Sh. Tetunashvili

ON THE ITERATED SUMMABILITY OF TRIGONOMETRIC FOURIER SERIES

Let

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x+b_{k} \sin k x \tag{1}
\end{equation*}
$$

be a Fourier series of the summable function $f(x)$.
By $S_{n}(x, f)$ we denote partial sums of the series (1), i.e.,

$$
S_{n}(x ; f)=\frac{a_{0}}{2}+\sum_{k=1}^{n} a_{k} \cos k x+b_{k} \sin k x
$$

Let a triangular matrix

$$
\Lambda=\left\|\lambda_{n}(k)\right\|
$$

be such that $\lambda_{n}(0)=1$ and $\lambda_{n}(n+p)=0$ for $n \geq 0$ and $p \geq 1$.
Consider means of the series (1):

$$
\begin{equation*}
t_{n}^{(1)}(x ; f)=\frac{a_{0}}{2}+\sum_{k=1}^{n} \lambda_{n}(k)\left(a_{k} \cos k x+b_{k} \sin k x\right) \tag{2}
\end{equation*}
$$

Following N. K. Bary ([1], p. 474), we say that Λ is a matrix of the type F_{c} if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t_{n}^{(1)}(x ; f)=f(x) \tag{3}
\end{equation*}
$$

for all continuous $f(x)$ at every point.
Analogously, we say that Λ is a matrix of the type F if (3) holds for all summable functions $f(x)$ at every Lebesgue point.

It is clear that if the matrix is not of the type F_{c}, then it is not of the type F. The means (2) can be written by a sequence of partial sums

$$
\begin{equation*}
\left\{S_{n}(x ; f)\right\}_{n=0}^{\infty} \tag{4}
\end{equation*}
$$

as follows:

$$
\begin{equation*}
t_{n}^{(1)}(x ; f)=\sum_{k=0}^{n}\left(\lambda_{n}(k)-\lambda_{n}(k+1)\right) S_{k}(x ; f) \tag{5}
\end{equation*}
$$

$t_{n}^{(1)}(x ; f)$ are called Λ-means (or $\Lambda^{(1)}$-means) of the series (1) (or of the sequence (4)).
Let $d \geq 2$ be any natural number, and assume that for every number j, where $1 \leq$ $j \leq d-1$, the means $\left\{t_{n}^{(j)}(x ; f)\right\}_{n=0}^{\infty}$ are already constructed.

By $t_{n}^{(d)}(x ; f)$ we denote Λ-means for the sequence $\left\{t_{n}^{(d-1)}(x ; f)\right\}_{n=0}^{\infty}$, i.e.,

$$
\begin{equation*}
t_{n}^{(d)}(x ; f)=\sum_{k=0}^{\infty}\left(\lambda_{n}(k)-\lambda_{n}(k+1)\right) t_{k}^{(d-1)}(x ; f) \tag{6}
\end{equation*}
$$

2000 Mathematics Subject Classification: 42B05, 42B08.
Key words and phrases. Trigonometric series, iterated summability.

If $d \geq 2$, then $t_{n}^{(d)}(x ; f)$ will be called the iterated $\Lambda^{(d)}$-means of the series (1), and if at some point x there exists the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t_{n}^{(d)}(x ; f)=S \tag{7}
\end{equation*}
$$

then we will say that the series (1) is iterated $\Lambda^{(d)}$-summable at the point x to the number S.

Clearly, if Λ is a regular matrix, then from the relation

$$
\lim _{n \rightarrow \infty} t_{n}^{(d-1)}(x ; f)=S
$$

it follows that the relation (7) is valid.
For every $d \geq 1$, using some triangular matrix

$$
M^{(d)}=\left\|\mu_{n}^{(d)}(k)\right\|
$$

we write the iterated $\Lambda^{(d)}$-means of the series (1) as follows:

$$
t_{n}^{(d)}(x ; f)=\sum_{k=0}^{n} \mu_{n}^{(d)}(k)\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

(Note that if $d=1$, then $M^{(1)}=\Lambda$).
For the iterated $\Lambda^{(d)}$-summability the following theorem is valid.
Theorem 1. Let $d \geq 1$ be any natural number and the matrix Λ be such that for every $n \geq 0$ and $0 \leq k \leq n$

1) $0 \leq \lambda_{n}(k+1) \leq \lambda_{n}(k) \leq 1$,
2) $\lambda_{n}(k) \leq \lambda_{n+1}(k)$,
3) for any natural number p

$$
\lim _{n \rightarrow \infty} \lambda_{p n}((p-1) n)=1
$$

Then
a) the matrix $M^{(d)}$ is not of the type F_{c};
b) there exists the function $f \in L_{1}(0,2 \pi)$ such that

$$
\varlimsup_{n \rightarrow \infty}\left\|t_{n}^{(d)}(x ; f)-f(x)\right\|_{L_{1}}>0
$$

The above theorem can be generalized for $d=1$. Thus the following theorem is valid.
Theorem 2. Let the triangular matrices

$$
\Lambda=\left\|\lambda_{n}(k)\right\| \quad \text { and } \quad M=\left\|\mu_{n}(k)\right\|
$$

be such that for every $n \geq 0$ and $0 \leq k \leq n$

1) $\lambda_{n}\left(k \geq \mu_{n}(k)\right), \lambda_{n}(k) \geq \mu_{n}(k)$,
2) $0 \leq \mu_{n}(k+1) \leq \mu_{n}(k) \leq 1$,
3) for any natural number p

$$
\lim _{n \rightarrow \infty} \mu_{p n}((p-1) n)=1
$$

Then
a) the matrix Λ is not of the type F_{c};
b) there exists the function $f \in L_{1}(0,2 \pi)$ such that

$$
\lim _{n \rightarrow \infty}\left\|t_{n}^{(1)}(x ; f)-f(x)\right\|_{L_{1}}>0
$$

The above theorems result in different corollaries. Here we cite some of them. Let $\left\{\alpha_{n}\right\}$ be a sequence of numbers from $[0,1], \alpha_{n+1} \leq \alpha_{n}$, and for $0 \leq k \leq n$

$$
\begin{equation*}
\lambda_{n}(k)=\frac{A_{n-k}^{\alpha_{n}}}{A_{n}^{\alpha_{n}}}, \quad \text { where } \quad A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots(\alpha+n)}{n!} \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda_{n}(k)=1-\frac{k}{n+1}^{\alpha_{n}} . \tag{9}
\end{equation*}
$$

Just as in case (8), the matrix $\Lambda=\left\|\lambda_{n}(k)\right\|$ in case (9) is completely regular.
If $\alpha_{n}=\alpha>0$ for $n \geq 0$, then the matrix Λ in case (8) specifies the Cesaro method of summability (C, α) $\alpha>0$, while the matrix Λ in case (9) spesifies the Riesz method of summability of order $\alpha>0$.

It is known ($[1], \mathrm{p} .482$) that in these cases the matrix Λ is of the type F (and hence of the type F_{c}).

For the iterated $\Lambda^{(d)}$-summability, from Theorem 1 we have
Theorem 3. Let $d \geq 1$ be any natural number, $\alpha_{n} \in[0,1], \alpha_{n} \downarrow 0$ as $n \rightarrow \infty$ and $\lambda_{n}(k)$, are defined by the relation (8), or by the relation (9).

Then
a) the matrix $M^{(d)}$ is not of the type F_{c};
b) there exists the function $f \in L_{1}(0,2 \pi)$ such that

$$
\varlimsup_{n \rightarrow \infty}\left\|t_{n}^{(d)}(x ; f)-f(x)\right\|_{L_{1}}>0
$$

Consider the case $d=1$.
Let the numbers $\alpha_{n, k} \in[0,1]$, and for $0 \leq k \leq n$

$$
\begin{equation*}
\lambda_{n}(k)=\frac{A_{n-k}^{\alpha_{n, k}}}{A_{n}^{\alpha_{n, k}}} \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda_{n}(k)=1-\frac{k}{n+1}^{\alpha_{n, k}} \tag{11}
\end{equation*}
$$

For the Λ-summability, from Theorem 2 we have
Theorem 4. Let the numbers $\alpha_{n, k} \in[0,1]$ be such that $\max _{0 \leq k \leq n} \alpha_{n, k} \rightarrow 0$ as $n \rightarrow \infty$, and $\lambda_{n}(k)$ are defined by the relation (10), or by the relation (11).

Then
a) the matrix $\Lambda=\left\|\lambda_{n}(k)\right\|$ is not of the type F_{c};
b) there exists the function $f \in L_{1}(0,2 \pi)$ such that

$$
\varlimsup_{n \rightarrow \infty}\left\|t_{n}^{(1)}(x ; f)-f(x)\right\|_{L_{1}}>0
$$

References

1. N. K. Bari, Trigonometric Series. Gos. Izd. Phys. Mat. Lit., Moscow, 1961.

Author's addresses:
A. Razmadze Mathematical Institute

Georgian Academy of Sciences,
1, M. Aleksidze St, Tbilisi 0193
Georgia
Department of Mathematics
Georgian Technical University
77 M.Kostava, Tbilisi 0175
Georgia

