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Notation. We call a frame in the space R
n(n ≥ 2) a set whose elements are n

mutually orthogonal straight lines passing through the origin. Denote a frame by θ(θ =
{θ1, . . . , θn}) and a set of all frames by θ(Rn).

We call a frame of a rectangular parallelepiped P in Rn the frame θ for which the
edges of P are parallel to the corresponding lines θj(j = 1, . . . , n).

For the frame θ, by I(θ) we denote a differentiation basis for which I(θ)(x)(x ∈ R
n)

consists of all rectangular parallelepipeds containing x and having the frame θ.
Differentiability of an integral with respect to I(θ) is sometimes called as a strong

differentiability along the frame θ, and in the case θ = {0x1, . . . , 0xn} as a strong differ-
entiability.

Let Gn = (0, 1)n. We denote by Φ(L)(Gn) a class of all measurable functions f :

Rn → R with the following properties: supp f ⊂ Gn and
∫

Gn
Φ
(

|f |
)

< ∞.

Definition. A set E ⊂ θ(Rn) is called an R-set if there exists a function f ∈ L(Gn),
f ≥ 0 such that for every θ ∈ E, DI(θ)(

∫

f, x) = ∞ a.e. on Gn, and for every θ /∈ E,
∫

f
is strongly differentiable along θ.

The notion of the R-set was introduced in [1] for n = 2 and in [2] for any n ≥ 2.

Denote by Sn a set of all rearrangements of the set {1, . . . , n}, i.e., a set of all bijections
σ : {1, . . . , n} → {1, . . . , n}.

The natural metric in θ(Rn) is denoted as follows: θ1, θ2 ∈ θ(Rn), θ1 = {θ11, . . . , θ1n},
θ2 = {θ21, . . . , θ2n}

dist(θ1, θ2) = min

{

n
∑

i=1

∠

(

θ1σ1(i), θ2σ2(i)

)

: σ1, σ2 ∈ Sn

}

, (1)

where ∠(·, ·) is the angle between the lines.
Below, θ(Rn) is assumed to be the metric space with metric (1).

Let 1 ≤ k ≤ n − 1. We call a set E ⊂ θ(Rn) an orbit of k-th order if there exist
mutually orthogonal lines l1, . . . , ln−k passing through the origin, such that E = {θ ∈
θ(Rn) : l1, . . . , ln−k ∈ θ}.

We call a set E⊂θ(Rn) an orbit if E is an orbit of k-th order for some k∈{1, . . . , n− 1}.

Let θ ∈ θ(Rn), 0 < ε < π/4, σ ∈ Sn. By Tσ,1(θ, ε) is denoted a set of all frames
θ′ ∈ θ(Rn) such that ∠(θσ(1), l) > ε for every l ∈ θ′; if n ≥ 3, then for i ∈ {2, . . . , n − 1}
we denote by Tσ,i(θ, ε) a set of all frames θ′ ∈ θ(Rn) for which

(1) θσ(1), . . . , θσ(i−1) ∈ θ′;

(2) ∠(θσ(i), l) > ε for every l ∈ θ′\{θσ(1), . . . , θσ(i−1)}.
Denote also

Tσ(θ, ε) =
n−1
∪

i=1
Tσ,i(θ, ε),
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and

T (θ, ε) = {Tσ(θ, ε) : σ ∈ Sn}.

Let n ≥ 3; 2 ≤ k ≤ n − 1; l1, . . . , ln−k be mutually orthogonal lines in Rn passing
through the origin; E = {θ ∈ θ(Rn) : l1, . . . , ln−k ∈ θ}; 0 < ε < π/4 and σ ∈ Sn−k .
By Tσ,1(E, ε) is denoted a set of all frames θ ∈ θ(Rn) for which ∠(θσ(1), l) > ε for every
l ∈ θ; if n − k ≥ 2, then for i ∈ {2, . . . , n − k} we denote by Tσ,i(E, ε) a set of all frames

θ ∈ θ(Rn) for which

(1) lσ(1), . . . , lσ(i−1) ∈ θ;

(2) ∠(lσ(i), l) > ε for every l ∈ θ\{lσ(1), . . . , lσ(i−1)}.
Denote

Tσ(E, ε) =
n−1
∪

i=1
Tσ,i(E, ε),

and

T (E, ε) = {Tσ(E, ε) : σ ∈ Sn−k}.

Let us note that

T ({θ}, ε) = T (θ, ε), Tσ({θ}, ε) = Tσ(θ, ε) and Tσ,i({θ}, ε) = Tσ,i(θ, ε).

Let k ∈ {1, . . . , n − 1}. Assume also that for every i ∈ N, l
(i)
1 , . . . , l

(i)
n−k

are mutually
orthogonal lines in R

n passing through the origin, and

Ei = {θ ∈ θ(Rn) : l
(i)
1 , . . . , l

(i)
n−k

∈ θ}.

Let l1, . . . , ln−k be mutually orthogonal lines in R
n passing through the origin and

E = {θ ∈ θ(Rn) : l
(i)
1 , . . . , l

(i)
n−k

∈ θ}.

We shall say that E is a limit orbit of the set
∞

∪
i=1

Ei if there are i1 < i2 < . . . and

σp ∈ Sn−k(p ∈ N) such that

lim
p→∞

∠

(

l
(ip)

σp(1)
, l1

)

= · · · = lim
p→∞

∠

(

l
(ip)

σp(n−k)
, ln−k

)

= 0.

For a set E ⊂ θ(Rn) and ε > 0 we denote V [E, ε] = {θ ∈ θ(Rn) : dist(θ, E) ≤ ε}.

For ν ∈ {2, . . . , n− 1} and θ ∈ θ(Rn) we denote by Iν(θ) a differentiation basis in R
n

for which Iν(θ)(x) (x ∈ R
n) consists of all rectangular parallelepipeds P in R

n with the
properties

(1) x ∈ P ;

(2) P has the frame θ;

(3) ν of mutually orthogonal edges of P have one and the same length.

Clear I1(θ) = I(θ).

Results. Theorems given below generalize the results of [2]–[4].

Theorem 1. Every R-set is a set of type Gδ . Moreover, for every f ∈ L(Gn) the set

R(f) =

{

θ ∈ θ(Rn) : DI(θ)

(

∫

f, x

)

= ∞ a.e. on Gn

}

is of type Gδ.

Theorem 2. At most countable union of orbits of (n− 1)-th order is an R-set if and

only if it is of type Gδ .

Theorem 3. At most countable union of orbits of k-th (1 ≤ k ≤ n − 2) order,

contained in some fixed orbit of (k + 1)-th order, is an R-set if and only if it is of type

Gδ.



124

Theorem 4. At most countable union of orbits of k-th (1 ≤ k ≤ n−1) order, having

at most a countable number of limit orbits, is an R-set.

Theorem 5. At most countable set, having at most countable number of limit frames,

is an R-set.

Theorem 6. For every countable union of orbits E and for every θ /∈ E there exists

a zero measure ∗ R-set Q such that E ⊂ Q and θ /∈ Q.

Theorem 7. There exists a zero measure R-set of the second category in every ball

from θ(Rn).

Theorem 8. There exists a zero measure perfect R-set.

Theorems 2–8 follow from Theorem 1 and the following statement.

Theorem 9. For every sequence {εm} with εm > 0 and lim
m→∞

εm = 0 there exists a

sequence {δm} with 0 < δm < εm (m ∈ N) such that for every sequence of orbits {Em}
and sets {Tm}, where T ∈ T (Em, εm) (m ∈ N), there exists an R-set E such that

lim
m→∞

V [Em, δm] ⊂ E ⊂ lim
m→∞

[

θ(Rn)\Tm

]

.

The following generalization of Theorem 9 is also true.

Theorem 10. For every function f ≥ 0, f ∈ L\L(ln+ L)n−ν(Gn) where 1 ≤ ν ≤
n − 1, and for a sequence {εm} with εm > 0 (m ∈ N) and lim

m→∞

εm = 0 there exists

a sequence {δm} with 0 < δm < εm (m ∈ N) such that for every sequence of sets

{V [Ei, δmi
]}, where Ei(i ∈ N) are orbits and m1 < m2 < . . . , and for every sequence of

sets {Ti}, where Ti ∈ T (Ei, εi) (i ∈ N), there exists an equimeasurable with f function

g : Rn → R, supp g ⊂ Gn, such that

(1) for every θ ∈ lim
i→∞

V [Ei, δmi
]

DI(ν)(θ)

(

∫

g, x

)

= ∞ a.e. on Gn;

(2) for every θ /∈ lim
i→∞

[θ(Rn)\Tmi
]

∫

g is strongly differentiable along θ;

(3) for every translation invariant density basis B in R
n the set

{

x ∈ Gn : DB

(

∫

g, x

)

> g(x)

}

is either of zero or full measure in Gn.

∗The question is on Haar’s measure in θ(Rn).
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The results analogous to those given above for the two-dimensional case have been
proved in [5].
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