R. Akgun and D. M. Israfilov

POLYNOMIAL APPROXIMATION IN WEIGHTED SMIRNOV-ORLICZ SPACE

INTRODUCTION AND MAIN RESULTS

Let $\Gamma \subset \mathbb{C}$ be a closed, bounded rectifiable Jordan curve in the complex plane \mathbb{C} . Γ separates the plane \mathbb{C} into two domains $G := \operatorname{int} \Gamma$, $G^- := \operatorname{ext} \Gamma$. Without loss of generality we may assume $0 \in G$. Let $\mathbb{D} := \{w \in \mathbb{C} : |w| < 1\}$ be the unit disc, $\mathbb{T} := \partial \mathbb{D}$, $\mathbb{D}^- := \operatorname{ext} \mathbb{T}$ and $w = \varphi(z)$ be the conformal mapping of G^- onto \mathbb{D}^- normalized by the conditions

$$\varphi(\infty) = \infty, \qquad \lim_{z \to \infty} \frac{\varphi(z)}{z} > 0.$$

and let $\psi := \varphi^{-1}$ be the inverse mapping of φ .

By $E^p(G)$, 0 , we denote the*Smirnov class*of analytic functions in G. $Let h be a continuous function on <math>[0, 2\pi]$. Its modulus of continuity is defined by

$$\omega(t,h) := \sup_{\substack{t_1, t_2 \in [0,2\pi], |t_1 - t_2| \le t}} |h(t_1) - h(t_2)|, \ t \ge 0.$$

The curve Γ is called *Dini-smooth* if it has a parametrization

$$\Gamma:\varphi_0\left(\tau\right),\qquad 0\leq\tau\leq 2\pi$$

such that $\varphi'_{0}(\tau)$ is Dini-continuous, i. e.

$$\int_{0}^{\pi} \frac{\omega\left(t,\varphi_{0}'\right)}{t} \, dt < \infty$$

and $\varphi'_0(\tau) \neq 0$ [6, p. 48].

A continuous and convex function $M: [0,\infty) \to [0,\infty)$ which satisfies the conditions

$$M(0) = 0; \quad M(x) > 0 \quad \text{for } x > 0;$$
$$\lim_{x \to 0} \frac{M(x)}{x} = 0; \quad \lim_{x \to \infty} \frac{M(x)}{x} = \infty;$$

is called an N-function.

The complementary N-function to M is defined by

$$N(y) := \max_{x \ge 0} (xy - M(x)), \qquad y \ge 0$$

We denote by $L_M(\Gamma)$ the linear space of Lebesgue measurable functions $f: \Gamma \to \mathbb{C}$ satisfying the condition

$$\int\limits_{\Gamma}M\left[\alpha\left|f\left(z\right)\right|\right]\left|dz\right|<\infty$$

for some $\alpha > 0$.

2000 Mathematics Subject Classification: 30E10, 46E30, 41A10.

Key words and phrases. Orlicz space, Faber polynomial, weighted Smirnov-Orlicz space, direct approximation theorem.

89

The space $L_{M}(\Gamma)$ becomes a Banach space with the Orlicz norm

$$\left\|f\right\|_{L_{M}(\Gamma)} := \sup_{\rho(g;N) \leq 1} \int_{\Gamma} \left|f\left(z\right)g\left(z\right)\right| \left|dz\right|$$

where $g \in L_N(\Gamma)$, N is the complementary N -function to M and

$$\rho\left(g;N\right):=\int\limits_{\Gamma}N\left[\left|g\left(z\right)\right|\right]\left|dz\right|$$

The Banach space $L_M(\Gamma)$ is called Orlicz space.

 ω is called a *weight* on Γ , if $\omega : \Gamma \to [0, \infty]$ measurable and $\omega^{-1}(\{0, \infty\})$ has measure zero with respect to Lebesgue measure.

The class of measurable functions f defined on Γ satisfying the condition $\omega f \in L_M(\Gamma)$ is called *weighted Orlicz space* and denoted by $L_M(\Gamma, \omega)$. Its norm is defined as

$$\|f\|_{L_M(\Gamma,\omega)} := \|f\omega\|_{L_M(\Gamma)}, \qquad f \in L_M(\Gamma)$$

For $z \in \Gamma$ and $\epsilon > 0$ let $\Gamma(z, \epsilon) := \{t \in \Gamma : |t - z| < \epsilon\}$. For fixed $p \in (1, \infty)$, we define $q \in (1, \infty)$ by $p^{-1} + q^{-1} = 1$. The set of all weights $\omega : \Gamma \to [0, \infty]$ satisfying

$$\sup_{t\in\Gamma}\sup_{\epsilon>0}\left(\frac{1}{\epsilon}\int\limits_{\Gamma(z,\epsilon)}\omega(\tau)^p|d\tau|\right)^{1/p}\left(\frac{1}{\epsilon}\int\limits_{\Gamma(z,\epsilon)}\omega(\tau)^{-q}|d\tau|\right)^{1/q}<\infty,$$

is denoted $A_p(\Gamma)$.

We denote by $L^p(\Gamma, \omega)$ the set of measurable functions $f: \Gamma \to \mathbb{C}$ such that $|f| \omega \in L^p(\Gamma), 1 .$ $Let <math>M^{-1}: [0, \infty) \to [0, \infty)$ be the inverse function of the N-function M. The upper

Let $M^{-1}: [0, \infty) \to [0, \infty)$ be the inverse function of the N-function M. The upper and lower *indices* α_M , β_M (see, for example [1, p. 350]) of the function $\varrho: (0, \infty) \to (0, \infty]$

$$\varrho(x) := \limsup_{y \to \infty} \frac{M^{-1}(y)}{M^{-1}(y/x)}, \quad x \in (0, \infty)$$

are called the *Boyd indices* of the Orlicz space $L_M(\Gamma)$. In this case [1, p. 13]

$$\alpha_M = \lim_{x \to 0} \frac{\log \varrho(x)}{\log x}, \quad \beta_M = \lim_{x \to \infty} \frac{\log \varrho(x)}{\log x}.$$

The Boyd indices α_M , β_M are called *nontrivial* if $0 < \alpha_M$ and $\beta_M < 1$.

Definition 1. For a weight ω on Γ we denote by $E_M(G, \omega)$ the subclass of analytic functions of $E^1(G)$ whose boundary value functions belong to weighted Orlicz space $L_M(\Gamma, \omega)$.

Let $g \in L_M(\mathbb{T}, \omega)$, and $\omega \in A_{\frac{1}{\alpha_M}}(\mathbb{T})$, $\omega \in A_{\frac{1}{\beta_M}}(\mathbb{T})$. We define as the shift

$$\sigma_{h}\left(g\right)\left(w\right) := \frac{1}{2h} \int\limits_{-h}^{h} g\left(we^{it}\right) dt, \quad 0 < h < \pi, \quad w \in \mathbb{T}.$$

Since [3] we have

$$\|\sigma_{h}(g)\|_{L_{M}(\mathbb{T},\omega)} \leq c_{3} \|g\|_{L_{M}(\mathbb{T},\omega)}$$

and therefore $\sigma_{h}\left(g\right)\in L_{M}\left(\mathbb{T},\omega\right)$ for any $g\in L_{M}\left(\mathbb{T},\omega\right)$.

Definition 2. Let $g \in L_M(\mathbb{T}, \omega)$, and $\omega \in A_{\frac{1}{\alpha_M}}(\mathbb{T})$, $\omega \in A_{\frac{1}{\beta_M}}(\mathbb{T})$. The function

$$\Omega^r_{M,\omega}\left(g,\delta\right) := \sup_{\substack{0 < h_i \leq \delta \\ i=1,2,\ldots,r}} \left\| \prod_{i=1}^r \left(I - \sigma_{h_i} \right) g \right\|_{L_M(\mathbb{T},\omega)}, \quad \delta > 0, \quad r = 1, 2, \cdots$$

is called r-th modulus of smoothness of g, where I is identity operator.

We take $\omega_0(w) := \omega(\psi(w))$ and $f_0(w) := f(\psi(w)), w \in \mathbb{T}$. Then we have $f_0 \in L_M(\mathbb{T}, \omega_0)$ for $f \in L_M(\Gamma, \omega)$ and we define the modulus of continuity of $f \in L_M(\Gamma, \omega)$ as

$$\Omega^{r}_{\Gamma,M,\omega}\left(f,\delta\right) := \Omega^{r}_{M,\omega_{0}}\left(f_{0},\delta\right), \qquad \delta > 0.$$

Let

$$E_n (f, \Gamma)_{M, \omega} := \inf_{P \in \mathcal{P}_n} \|f - P\|_{L_M(\Gamma, \omega)}$$

be the best approximation to $f \in L_M(\Gamma, \omega)$ in the class \mathcal{P}_n of algebraic polynomials of degree not greater than n.

Some direct theorems of approximation theory in Smirnov-Orlicz class were proved in [2] for domains bounded by Carleson curves and in [4] for domains bounded by Dinismooth curves. Inverse theorems in Smirnov-Orlicz class were obtained by V. M. Kokilashvili in [5] for domains with Dini-smooth boundary.

In this work we prove some direct and inverse theorems in weighted Smirnov-Orlicz class. In particular, we obtain a constructive characterization of generalized Lipschitz classes $\operatorname{Lip}^* \alpha(M, \omega), \alpha > 0$. The main results of this work are the following.

Theorem 1. Let G be a finite, simply connected domain with the Dini-smooth boundary Γ and let $L_M(\Gamma)$ be an Orlicz space with nontrivial Boyd indices α_M , β_M , and $\omega \in A_{\frac{1}{\alpha_M}}(\mathbb{T})$, $\omega \in A_{\frac{1}{\beta_M}}(\mathbb{T})$. If $S_n(f, .) := \sum_{k=0}^n a_k \Phi_k$ is the n-th partial sum of the Faber expansion of $f \in E_M(G, \omega)$, then for every natural number n

$$\| f - S_n(f,.) \|_{L_M(\Gamma,\omega)} \le c \Omega^r_{\Gamma,M,\omega}\left(f,\frac{1}{n+1}\right)$$

with some constant c independent of n.

Theorem 2. Let $\Gamma := \partial G$ be a Dini-smooth curve, $f \in E_M(G, \omega), \omega \in A_{\frac{1}{\alpha_M}}(\Gamma)$, and $\omega \in A_{\frac{1}{\beta_M}}(\Gamma)$. Then

$$\Omega^r_{\Gamma,M,\omega}\left(f,\frac{1}{n}\right) \leq \frac{c}{n^{2r}} \sum_{k=1}^n k^{2r-1} E_k \left(f,\Gamma\right)_{M,\omega}, \quad r=1,2,\cdots.$$

Corollary 1. Under the condition of the Theorem 2, if

$$E_n(f,\Gamma)_{M,\omega} = \mathcal{O}(n^{-\alpha}), \quad \alpha > 0, \quad n = 1, 2, 3, \cdots,$$

then

$$\Omega^{r}_{\Gamma,M,\omega}\left(f,\delta\right) = \begin{cases} \mathcal{O}\left(\delta^{\alpha}\right) & ; r > \alpha/2\\ \mathcal{O}\left(\delta^{\alpha}\log\left(1/\delta\right)\right) & ; r = \alpha/2\\ \mathcal{O}\left(\delta^{2r}\right) & ; r < \alpha/2 \end{cases}$$

for $f \in L_M(\Gamma, \omega)$.

Definition 3. For $\alpha > 0$ let $r := [\alpha/2] + 1$. The set of functions $f \in E_M(G, \omega)$ such that

$$\Omega^{r}_{\Gamma,M,\omega}\left(f,\delta\right)=\mathcal{O}\left(\delta^{\alpha}\right),\quad\delta>0$$

is called generalized Lipschitz class $\operatorname{Lip}^{*}\alpha\left(M,\omega\right).$

According to corollary 1 we have

9

Corollary 2. Under the condition of the Theorem 2, if

$$E_n(f) = \mathcal{O}(n^{-\alpha}), \quad \alpha > 0, \quad n = 1, 2, 3, \cdots,$$

then $f \in \operatorname{Lip}^* \alpha(M, \omega)$.

Theorem 1 and Corollary 2 imply

Theorem 3. Let $\alpha > 0$. Then under the condition of the Theorem 2 the following $conditions \ are \ equivalent:$

(a) $f \in \operatorname{Lip}^* \alpha(M, \omega)$ (b) $E_n(f) = \mathcal{O}(n^{-\alpha}), \quad n = 1, 2, 3, \dots$

References

- 1. A. Böttcher and Yu. I. Karlovich, Carleson curves, Muckenhoupt weights, and Toeplitz operators. Progress in Mathematics, 154. Birkhäuser Verlag, Basel, 1997.
- 2. A. Guven and D. M. Israfilov, Polynomial approximation in Smirnov–Orlicz classes. Comput. Methods Funct. Theory 2(2002), No. 2, 509–517.
- 3. D. M. Israfilov and A. Guven, Approximation by trigonometric polynomials in weighted Orlitz space. (To appear)
- 4. D. M. Israfilov, B. Oktay, and R. Akgun, Approximations in Smirnov–Orlitz classes. Glas. Mat. Ser. III 40 (60) (2005), 87–102.
- 5. V. Kokilashvili, On analytic functions of Smirnov-Orlicz classes. Studia Math. **31**(1968), 43–59.
- 6. Ch. Pommerenke, Boundary behaviour of conformal maps. Grundlehren der Mathematischen Wissenschaften, 299. Springer-Verlag, Berlin, 1992.

Authors' Address:

Balikesir University, Faculty of art and science, Department of mathematics Balikesir, 10100Turkey

92