$ and $\gamma=(n-1)(1 / 2-1 / q)$.
From this corollary we have
Proposition 1. Let n be odd and let $T \geq 2, q=\frac{2(n+1)}{n-1}$. Assume that F is spherically symmetric and supp $F \subset\left\{(t, x): t^{2}-|x|^{2} \geq 1\right\}$. Then the inequality

$$
\left\|\left(t^{2}-|x|^{2}\right)^{1 / q} \omega\right\|_{L^{q}(\{|x|<t<T / 2\})} \leq c(\log T)^{4 / q}\left\|\left(t^{2}-|x|^{2}\right)^{1 / q} F\right\|_{L^{q^{\prime}}}
$$

holds, where the constant c does not depend on T.
Proposition 2. Let n be odd and let $T>1$. Suppose that $q=\frac{2(n+1)}{n-1}$. Assume that F is spherically symmetric and $\operatorname{supp} F \subset\{(t, x): t-|x|>1\}$. Then the inequality

$$
\left\|(t-|x|)^{1 / q} \omega\right\|_{L^{q}(\{t-|x|<T\})} \leq c(\log T)^{2 / q}\left\|(t-|x|)^{1 / q} F\right\|_{L^{q^{\prime}}(\{t-|x|<T\})}
$$

holds and the constant c does not depend on T.

References

1. V. Georgiev, Weighted estimates for the wave equation. Nonlinear waves, Proceedings of the Fourth MSJ International Research Institute, Vol. 1, 71-80. Hokkaido Univ., 1996.
2. V. Georgiev, Weighted Strichartz estimates and global existence for semilinear wave equations. Amer. J. Math. 119 (1997), No. 6, 1291-1319.
3. F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math. 28(1979), No. 1-3, 235-268.
4. V. Kokilashvili and A. Meskhi, On one-sided potentials with multiple kernels. Integr. Transf. Spec. Funct. (accepted for publication).
5. V. Kokilashvili and A. Meskhi, On a trace inequality for one-sided potentials with multiple kernels. Fract. Calc. Appl. Anal. 6(2003), No. 4, 461-472.
6. V. Kokilashvili and A. Meskhi, Two-weight criteria for integral transforms with multiple kernels. In Proceedings of Conference on the occasion of the 70 Anniversary of Prof. Zbigniew Ciesielski, Bedlewo, 20-24 September, Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences (to appear).
7. J. Kato and T. Ozawa, Weighted Strichartz estimates for the wave equation in even space dimensions. Math. Z. 247 (2004), No. 4, 747-764.
8. H. Lindblad and C. D. Sogge, Long-time existence for small amplitude semilinear wave equations. Amer. J. Math. 118(1996), No. 5, 1047-1135.
9. W. Strauss, Nonlinear scattering theory . Scattering Theory in Mathematical Physics, 53-79. Reidel, Dordrecht, 1979.
10. W. Strauss, Nonlinear scattering theory at low energy. J. Funct. Anal. 41(1981), No. 1, 110-133.

Authors' Addresses:
V. Georgiev

Dipartimeto di Matematica "L.Tonelli",
Universitá di Pisa,
56127 Pisa,
Italia
A. Meskhi
A. Razmadze Mathematical Institute,

Georgian Academy of Sciences,
1, M. Aleksidze St, 0193 Tbilisi
Georgia

[^0]: 2000 Mathematics Subject Classification: 35L05,35L70,35L75.
 Key words and phrases. nonlinear wave equation, Strichartz estimate, two-weight inequality.

