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STRONG AND ITERATED MAXIMAL FUNCTIONS, AND
APPLICATIONS TO THE MEAN SUMMABILITY OF THE DOUBLE

TRIGONOMETRIC FOURIER SERIES

In this note two-weight criteria for strong and iterated Hardy–Littlewood maximal
functions

MSf(x, y) = sup
x 6=t
y 6=τ

1

(x − t)(y − τ)

x
∫

t

y
∫

τ

|f(s, σ)|dsdσ; x, t, y, τ ∈ R. (1)

(M1M2)f(x, y) = sup
x 6=t

1

x − t

x
∫

t

(

sup
y 6=τ

1

y − τ

y
∫

τ

|f(s, σ)|dσ

)

ds; x, t, y, τ ∈ R. (2)

are established provided that the weights satisfy some additional conditions. Applications
to the mean summability problem for double trigonometric Fourier series in weighted
Lebesgue spaces are presented.

Let ρ be an almost everywhere positive function on R
n.

We denote by Lp
w(Rn) (1 < p < ∞) the weighted Lebesgue space which is the class

of all measurable functions with finite norm

‖f‖L
p
w(Rn) =

(
∫

Rn

|f(x)|pw(x)dx

)1/p

.

The one-weight problem for the operator MS has been studied in [1-2]. The only
known result concerning the two-weight inequality for the operator MS is the following

statement due to E. Sawyer (see [7]):

Theorem A. Let 1 < p < ∞. Then MS is bounded from Lp
w(R2) to Lp

v(R2) if and

only if
∫

G

[

MS(χGw1−p′

)
]p

v ≤ c

∫

G

w1−p′

< ∞, p′ =
p

p − 1
,

for all bounded open connected sets G ⊂ R
2, provided that the operator

f → sup
I×J∋(x,y)

∫

I

∫

J

|f |dσ,

where I and J are arbitrary intervals in R and σ = w1−p′

, is bounded in Lq
σ(R2) (1 <

q < p < ∞), or w(x, y) = w1(x)w2(y).

Necessary and sufficient conditions for the two-weight inequality for the strong frac-
tional maximal functions

Mα,β = sup
x 6=t
y 6=τ

1

(x − t)1−α(y − τ)1−β

x
∫

t

y
∫

τ

|f(s, σ)|dsdσ; x, t, y, τ ∈ R.
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has been found in [3] (see also [4]) provided that the weight on the right hand side is of
product type.

First we present the criteria guaranteeing the two-weight inequality for the one-
dimensional Hardy-Littlewood maximal function

Mg(x) = sup
x 6=t

1

x − t

x
∫

t

|g(τ)|dτ, x, t ∈ R.

The two-weight problem for the operator M has been solved in [8]. For more trasparent
sufficient conditions for the two-weight inequality for the operator M see [5-6]. We have
the following statements:

Proposition 1. Let 1 < p < ∞. Suppose that v and w be even and increasing on

(0,∞) weights.

Then M is bounded from Lp
w(R) to Lp

v(R) if and only if

A ≡ sup
t>0

(

∞
∫

t

v(s)s−pds

)1/p(

t
∫

0

w1−p′

(s)ds

)1/p′

< ∞.

Moreover, there exist positive constants c1 and c2 depending only on p such that

c1A ≤ ‖M‖ ≤ c2A.

Proposition 2. Let 1 < p < ∞. Suppose that v and w be even and decreasing on

(0,∞) weights.

Then M is bounded from Lp
w(R) to Lp

v(R) if and only if

A1 ≡ sup
r>0

A1(r) ≡ sup
r>0

(

1

r

r
∫

0

v(s)ds

)1/p(

1

r

r
∫

0

w1−p′

(s)ds

)1/p′

< ∞.

Moreover, there exist positive constants c1 and c2 depending only on p such that

c1A1 ≤ ‖M‖ ≤ c2A1.

To formulate the main results concerning the operator MS we need

Definition. A Weight function ρ : R
2 → R

1 is said to satisfy the doubling condition
with respect to y uniformly to x on R+ (ρ ∈ DCx(R+)) if there exists a positive constant
c such that for arbitrary t > 0 and almost all x > 0 the inequality

2t
∫

0

ρ(x, y)dy ≤ c

t
∫

0

ρ(x, y)dy

holds. Analogously it can be defined the class DCy(R+).

Theorem 1. Let 1 < p < ∞. Suppose that the two-dimensional weights v and w

are even and increasing on (0,∞) in each variable separately and, in addition, w1−p′ ∈
DCx(R), DCy(R).

Then MS is bounded from Lp
w(R2) to Lp

v(R2) if and only if

B ≡ sup
a,b>0

(

∞
∫

a

∞
∫

b

v(x, y)

(xy)p
dxdy

)1/p(

a
∫

0

b
∫

0

w1−p′

(x, y)dxdy

)1/p′

< ∞. (3)

Theorem 2. Let 1 < p < ∞. Suppose that the two-dimensional weights v and w are

even and decreasing on (0,∞) in each variable separately and, in addition, suppose that

w1−p′ ∈ RDx(R+), RDy(R+).
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Then MS is bounded from Lp
w(R2) to Lp

v(R2) if and only if

B1 ≡ sup
a,b>0

B1(a, b) ≡ sup
a,b>0

(

1

ab

a
∫

0

b
∫

0

v(x, y)dxdy

)1/p

×

×
(

1

ab

a
∫

0

b
∫

0

w1−p′

(x, y)dxdy

)1/p′

< ∞. (4)

Theorem 3. Let 1 < p < ∞. Suppose that the two-dimensional weights v and w are

even in each variable separately, increasing on (0,∞) in the first variable and decreasing

on (0,∞) in the second variable. Suppose also that w1−p′ ∈ DCx(R+), DCy(R+).
Then MS is bounded from Lp

w(R2) to Lp
v(R2) if and only if

B2 ≡ sup
a,b>0

(

1

b

∞
∫

a

b
∫

0

v(x, y)

xp
dxdy

)1/p

×

×
(

1

b

a
∫

0

b
∫

0

w1−p′

(x, y)dxdy

)1/p′

< ∞. (5)

Example 1. Let 2 < p < ∞, v(x, y) = (|x|+ |y|)−α(|xy|)p and w(x, y) = (|x|+ |y|)β ,
where α = 2p − β, p ≤ β < 2(p − 1). Then by Theorem 1 we have that MS is bounded
from Lp

w(R2) to Lp
v(R2).

Example 2. Let 1 < p < ∞ and A = min{e−
β

p−1
,e

−
γ

p−1
}, where β = γ − 2p,

γ > 2p − 1. Suppose that

v(x, y) =

{

|xy|p−1 lnβ 2A
|xy|

, |x|, |y| <
√

A

(lnβ 2)Ap−1−λ|xy|λ, therwise,

w(x, y) =

{

|xy|p−1 lnγ 2A
|xy|

, |x|, |y| <
√

A

(lnγ 2)Ap−1−λ|xy|λ, therwise,

where −1 < λ < p − 1. Then for (v, w) the operator Ms is bounded from Lp
w(Rn) to

Lp
v(Rn).

Let us now consider the case when the weight on the right hand side is a product of
one-dimensional weights.

Theorem 4. Let 1 < p < ∞. Suppose that the two-dimensional weight v is even and

increasing on (0,∞) in each variable separately. Suppose also that w(x, y) = w1(x)w2(y),
where w1 and w2 are even and increasing on (0,∞) weights.

Then the following statements are equivalent:

(i) MS is bounded from Lp
w(R2) to Lp

v(R2);

(ii) M1M2 is bounded from Lp
w(R2) to Lp

v(R2);

(iii) The condition (1) holds.

Theorem 5. Let 1 < p < ∞. Suppose that the two-dimensional weight v is even and

decreasing on (0,∞) in each variable separately. Suppose also that w(x, y) = w1(x)w2(y),
where w1 and w2 are even and decreasing on (0,∞) weights.

Then the following statements are equivalent:

(i) MS is bounded from Lp
w(R2) to Lp

v(R2);
(ii) M1M2 is bounded from Lp

w(R2) to Lp
v(R2);
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(iii) The condition (2) holds.

Theorem 6. Let 1 < p < ∞. Suppose that the two-dimensional weight v is even

in each variable separately, increasing on (0,∞) in the first variable and decreasing on

(0,∞) in the second variable. Further, assume that w(x, y) = w1(x)w2(y), where w1 is

even and increasing on (0,∞); w2 is even and decreasing on (0,∞).
Then the following statements are equivalent:

(i) MS is bounded from Lp
w(R2) to Lp

v(R2);

(ii) M1M2 is bounded from Lp
w(R2) to Lp

v(R2);
(iii) The condition (3) holds.

Example 3. Let 1 < p < ∞ and let

v(x, y) =







|xy|p−1 ln 4β
|xy|

, |x|, |y| ≤ min
{

1, 2

e
β

2(p−1)

}

(lnβ 4)|xy|λ, otherwise,

w(x, y) =

{

|x|p−1|y|η lnγ 2
|x|

, |x|, |y| ≤ 1,

(lnγ 2)|xy|λ, otherwise,

where β > −1, γ > p, 0 < η < p − 1, β = γ − p − 1. Then it is easy to verify that the
pair (v, w) satisfies the conditions of Theorem 4 and consequently the operators MS and
M1M2 are bounded from Lp

w(R2) to Lp
v(R2).

Let T 2 = (−π, π)× (−π, π) and let f : T 2 → R be an integrable, 2π-periodic function
with respect to each variable separately. Suppose that

σ(f) =
∞
∑

m,n=0

λmn(amn cos mx cos ny + bmn sinmx cos ny+

+cmn cos mx sinny + dmn sinnx sinmy) (6)

is the double Fourier series of a function f , where

λmn =











1/4, m = n = 0

1/2, m = 0, n > 0; m > 0, n = 0

1, m > 0, n > 0

and amn, bmn, cmn and dmn denote the Fourier coefficients of f(x, y).
Let

σ
(α,β)
mn (x, y, f) =

∑m
j=0

∑n
k=0 Am−jAn−kSjk(x, y, f)

Aα
mAβ

n

(α, β > 0)

be the Cesaro (C, α, β) means of (4), where Sjk denote the partial sums of (4).
For some information concerning the Fourier trigonometric series see, e.g., [9], p. 464.
Now we formulate the statements concerning the mean summability for the double

trigonometric Fourier series in weighted Lebesgue spaces.

Theorem 7. Let 1 < p < ∞. Suppose that a pair of weights (v, w) satisfies conditions

of one of the Theorems 4 − 6. Then

‖ sup
m,n

σ
(α,β)
mn (·, ·, f)‖L

p
v(T2) ≤ c‖f‖L

p
w(T2)

for arbitrary f ∈ Lp
w(T 2) ∩ L ln+ L(T 2).

Theorem 8. Let 1 < p < ∞ and let (v, w) satisfies the conditions of one of the

Theorems 4 − 6. Then

lim
m,n→∞

‖σ(α,β)
mn (·, ·, f) − f‖L

p
v(T2) = 0

for arbitrary f ∈ Lp
w(T 2) ∩ L ln+ L(T 2).



136

The analogous results for the Abel–Poisson means Uf (x, y, r, ρ) are also valid (see,
e.g., [9], p. 464, for the definition).
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