Proc. A. Razmadze Math. Inst. 139(2005), 132-136

V. KOKILASHVILI, A. MESKHI AND T's. TSANAVA

STRONG AND ITERATED MAXIMAL FUNCTIONS, AND
APPLICATIONS TO THE MEAN SUMMABILITY OF THE DOUBLE
TRIGONOMETRIC FOURIER SERIES

In this note two-weight criteria for strong and iterated Hardy—Littlewood maximal
functions
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are established provided that the weights satisfy some additional conditions. Applications
to the mean summability problem for double trigonometric Fourier series in weighted
Lebesgue spaces are presented.

Let p be an almost everywhere positive function on R™.

We denote by L, (R™) (1 < p < co) the weighted Lebesgue space which is the class
of all measurable functions with finite norm

ey = ( [ |f<z>\?w<x>dz)l/p.
)

The one-weight problem for the operator Mg has been studied in [1-2]. The only
known result concerning the two-weight inequality for the operator Mg is the following
statement due to E. Sawyer (see [7]):

Theorem A. Let 1 < p < co. Then Mg is bounded from L%,(R?) to LL(R2) if and
only if
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for all bounded open connected sets G C R2, provided that the operator
f= s | [ifide
IxJ>(z,y) Yo
where I and J are arbitrary intervals in R and o = wl_p/, is bounded in LL(R2) (1 <
q<p<00), or w(z,y) =wi(z)wa(y).

Necessary and sufficient conditions for the two-weight inequality for the strong frac-
tional maximal functions
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has been found in [3] (see also [4]) provided that the weight on the right hand side is of
product type.

First we present the criteria guaranteeing the two-weight inequality for the one-
dimensional Hardy-Littlewood maximal function

Mg(z) = sup
z#t T — t

/\g )dr, z,t €R.

The two-weight problem for the operator M has been solved in [8]. For more trasparent
sufficient conditions for the two-weight inequality for the operator M see [5-6]. We have
the following statements:

Proposition 1. Let 1 < p < oo. Suppose that v and w be even and increasing on
(0, 00) weights.
Then M is bounded from L%, (R) to LY (R) if and only if

A= /U@s pdsy ( / w sms)l”’ <o
t

Moreover, there exist positive constants c1 and c2 depending only on p such that
c1A < ||M]| < c2A.
Proposition 2. Let 1 < p < co. Suppose that v and w be even and decreasing on

(0, 00) weights.
Then M is bounded from L%, (R) to LY (R) if and only if
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1 1/p /1 , 1/p
A1 =sup A1(r) = sup <7/v(s)ds> <7/w1_p (s)ds) < o0.
r>0 r>0 \T 4 r 2

Moreover, there exist positive constants c1 and c2 depending only on p such that
c1Ar < [|M]| < e2As.
To formulate the main results concerning the operator Mg we need

Definition. A Weight function p : R2 — R! is said to satisfy the doubling condition
with respect to y uniformly to  on Ry (p € DCz(R4.)) if there exists a positive constant
¢ such that for arbitrary ¢ > 0 and almost all x > 0 the inequality

2t t
/p(z,y)dy < c/p(:v,y)dy
0 0

holds. Analogously it can be defined the class DCy(R4.).

Theorem 1. Let 1 < p < oco. Suppose that the two-dimensional weights v and w
are even and increasing on (0,00) in each variable separately and, in addition, wl=? ¢
DC.(R), DCy(R).

Then Mg is bounded from L%, (R?) to LE(R?) if and only if

e s, (] [itton) " ([ [oromma) " <o
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Theorem 2. Let 1 < p < co. Suppose that the two-dimensional weights v and w are
even and decreasing on (0,00) in each variable separately and, in addition, suppose that
wl=P" € RD;(Ry), RDy(R,).
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Then Mg is bounded from L%, (R?) to LY (R2) if and only if
b
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Theorem 3. Let 1 < p < co. Suppose that the two-dimensional weights v and w are
even in each variable separately, increasing on (0, 00) in the first variable and decreasing
on (0,00) in the second variable. Suppose also that wl=P' € DC, (R4), DCy(R4).

Then Mg is bounded from L%, (R?) to LY (R?) if and only if
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Example 1. Let 2 < p < o0, v(z,y) = (|| + |y))~*(|zy|)? and w(z,y) = (Jz| + |y])”,
where @« = 2p — 3, p < 8 < 2(p—1). Then by Theorem 1 we have that Mg is bounded
from LL,(R2) to LY (R?).
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Example 2. Let 1 < p < co and A = min{e »-1’ }, where 8 = v — 2p,

v > 2p — 1. Suppose that

oy 2 [P B el < va
’ (In® 2)AP—1=A|zy|*,  therwise,

wiey [P L el <vA
(107 2) 4P 1A ay)),  therwise,

where —1 < A < p — 1. Then for (v,w) the operator Ms is bounded from L%,(R") to
LE(R™).

Let us now consider the case when the weight on the right hand side is a product of
one-dimensional weights.

Theorem 4. Let 1 < p < co. Suppose that the two-dimensional weight v is even and
increasing on (0, 00) in each variable separately. Suppose also that w(z,y) = w1 (z)w2(y),
where w1 and w2 are even and increasing on (0,00) weights.

Then the following statements are equivalent:

(i) Mg is bounded from L%, (R?) to L} (R2);
(i) M1 Mz is bounded from LL,(R2) to L (R?);
(iii) The condition (1) holds.

Theorem 5. Let 1 < p < co. Suppose that the two-dimensional weight v is even and
decreasing on (0, 00) in each variable separately. Suppose also that w(z,y) = wi(x)w2(y),
where w1 and wa are even and decreasing on (0, 00) weights.

Then the following statements are equivalent:

(i) Mg is bounded from L%, (R2) to L (R?);

(ii) M1 Mz is bounded from LE,(R2?) to LL(R?);



(iii) The condition (2) holds.

Theorem 6. Let 1 < p < co. Suppose that the two-dimensional weight v is even
in each variable separately, increasing on (0,00) in the first variable and decreasing on
(0, 00) in the second variable. Further, assume that w(z,y) = wi(z)w2(y), where wi s
even and increasing on (0,00); wa is even and decreasing on (0, c0).

Then the following statements are equivalent:

(i) Mg is bounded from L%, (R?) to L} (R?);

(i) M1 Ma is bounded from LL,(R2) to L (R?);

(iii) The condition (3) holds.

Example 3. Let 1 < p < co and let

eyl g Jal Jyl < min {1, —5—}

v(z,y) = e2(p—1D
(In? 4)|zy|*, otherwise,
wle,y) = {|m|p-1|ynhﬂi, el gl <1,
' (In” 2)|zy|*, otherwise,

where 8> -1, v >p,0<n<p—1,8=~—p—1. Then it is easy to verify that the
pair (v, w) satisfies the conditions of Theorem 4 and consequently the operators Mg and
M1 Mj are bounded from L%, (R?) to L (R?).

Let T2 = (—m, ) x (—m,n) and let f : T? — R be an integrable, 27-periodic function
with respect to each variable separately. Suppose that

oo

o(f) = Z Amn (@mn €OS MT oS Y + by sin mx cos ny+
m,n=0

“+Cmn cosmzx sinny + dmn sin nx sin my) (6)
is the double Fourier series of a function f, where
1/4, m=n=0
Amn =41/2, m=0,n>0m>0,n=0
1, m>0,n>0

and amn, bmn, ¢mn and dmn denote the Fourier coeflicients of f(z,y).

Let
;'n:o ZZ:O Am—jAn—ijk (Jfa Y, f)
Aa AP
be the Cesaro (C, o, ) means of (4), where S, denote the partial sums of (4).
For some information concerning the Fourier trigonometric series see, e.g., [9], p. 464.
Now we formulate the statements concerning the mean summability for the double
trigonometric Fourier series in weighted Lebesgue spaces.

ol @,y ) = (e, 8> 0)

Theorem 7. Let1 < p < co. Suppose that a pair of weights (v, w) satisfies conditions
of one of the Theorems 4 — 6. Then

Ilsup ofes® (s Pl ey < ellflln, 2

m,n
for arbitrary f € L5, (T?)N Lin" L(T?).

Theorem 8. Let 1 < p < oo and let (v,w) satisfies the conditions of one of the
Theorems 4 — 6. Then

lim ||0£,?ﬁﬁ)(~, S f) = Fllperzy =0

m,n— oo

for arbitrary f € L% (T?)N Lint L(T?).
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e.g.,

1.

The analogous results for the Abel-Poisson means Uf(z,y,r,p) are also valid (see,
[9], p. 464, for the definition).

REFERENCES

R. Fefferman, Multiparameter Fourier analysis. Beijing lectures in harmonic analysis
(Beijing, 1984), 47-130, Ann. of Math. Stud., 112, Princeton Univ. Press, Princeton,
NJ, 1986.

. V. M. Kokilashvili, Bisingular integral operators in weighted spaces. (Russian) Soob-

shch. Akad. Nauk Gruzin. SSR 101(1981), No. 2, 289-292.

. V. Kokilashvili and A. Meskhi, Two-weight Estimates for Strong Fractional Maximal

Functions and Potentials with Multiple Kernels. Forum Math. (submitted).

. V. Kokilashvili and A. Meskhi, A note on two-weight estimates for strong fractional

maximal functions and potentials with product kernels. Proc. A. Razmadze Math.
Inst. 127(2005).

. B. Muckenhoupt and R. L. Wheeden, Two weight function norm inequalities for

the Hardy-Littlewood maximal function and the Hilbert transform. Studia Math.
55(1976), No. 3, 279-294.

. C. Perez, Banach function spaces and the two-weight problem for maximal functions.

Function spaces, differential operators and nonlinear analysis (Paseky nad Jizerou,
1995), 141-158, Prometheus, Prague, 1996.

. E. T. Sawyer, T'wo weight norm inequalities for certain maximal and integral opera-

tors. Harmonic analysis (Minneapolis, Minn., 1981), pp. 102-127, Lecture Notes in
Math., 908, Springer, Berlin-New York, 1982.

. E. T. Sawyer, A characterization of a two-weight norm inequality for maximal oper-

ators. Studia Math. 75(1982), No. 1, 1-11.

. A. Zygmund, Trigonometric series. 2nd ed. Vols. 1, Il. Cambridge University Press,

New York, 1959

Authors’ address:

A. Razmadze Mathematical Institute
Georgian Academy of Sciences,

1, M. Aleksidze St, Tbilisi 0193
Georgia



