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A. Saginashvili

ON THE OBLIQUE DERIVATIVE PROBLEM

Let D be a simply connected domain bounded by a simple piecewise smooth curve Γ.
Ep(D), p > 1 is the Smirnov class of analytic in D functions.

e′p(D), p > 1 will stand for the spaces of harmonic functions with the following
property:
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where Γr is the image of the circumference |ω| = r under the conformal mapping of the

unit disk U onto D.
The space e′p(D) coincides with the space of harmonic functions represented as the

real part of the analytic function Φ from E′

p(D), where E′

p(D) = {Φ : Φ′ ∈ Ep(D)}.

Let lt be the given vector at the point t ∈ Γ, and α(t) be the angle between the vector
lt and the real axis. The oblique derivative problem is formulated as follows: find a
harmonic in D function u ∈ e′p(D), whose derivative, with respect to the vector lt, t ∈ Γ,
angular boundary values coincide almost everywhere on the boundary Γ with the given
real function f from Lp(Γ). Thus u satisfies the conditions
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Let u = ReΦ, Φ′ ∈ Ep(D) be a solution of the problem (2). Since
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we can write the boundary condition from (1.2) in the form:

Re(exp iα(t)(Φ′)+(t)) = f(t), t ∈ Γ, a.e.(3) (3)

Let z : U → D be the conformal map from the unit disk U onto D. Then we write
(3) as

Re
( exp iα(z(τ))

(z′(τ))
1

p

Ψ+(τ)
)

= ϕ(τ), |τ | = 1, (4)

where

Ψ ∈ Ep(U), Ψ(ω) = (z′(ω))
1

p Φ′(z(ω)), ω ∈ U, ϕ = Re Lp(Γ0), ϕ(τ) = f(z(τ)), |τ | = 1.

The problem (4) is equivalent to the following Rieman-Hilbert problem:
{

Ω+(τ) = G(τ)Ω−(τ) + g(τ), |τ | = 1,

Ω(ω) = Ω∗(ω), |ω| 6= 1.
(5)
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where

Ω(ω) =
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, g(τ) = 2f(z(τ)) p
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z′(τ) exp(−iα(z(τ))).

The problem (2) is equivalent to the problem (5) in the following statement (see, [2]
Chapter IV ): any solution of (2) generates the function Ω which satisfies the conditions
(5), and vice versa, if Ω satisfies (5), then

u(z) = Re

z
∫
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Ω(ω(ζ))dζ

(z′(ω(ζ)))
1

p

+ constant (6)

is a solution of (2).
As is proven in [1]

lim
ω→exp iθ
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π

2
, (7)

where β(θ) is the angle between the oriented tangent at the point z(eiθ) and the real
axis. The problem of linear conjugation from (5) takes the form
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Ω−(τ) + g(τ). (8)

Assume that α(t) is the piecewise continuous function on Γ. Since Γ is a piecewise smooth
curve, the function β(θ) will be the piecewise continuous function on the unit circle γ0.
Therefore the coefficient of the problem (8)

G(τ) = e
πi
p exp

(

− 2iα(θ) −
β(θ)

p
+

θ

p

)

, τ = eiθ

is the piecewise continuous uniocular function. Thus B. Khvedelidze’s theory is applica-
ble.

Reasoning just as in [2], (Ch. IV), we can get a complete picture of solvability of the
problem (2). Under the above-mentioned conditions, the problem (2) is the problem with
a finite index. As an example, let us consider the problem (2) with an infinite index.

Let Γ = R, α(t) = at where a is an arbitrarily fixed real number and the unknown
function u is from the Hardy class of analytic functions in the upper half-plane Hp, p > 1.
In this case the oblique derivative problem has the form:
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Theorem.
I. For a > 0, the homogeneous problem (f(t) = 0) has only the constant solution,

while the inhomogeneous problem is, in general, unsolvable. The solvability is equal to

the condition

f(t) = 0, −a < t < a, a. e.,

and in this case
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. (10)

II. For a < 0 the homogeneous problem has an infinite-dimensional space of solutions

∂u(x, y)

∂x
=

e(2a+ε)y(x cos(2a + ε)x + y sin(2a + ε)x − e−xy(x cos εx + y sin εx))

x2 + y2
, (11)

where ε is an arbitrary number from the (0;−a) interval.
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The inhomogeneous problem is solvable for all f ∈ Re Lp, and the solution u + u0 is

given by (10) and (11).
Singular integral equations with an infinite index, appearing in solving the problem

(9), have been studied in [6].
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Nauk SSSR Vsesojuz. Inst. Naučn. i Tehn. Informacii, Moscow, 1975.
5. N. I. Muskhelishvili, Singular integral equations. Boundary problems of function the-

ory and their application to mathematical physics. (Translated from the Russian) P.

Noordhoff N. V., Groningen, 1953.
6. A. Saginashvili, Singular integral equations with coefficients that have discontinuities

of semi-almost-periodic type. (Russian) Theory of analytic functions and harmonic

analysis. Akad. Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze 66(1980),
84–95.

Author’s address:

A. Razmadze Mathematical Institute,
Georgian Academy of Sciences,
1, M. Aleksidze St, 0193 Tbilisi
Georgia


