A. Saginashvili

ON THE OBLIQUE DERIVATIVE PROBLEM

Let D be a simply connected domain bounded by a simple piecewise smooth curve Γ. $E_{p}(D), p>1$ is the Smirnov class of analytic in D functions.
$e_{p}^{\prime}(D), p>1$ will stand for the spaces of harmonic functions with the following property:

$$
\begin{equation*}
\sup _{0<r<1} \int_{\Gamma_{r}}\left(\left|\frac{\partial u}{\partial x}\right|^{p}+\left|\frac{\partial u}{\partial x}\right|^{p}\right)|d z|<\infty \tag{1}
\end{equation*}
$$

where Γ_{r} is the image of the circumference $|\omega|=r$ under the conformal mapping of the unit disk U onto D.

The space $e_{p}^{\prime}(D)$ coincides with the space of harmonic functions represented as the real part of the analytic function Φ from $E_{p}^{\prime}(D)$, where $E_{p}^{\prime}(D)=\left\{\Phi: \Phi^{\prime} \in E_{p}(D)\right\}$.

Let l_{t} be the given vector at the point $t \in \Gamma$, and $\alpha(t)$ be the angle between the vector l_{t} and the real axis. The oblique derivative problem is formulated as follows: find a harmonic in D function $u \in e_{p}^{\prime}(D)$, whose derivative, with respect to the vector $l_{t}, t \in \Gamma$, angular boundary values coincide almost everywhere on the boundary Γ with the given real function f from $L_{p}(\Gamma)$. Thus u satisfies the conditions

$$
\begin{cases}\Delta u=0, & u \in e_{p}^{\prime}(D) \tag{2}\\ \left.\frac{\partial u}{\partial l_{t}}\right|_{\Gamma} ^{+}=f, & f \in \operatorname{Re} L_{p}(\Gamma)\end{cases}
$$

Let $u=\operatorname{Re} \Phi, \Phi^{\prime} \in E_{p}(D)$ be a solution of the problem (2). Since

$$
\Phi^{\prime}=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y},\left.\quad \frac{\partial u}{\partial l_{t}}\right|^{+}(t)=\left.\frac{\partial u}{\partial x}\right|^{+}(t) \cos \alpha(t)+\left.\frac{\partial u}{\partial y}\right|^{+}(t) \sin \alpha(t)
$$

we can write the boundary condition from (1.2) in the form:

$$
\begin{equation*}
\operatorname{Re}\left(\exp i \alpha(t)\left(\Phi^{\prime}\right)^{+}(t)\right)=f(t), \quad t \in \Gamma \text {, a.e.(3) } \tag{3}
\end{equation*}
$$

Let $z: U \rightarrow D$ be the conformal map from the unit disk U onto D. Then we write (3) as

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\exp i \alpha(z(\tau))}{\left(z^{\prime}(\tau)\right)^{\frac{1}{p}}} \Psi^{+}(\tau)\right)=\varphi(\tau), \quad|\tau|=1 \tag{4}
\end{equation*}
$$

where

$$
\Psi \in E_{p}(U), \Psi(\omega)=\left(z^{\prime}(\omega)\right)^{\frac{1}{p}} \Phi^{\prime}(z(\omega)), \omega \in U, \varphi=\operatorname{Re} L_{p}\left(\Gamma_{0}\right), \varphi(\tau)=f(z(\tau)),|\tau|=1
$$

The problem (4) is equivalent to the following Rieman-Hilbert problem:

$$
\begin{cases}\Omega^{+}(\tau)=G(\tau) \Omega^{-}(\tau)+g(\tau), & |\tau|=1 \tag{5}\\ \Omega(\omega)=\Omega_{*}(\omega), & |\omega| \neq 1\end{cases}
$$

[^0]where
\[

$$
\begin{gathered}
\Omega(\omega)=\left\{\begin{array}{ll}
\Psi(\omega), & |\omega|<1, \\
\bar{\Psi}(\omega), & |\omega|>1 .
\end{array} \quad F_{*}(\omega)=\bar{F}\left(\frac{1}{\omega}\right)\right. \\
G(\tau)=\frac{2 \exp \left(-2 i \alpha(z(\tau)) \sqrt[p]{z^{\prime}(\tau)}\right)}{\sqrt[p]{\overline{z^{\prime}(\tau)}}, \quad g(\tau)=2 f(z(\tau)) \sqrt[p]{z^{\prime}(\tau)} \exp (-i \alpha(z(\tau)))} .
\end{gathered}
$$
\]

The problem (2) is equivalent to the problem (5) in the following statement (see, [2] Chapter IV): any solution of (2) generates the function Ω which satisfies the conditions (5), and vice versa, if Ω satisfies (5), then

$$
\begin{equation*}
u(z)=\operatorname{Re} \int_{z_{0}}^{z} \frac{\Omega(\omega(\zeta)) d \zeta}{\left(z^{\prime}(\omega(\zeta))\right)^{\frac{1}{p}}}+\text { constant } \tag{6}
\end{equation*}
$$

is a solution of (2).
As is proven in [1]

$$
\begin{equation*}
\lim _{\omega \rightarrow \exp i \theta} \arg \left(z^{\prime}(\omega)\right)=\beta(\theta)-\theta-\frac{\pi}{2} \tag{7}
\end{equation*}
$$

where $\beta(\theta)$ is the angle between the oriented tangent at the point $z\left(e^{i \theta}\right)$ and the real axis. The problem of linear conjugation from (5) takes the form

$$
\begin{equation*}
\Omega^{+}(\tau)=e^{\frac{\pi i}{p}} \exp \left(-2 i \alpha(\theta)-\frac{\beta(\theta)}{p}+\frac{\theta}{p}\right) \Omega^{-}(\tau)+g(\tau) \tag{8}
\end{equation*}
$$

Assume that $\alpha(t)$ is the piecewise continuous function on Γ. Since Γ is a piecewise smooth curve, the function $\beta(\theta)$ will be the piecewise continuous function on the unit circle γ_{0}. Therefore the coefficient of the problem (8)

$$
G(\tau)=e^{\frac{\pi i}{p}} \exp \left(-2 i \alpha(\theta)-\frac{\beta(\theta)}{p}+\frac{\theta}{p}\right), \quad \tau=e^{i \theta}
$$

is the piecewise continuous uniocular function. Thus B. Khvedelidze's theory is applicable.

Reasoning just as in [2], (Ch. IV), we can get a complete picture of solvability of the problem (2). Under the above-mentioned conditions, the problem (2) is the problem with a finite index. As an example, let us consider the problem (2) with an infinite index.

Let $\Gamma=R, \alpha(t)=a t$ where a is an arbitrarily fixed real number and the unknown function u is from the Hardy class of analytic functions in the upper half-plane $H_{p}, p>1$. In this case the oblique derivative problem has the form:

$$
\begin{cases}\Delta u=0, & u \in \operatorname{Re} H_{p} \tag{9}\\ \left(\frac{\partial u}{\partial x}\right)^{\prime}(t) \cos a t+\left(\frac{\partial u}{\partial y}^{+}(t) \sin a t=f(t),\right. & \left.t \in R, \quad f \in \operatorname{Re} L_{p}\right)\end{cases}
$$

Theorem.

I. For $a>0$, the homogeneous problem $(f(t)=0)$ has only the constant solution, while the inhomogeneous problem is, in general, unsolvable. The solvability is equal to the condition

$$
f(t)=0, \quad-a<t<a, \quad a . \quad e .
$$

and in this case

$$
\begin{equation*}
\frac{\partial u_{0}(x, y)}{\partial x}=\frac{e^{a y}}{\pi}\left(\cos a x \int_{-\infty}^{+\infty} \frac{y f(t) d t}{(t-x)^{2}+y^{2}}-\sin a x \int_{-\infty}^{+\infty} \frac{(t-x) f(t) d t}{(t-x)^{2}+y^{2}}\right) \tag{10}
\end{equation*}
$$

II. For $a<0$ the homogeneous problem has an infinite-dimensional space of solutions

$$
\begin{equation*}
\frac{\partial u(x, y)}{\partial x}=\frac{e^{(2 a+\varepsilon) y}\left(x \cos (2 a+\varepsilon) x+y \sin (2 a+\varepsilon) x-e^{-x y}(x \cos \varepsilon x+y \sin \varepsilon x)\right)}{x^{2}+y^{2}} \tag{11}
\end{equation*}
$$

where ε is an arbitrary number from the $(0 ;-a)$ interval.

The inhomogeneous problem is solvable for all $f \in \operatorname{Re} L_{p}$, and the solution $u+u_{0}$ is given by (10) and (11)

Singular integral equations with an infinite index, appearing in solving the problem (9), have been studied in [6].

References

1. G. Khuskivadze and V. Paatashvili, On the conformal mapping of a circle onto a domain with an arbitrary piecewise smooth boundary. Proc. A. Razmadze Math. Inst. 116(1998), 123-132.
2. G. Khuskivadze, V. Kokilashvili and V. Paatashvili, Boundary value problems for analytic and harmonic functions in domains with nonsmooth boundaries. Applications to conformal mappings. Mem. Differential Equations Math. Phys. 14(1998), 195.
3. B. Khvedelidze, Linear discontinuous boundary problems in the theory of holomorphic functions, singular integral equations and some of their applications. (Russian) Akad. Nauk Gruzin. SSR. Trudy Tbiliss. Mat. Inst. Razmadze 23(1956), 3-158.
4. B. Khvedelidze, The method of Cauchy type integrals in discontinuous boundary value problems of the theory of holomorphic functions of a complex variable. (Russian) Current problems in mathematics, 7 (Russian), 5-162 (errata insert). Akad. Nauk SSSR Vsesojuz. Inst. Naučn. i Tehn. Informacii, Moscow, 1975.
5. N. I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics. (Translated from the Russian) P. Noordhoff N. V., Groningen, 1953.
6. A. Saginashvili, Singular integral equations with coefficients that have discontinuities of semi-almost-periodic type. (Russian) Theory of analytic functions and harmonic analysis. Akad. Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze 66(1980), 84-95.

Author's address:
A. Razmadze Mathematical Institute,

Georgian Academy of Sciences,
1, M. Aleksidze St, 0193 Tbilisi
Georgia

[^0]: 2000 Mathematics Subject Classification: 30D55, 34A20.
 Key words and phrases. Oblique derivative problem, harmonic function, Hardy class of analytic functions.

