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ON NULL SETS IN INFINITE-DIMENSIONAL BANACH SPACES

Let B be an infinite-dimensional separable Banach space, e1, e2, · · · ∈ B,∑
i∈N ||ei|| < ∞ and the span of e1, e2, · · · is dense in B.

Definition 1. A set X ⊂ B is called an Aronszajn null set in B (cf.[1]), if it can be
written as union of Borel sets En such that each En is null on every line in the direction
en (i.e., for every a ∈ B, µ1{t ∈ R : a + ten ∈ En} = 0, where µ1 is the one-dimensional
standard Lebesgue measure).

We denote the class of all Aronszajn null sets in B by A.N.S(B).

Definition 2. Following Mankiewicz (cf.[7]), a Borel set X ⊂ B is called a cube null
set, if it is null for every non-degenerate cube measure( Non-degenerate cube measures
in B may be defined as distributions of the random variable of the form a+

∑
k∈N Xkek,

where a ∈ B and (Xk)k∈N are uniformly distributed mutually independent random
variables with values in [0, 1]).

We denote the class of all cube null sets in B by C.N.S(B).

Definition 3. Following Phelps(cf.[10]), a Borel set is called Gaussian null set
if it is null for every Gaussian measure on B (Gaussian measures in B may be defined
as distributions of a.s.convergent sums a +

∑
k∈N Xkek, where a ∈ B and (Xk)k∈N are

mutually independent standard Gaussian variables).

We denote the class of all Gaussian null sets in B by G.N.S(B).

Definition 4. Let K be the class of all non-zero finite measures defined on the Borel
σ-field B(B). We denote by B(B)µ the completion of B(B) with respect to the measure
µ for µ ∈ K. A set E ⊂ B is called universally measurable if E ∈ ∩µ∈KB(B)µ.

Definition 5. Following Christensen(cf.[3]) , a universally measurable set E is Haar
null if there is a Borel probability measure µ on B such that every translate of E has
µ-measure zero, where µ denotes, as usual, the completion of the measure µ.

We denote the class of Haar null sets sets in B by H.N.S(B).

Definition 6. Following Brian R. Hurt, Tim Sauer and James A. Yorke (cf.[6]), a set
X is called shy if it is a subset of a Borel set X′ for which µ(X′ + v) = 0 for every v ∈ B

and some Borel probability measure µ such that µ(K) = µ(B) for some compact K(in
this case we say also that the measure µ transvers to X) .

We denote the class of all shy sets in B by S.S(B).

Remark 1. For every infinite-dimensional separable Banach space B, the relations

G.N.S(B) = A.N.S(B) = C.N.S(B) ⊂ H.N.S(B) = S.S(B) ⊂ T.N.S(B)

are valid.
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The result H.N.S(B) = S.S(B) was obtained by M.B. Stinchcombe(cf.[12]).
The assertion - C.N.S(B) ⊂ H.N.S(B) was established by Y.Benyamini and J.Linden-

strauss (cf.[2]).
The coincidence of the classes G.N.S(B), A.N.S(B) and C.N.S(B) was proved by

Marianna Csörnyei (cf.[5]).
The goal of our paper is to introduce new classes of null sets in the infinite-dimensional

separable Banach space with a basis. We do it in the well known Solovay’s model (cf.[11])
which is the following system of axioms:

(ZF ) & (DC) & (every subset of R is measurable in the Lebesgue sense),

where (ZF ) denotes the Zermelo-Fraenkel set theory and (DC) denotes the Axiom of
Dependent Choices.

Lemma 1. In Solovay’s model there exists a translation-invariant measure µ on RN

such that:
(i) µ([0, 1]N ) = 1;
(ii) dom(µ) = P (RN ), where P (RN ) denotes the powerset of RN .

The proof of Lemma 1 can be found in [8],[9].
Let B be an infinite-dimensional separable Banach space with a basis (ek)k∈N such

that
∑

k∈N ||ek|| < ∞.

Let a transformation A : B → RN is defined by

A(z) = (xk)k∈N ,

where z =
∑

k∈N xkek.

The following assertion is valid.

Lemma 2. In Solovay’s model the functional µA, defined by

(∀X)(X ⊂ B → µA(X) = µN (A(X)),

is a translation-invariant measure given on the powerset of B and such that µA(∆) = 1,
where ∆ = A−1([0, 1]N ).

Proof. Indeed, for h ∈ B and X ⊂ B, we have

µA(X + h) = µN (A(X + h)) = µN (A(X) + A(h)) = µN (A(X)) = µA(X).

Obviously,
µA(∆) = µN (A(A−1([0, 1]N )) = µN ([0, 1]N ) = 1.

This ends the proof of Lemma 2. �

Remark 2. It is reasonable to note that in Solovay’s model every subset in an arbitrary
Polish topological vector space is universally measurable.

Now we are able to introduce(in Solovay’s model) new classes of null sets in B.

Definition 7. We say that a Borel set X ⊂ B is a cube null set in B defined by a
basis Γ = (ek)k∈N if a standard cube measure ν defined by Γ transvers to X.

The class of all cube null sets in B defined a basis Γ will be denoted by C.N.S.(B, Γ).

Definition 8. We say that X ⊂ B is Lebesgue null set in B defined by a basis Γ
if µA(X) = 0.

The class of all Lebesgue null sets in B defined by a basis Γ will be denoted by
L.N.S(B, Γ).

Definition 9. We say that a transformation C : B → RN belongs to a class C, if there
exists a basis e1, e2, · · · in B such that

∑
i∈N ||ei|| < ∞ and

C(z) = (xk)k∈N

for z =
∑

k∈N xkek.
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If C ∈ C, we set µC(X) = µN(C(X)) for X ⊂ B.

Definition 10. We say that X ⊂ B is Lebesgue null set in B if µC(X) = 0 for
arbitrary C ∈ C.

The class of Lebesgue null sets in B will be denoted by L.N.S(B).

Definition 11. We say that X ⊂ B is quasi-Lebesgue null set in B if µC(X) = 0
for some C ∈ C.

The class of all quasi-Lebesgue null sets in B we denote by Q.L.N.S(B).

Definition 12. We say that X ⊂ B is a quasi-finite null set if there exists a
quasi-finite translation-invariant Borel measure ν such that ν(X) = 0, where ν denotes
the usual completion of ν.

The class of all quasi-finite null sets in B will be denoted by Q.F.N.S(B).
One can prove the validity of the following propositions.

Theorem 1. Let B be an infinite-dimensional separable Banach space with a basis
(ek)k∈N such that

∑
k∈N ||ek|| < ∞. Then in Solovay’s model we have

L.N.S.(B) ⊂ L.N.S.(B, Γ) ⊂ Q.L.N.S.(B) ⊆ Q.F.N.S(B).

Theorem 2. Let B be an infinite-dimensional separable Banach space with a basis
Γ = (ek)k∈N such that

∑
k∈N ||ek|| < ∞. Then in Solovay’s model we have

Q.F.N.S(B) ⊆ S.S(B).

Theorem 3. Let B be an infinite-dimensional separable Banach space with a basis
Γ = (ek)k∈N such that

∑
k∈N ||ek|| < ∞. Then in Solovay’s model we have

L.N.S(B, Γ) ⊆ C.N.S.(B, Γ).

Acknowledgement

The work is partially supported by the Georgian High Schools Foundation for Scientific
Research, Grant No.1.01.90

References

1. N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces. Stu-
dia Math. 57(1976), No. 2, 147–190.

2. Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1.
American Mathematical Society Colloquium Publications, 48. American Mathemat-
ical Society, Providence, RI, 2000.

3. J. P. R. Christensen, Topology and Borel structure. Descriptive topology and set
theory with applications to functional analysis and measure theory. North-Holland
Mathematics Studies, Vol. 10. (Notas de Matemätica, No. 51). North-Holland Pub-
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