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TWO-WEIGHTED ESTIMATES FOR FOURIER MULTIPLIERS

Let L
p,θ
w be a weighted Triebel-Lizorkin space. (For the definition, see [1], [2]).

Let φ be a measurable function defined on R
2.

Our aim is to present conditions for the pair (v, w) of weights ensuring the boundedness
of the operator

Tφf(x) = F−1(φf̂)(x)

from L
p,θ
w (R2) to L

p,θ
v (R2).

Here F−1 denotes the inverse Fourier transform. The Fourier transforms will be
considered in the framework of the theory of S′-distributions.

We need the definitions of some classes of pairs of weights.

Definition 1. Let 1 < p < ∞. A pair (v, w) of weight functions on R
2 is said to be of

the class Ωp if v is even and increasing on (0,∞) in each variable uniformly to another
one, w(x, y) = w1(x)w2(y), where wi(i = 1, 2) are even and increasing on (0,∞), and
the condition

sup
a,b>0

( ∞∫

a

∞∫

b

v(x, y)

(xy)p
dx dy

)1/p( a∫

0

b∫

0

w1−p′

(x, y) dx dy

)1/p′

< ∞, p′ =
p

p − 1
,

is fulfilled.

Definition 2. Let 1 < p < ∞. We say that a weight pair (v, w) defined on R
2

belongs to Gp if v is even and decreasing on (0,∞) in each variable uniformly to another
one, w(x, y) = w1(x)w2(y), where one-dimensional weights wi(i = 1, 2) are even and
decreasing on (0,∞), and the weight pair (v, w) satisfies the condition

sup
a,b>0

( a∫

0

b∫

0

v(x, y) dx dy

)
1/p( ∞∫

a

∞∫

b

w1−p′

(x, y)

(xy)p′
dx dy

)
1/p′

< ∞.

Theorem 1. Let 1 < p, θ < ∞, {µm}m, m = (m1, m2) ∈ Z
2, be a family of measures

such that ∫

R2

|dµm| ≤ c, m ∈ Z
2,

for some positive constant c. Suppose that the measure function φ(λ1, λ2) is representable

as

φ(λ1, λ2) =

λ1∫

−∞

λ2∫

−∞

dµ(t1, t2)

on every set

Qm =
{
λ = (λ1, λ2) : 2mj < |λj | ≤ 2mj+1 , j = 1, 2; mj = 0,±1, . . .

}
.
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Then from the condition (v, w) ∈ Ωp∪Gp it follows that the operator Tφ is bounded from

L
p,θ
w (R2) to L

p,θ
v (R2).

Theorem 2. Let 1 < p < θ, φ be continuous outside the coordinate axes and have

there continuous derivatives

∂kφ

∂λ
k1
1

∂λ
k2
2

, 0 < k1 + k2 = k ≤ 2, kj = 0, 1; j = 1, 2.

Moreover, assume that
∣∣∣λk1

1
λ

k2
1

∂kφ

∂λ
k1
1

∂λ
k2
2

∣∣∣ ≤ M

and the condition (v, w) ∈ Ωp∪Gp holds. Then the operator Tφ is bounded from L
p,θ
w (R2)

to L
p,θ
v (R2).
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