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ANALYTIC WEIGHTED BESOV SPACES ON THE UNIT DISK

1. Introduction

Given −1 < λ < ∞, 1 < p < ∞, define the weighted Besov space Bλ
p (D) on the unit

disc D to consist of analytic in D functions f such that
∫

D

(1 − |z|2)p−2|f ′(z)|pdµλ(z) < ∞,

where dµλ(z) = (λ + 1)(1 − |z|2)λdµ(z), and dµ(z) = 1
π

dxdy.

In the paper [1] the unweighted Besov spaces on D (Bp(D) = B0
p(D)) were studied.

Further, these results were extended to the case of bounded symmetric domain ([2], [3]).
The characterization of functions from the Besov spaces are given in these papers in
various terms, including mean oscillation in the Bergman metric, Bergman projection,
etc. In the papers [2], [3] the weighted Bergman projection is used as well as some
analogues of fractional differentiation.

Here we study the weighted Besov spaces Bλ
p (D). Main results of the paper are The-

orems 2.1, 2.2. The ideas of proofs are taken from [1], though these results cannot
be immediately derived from the unweighted case. The choice of the particular weight
(1 − |z|2)λ is motivated by many links to applications and also immediate connection to
the hyperbolic Bergman distance in the unit disc.

2. Auxiliaries

We will use notations from [4]. Let αz(w) = z−w
1−zw

be the Moebius transform of the

unit disc to itself that maps w = 0 to w = z. The hyperbolic Bergman metric in D is
given by the formula

β(z, w) =
1

2
ln

1 + |αz(w)|

1 − |αz(w)|
=

1

2
ln

|1 − zw| + |z − w|

|1 − zw| − |z − w|
, z, w ∈ D.

For z ∈ D and r > 0 set D(z, r) = {w ∈ D : β(z, w) < r}, and |D(z, r)|λ =
∫

D(z,r)

dµλ(w).

Given a locally summable on D function f define its oscillation in the Bergman metric as
follows

ωr(f)(z) = sup{|f(z) − f(w)| : w ∈ D(z, r)}.

The mean oscillation of f in the Bergman metric is then defined to be

MOr,λ(f)(z) =
1

|D(z, r)|λ

∫

D(z,r)

|f(w) − f̂r,λ(z)|dµλ(w),

where

f̂r,λ(z) =
1

|D(z, r)|λ

∫

D(z,r)

f(w)dµλ(w).
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Introduce Lp(D, dµ) = {f : ‖f‖Lp(D,dµ) = (
∫

D

|f(z)|pdµ(z))1/p}, dν(z) = dµ(z)
(1−|z|2)2

,

dνλ(z) = (λ + 1)(1 − |z|2)λdν(z). By the definition, ‖f‖Bλ
p (D) = ‖(1 − |z|2)f ′‖Lp(D,dνλ).

The weighted Bergman space A2
λ(D) on the unit disc consists of analytic L2(D, dµλ) -

functions, λ > −1, and the corresponding Bergman projection P λ
D

: L2(D, dµλ) → A2
λ(D)

is defined as follows

P λ
D

f(z) =

∫

D

f(w)Kλ(z, w)dµλ(w) =

∫

D

f(w)

(1 − zw)2+λ
dµλ(w).

That is, for a function f ∈ A2
λ(D),

f(z) =

∫

D

f(w)

(1 − zw)2+λ
dµλ(w),

and by density this formula is valid for analytic summable with the measure dµλ in
D functions as well. The following theorem characterizes functions in Bλ

p (D) in terms
related to weighted Bergman projection.

Theorem 2.1. Suppose 1 < p < ∞, −1 < λ < ∞ and f is analytic in D, then the

following are equivalent:

1. f ∈ Bλ
p (D);

2. f ∈ P λ
D

Lp(D, dνλ);

3. (1 − |z|2)mf(m) ∈ Lp(D, dνλ), m ≥ 2;

4.
∫

D

∫

D

|f(z)−f(w)|p(1−|z|2)λ

|1−zw|4+2λ dµλ(z)dµλ(w) < ∞.

Now we give characterization of functions in Bλ
p (D) in terms of oscillation in the

hyperbolic Bergman metric.

Theorem 2.2. If r > 0, −1 < λ < ∞, 1 < p < ∞ and f is analytic in D, then the

following are equivalent:

1. f ∈ Bλ
p (D);

2. MOr,λ(f) ∈ Lp(D, dνλ);
3. ωr(f) ∈ Lp(D, dνλ);

4. |D(z, r)|−1
λ

∫

D(z,r)

|f(w) − f(z)|dµλ(w) ∈ Lp(D, dνλ).

The following theorem characterizes Taylor coefficients of functions in Bλ
p (D).

Theorem 2.3. Suppose f ∈ Bλ
p (D), −1 < λ < ∞, then for all 1 < p < ∞ there is a

constant Cp such that

|an| ≤ Cp(λ + 1)
− 1

p ‖f‖Bλ
p (D)n

λ
p
− 1

p , n = 1, 2, 3, . . . , (2.1)

where an– coefficients of Taylor series of function f.

In conclusion we list some facts on interpolation and duality of Besov spaces. Introduce

Iλf(z) = (1 − |z|2)2
∫

D

f(w)

(1 − zw)4+λ
dµλ(w).

Regarding the duality of Besov spaces, it is natural to consider the following invariant
pairing formula

〈f, g〉λ =

∫

D

f ′(z)g′(z)dµλ(z). (2.2)

Though we can get same result using the following formula for pairing

〈f, g〉#λ =

∫

D

Iλf(z)Iλg(z)dνλ(z). (2.3)
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Theorem 2.4. Let 1 < p < ∞, 1/p + 1/q = 1, −1 < λ < ∞. Under either (2.2) or

(2.3) pairing formula we have the following duality

(Bλ
p (D))∗ ∼= Bλ

q (D),

with equivalent norm.

Let as usual [Bλ
p0

(D), Bλ
p1

(D)]θ stand for interpolation space, obtained by the complex
interpolation.

Theorem 2.5. Let 1 < p0, p1 < ∞, 0 < θ < 1 and −1 < λ < ∞. Then

[Bλ
p0

(D), Bλ
p1

(D)]θ = Bλ
q (D),

1

q
=

1 − θ

p0
+

θ

p1
,

with equivalent norm.
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