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ON THE DIFFERENTIAL PROPERTIES OF FUNCTIONS OF
BOUNDED VARIATION IN HARDY SENSE

1. Definitions and notation

The definitions of functions of bounded variation in various senses given below one
may find in [1-3].

For x, y ∈ Rn with x ≤ y (i.e. xi ≤ yi for every i ∈ 1, n) by Iy
x denote the interval

n
∏

i=1
[xi, yi]. The mixed difference of f : [0, 1]n → R on an interval I = Iy

x ⊂ [0, 1]n is the

quantity:

∆(f, I) =
1

∑

ε1=0

· · ·
1

∑

εn=0

(−1)
n−

n
∑

i=1

εi

f(x1 + ε1(y1 − x1), . . . , xn + εn(yn − xn)).

A partition of [0, 1]n is a finite collection of non-overlapping intervals the union of
which is [0, 1]n.Let Π be the collection of all partitions of [0, 1]n.

A function f : [0, 1]n → R is said to have a bounded variation in Vitali sense if

sup
P∈Π

∑

I∈P

|∆(f, I)| < ∞.

The class of all functions on [0, 1]n of bounded variation in Vitali sense denote by Vn.
A number of elements of a set B ⊂ 1, n denote by |B|.

For B ⊂ 1, n with 0 < |B| < n, t ∈ [0, 1]n−|B| and τ ∈ [0, 1]|B| by (t, τ, B) denote the
point of Rn for which (t, τ, B)i = t|1,i \B| if i /∈ B and (t, τ, B)i = τ|1,i ∩B| if i ∈ B.

Let f be a function on [0, 1]n. For B ⊂ 1, n with 0 < |B| < n and t ∈ [0, 1]n−|B| by

fB,t denote the function on [0, 1]|B| for which

fB,t(τ) = f
(

(t, τ, B)
) (

τ ∈ [0, 1]|B|
)

.

Denote also fB = fB,0 where 0 is the zero element of Rn−|B| and f1,n = f .

A function f : [0, 1]n → R is said to have a bounded variation in Hardy sense if f and
its every section has a bounded variation in Vitali sense,i.e.f ∈ Vn and fB,t ∈ V|B| for

every B ⊂ 1, n with 0 < |B| < n and t ∈ [0, 1]n−|B|. The class of all functions on [0, 1]n

with bounded variation in Hardy sense denote by Hn. Due to one result of Leonov [4]

f ∈ Hn ⇔ fB ∈ V|B| for every nonempty B ⊂ 1, n.

A function f : [0, 1]n → R is said to have a bounded variation in Arzela sense if the
set of all sums

m−1
∑

k=1

|f(xk+1) − f(xk)|,
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where m ∈ N and (0, . . . , 0) = x1 ≤ x2 ≤ · · · ≤ xm = (1, . . . , 1), is bounded.Note that
every function of bounded variation in Hardy sense has also a bounded variation in Arzela
sense(see e.g., [1] or [5]).

Recall that a Lebesgue indefinite integral of a function f ∈ L[0, 1]n is defined as
follows

Ff (x) =

∫

[0,x1]×···×[0,xn]

f(y)dy (x ∈ [0, 1]n).

From the above mentioned result of Leonov it follows evidently that a Lebesgue in-
definite integral of arbitrary function f ∈ L[0, 1]n has a bounded variation in Hardy
sense.

For n ≥ 2, h ∈ Rn and i ∈ 1, n denote by h(i) the point in Rn such that h(i)j = hj

for every j ∈ 1, n\{i} and h(i)i = 0.
Let n ≥ 2 and f be a function defined in a neighborhood of a point x ∈ Rn. If for

i ∈ 1, n there exists the limit

lim
h→0

f(x + h) − f(x + h(i))

hi

,

then let us call its value as the i-th strong partial derivative of f at x and denote it by
D[i]f(x). If f has finite D[i]f(x) for every i ∈ 1, n then following Dzagnidze [6] let us say
that there exists a strong gradient of f at x or f has a strong gradient at x.

It is easy to check that (see [6] for details) if a function f has a strong gradient at a
point x then it is differentiable at x and the converse assertion is not true:the function

f(x1, x2) = |x1x2|
2

3 is differentiable at the point (0, 0), but D[1]f(0, 0) = D[2]f(0, 0) =
+∞. Thus the condition of differentiability at the fixed point is weaker then the condition
of the existence of a strong gradient in the same point. Moreover, Oniani [7] for arbitrary
n ≥ 2 constructed a continuous function f : Rn → R such that the set of all points at
which f is differentiable but does not have a strong gradient is of full measure.

2. Result

The differential properties of functions of bounded variation in different senses was
investigated by various authors. In particular, there are known following results: Ev-
ery function on [0, 1]n of bounded variation in Arzela sense (and consequently in Hardy
sense) is differentiable almost everywhere(Burkill and Haslam-Jones [8]); Every func-
tion on [0, 1]n of bounded variation in Kronrod-Vitushkin sense is differentiable almost
everywhere (Kronrod [9] (for n = 2), Vitushkin [3,§26] (for arbitrary n ≥ 2); see also
[10,Ch.5,§5]); There exists a function on [0, 1]2 with bounded variation in Tonelli sense
which is non-differentiable everywhere (Stepanoff [11]; see also [12, Ch. 9,§12]). Note
that analogous statement for functions of bounded variation in Vitali sense is obvious.

Since an indefinite integral of arbitrary f ∈ L[0, 1]n has a bounded variation in Hardy
sense then by virtue of Burkill and Haslam-Jones’ result it is differentiable almost every-
where. However, in works of Dzagnidze [6] (for n = 2) and Dzagnidze and Oniani [13](for
arbitrary n ≥ 2) it was proved that an indefinite integral has a stronger differential
property, namely, it has a strong gradient almost everywhere. In this connection natu-
rally arises question whether analogous conclusion is true for every function of bounded
variation in Hardy sense (in Arzela sense).

The following theorem gives a positive answer to the first part of the question.

Theorem. Every function on [0, 1]n of bounded variation in Hardy sense has a strong
gradient almost everywhere.
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