G. ONIANI

On the Strong Differentiation of Multiple Integrals Along Different Frames, II

(Reported on 25.05.2000)

Notation. We call a frame in the space $\mathbb{R}^n (n \geq 2)$ a set whose elements are *n* mutually orthogonal straight lines passing through the origin. Denote a frame by $\theta(\theta = \{\theta_1, \ldots, \theta_n\})$ and a set of all frames by $\theta(\mathbb{R}^n)$.

We call a frame of a rectangular parallelepiped P in \mathbb{R}^n the frame θ for which the edges of P are parallel to the corresponding lines $\theta^j (j = 1, ..., n)$.

For the frame θ , by $I(\theta)$ we denote a differentiation basis for which $I(\theta)(x)(x \in \mathbb{R}^n)$ consists of all rectangular parallelepipeds containing x and having the frame θ .

Differentiability of an integral with respect to $I(\theta)$ is sometimes called as a strong differentiability along the frame θ , and in the case $\theta = \{0x_1, \ldots, 0x_n\}$ as a strong differentiability.

Let $G^n = (0,1)^n$. We denote by $\Phi(L)(G^n)$ a class of all measurable functions $f : \mathbb{R}^n \to \mathbb{R}$ with the following properties: supp $f \subset G^n$ and $\int_{G^n} \Phi(|f|) < \infty$.

Definition. A set $E \subset \theta(\mathbb{R}^n)$ is called an *R*-set if there exists a function $f \in L(G^n)$, $f \geq 0$ such that for every $\theta \in E$, $\overline{D}_{I(\theta)}(\int f, x) = \infty$ a.e. on G^n , and for every $\theta \notin E$, $\int f$ is strongly differentiable along θ .

The notion of the *R*-set was introduced in [1] for n = 2 and in [2] for any $n \ge 2$.

Denote by S_n a set of all rearrangements of the set $\{1, \ldots, n\}$, i.e., a set of all bijections $\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$.

The natural metric in $\theta(\mathbb{R}^n)$ is denoted as follows: $\theta_1, \theta_2 \in \theta(\mathbb{R}^n), \theta_1 = \{\theta_{11}, \dots, \theta_{1n}\}, \theta_2 = \{\theta_{21}, \dots, \theta_{2n}\}$

$$\operatorname{dist}(\theta_1, \theta_2) = \min\bigg\{\sum_{i=1}^n \angle \big(\theta_{1\sigma_1(i)}, \theta_{2\sigma_2(i)}\big) : \sigma_1, \sigma_2 \in S_n\bigg\},\tag{1}$$

where $\angle(\cdot, \cdot)$ is the angle between the lines.

Below, $\theta(\mathbb{R}^n)$ is assumed to be the metric space with metric (1).

Let $1 \leq k \leq n-1$. We call a set $E \subset \theta(\mathbb{R}^n)$ an orbit of k-th order if there exist mutually orthogonal lines l_1, \ldots, l_{n-k} passing through the origin, such that $E = \{\theta \in \theta(\mathbb{R}^n) : l_1, \ldots, l_{n-k} \in \theta\}$.

We call a set $E \subset \theta(\mathbb{R}^n)$ an orbit if E is an orbit of k-th order for some $k \in \{1, \ldots, n-1\}$. Let $\theta \in \theta(\mathbb{R}^n)$, $0 < \varepsilon < \pi/4$, $\sigma \in S_n$. By $T_{\sigma,1}(\theta, \varepsilon)$ is denoted a set of all frames $\theta' \in \theta(\mathbb{R}^n)$ such that $\angle (\theta_{\sigma(1)}, l) > \varepsilon$ for every $l \in \theta'$; if $n \ge 3$, then for $i \in \{2, \ldots, n-1\}$ we denote by $T_{\sigma,i}(\theta, \varepsilon)$ a set of all frames $\theta' \in \theta(\mathbb{R}^n)$ for which

(1) $\theta_{\sigma(1)}, \ldots, \theta_{\sigma(i-1)} \in \theta';$ (2) $\angle (\theta_{\sigma(i)}, l) > \varepsilon$ for every $l \in \theta' \setminus \{\theta_{\sigma(1)}, \ldots, \theta_{\sigma(i-1)}\}.$ Denote also

$$T_{\sigma}(\theta,\varepsilon) = \bigcup_{i=1}^{n-1} T_{\sigma,i}(\theta,\varepsilon),$$

²⁰⁰⁰ Mathematics Subject Classification: 28A15.

Key words and phrases. Strong differentiation, integral, basis.

123

$$T(\theta,\varepsilon) = \{T_{\sigma}(\theta,\varepsilon) : \sigma \in S_n\}.$$

Let $n \geq 3$; $2 \leq k \leq n-1$; l_1, \ldots, l_{n-k} be mutually orthogonal lines in \mathbb{R}^n passing through the origin; $E = \{\theta \in \theta(\mathbb{R}^n) : l_1, \ldots, l_{n-k} \in \theta\}$; $0 < \varepsilon < \pi/4$ and $\sigma \in S_{n-k}$. By $T_{\sigma,1}(E,\varepsilon)$ is denoted a set of all frames $\theta \in \theta(\mathbb{R}^n)$ for which $\angle(\theta_{\sigma(1)}, l) > \varepsilon$ for every $l \in \theta$; if $n-k \geq 2$, then for $i \in \{2, \ldots, n-k\}$ we denote by $T_{\sigma,i}(E,\varepsilon)$ a set of all frames $\theta \in \theta(\mathbb{R}^n)$ for which

(1) $l_{\sigma(1)}, \dots, l_{\sigma(i-1)} \in \theta;$ (2) $\angle (l_{\sigma(i)}, l) > \varepsilon$ for every $l \in \theta \setminus \{l_{\sigma(1)}, \dots, l_{\sigma(i-1)}\}$. Denote

$$T_{\sigma}(E,\varepsilon) = \bigcup_{i=1}^{n-1} T_{\sigma,i}(E,\varepsilon),$$

and

$$T(E,\varepsilon) = \{T_{\sigma}(E,\varepsilon) : \sigma \in S_{n-k}\}.$$

Let us note that

$$T(\{\theta\},\varepsilon) = T(\theta,\varepsilon), \ T_{\sigma}(\{\theta\},\varepsilon) = T_{\sigma}(\theta,\varepsilon) \text{ and } T_{\sigma,i}(\{\theta\},\varepsilon) = T_{\sigma,i}(\theta,\varepsilon)$$

Let $k \in \{1, \ldots, n-1\}$. Assume also that for every $i \in \mathbb{N}$, $l_1^{(i)}, \ldots, l_{n-k}^{(i)}$ are mutually orthogonal lines in \mathbb{R}^n passing through the origin, and

$$E_i = \{\theta \in \theta(\mathbb{R}^n) : l_1^{(i)}, \dots, l_{n-k}^{(i)} \in \theta\}.$$

Let l_1, \ldots, l_{n-k} be mutually orthogonal lines in \mathbb{R}^n passing through the origin and

$$E = \{\theta \in \theta(\mathbb{R}^n) : l_1^{(i)}, \dots, l_{n-k}^{(i)} \in \theta\}$$

We shall say that E is a limit orbit of the set $\bigcup_{i=1}^{\infty} E_i$ if there are $i_1 < i_2 < \ldots$ and $\sigma_p \in S_{n-k} (p \in \mathbb{N})$ such that

$$\lim_{p \to \infty} \angle \left(l_{\sigma_p(1)}^{(i_p)}, l_1 \right) = \dots = \lim_{p \to \infty} \angle \left(l_{\sigma_p(n-k)}^{(i_p)}, l_{n-k} \right) = 0.$$

For a set $E \subset \theta(\mathbb{R}^n)$ and $\varepsilon > 0$ we denote $V[E, \varepsilon] = \{\theta \in \theta(\mathbb{R}^n) : \operatorname{dist}(\theta, E) \le \varepsilon\}.$

For $\nu \in \{2, \ldots, n-1\}$ and $\theta \in \theta(\mathbb{R}^n)$ we denote by $I_{\nu}(\theta)$ a differentiation basis in \mathbb{R}^n for which $I_{\nu}(\theta)(x)$ $(x \in \mathbb{R}^n)$ consists of all rectangular parallelepipeds P in \mathbb{R}^n with the properties

(1) $x \in P$;

(2) P has the frame θ ;

(3) ν of mutually orthogonal edges of P have one and the same length. Clear $I_1(\theta) = I(\theta)$.

Results. Theorems given below generalize the results of [2]–[4].

Theorem 1. Every R-set is a set of type G_{δ} . Moreover, for every $f \in L(G^n)$ the set

$$R(f) = \left\{ \theta \in \theta(\mathbb{R}^n) : \overline{D}_{I(\theta)} \left(\int f, x \right) = \infty \ a.e. \ on \ G^n \right\}$$

is of type G_{δ} .

Theorem 2. At most countable union of orbits of (n-1)-th order is an R-set if and only if it is of type G_{δ} .

Theorem 3. At most countable union of orbits of k-th $(1 \le k \le n-2)$ order, contained in some fixed orbit of (k+1)-th order, is an R-set if and only if it is of type G_{δ} .

Theorem 4. At most countable union of orbits of k-th $(1 \le k \le n-1)$ order, having at most a countable number of limit orbits, is an R-set.

Theorem 5. At most countable set, having at most countable number of limit frames, is an *R*-set.

Theorem 6. For every countable union of orbits E and for every $\theta \notin E$ there exists a zero measure * R-set Q such that $E \subset Q$ and $\theta \notin Q$.

Theorem 7. There exists a zero measure R-set of the second category in every ball from $\theta(\mathbb{R}^n)$.

Theorem 8. There exists a zero measure perfect R-set.

Theorems 2-8 follow from Theorem 1 and the following statement.

Theorem 9. For every sequence $\{\varepsilon_m\}$ with $\varepsilon_m > 0$ and $\lim_{m \to \infty} \varepsilon_m = 0$ there exists a sequence $\{\delta_m\}$ with $0 < \delta_m < \varepsilon_m$ $(m \in \mathbb{N})$ such that for every sequence of orbits $\{E_m\}$ and sets $\{T_m\}$, where $T \in T(E_m, \varepsilon_m)$ $(m \in \mathbb{N})$, there exists an R-set E such that

$$\overline{\lim_{m \to \infty}} V[E_m, \delta_m] \subset E \subset \overline{\lim_{m \to \infty}} \Big[\theta(\mathbb{R}^n) \backslash T_m \Big].$$

The following generalization of Theorem 9 is also true.

Theorem 10. For every function $f \geq 0$, $f \in L \setminus L(\ln^+ L)^{n-\nu}(G^n)$ where $1 \leq \nu \leq n-1$, and for a sequence $\{\varepsilon_m\}$ with $\varepsilon_m > 0$ $(m \in \mathbb{N})$ and $\lim_{m \to \infty} \varepsilon_m = 0$ there exists a sequence $\{\delta_m\}$ with $0 < \delta_m < \varepsilon_m$ $(m \in \mathbb{N})$ such that for every sequence of sets $\{V[E_i, \delta_{m_i}]\}$, where $E_i(i \in \mathbb{N})$ are orbits and $m_1 < m_2 < \ldots$, and for every sequence of sets $\{T_i\}$, where $T_i \in T(E_i, \varepsilon_i)$ $(i \in \mathbb{N})$, there exists an equimeasurable with f function $g : \mathbb{R}^n \to \mathbb{R}$, supp $g \subset G^n$, such that

(1) for every $\theta \in \overline{\lim_{i \to \infty} V[E_i, \delta_{m_i}]}$

$$\overline{D}_{I(\nu)(\theta)}\left(\int g, x\right) = \infty \ a.e. \ on \ G^n;$$

(2) for every $\theta \notin \overline{\lim_{i \to \infty}} [\theta(\mathbb{R}^n) \setminus T_{m_i}]$

$$\int g \quad is \ strongly \ differentiable \ along \quad \theta;$$

(3) for every translation invariant density basis B in \mathbb{R}^n the set

$$\left\{ x \in G^n : \overline{D}_B\left(\int g, x\right) > g(x) \right\}$$

is either of zero or full measure in G^n .

^{*}The question is on Haar's measure in $\theta(\mathbb{R}^n)$.

The results analogous to those given above for the two-dimensional case have been proved in [5].

References

1. G. Oniani, On the differentiability of integrals with respect to bases $B_2(\theta)$. East. J. Approx. **3**(1997), No. 3, 275–301.

2. G. Oniani, On R-sets. Bull Georgian Acad. Sci. 157(1998), No. 2, 181–182.

3. G. Lepsveridze, A note on the strong differentiability of integrals along different directions in \mathbb{R}^n . Proc. A. Razmadze Math. Inst. **121**(1999), 155–156.

4. G. Oniani, On the strong differentiation of multiple integrals along different frames. Bull. Georgian Acad. Sci. **161**(2000), No. 3, 380–382

5. G. Oniani, Differentiation of lebesgue integrals. *Tbilisi State University Press*, (Russian) 1999.

Author's address:

A. Tsereteli Kutaisi State University 55, Tamar Mephe St., Kutaisi 384000 Georgia