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V. Georgiev and A. Meskhi

ON A WEIGHTED STRICHARTZ ESTIMATE FOR INHOMOGENEOUS
WAVE EQUATIONS

In this note we look for sufficient condition on a weight pair (V, W ) governing the
two-weight Strichartz estimate

‖V (t − |x|, t + |x|)ω‖Lq(t≥|x|) ≤

≤ C‖W (t − |x|, t + |x|)F‖
Lq′ (t≥|x|)

, q′ =
q

q − 1
, (1)

for the solution of inhomogeneous wave equation

{

�ω(t, x) = F (t, x), (t, x) ∈ R1+n
+

0 = ω(0, ·) = ∂tω(0, ·),
(2)

Here � = ∂2

∂t2
− ∆x denotes the D’Alemberian and n is odd.

Two-weight Strichartz estimates with power-type weights has been established in [G],
[GLS], [KO]. In these papers existence of global weak solution for the semilinear wave
equation

{

�ω = |u|p, (t, x) ∈ R1+n
+ ,

u(0, x) = εf(x), ∂tu(0, x) = εg(x),

where ε is small and p is more that critical exponent pc in the sense of Strauss (see
[S1-S2], [J]) have been proved.

To formulate our main results we need the following.

Definition. We say that the weight ρ(s, τ) defined on R2
+ := (0,∞)× (0,∞) satisfies

the doubling condition in the first variable uniformly to another one (ρ ∈ DC(s)) if there
exists a positive constant c such that for all t, τ > 0 the inequality

2t
∫

0

ρ(s, τ)ds ≤ c

t
∫

0

ρ(s, τ)ds

holds. Analogously can be defined the class DC(τ).

Theorem 1. Let n be odd and let 2n
n−1

< q ≤
2(n+1)

n−1
. Suppose that F is spherically

symmetric and supp F ⊂ {(t, x) ∈ R1+n
+ : |x| < t}. Assume that two-dimensional

weights V and W are increasing in each variable uniformly with respect to another one.

In addition, suppose that W−q ∈ DC(s)∩DC(τ) or W (s, τ) = W1(s)W2(τ). If ω solves
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(2), then the condition

sup
a,b>0

(

∞
∫

a

∞
∫

b

V q(s, τ)

(sτ)q(n−1)(1/2−1/q)
dsdτ

)

×

×

(

a
∫

0

b
∫

0

W−q(s, τ)dsdτ

)

< ∞ (3)

implies the inequality (1) with the constant C depending only on V , W , q and n.

Theorem 2. Let n be odd and let 2 < q < 2n
n−1

. Suppose that F is spherically

symmetric and supp F ⊂ {(t, x) ∈ R1+n
+ : |x| < t}. Assume that two-dimensional weight

W is increasing in each variable uniformly with respect to another one. In addition,

suppose that W−q ∈ DC(s) ∩ DC(τ) or W (s, τ) = W1(s)W2(τ). Then if ω solves (2),
condition (3) implies the inequality (1) with the constant C depending only on V , W , q
and n.

The proofs of these statements are based on the integral representation of the solution
ω for equation (2)

ω(t, r) = r−(n−1)/2

t
∫

0

t+r−s
∫

|t−r−s|

Pm(µ)F (s, σ)σ(n−1)/2dσds, (4)

where Pm(µ) are Legendre polynomials of degree m = (n− 3)/2 and µ = (r2 + σ2 − (t−
s)2)/2rσ satisfies −1 ≤ µ ≤ 1 in the domain of integration (see e.g. [LS]), and weighted
boundedness criterion for the Riemann-Liouville operator with product kernels

Rα,βf(x, y) =

x
∫

0

y
∫

0

f(t, τ)

(x − t)1−α(y − τ)1−β
dtdτ

(for some two-weight inequalities for this operator see [KM1-KM3]).

Theorem 3. Let n be odd and let 2n
n−1

< q ≤ 2(n+1)
n−1

. Suppose that F is spherically

symmetric and supp F ⊂ {(t, x) ∈ R1+n
+ : |x| < t}. Assume that two-dimensional

weights V and W are increasing in each variable uniformly with respect to another one.

In addition, suppose that W−q ∈ DC(s) and

2k+1
∫

2k

V q(s, τ)ds ≤ c

2k
∫

2k−1

V q(s, τ)ds

for all k ∈ Z and τ > 0. If ω solves (2), then the condition

sup
a,k,

a>2k,k∈Z

(

∞
∫

a

(

2k+1
∫

2k

V q(s, τ)

sq(n−1)(1/2−1/q)
ds

)

(τ − 2k)q(n−1)(1/2−1/q)dτ

)

×

×

(

a
∫

2k

(

2k
∫

0

W−q(s, τ)ds

)

dτ

)

< ∞

implies inequality (1) with the constant C depending only on V , W , q and n.

The proof of the latter theorem follows from the integral representation (4) of the
solution of equation (2) and the following
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Theorem 4. Let 1 < p ≤ q < ∞ and let 0 < α, β < 1/p. Suppose that the

two-dimensional weight functions v and w are increasing in each variable uniformly to

another ones. Suppose also that w1−p′

(s, τ) ∈ DC(s) and

2k+1
∫

2k

v(s, τ)ds ≤ c

2k
∫

2k−1

v(s, τ)ds.

for all k ∈ Z and τ > 0. Then the two-weight inequality

[
∫∫

y<x

v(y, x)

(

y
∫

0

x
∫

y

f(τ, t)dτdt

(x − τ)1−α(y − τ)1−β

)q

dydx

]1/q

≤

≤ c

(
∫∫

y<x

w(y, x)(f(y, x))pdydx

)1/p

holds with the positive constant c independent of f ∈ Lp
w(y < x), f ≥ 0, if and only if

sup
a,k,

a>2k,k∈Z

(

∞
∫

a

(

2k+1
∫

2k

v(s, τ)

s(1−β)q
ds

)

(τ − 2k)(α−1)qdτ

)1/q

×

×

(

a
∫

2k

(

2k
∫

0

w1−p′

(s, τ)ds

)

dτ

)1/p′

< ∞.

Now we give some corollaries of the statements formulated above:

Corollary 1 [GLS]. Let n be odd and let 2 < q ≤ 2(n+1)
(n−1)

. Suppose that supp F ⊂

{(t, x) ∈ R1+n
+ : |x| < t}. If ω solves (2), then

‖(t2 − |x|2)−αω‖
Lq(R1+n

+
)
≤ Cγ‖(t

2 − |x|2)βF‖
Lq′ (R1+n

+
)
,

where β < 1/q, α + β + γ = 2/q, γ = (n − 1)(1/2 − 1/q).

Corollary 2. Let n be odd and let q = 2(n+1)
n−1

. Suppose that F is spherically

symmetric and supported in the light cone {(t, x) ∈ R1+n
+ : |x| < t}. Then the inequality

∥

∥(t2 − |x|2)γ−1/q logβ 4T 2

t2 − |x|2
ω

∥

∥

Lq(t+|x|≤T )
≤

≤ C
∥

∥(t2 − |x|2)1/q logλ 4T 2

t2 − |x|2
F

∥

∥

Lq′ (t+|x|≤T )

holds, where β = λ − 4/q, λ > 3/q and γ = (n − 1)(1/2 − 1/q).
From this corollary we have

Proposition 1. Let n be odd and let T ≥ 2, q = 2(n+1)
n−1

. Assume that F is spherically

symmetric and supp F ⊂ {(t, x) : t2 − |x|2 ≥ 1}. Then the inequality

‖(t2 − |x|2)1/qω‖Lq({|x|<t<T/2}) ≤ c(log T )4/q‖(t2 − |x|2)1/qF‖
Lq′

holds, where the constant c does not depend on T .

Proposition 2. Let n be odd and let T > 1. Suppose that q =
2(n+1)

n−1
. Assume that

F is spherically symmetric and supp F ⊂ {(t, x) : t − |x| > 1}. Then the inequality

‖(t − |x|)1/qω‖Lq({t−|x|<T}) ≤ c(log T )2/q‖(t − |x|)1/qF‖
Lq′ ({t−|x|<T})

holds and the constant c does not depend on T .
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