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Abstract. In the �rst part of the work, we consider problems of the

�eld theory approach to the quantum Hall e�ect (QHE) and the anyon su-

perconductivity. In the remaining part, we study the convexity property

of the e�ective potential and some features of the high temperature be-

haviour of �eld theory models with two scalar �elds. Describing the QHE,

we adapt the Chern{Simons gauge theory in the holomorphic gauge which

seems to incorporate Laughlin's picture of the incompressible quantum uid

and Jain's composite fermion approach. Further, the 2+1 dimensional rel-

ativistic �eld theory is used to describe the Meissner e�ect in the planar

superconducting matter. Using Bogolubov's concept of quasiaverages and

analyzing the boundary conditions in the path integral representation of the

Green functions generating funcitonal, a self-consistent calculation of the ef-

fective potential is proposed. Studying the e�ective potentials for the two

Higgs models, it is demonstrated that the symmetry can be spontaneously

broken in some high temperature interval, being exact at zero and very high

temperatures.
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reziume. naSromis pirvel naCilSi ganxilulia Holis kvanturi ePe-

qtisa (Hke) da anionuri zegamtarobis sakiTxebisadmi velis Teoriiseuli

midgoma. danarhen naCilSi SesCavlilia ePeqturi potencialis amozne-

qilobis Tviseba da ori skalaruli velis Semcveli modelebis maGal-

temperaturuli KoPaqcevis sakiTxebi. Hke-is aGCerisas gamoKenebulia

hern-saimonsis Kaliburi Teoria HolomorPul KalibSi, rac, rogorc

hans, moicavs ukumSvadi siTxis laPliniseul suraTsa da Jeinis Sedge-

nili Permionebis midgomas. Semdgom 2 + 1 ganzomilebiani relativis-

turi velis Teoria gamoKenebulia brtKel zegamtar nivTierebaSi meis-

neris ePeqtis aGsaCerad. bogoliubovis kvazisaSualoebis koncePciis

gamoKenebiTa da grinis Punqciebis maCarmoebeli Punqcionalis kontinu-

aluri integraliT sasazGvro pirobebis analizis daxmarebiT dadgenilia

ePeqturi potencialis gamoTvlis TviTSeTanxmebuli varianti. SesCav-

lilia ePeqturi potenciali Higsis ori velis Semcvel modelebSi da

nahvenebia, rom SesaZlebelia simetria darGveul iqnas maGali tempera-

turebis garkveul intervalSi ise, rom igi darhes zusti nulovani da

zemaGali temperaturebisaTvis.
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Preface

The aim of the present monograph is to present a systematic review of

some problems concerning the quantum �eld description of systems with

non-trivial (ordered) ground states.

It is widely appreciated that in studying di�erent dynamical systems, it

is important to know not only individual properties of the constituents and

their interactions, but also collective phenomena which provide an overall

ordering. The mutual balance between order and disorder, transitions from

one kind of ordering to another de�ne �nally the most profound properties

of matter. This is a deep and quite general principle, applicable not only in

physics or chemistry, but also in biology and even in social science.

The notion of order is intimately related to the symmetry properties: a

higher order corresponds to a lower symmetry and vice versa. This is clearly

seen for interacting high energy fundamental particles and condensed matter

systems. In both cases, the knowledge of the ground state (vacuum) and

its elementary excitations solves most important physical problems. This

unity of basic concepts formally can be expressed using the language of the

quantum �eld theory. As impressive examples of this assertion, one can

consider the modern theory of spontaneously broken gauge symmetries and

the theory of superconducting (or superuid) matter.

The discovery of the quantum Hall e�ect (QHE) provoked a great the-

oretical interest to the studies of strongly correlated ground states with a

new type of ordering. A �eld theory model pretending to describe this

phenomenon must be able to reproduce the picture of an incompressible

quantum uid, the ground state wave function and the spectrum of elemen-

tary excitations, and give room to hierarchical constructions.

As a most reliable candidate for such a theory, one can consider Chern{

Simons (topological) gauge theory in three space-time dimensions, which

is in a close connection with the conformal �eld theory, and at the same

time can play a signi�cant role in the studies of planar condensed matter

systems.

The Chern{Simons theory was applied to another condensed matter phe-

nomenon: the anyon superconductivity. Here the role of statistical gauge

�eld is to organize a matter in such a way that there is a gap in the charged

particle spectrum and a massless pole in the electromagnetic response func-

tion, leading to the Meissner e�ect.

Chapters 1{4 of the present review account for applications of the Chern{

Simons �eld theory to studies of planar systems, the quantum Hall e�ect

and the anyon superconductivity.

In Chapter 1, after a general introduction, we calculate the correlation

functions and the e�ective action for a system of planar fermions interacting



4

with the Maxwell and the Chern{Simons gauge �elds. In Chapter 2, we

consider the incompressible Hall uid from the point of view of algebraic

classi�cation. The accent is made on a similarity between integral and

fractional QHEs. This similarity can be expressed via non-unitary singular

transformation equivalent to the introduction of a complex statistical gauge

potential. This approach is helpful in order to reconstruct ground state

wave functions and incorporates the picture of composite electrons carrying

magnetic uxes.

In Chapter 3, we develop a scheme of canonical quantization of the

Chern{Simons theory with non-compact (Abelian and non-Abelian) gauge

groups. The proposed framework of holomorphic gauge quantization clari-

�es the results of previous Chapter 2, and can be used both to determine

ground state wave functions and to develop a dynamical description.

In Chapter 4, we study a planar condensed matter system exhibiting the

Meissner e�ect: an anyon superconductor. Considering the problem, �rst

we apply the formalism of thermo �eld dynamics and then analyze high

temperature properties of a relativistic version of the model.

Field-theoretic description of systems with a non-invariant vacuum can

be devided into two parts. The �rst part concerns axiomatic problems, such

as a Hilbert space realization of commutation relations. The second part

deals with the practical quantization, calculations of Green functions, the

determination of the order parameter etc.

In Chapter 5, we try to give satisfactory answer to the apparent puzzle

which was noticed in computations of the functional generating Green func-

tions: general consideration has predicted a convex form of the e�ective

potential, while existing schemes of calculation were giving a non-convex

one. Here we discuss a self-consistent procedure based on Bogolubov's con-

cept of quasiaverages and the analysis of the boundary conditions in the

path integral representation of the functional generating Green functions.

The mechanism of the spontaneous symmetry breaking depends in the

crucial way on the scalar sector of the theory. In simplest models, the

symmetry broken at zero temperature is restored after heating up the system

in the same way as ferromagnetics lost spontaneous magnetization above the

Curie temperature. In the �nal Chapter 6, we consider a di�erent type of

symmetry temperature bahaviour, when the symmetry, being exact at low

and high temperatures, is spontaneously broken for some �nite temperature

interval.

Our scienti�c interests were formed under the fruitful inuence of A. Tav-

khelidze. I should like to take this opportunity to thank him for valuable

discussion and a permanent support.

Much of this monograph was written at LAPP(Annecy). It is my pleasure

to thank P.Sorba for his kind hospitality in France, the encouragement and

a friendly atmosphere.

The results reported in Chapter 4 and partially in Chapter 1 have been

obtained in collaboration with G.Tsitsishvili. I express him my gratitude.
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Tbilisi State University, Laboratory of Particle Physics (Annecy), Institute

of Nuclear Research (Moscow), and others for their interest and helpful

discussions.
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CHAPTER 1

QUANTUM PARTICLES IN 2+1 DIMENSIONS

1. Introduction

The Pauli exclusion principle and the underlying spin-statistics theorem

[117] reect one of the most profound properties of matter:

� Particles (or condensed matter quasiparticles) with integer spin sat-

isfy the Bose{Einstein statistics, and half-integer spin excitations

satisfy Fermi{Dirac statistics.

� The wave functions of N -identical particles are described by one-

dimensional representations of the permutation group S

N

: symmet-

ric wave functions correspond to bosons and antisymmetric ones to

fermions.

Higher dimensional representations are known as corresponding to the

parastatistics and have been exploited in a quark model by Greenberg [66].

As it is known from the seminal papers by Bogolubov, Struminsky and

Tavkhelidze [17] and Han and Nambu [75], the use of these representations

is equivalent to the introduction of a new quantum number { color, which

is the starting point of a modern theory of hadron interactions { quantum

chromodynamics.

The situation with regard to spin and statistics is di�erent when particles

move in the plane (2+1 dimensional space-time). In that case, the rotation

group associated with R

2

is Abelian SO(2), and the spin is not quantized.

An other observation is that now the statistics is determined by irreducible

representations of the braid group B

N

(and not of the permutation group

S

N

), which is the fundamental group of con�guration space of a system of

identical particles moving in the two-dimensional physical space [104] (for

details see, e.g., [9], [55], [105]).

The braid group B

N

is an in�nite nonabelian group having one-dimen-

sional and higher dimensional representations. One-dimensional unitary

representations are given by

�(#) = e

i#

(0 � # � 2�):

The quantity # is a real parameter which is identi�ed with a statistics

provided the Hamiltonian does not contain long-range interaction between

particles: under the interchange of two particles, the wave function changes

according to

 (r

1

; r

2

)!  

0

(r

1

; r

2

) = e

i#

 (r

1

; r

2

):

Hence quantum excitations living in two spatial dimensions can obey the

fractional (#) statistics. Cases # = 0; � correspond to the Bose and Fermi

particles. Elementary excitations with interpolating statistics are called

anyons [137], [6].
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The spin of the # statistics anyon is S =

#

2�

. One of the essential features

of anyons is the violation of the discrete symmetries of parity and time

reversal (unless # = 0 or # = �). Remind that in d=2 dimensions. the

parity reverses the sign of only one of the coordinates.

A simple illustration of anyonic excitations are point particles having

both electric charge e and magnetic ux � under the condition that there

exists only charge - ux interaction, but not charge - charge or ux - ux

interactions. If one slowly moves one particle around another by a full

positively oriented loop, the wave function acquires a Dirac [28] - Bohm-

Aharonov phase factor [2], from which one gets the statistical parameter

# =

�

�

�

0

�

�, where �

0

= hc=e is the elementary magnetic ux quantum.

This construction can be realized if one considers a system of particles

(fermions or bosons) moving in the e�ective non-local vector potential [6]

a

i

I

(r

1

; : : : ; r

N

) = �

~c

e

#

�

@

@x

i

I

X

I 6=J

'

IJ

; '

IJ

(r

I

� r

J

) = arctan

y

I

� y

J

x

I

� x

J

;

where '

IJ

is the winding angle of the particle J with respect to the par-

ticle I (note that a = 0 when N = 1). The magnetic �eld associated to

a

I

(r

1

; : : : ; r

N

) is equal to

B

I

=

�

0

#

�

X

J 6=I

�

(2)

(r� r

0

):

It means that each particle sees the (N � 1) others as vortices carrying a

magnetic ux � =

#

�

�

0

:

Since statistics plays the key role in the organization of matter, it is

natural that in two-dimensional systems one must expect new phenomena

caused by anyonic excitations.

Quasiparticles with fractional statistics can exist in condensed matter

systems, such as the materials with a layered structure or interfaces where

the electrons are largely con�ned to move in the planes.

The �rst possibility is realized in the copper-oxid (Cu�O) crystals which

are known to be the high temperature superconductors. The second one is

related to planar electron systems moving in a strong perpendicular mag-

netic �eld and exhibiting the quantum Hall e�ect.

Below we will make some short comments on the properties of multi-

anyon systems and their possible relevance to two-dimensional condensed

matter systems (see [139]).

� Anyons occupy the so called Landau levels with �nite energy spac-

ing between levels (gap); each level is highly degenerate. The exact

�lling of this bands is especially favorable energetically and pro-

duces a particularly stable or rigid state.

� Anyons can be considered as fermions interacting with statistical

gauge �eld. Taking into account the �eld uctuations, it can be
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shown that there is a massless pole in some two-point functions

corresponding to the charged Golstone mode. This circumstance

together with the gap in the fermion spectrum can generate a new

mechanism of superconductivity [53].

� The third peculiarity is that the N -particle wave function is a mul-

tivalued quantity:

~

	(r

1

; : : : ; r

N

) =

Y

I<J

(z

I

� z

J

)

#=�

� �(r

1

; : : : ; r

N

);

where �(r

1

; : : : ; r

N

) is a single-valued function. (z

I

= x

I

+ iy

I

,

�z

I

= x

I

� iy

I

are the complex coordinates of the I

th

particle.)

This type of wave functions is needed to describe the quantum Hall

states { an incompressible two dimensional quantum uid with the

fractionally charged excitations obeying the fractional statistics (see

[99]).

The notions of anyons and of fractional statistics can be formulated in

the framework of the local quantum �eld theory in terms of a single-valued

matter �eld interacting with the Chern{Simons (CS) gauge �eld. Remind

that the Chern{Simons action is a topological (the metric independent)

invariant in 2+1 dimensional space-time:

S

CS

=

Z

d

3

x

1

2

�"

���

a

�

@

�

a

�

:

The constant � determines the #-statistics of particles interacting with the

Chern{Simons �eld.

Our objective in this chapter is to develop the �eld-theoretic formalism

accommodate for studies of electrodynamical and thermal properties of pla-

nar fermions coupled to a statistical gauge �eld. In the subsequent parts,

we will use this formalism in order to describe some features of the Hall

uid and two-dimensional superconductors.

In Section 2, we shortly review the transition from a quantum-mechanical

to a �eld-theoretic description of anyons and introduce the statistical gauge

�eld. Further, in Section 3, we consider a system of interacting Chern{

Simons, Maxwell and matter �elds. In Section 4, we de�ne the generating

functional. In Sections 5 and 6, we calculate the current-current correlation

functions for planar fermions in a magnetic �eld. Then, in Section 7, we

write down the relevant physical quantities, like the polarization operator

and the response function.

2. Chern{Simons Description of the Free Anyons

The Hamiltonian describing the collection ofN anyons in 2+1 dimensions

is given by

H =

N

X

I=1

1

2m

�

p

I

�

e

c~

a

I

�

2

:
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Here

a

i

I

(r

1

; : : : ; r

N

) = �

c~

e

#

�

�

im

X

I 6=J

r

m

I

� r

m

J

jr

I

� r

J

j

2

i = 1; 2

is a nonlocal gauge potential generating the Bohm{Aharonov phase inter-

action with a statistical parameter #. Anyons carry the charge e and the

ux (#=�)�

0

.

It is easy to write down the second-quantized form of this many-particle

Hamiltonian. For this purpose, introduce a Shr�odinger �eld  (r) and a

�ctitious gauge �eld potential a(r) satisfying the conditions (in the units

c = ~ = 1)

@

i

a

i

(r) = 0;

e

2#

�

ij

@

i

a

j

(r) =  

y

(r) (r): (1.1)

The solution to (1.1) is the �eld

a

i

(r) = �

#

e�

Z

dr

0

�

im

(r

m

� r

0

m

)

jr� r

0

j

2

 

y

(r

0

) (r

0

):

Now the Hamiltonian reads as

H = �

1

2m

Z

dr 

y

(r)D

2

 (r)

D

k

= @

k

+ iea

k

(r):

This Hamiltonian naturally arises if one considers the Lagrangian density

L = i 

y

(r; t) (@

0

+ iea

0

) (r; t)�

1

2m

jD

k

 j

2

+

1

2

�"

���

a

�

@

�

a

�

: (1.2)

Our metric for three-dimensional space-time is �

��

= diag(1;�1;�1) and

Levy-Civita tensor "

012

= +1. The Chern{Simons constant and the statis-

tical parameter are related by the equation � = �

e

2

2#

.

Although L

CS

is not invariant under the gauge transformation

a

�

! a

�

+ @

�

�;  ! e

�ie�

 ; (1.3)

it changes by the divergence L

CS

! L

CS

�

1

2

�"

���

@

�

(a

�

@

�

�) and the equa-

tions of motion are gauge invariant.

The equations of motion for the Chern{Simons �eld

�"

0��

@

�

a

�

= eJ

0

= e 

y

 ;

�"

k��

@

�

a

�

= eJ

k

= e

i

2m

�

 

y

D

k

 � (D

k

 )

y

 

�

can be easily solved in the Coulomb gauge

a

�

= �

e

�

"

�n�

@

�1

n

J

�

:
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Substituting this solutions into (1.2), we arrive to the Lagrangian

L = �

1

2m

jD

k

 j

2

+ i 

y

_

 �

e

2

2�

J

m

�

mn

@

�1

n

J

0

�

e

2

2�

J

0

�

mn

@

�1

n

J

m

; (1.4)

where the gauge �elds are totally excluded in favor of the matter �eld.

For further purposes, it is convenient to introduce the average density �

and de�ne the currents

^

j

0

=  

y

 

0

� �;

j

k

=

i

2m

[ 

y

r

k

 � (r )

y

 ];

where the \shortened" covariant derivative operators refer to the back-

ground Chern{Simons �eld

r

k

= @

k

� i

e

2

�

�

kn

@

�1

n

�:

Substituting all this in (1.4), after some rearrangement we get

L = i 

y

_

 �

1

2m

jr

k

 j

2

�

e

2

2�

h

j

k

�

kn

@

�1

n

^

j

0

+

^

j

0

�

nk

@

�1

n

j

k

i

�

�

e

4

2m�

2

h

�@

�1

n

^

j

0

@

�1

n

^

j

0

+

^

j

0

@

�1

n

^

j

0

@

�1

n

^

j

0

i

: (1.5)

This, generally speaking non-local, Lagrangian contains in addition to usual

two-particle interactions also a three-particle one, given by the last term in

(1.5).

Introduction of the average density � is equivalent to the separation of

the Chern{Simons gauge �eld into background and uctuating parts:

a

k

= �a

k

+ a

0

k

= �

e

�

�

km

@

�1

m

��

e

�

�

km

@

�1

m

^

j

0

;

and it is a starting point for the mean �eld approximation.

Consider now the corresponding generating functional

Z/

Z

D D 

y

Da

0

�[@

i

a

i

]�[e( 

y

 ��)��"

mn

@

m

a

0

n

]e

i

R

dx[i 

y

_

 �

1

2m

jD

k

 j

2

]

which can be written in a more conventional form

Z /

Z

D D 

y

Da

0

Da

0

�(@

i

a

0

i

)e

i

R

dxL

;

where the Lagrangian L is given by

L = i 

y

_

 �

1

2m

jr

k

 j

2

+ ej

k

a

0

k

�

e

2

2m

( 

y

 � �)a

0

k

a

0

k

� e 

y

 a

0

�

e

2

�

2m

a

0

k

a

0

k

+

�

2

"

���

a

0

�

@

�

a

0

�

: (1.6)
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3. Interacting System

Consider a matter interacting with an external electromagnetic �eld A

ext

�

and dynamical Maxwell and Chern-Simons gauge �elds. The corresponding

Lagrangian is given by

L = L

Gauge

+ L

Matter

:

The gauge Lagrangian contains kinetic terms for the Maxwell and Chern{

Simons �elds and takes into account the interaction with a background

charge density n

e

:

L

Gauge

= �

1

4

F

��

F

��

+ en

e

(A

0

+A

ext

0

) +

1

2

�"

���

a

�

@

�

a

�

:

The matter Lagrangian

L

Matter

= i 

y

D

0

 �

1

2m

jD

k

 j

2

in the case of non-relativistic spinless particles, and

L

Matter

=

�

 (i

�

D

�

� �m) 

for the Dirac fermions (� = �1).

The covariant derivatives are de�ned by

D

�

= @

�

+ ie(A

ext

�

+A

�

+ a

�

):

The equations of motion derived from this Lagrangian are given by

@

�

F

��

= eJ

�

� en

e

�

��

;

�"

���

@

�

a

�

= eJ

�

;

i

@

@t

 = �

1

2m

D

k

D

k

 + e(A

ext

0

+A

0

+ a

0

) :

Here J

�

are gauge invariant conserved currents,

eJ

�

(x) = �

�S

Matter

�A

�

(x)

;

J

0

=  

y

 ;

J

k

=

i

2m

[ 

y

@

k

 � @

k

 

y

 ]�

e

m

(A

ext

k

+A

k

+ a

k

) 

y

 

Decompose the Chern{Simons �eld into time-independent background

and uctuating part a

�

= �a

�

+ a

0

�

such that, �a

0

= 0, �

ik

@

i

�a

k

=

e

�

n

e

. The

external electromagnetic �eld is also the sum of a �xed background and

a small perturbation A

ext

�

(x) =

�

A

�

(x) + A

�

(x). Introduce the shortened
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covariant derivatives, referred to the background gauge �elds D

�

= @

�

+

ie(

�

A

�

+ �a

�

). Using the equations

"

���

�a

�

(x)@

�

�a

�

(x) = 0; �a

0

= 0;

"

���

a

0

�

(x)@

�

�a

�

(x) =

en

e

�

a

0

0

(x)

and

"

���

�a

�

(x)@

�

a

0

�

(x) =

en

e

�

a

0

0

(x) + @

�

["

���

�a

�

(x)a

0

�

(x)];

the Lagrangian can be written as

L = �

1

4

F

��

F

��

+ en

e

(A

ext

0

+A

0

+ a

0

0

) +

1

2

�"

���

a

0

�

@

�

a

0

�

+

+ i 

y

D

0

 �

1

2m

jD

k

 j

2

� e 

y

 (A

ext

0

+A

0

+ a

0

0

) +

+

ie

2m

�

 

y

D

k

 � h:c

�

(A

k

+A

k

+ a

0

k

)�

�

e

2

2m

(A

k

+A

k

+ a

0

k

)

2

 

y

 : (1.7)

4. Generating Functionals

Next introduce the Minkowsky space Green functions generating func-

tional

Z[j] � e

iW [j]

= hT exp

�

i

Z

dxj(x)�(x)

�

i =

= N

Z

D� exp

�

i

Z

dx (L+ j(x)�(x))

�

=

= h0jT exp

�

i

Z

dx (L

int

+ j(x)�(x))

�

j0i: (1.8)

In (1.8), under �(x) we mean a dynamical �eld (gauge or matter), < � � � >

means the average with respect to the Heisenberg representation vacuum

and < 0j � � � j0 > is the corresponding average in the interaction picture.

The e�ective action is de�ned by the Legendre transformation

�[�] =W [j]�

Z

dxj(x)�(x);

where

�W [j]

�j(x)

= �(x)

��[�]

��(x)

= �j(x):

Up to the second order terms,

W [j] =W [0]+

Z

dx

�

�W

�j(x)

�

0

j(x)+

1

2

Z

dx

Z

dyj(x)

�

�

2

W [j]

�j(x)�j(y)

�

0

j(y);
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where

j(x) =

Z

dyD

�1

(x; y)[�(y) � �

0

]; �

0

=

�

�W [j]

�j(x)

�

j=0

and

D(x; y) =

i

Z[0]

h0jT�(x)�(y)e

i

R

duL

int

(u)

j0i

c

(1.9)

is a corresponding propagator. In the same order, for the e�ective action

one has

�[�]=W [0]�

1

2

Z

dx

Z

dy(�(x)��

0

)D(x; y)

�1

(�(y)� �

0

)+� � � :

Introduce a free two-point function

D

0

(x; y) = i < 0jT�(x)�(y)j0 >

and a polarization operator P(x; y) which is the sum of one-particle irre-

ducible two-point Green functions. These quantities satisfy the equation

D(x; y) = D

0

(x; y) +

Z

du

Z

dvD

0

(x; u)P(u; v)D(v; y); (1.10)

and consequently

D

�1

(x; y) = D

�1

0

(x; y)�P(x; y):

Using the last equality, the e�ective action can be written in the form of a

free action plus an interaction term

�[�]=�

1

2

Z

dx

Z

dy(�(x)��

0

)fD

�1

0

(x; y)�P(x; y)g(�(y)��

0

)+� � � (1.11)

(we assume, that W [0] = 0).

Consider a gauge theory with the interaction Lagrangian

L

int

= �eA

�

(x)I

�

(xjA):

In the Dirac theory,

I

�

(x) =

�

 (x)

�

 (x);

and in the Schr�odinger case,

I

0

(x) =  

y

(x) (x);

I

k

(x) =

i

2m

( 

y

(x)r

k

 (x)� h:c)�

e

2m

 

y

(x) (x)A

k

(x):
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The gauge �eld propagator can be determined using (1.9) and is given by

the expression

D

��

(x; y) = D

0��

(x; y) +

+i

2

e

Z

dudvhjTA

�

(x)A

�

(y)A

�

(u)A

�

(v)j0i

c

< 0j

�I

�

(u)

�A

�

(v)

j0 >

A=0

�

�ie

2

=2

Z

dudvh0jTA

�

(x)A

�

(y)A

�

(u)A

�

(v)j0i

c

h0jTj

�

(u)j

�

(v)j0i

c

+

+O(e

3

): (1.12)

Using the expansion

J

�

(x) = j

�

(x) +

Z

dy

�

�I

�

(x)

�A

�

(y)

�

A=0

A

�

(y);

one gets for the polarization operator

P

��

(x; y) = ie

2

h0jj

�

(x)j

�

(y)j0i

c

+

+ 2e

2

h0j

�

�I

�

(x)

�A

�

(y)

�

j0i

A=0

+O(e

4

) (1.13)

(remind that h0jT � � � j0i is average with respect to the free Lagrangian).

In the non-relativistic theory, the polarization operator is de�ned by the

current correlators:

P

00

(x; y) = ie

2

h0jTj

0

(x)j

0

(y)j0i

c

+O(e

4

);

P

0k

(x; y) = ie

2

h0jTj

0

(x)j

k

(y)j0i

c

+O(e

4

);

P

kl

(x; y) = ie

2

h0jTj

k

(x)j

l

(y)j0i

c

�

�

e

2

m

�

kl

�(x� y)h0j 

y

 j0i+O(e

4

):

(1.14)

Plugging in this values for the polarization tensor, we �nd that up to the

O(e

4

) terms, the e�ective action (1.11) is expressed by

�[A

�

] = �

0

[A

�

�A

�

0

] +

+

1

2

Z

dx

Z

dy(A

�

(x)�A

�

0

)P

��

(x; y)(A

�

(y)� A

�

0

) + � � � ;

where A

�

0

is the background value of the gauge �eld.

In the 2+1 dimensions, the current correlators

�

��

(x; y) = ihT (j

�

(x)j

�

(x

0

))i

c

have the following Fourier representation

�

��

(x; y) =

Z

dqd!

(2�)

3

e

�i!(x

0

�y

0

)

e

iq(x�y)

�

��

(q; !):



15

In the momentum space, the correlators can be expressed in terms of in-

variant structure functions [120]:

�

00

(!;q) = q

2

�

0

(!;q);

�

i0

(!;q) = !q

i

�

0

(!;q) + i�

ij

q

j

�

1

(!;q);

�

ik

(!;q) = �

ik

!

2

�

0

(!;q)+i"

ik

!�

1

(!;q)+(�

ik

q

2

�q

i

q

k

)�

2

(!;q)+�

ik

�

3

:

The e�ective action reads as

S

eff

[F ] = S

0

+

1

2

Z

dxdyF

�

(x)P

��

(x; y)F

�

(y);

where S

0

is a free action, F

�

= A

�

+ a

�

+A

ext

�

is a gauge �eld, and

P

��

(x; y) = e

2

�

��

(x; y)�

e

2

m

�

�k

�

�l

�

kl

< j

0

> : (1.15)

Consequently,

S

eff

[F ] = S

0

+

+

e

2

2

Z

dx[(@

0

F

k

� @

k

F

0

)

^

�

0

(@

0

F

k

� @

k

F

0

) + "

���

F

�

^

�

1

@

�

F

�

+

+ �

im

@

i

F

m

^

�

2

�

kn

@

k

F

n

+F

k

�

^

�

3

�

< j

0

>

m

�

F

k

]:

Here

^

�

a

= �

a

(i@

0

;�

1

2

`

2

�)(a = 0; 1; 2; 3) are di�erential operators de�ned

by the corresponding momentum space structure functions (see also [120],

[116]).

The important physical quantity which describes the electromagnetic and

thermal properties of a bulk matter is the linear response function. The

standard derivation of Kubo's formula for the linear response uses the adia-

batic switching on of an external perturbation and the approximate solution

of Schr�odinger equation with a time dependent Hamilton operator (see, e.g.,

[52]).

The formal expression for the linear response can be obtained using the

formula relating current operators in the Heisenberg and in-representations

[15]

J

�

H

(xjA) = S

�1

�

TJ

�

in

(xjA)S

�

; (1.16)

where the S-operator is given by the chronological product

S = Te

�ie

R

dxA

�

(x)I

�

(xjA)

:

For the weak external classical electromagnetic �eld A

�

(x), one gets a known

result:

J

�

H

(xjA) = J

�

in

(xjA) � ie

Z

dy�(x

0

� y

0

) [j

�

(x); j

�

(y)]A

�

(y) (1.17)

(here j

�

(x) = J

�

(xjA = 0) = I

�

(xjA = 0)).
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Consider the case of matter interacting with the Chern{Simons and ex-

ternal electromagnetic �elds, (i.e., there is no quantum Maxwell �eld). As

interaction Lagrangian, take

L

int

= �eA

�

(x)I

�

(xja+A):

The gauge invariant current is given by

eJ

�

(x) = �

�S

Matter

�A

�

(x)

= �

�S

Matter

�a

�

(x)

= �"

���

@

�

a

�

(x): (1.18)

The last equality is a result of the Euler-Lagrange equation for the Chern{

Simons �eld. Consider a small variation of the external �eld: A

�

! A

�

+

�A

�

. The corresponding change in the current is given by:

�J

�

(x) =

Z

d

3

y

�

�J

�

(x)

�A

�

(y)

�

�A

�

(y) =

=

Z

d

3

y

�

�J

�

(x)

�a

�

(y)

�

�A

�

(y):

Using (1.18), we get:

�J

�

(x) =

�

e

"

���

@

�

�A

�

(x): (1.19)

The time component of this equation permits to express the density varia-

tion with the help of the magnetic �eld

�J

0

(x) = �

�

e

�

ik

@

i

�A

k

(x) = �

�

e

�B(x): (1.20)

From the linear response formula, we have

�J

0

(x) = ie

Z

d

3

yD

R

0k

(x� y)�A

k

(y);

where D

R

0k

(x� y) is the retarded commutator of the current operators (see

(1.17)). In the momentum space, this quantity looks like

D

R

0k

(q) = q

0

q

k

�

R

0

(q) � i�

lm

q

m

�

R

1

(q);

where �

R

0

(q) and �

R

1

(q) are some structure functions. Considering the limit

of the time-independent external �eld, one obtains

�J

0

(x) = e

Z

d

3

y

d

3

q

(2�)

3

e

�iq(x�y)

�

R

1

(q)�B(y): (1.21)

Comparing (1.20) and (1.21), we get

�

�

e

2

�B(r) =

Z

d

3

y

Z

d

3

q

(2�)

3

e

�iq(x�y)

�

R

1

(q)�B(y):
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In the case of the uniform magnetic �eld �B = const, one can extract the

threshold value of the structure function

�

R

1

(0) = �

�

e

2

=

1

2#

; (1.22)

where # is the statistics parameter. Note that this relation is obtained

without reference to perturbative approximation, and it is in fact a low

energy theorem. It must be noticed that the previous derivation of this

relation was based on the summation of certain diagrams [110], [111].

5. Current Correlators

In this section, we will calculate the current correlation function for a

system of planar electrons in a perpendicular magnetic �eld B. This mag-

netic �eld can be, as the external one (B), generated by a given external

current distribution, or the Chern{Simons magnetic �eld produced by the

average fermion density (

�

b = �(e=�)�). Introduce �rst the fermion Green

function (see, e.g., [52]). At zero temperature, it is de�ned as a ground state

average:

G(x; x

0

) = ih�

0

jT ( (x) 

y

(x

0

))j�

0

i = hrjG(t � t

0

)jr

0

i

= �

Z

dE

2�

e

�iE(t�t

0

)

hrjG(E)jr

0

i: (1.23)

In the magnetic �eld, fermions �ll from the bottom to up the Landau levels

with �nite energy gap between them (see Appendix A). One-particle states

with a given energy can be represented as jni 
 j�i. The integer index n

labels the Landau level with the energy E

n

� (n + 1=2), a and � labels

the eigenvalue of some observable commuting with Hamiltonian (e.g., one

of the momentum components or the orbital angular momentum). The

choice of the basis is dictated by physical conditions. In what follows, we

consider the rectangular geometry, and as a good quantum number, select

the p-momentum along the x-axis.

Each Landau level is highly degenerate with the state density

n

B

=

jeBj

2�

:

Supposing that there are N levels exactly �lled, the kernel G(E) is given by

G(E) =

N�1

X

n=0

jnihnj

E �E

n

� i�

+

1

X

n=N

jnihnj

E �E

n

+ i�

: (1.24)

The states jni are generated by the oscillator rising and lowering operators

a and a

+

([a; a

+

] = 1):

jni =

1

p

n!

(a

+

)

n

j0i:
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The corresponding one-particle Hamiltonian is given by

H

1p

=

1

m`

2

(a

+

a+ 1=2):

The energy of each Landau level is proportional to the background magnetic

�eld

E

n

=

1

m`

2

(n+ 1=2) �

!

c

m

�

n+

1

2

�

;

where the magnetic length `

2

= 1=jeBj, and !

c

is the cyclotron frequency.

(Below we consider the case eB > 0).

The current correlators are de�ned by the average value of the T -product

�

��

(x; y) = ih�

0

jT (j

�

(x)j

�

(y))j�

0

i =

=

1

(2�)

3

Z

d!dqe

�i!(x

0

�y

0

)+iqx�y

�

��

(!;q): (1.25)

The current operators are given by

j

0

(x) =  

y

(x) (x)

j

k

(x) =

i

2m

�

 

y

(x)r

k

 (x) �r

k

 

y

(x) (x)

�

:

The covariant derivative operator is r

k

= @

k

+ ieA

k

. The vector-potential

A

k

generates the static and homogeneous magnetic �eld B = �

mn

@

m

A

n

.

The current correlators had been calculated several times, using various

methods and di�erent approximations [53], [120], [24], [76], [110], [111],

[134], [78]. Below we will follow the presentation described in the papers

[40], [41].

Introduce the bilocal objects

j

�

(x; x

0

) = �[�

�

(x) + �

y

�

(x

0

)]T ( (x) 

y

(x

0

));

where the operators �

�

are de�ned by

�

0

= 1=2; �

k

(x) =

i

2m

D

k

(r):

Rede�ne the currents by the limiting procedure

j

�

= lim

(t

0

;r

0

)! (t

+

;r)

j

�

(x; x

0

):

Using the fermion Green function, we can write down

hj

�

i = i lim[�

�

(x) + �

y

�

(x

0

)]G(x; x

0

):

For the Fourier representation, one obtains

hj

�

(x)i =

i

2�`

2

Z

dq�(q)Tr

�

f�

�

; Z(q)gG(0

+

)

�

:
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The Tr operation is taken over the basis of one particle states jnp >= jn >


jp >. It is not di�cult to show that the anticommutator can be expressed

as

f�

�

; Z(qg = Y

�

(q)Z(q); (1.26)

where

Y

0

= 1; Y

n

= �

i

m`

2

�

nk

@

@q

k

:

In (1.26), Z(q) is the coherent state operator

Z(q) = e

�`(q

+

a

+

� q

�

a)

(1.27)

�

q

�

=

1

p

2

(q

x

� iq

y

); � =

1

2

`

2

q

2

�

:

The matrix elements of this operator can be easily calculated and are given

by

hnjZ(q)jn+ �i =

s

n!

(n+ �)!

(`q

�

)

�

L

�

n

(�)e

��=2

;

hn+ �jZ(qjni =

s

n!

(n+ �)!

(�`q

+

)

�

L

�

n

(�)e

��=2

;

hnjZ(qjni = L

0

n

(�)e

��=2

:

In the above equations, L

�

n

(�) are the adjoint Laguerre polynomials de�ned

by

L

�

n

(z) =

1

n!

�

e

z

z

��

d

n

dz

n

�

e

�z

z

n

�

�

=

= (n+ �)!

n

X

k=0

(�1)

k

1

k!(� + k)!(n� k)!

z

k

:

The operator Z(q) is useful in order to calculate the Fourier transforma-

tions

Z

dre

�ikr

hrjA(a

y

; a)jri =

2�

`

2

tr[Z(k)A];

Z

dr

Z

dr

0

e

�ikr

e

ik

0

r

0

hrjA(a

y

; a)jr

0

ihr

0

jB(a

y

; a)jri =

=

2�

`

2

�(k� k

0

)tr[Z(k)AZ

y

(k

0

)B];

where A and B are some ladder operator depending quantities.

Consequently,

hj

�

(x)i=

i

2�`

2

fY

�

(q)Tr[Z(q)G(0

+

)]g

q=0

=

i

2�`

2

�

�0

Tr[G(0

+

)]:



20

In (1.25), j

�

(x) is a divergenceless current. At the same time, due to the

anomaly, the correlator is not conserved: the 3-divergence of this object is

given by

@

�

x

�

��

(x; y) = i �(x

0

� y

0

)h[j

0

(x); j

�

(y)]i =

i

m

�

�k

@

@x

k

�(x� y)hj

0

i:

In the momentum space, the correlators can be expressed in terms of in-

variant structure functions:

�

00

(!;q) = q

2

�

0

(!;q);

�

i0

(!;q) = !q

i

�

0

(!;q) + i�

ij

q

j

�

1

(!;q);

�

ik

(!;q) = �

ik

!

2

�

0

(!;q) + i�

ik

!�

1

(!;q) +

+ (�

ik

q

2

� q

i

q

k

)�

2

(!;q) + �

ik

�

3

:

(1.28)

From the current conservation, it follows that �

3

is in fact a Schwinger

term:

q

�

�

��

(!;q) = q

l

�

3

�

l�

=

1

m

q

l

hj

0

i�

l�

;

i.e.,

�

3

=

hj

0

i

m

:

Performing the Fourier transformation, one obtains [120]

�

��

(x; y) =

i

(2�)

3

`

2

Z

dk

1

Z

dk

2

e

ikx

e

ik

0

y

�(k+ k

0

)�

�Tr [fZ(k);�

�

gG(x

0

� y

0

)fZ(k

0

);�

�

gG(y

0

� x

0

)]:

Here G(x

0

�y

0

) is the kernel of the fermion Green function. Applying (1.26),

we get the representation

�

��

(q; !) =

i

2�`

2

[Y

�

(q)Y

y

�

(q

0

)�(q;q

0

; !)]

q=q

0

:

Introduce the variables

� =

`

2

2

q

2

; � =

`

2

2

(q � q

0

+ iq ^ q

0

)

and the notation

d

�

n

(!) =

Z

dE

2�

hn+ �jG(E)jn + �ihnjG(E � !)jni =

�

d

�

n

(�!): (1.29)

We see that the kernel

�(q;q

0

; !) =

Z

dE

2�

Tr[Z(q)G(E)Z

y

(q

0

)G(E � !)]
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can be written as a sum

�(q;q
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The action of the operators Y

�

(q) on �

n�

(q;q

0

; !) is given by the expres-

sions
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0

=

1

2m

q

i

�

��

��1

�

�

n

(�)�

�

n

(�)

� �

d

�

n

(!)�

�

d

�

n

(!)

�

+

i

2m

�

ij

q

j

�

�

�

d�

�

n

(�)

d�

�

�

n

(�) +

+

1

2

��

��1

�

�

n

(�)�

�

n

(�)

�

�

d

�

n

(!) +

�

d

�

n

(!)

�

; (1.30)
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: (1.31)

Here �

�

n

(�) = e

��=2

L

�

n

(�). In deriving this relations, we have used
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and the identity

�

ik

q

2

+ q

i

�

km

q

m

� q

k

�

im

q

m

= 0:

Straightforward calculations show that the spectral functions (1.29) sat-

isfy the relations

�!

c
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�

n
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�

d

�

n

(!)) = !(d

�

n

(!) +

�
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(!)); (1.32)
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+
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�

: (1.33)

Indeed, the Green function has the following structure

hmjG(z)jmi =

a

m

z �E

m

� i�

+

b

m

z �E

m

+ i�

:

Integrating, one obtains

D
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=
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and hence (1.32). Further, in order to obtain the correlator, one encounters

the integral over the frequencies !:

Z
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which gives (1.33).

Integrating, we use the limiting procedure
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and
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(E �E

m

� i�)

= 0:

Equations (1.32) and (1.33) permit to write (1.30) and (1.31) in the following

form:
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Introduce the function
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0

; !) �

i

2�`

2

1

X

n=0

1

X

�=0

�

1�

�

�0

2

�

n!

(n+ �)!

s

n�

(�; �

0

; !)D

+

n�

(!) =

=

i

2�`

2

1

X

n=0

1

X

�=0

�

1�

�

�0

2

�

n!

(n+ �)!

�

�

1

2

(�

�

+ �

0

�

)�

�

n

(�)�

�

n

(�

0

)D

+

n�

(!): (1.36)

Direct calculations show that the structure functions �

0

, �

1

and �

2

can be

expressed as

�
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For the structure function �

3

, we get
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As we see, the three di�erent structure functions entering into the correla-

tor can be expressed as derivatives of the same scalar function (1.36) [41],

[40]. This function is expressed in terms of in�nite series, from which one

can extract physical results with a needed accuracy. Remind that in the

principal papers on the calculation of current correlators (e.g., [120], [110],

[111], [24], [76]), this objects are obtained in the lowest orders and for spe-

cial con�gurations of the gauge �eld after rather lengthy and complicated

calculations.

As a further step, let us �nd the frequency-dependent part of the function

(1.36).

Using the explicit form of the Laguerre polynomials, one �nds that zero-

momentum values of structure functions are given by

�

0

(!; 0) =

i

4�

1

X

n=0

(n+ 1)D

+

n1

(!);
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:

Suppose that the levels n = 0; 1; : : : ; N�1 are �lled up and the higher levels

with n � N are empty. This corresponds to the Green function with

a

m

= �(N � 1�m); b

m

= �(m�N); (�(0) = 1):

From (1.34), we get
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: (1.37)

It is not di�cult to extract the zero momentum values of the structure

functions:
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; (1.38)
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The threshold values (! � 0;q � 0) of the structure functions are given by
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(1.42)

6. Current Correlators at T 6= 0

At a non-zero temperature, one can use the methods of grand canonical

ensembles and the imaginary time (Matsubara) technics [52], [89].

The corresponding expressions in the Matsubara formalism can be ob-

tained performing Wick's rotation and the well known substitutions
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:

(1.43)
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The thermal Green function is de�ned as a quantum statistical average

G
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)]g:

where � = exp[��(H � �N)] is the grand canonical distribution and Z =

Tr�. Matsubara �elds are de�ned as follows
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:

Here E

0

n

= E

n

� �.

Due to the antiperiodicity, this thermal Green function can be Fourier-

expanded over the half-integer frequencies:
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The kernel
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can be obtained from the zero temperature kernel by the formal substitution
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� �. The current correlators are de�ned by the

statistical averages
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and can be calculated in the same way as the zero-temperature correlators.

It is not di�cult to see that the main changes concern the frequency de-

pendent parts D

�

n�

(!), which are changed to the temperature dependent

quantities
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The typical sum in these expressions is given by
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This sum can be converted to the contour integral
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The complex integration path passes below and above the real axis and is

closed at �1's. Deforming this contour into two paths in the upper and

lower half-planes, one gets:
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:

If � = 0, there is a double pole at !

r

= 0 in the contour integral, and
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:

As in the zero temperature case, one can show that the following relations

are valid:
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:

The last term here is the periodic delta-function �

�

(�).

Further steps repeat the zero-temperature case, where
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must be used instead of D
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(!). Now the zero-momentum structure func-

tions are given by the sums
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7. Effective Action and Response Function

Consider the action

S[A; �] =

Z

dxdy

�

�

1

2

A(x)K(x; y)A(y) + L(A; �)

�

:

In this action, by A(x) we denote the set of gauge �elds, such as the dy-

namical Maxwell �eld A

�

(x), or the Chern{Simons �eld a

�

and the external

electromagnetic potential A

�

(x). The block-diagonal matrix K(x; y) repre-

sents the kernel of the kinetic term and can include the gauge �xing terms

for dynamical gauge �elds. The kinetic terms corresponding to the external
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�elds formally are assumed to be in�nitely large. By �(x) we denote matter

�elds.

Construct the Schwinger's functional and the e�ective action for the

gauge �elds, integrating out the matter. In the Heisenberg representation,

the Green functions generating functional is given by

Z[J ] = hout je

i

R

dxJ(x)A(x)(x)

j in i = e

iW [J ]

:

The corresponding e�ective action up to the second order is given by
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3
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Here

D(x; y) = ihout jT (A(x)A(y))) j in i

c

is a full propagator and A

0

(x) = houtjA(x)jini is the �eld vacuum average.

In what follows, we assume that A

0

(x) = 0. Those components of the

classical �eld A

c

(x) which correspond to external electromagnetic �elds are

�xed, and are equal to A

�

(x).

In the interaction representation, the free propagator is de�ned by

D

c
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where

D

c

(q) =

Z

d

d

x

(2�)

d

e

iqx

K

�1

(x; 0) � K

�1

(q)

and the interacting Green function is given by

D(x; y) = ih0jT

�

A(x)A(y)e

i

R

dxL

�
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For further needs, we give some expressions illustrating the above discus-

sions.

In the Coulomb gauge, the propagators must be extracted from the free

Maxwell end Chern{Simons Lagrangians
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(@

k

A

k

(x))

2

;

L

CS

=

1

2

�"

���

a

�

(x)@

�

a

�

(x) +

1

2�

(@

k

a

k

(x))

2

:

The Maxwell �eld propagator D

��

(q) is given by the matrix

~

K

�1

EM

(q) =

1

q

2

0

B

@

1 + �

!

2

q

2

��

!q

i

q

2

��

!q

i

q

2

[�

ik

�

q

i

q

k

q

2

] + �

q

i

q

k

(q

2

1

C

A

:
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The Chern{Simons propagator �

��

(q) is given by the matrix

~

K

�1

CS

(q) =

1

�q

2

0

B

@

�!

2

i

�

im

q

m

� q

2

� �

!q

i

(q

2

)

2

i

�

im

q

m

�q

2

� �

!q

i

(q

2

)

2

��

q

i

q

k

�

2

q

2

1

C

A

:

In some cases, it is more convenient to take as a free Chern{Simons

Lagrangian the expression (see the Lagrangian (1.6)))

L

CS

=

�

2

"

���

a

�

@

�

a

�

�

e

2

�

2m

a

k

a

k

+

�

2

(@

i

a

i

): (1.44)

The corresponding propagator in the limit �!1 looks like

�

��

(x) =

Z

dq

(2�)

3

e

�iqx

�

��

(q) = ihTfa

�

(x)a

�

(0)gi; (1.45)

where

�

��

(q) =

1

�

1

q

2

8

>

>

>

>

>

>

>

:

�

g

2

�

m�

iq

y

�iq

x

�iq

y

0 0

iq

x

0 0

9

>

>

>

>

>

>

>

;

: (1.46)

The relativistic free action is

L

EM

=

Z

dx

�

�

1

4

F

��

F

��

+

1

2�

(@

�

A

�

)

2

�

for the Maxwell �eld and

L

CS

=

Z

dx

�

�

2

"

���

a

�

@

�

a

�

+

1

2�

(@

�

a

�

)

2

�

d

3

x

for the Chern{Simons �eld.

The bare propagators of the Maxwell and the Chern{Simons �elds in

that cases are given by

D

��

(q) =

1

q

2

�

g

��

�

q

�

q

�

(q

2

)

2

�

�

q

�

q

�

k

2

�;

�

��

(q) = �

i

�

"

���

q

�

q

2

�

q

�

q

�

(q

2

)

2

�:

The full propagator satis�es the Dyson-Schwinger equation

D(x; y) = D

c

(x; y) +

Z

dudvD

c

(x; u)P(u; v)D(v; y);

where P(x; y) is a polarization operator. The corresponding expression in

the momentum space is

D(q) = D

c

(q) +D

c

(q)P(q)D(q):
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The equivalent form of this equation is given by

D

�1

(x; y) = D

�1

c

(x; y)�P(x; y)

and

D

�1

(q) = D

�1

c

(q)�P(q):

The lowest order perturbative calculations show that

P(x; y) = h0jT

�

@L

@A(x)

@L

@A(y)

�

A=0

j0i

c

+

+ 2h0jT

�

@

2

L

@A(x)@A(y)

�

A=0

j0i

c

+ � � � �

� P (x; y) + � � � :

Taking into account the above consideration, the e�ective action is ex-

pressed as

S

eff

[A

c

] = �

1

2

Z

dxdyA

c

(x)D

�1

(x; y)A

c

(y) =

= �

1

2

Z

dxdyA

c

(x)D

�1

0

(x; y)A

c

(y) +

+

1

2

Z

dxdyA

c

(x)P(x; y)A

c

(y):

For the case of the external �eld A

ext

(x) and a dynamical one denoted by

A(x), the e�ective action looks like

S

eff

[A;A

ext

] = �

1

2

Z

dxdyA(x)K(x; y)A(y) +

+

1

2

Z

dxdy (A(x) +A

ext

(x))P(x; y) (A(y) +A

ext

) :

As a next step, we can integrate out the dynamical �elds, i.e. substitute

the solution of the extremal equation

A(x) =

Z

dudy�(x; u)P(u; y)A

ext

(y);

where the operator �(x; y) = K(x; y) � P(x; y). In that way, one gets the

action

S

eff

[A

ext

] =

1

2

Z

dxdyA

ext

(x)�(x; y)A

ext

(y):

The Fourier representation of the response function � is given by

�(x; y) =

Z

d

d

q

(2�)

d

e

�iq(x�y)

�(q);

where

�(q) = P(q) + P(q)�

�1

(q)P(q):
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The operators under consideration satisfy the equations (�(q) � K

�1

(q))

�

�1

(q) = �(q) + �

�1

(q)P(q)�(q);

and, as a consequence,

�(q) = P(q) + P(q)�(q)�(q):

Let us now apply this formalism to the case of matter interacting with

a Chern{Simons gauge �eld in the presence of an external electromagnetic

�eld.

Suppose that the external �eld consists of background and small uctu-

ating parts and that the background generates a uniform magnetic �eld B.

In its own turn, represent the Chern{Simons �eld as �a

�

(x) + a

�

(x), where

�

b = �

ik

�a

k

= �

e

�

� is a Chern{Simons magnetic �eld. As a nonperturbed sys-

tem, take matter interacting with the e�ective magnetic �eld B

eff

=

�

B+

�

b.

In order to calculate �, we need the polarization operator. In the lowest

order approximation it is given by eq.(1.15)

P

��

(x; y) = e

2

�

��

�

e

2

m

< 0jj

0

(x)j0 > �(x� y)�

�k

�

�l

�

kl

:

We see that the last term is exactly cancelled by the Schwinger term pre-

sented in the current correlator. As a result for the Fourier-transformed

polarization operator, we can use (1.28) with �

3

= 0. The diagrammatic

representation of �(q) is given by

�

��

�

��

�

��

�

��

�

��

�

��

�

��

r r r r r r rr r r r r r r

� P P P P P P

� � �

= + + + � � �

The �nal result looks as follows

D�

00

= q

2

�

0

;

D�

0i

= �q

i

!�

0

+ i�

ik

q

k

�

�

1

�

1 +

1

�
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1

�

�

1

�

�

0

M

�

;

D�

ik

= �

ik

!

2

�

0

+

+

�

�

ik

q

2

� q

i

q

k

�

�

�

2

+

n

e

m�

2

q

2

(�

0

M ��

2

1

)

�

+

+ i�

ik

!

�

�

1

�

1 +

1

�

�

1

�

+

�

N

�

0

M

�

:

Here

M = !

2

�

0

+ q

2

�

2

;

and

D(q) = e

2

�

1 +

1

�

�

1

�

2

�

e

2

�

2

�

0

�

!

2

�

0

+ q

2

�

2

�

: (1.47)
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CHAPTER 2

SIMILARITY TRANSFORMATION AND INTERPLAY

BETWEEN INTEGRAL AND FRACTIONAL

QUANTUM HALL EFFECTS

1. Introduction

Experimentally the Quantum Hall E�ect (QHE) is observed in two-

dimensional electron systems at low temperatures and in strong magnetic

�elds. The low temperature is needed to freeze (quantum mechanically)

the degree of freedom for motion in the perpendicular direction, and strong

magnetic �eld forces the electrons to �ll, from bottom to up, the Landau

levels (for a review, see [118], [126]).

The Ohm's law for a free electron gas con�ned on a plane in the presence

of a perpendicular magnetic �eld B is given by

J

i

= �

ik

E

k

;

where J is the electric current density, E is the electric �eld, and �

ik

is the

conductivity matrix.

Classically, the Hall conductivity

�

xy

= ��

yx

= �

n

e

ce

B

; �

xx

= �

yy

= 0:

Here n

e

is the electron density. The resistance matrix �

ik

is the inverse of

the conductivity matrix �

ik

= �

�1

ik

, and its components are

�

xx

= �

yy

= 0; �

xy

=

B

n

e

ce

:

The last expression indicates that for an ideal electron gas, the transverse

resistance linearly depends on the ratio B=n

e

.

Elementary quantum mechanical consideration of a gas of free electrons

moving in perpendicular magnetic and electric �elds gives for the Hall con-

ductivity the following result

�

H

� �

xy

=

e

2

h

�;

where the �lling fraction

� =

#of electrons

#of Landau sites

=

n

e

n

B

(n

B

=

eB

2�

is the density of quantum states per level). In physical terms, �

represents the number of �lled Landau levels, and �

�1

is the magnetic ux

per particle.

In the experimental setup, the charge density or the external magnetic

�eld can be varied. A striking feature of experimental data was that at very

low temperatures (T < 1

�

K) and very strong magnetic �eld (B > 10Tesla),
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the Hall conductivity, plotted as a function of the �lling fraction develops a

series of plateaux at the values

�

xy

=

e

2

h

�; � =

(

1; 2; 3; : : : (�10

�8

) IQHE

1

5

;

2

7

;

1

3

;

2

5

;

2

3

; : : : (�10

�5

) FQHE

:

More generally � = p=q, p and q being relatively prime integers with q odd.

The purer the sample, the greater is the number of observed fractions, and

there is more or less a de�nite order in which new fractions appear as the

sample quality is improved.

The e�ect is not actually restricted to the lowest Landau level (� <

1) and the cases � = 4=3; 7=3; 7=5; 8=5; and so on, have been observed.

Moreover, plateaux with an even denominator have been observed for � =

5=2. However, this is exceptional, and is attributed to a spin-unpolarized

state in distinction to the ordinary spin-polarized fractionally quantized

states.

At the same time, the longitudinal conductivity �

xx

, appeared to be

essentially zero when �

xx

was nearly constant, and conversely when �

xy

varies, �

xx

is non zero.

The high precision (up to 10

�8

) of the observed quantization of Hall con-

ductance is deeply related to the fundamental principle of gauge invariance

[101]. The arguments used are based on the idea of spectral ow: the adi-

abatic change of the Hamiltonian by its gauge equivalent does not change

the spectrum as a whole, but can produce a charge transfer of an integer

number of the charge carriers from one edge to the other. If, during this

process, N elementary charge carriers of the charge fe move from one to

another edge, the Hall conductivity will be

�

xy

=

j

x

E

y

=

I

x

V

y

=

e

2

h

Nf;

i.e.,

� = Nf

and the charge carrier carry the charge

�

N

e. In the case of IQHE, N = �

and f = 1, i.e., one electron is transferred from one edge to another for each

fully occupied Landau level. In the case of FQHE, for the most exploited

Laughlin series � =

1

(2p+1)

, N = 1, and elementary charged excitations are

vortices with a fractional charge e=(2p+ 1).

As it will be discussed below, FQHE can be interpreted as IQHE for the

system of so called composite fermions, consisting of electrons carrying an

even number of elementary magnetic ux quanta. This picture, proposed

by Jain [86], can be realized in the framework of the Chern{Simons gauge

theory, where the additional magnetic ux is produced by a statistical gauge

�eld.
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In the present chapter, we will consider an alternative version of Jain's

approach, which exhibits an algebraic similarity between integral and frac-

tional QHE's.

In Section 2, we get the conductivity tensor for a system of electrons

interacting with the Maxwell and Chern{Simons �elds. In Section 3, we

review the properties of the Hall uid. In Section 4, we formulate the simi-

larity criterion and introduce the corresponding transformation. In Section

5, we develop the picture and discuss the composite fermion approach and

FQHE wave functions. In our presentation, we follow the papers [42], [43],

[44].

2. Hall Conductivity and Response Function

In the preceding chapter, we have obtained the expression for the e�ective

action for the electromagnetic �eld interacting with matter. In its own turn,

matter is supposed to interact with the Chern{Simons gauge �eld. In the

mean �eld approximation, the initial Hamiltonian corresponds to particles

moving in an e�ective magnetic �eld created by external currents as well as

by the Chern{Simons background magnetic �eld.

The e�ective action is given by

S

e�

[A

�

] =

1

2

Z

d

3

xd

3

yA

�

(x)�

��

(x; y)A

�

(y):

The electromagnetic current

J

�

(x) = �

�S

e�

�A

�

(x)

= �

Z

d

3

y�

��

(x; y)A

�

(y):

In the momentum space, one has

J

�

(q) = ��

��

(�q)A

�

(q):

The electromagnetic response is de�ned by

�

i0

(�q) =!q

i

�

0

(�!;q

2

)� i�

im

q

m

�

1

(�!;q

2

);

�

ik

(�q) =�

ik

!

2

�

0

(�!;q

2

)�i�

ik

!�

1

(�!;q

2

)+

�

�

ik

q

2

�q

i

q

k

�

�

2

(�!;q

2

):

The Fourier representation of the electric �eld is

E

k

(q) = i (q

m

A

0

(q)� !A

m

(q)) :

As a result,

J

i

(q) = i!�

0

(�q)E

i

(q) + �

ik

�

1

(�q)E

k

(q)�

� �

2

(�q)

�

�

ik

q

2

� q

i

q

k

�

A

k

(q):

The conductivity tensor is given by (see, e.g., [94])

�

xx

= lim

!!0

(i!�

0

(�!; 0)) ;
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�

xy

= lim

!!0

�

1

(�!; 0):

From the previous chapter, we know that in the low energy limit (see (7)),

�

0

(0) =

e

2

�

0

(0)

(1 +

1

�

�

1

(0))

2

; �

1

(0) =

e

2

�

1

(0)

1 +

1

�

�

1

(0)

:

In the mean �eld approximation, when the ground state corresponds to N

totally �lled Landau levels, the threshold values of the structure functions

is given by

�

1

(0) =

N

2�

:

In the sequel, it will be shown that � =

1

4�p

(p is an integer). As a result,

�

xx

= 0; �

xy

=

e

2

2�

N

2Np+ 1

:

Consequently, for the �lling fraction one gets (in units, where ~ = 1)

� =

N

2Np+ 1

:

These fractions correspond to the generalized Laughlin series.

3. Noncompressible Fluid and W Symmetry

The IQHE can be understood using the picture of noninteracting elec-

trons �lling from bottom to up exactly � Landau levels. In the picture of

free electrons exactly �lling up the Landau levels, there must exist an en-

ergy gap in the charged particle spectrum. Indeed, the energy to create a

separated particle-hole pair should be just the energy to excite a fermion

into the lowest empty Landau level, viz.E

pair

= eB=m. This predicts that

the many-body ground state at the plateaux have a uniform density and

gap for a density waves.

The FQHE ground state cannot be obtained from non-interacting elec-

trons by continuously turning on interaction and must be a new type of

many body condensate. The most important common feature of FQH and

IQH states turns out to be that both of them are incompressible uid states.

In the case of IQHE, incompressibility can be understood in terms of com-

pletely �lled Landau levels and Fermi statistics.

However, at fractional values of �, which corresponds to only partially

�lled Landau levels, the incompressibility is a non-trivial property that orig-

inates from the interelectron interactions.

To the many-body system corresponds energy operator, which takes into

account the inter-electron Coulomb interactions as well as the presence of

a perpendicular strong magnetic �eld:

H(r

1

; r

2

; : : : ; r

N

) =

1

2m

N

X

I=1

�

p

I

�

e

c~

A(r

I

)

�

2

�

1

2

X

I<J

e

2

jr

I

� r

J

j

2

:



35

In this expression,A(r) is a two - dimensional electromagnetic potential cre-

ating the magnetic �eld B = �

ik

@

k

A

k

. The second term is the static inter-

action. In two dimensions, the Coulomb potential is logarithmic. However,

in the above two-dimensional systems, the ordinary 3D Coulomb potential

can be used because 2D electron systems have a small but �nite thickness.

Only their motion at low energies is two-dimensional.

When the fraction is � =

1

2p+1

, the ground state can be described very

accurately by the variational wave function proposed by Laughlin [99]

	

e

p

= N

p

Y

I<J

(z

I

� z

J

)

2p+1

e

�

eB

4~c

P

I

jz

I

j

2

; (2.1)

where z

i

is the complex coordinate for the i-th electron and N

p

is a nor-

malization factor. Mathematical features and physical meaning of LWF are

the following:

� The prefactor f(z

1

; : : : ; z

N

) =

Q

i<j

(z

i

� z

j

)

2p+1

is purely analytic,

which means that all particles are in the lowest Landau level.

� The prefactor of Jastrow form: it has a zero of order 2p + 1 at

coincident points, showing that electrons tend very strongly to repel

each other. Each electron sees 2p+ 1 zeros bound to the positions

of other electrons, as if each particle carries 2p+ 1 ux quanta.

� The total angular momentum

J =

N

X

k=1

j

k

= (2p+ 1)

1

2

N(N � 1)

is a good quantum number, which is proportional to the area occu-

pied by the system.

The interpretation of the Laughlin wave function as a FQHE ground state

is based on the plasma analogy and is justi�ed by the very high accuracy

overlap with the numerically calculated wave functions.

Despite the above mentioned di�erences between integral and fractional

QHE, they can be viewed from uni�ed position. As it will be argued in the

present chapter, IQHE and FQHE can be considered as non-unitary equiv-

alent realizations of the same underlying symmetry { in�nite dimensional

W

1+1

.

The main idea permitting to treat IQHE and FQHE at the same footing

is related to the physical picture of incompressible quantum Hall uid. In an

incompressible uid, the uctuations in the bulk induce uctuations at the

boundary. The relevant degrees of freedom are given by small uctuations

which are localized at the edge { the so called edge density waves [72],

propagating around the edges of the sample. Furthermore, it was shown

that the spectrum of edge excitations converges towards the one of the

theory of relativistic chiral fermions in 1+1 dimensions. (Wen has shown

[133] that the spectrum of edge states is determined by level-one U(1) Kac-

Moody algebra).
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At the same time, all possible con�gurations of a droplet of uniform

density can be obtained by deformation which preserves the area, and the

mathematical description of the deformations of an incompressible liquid

droplet can be given in terms of a group of area preserving di�eomorphisms

[20], [23], [81]. The corresponding algebraic structures are generalizations

of the well-known Virasoro algebra, with additional generators induced by

extended conformal symmetries. W

N

is a conformal algebra which contains

the generators of integral conformal spins 2; 3; : : :N . (W

2

= V is the Vi-

rasoro algebra). W

1

can be viewed as the N ! 1 limits of �nite-N W

N

algebras, and contains an in�nite number of generating currents of confor-

mal spin 3; 4; : : :1, in addition to the spin-2 stress tensor of Virasoro [8],

[124].

In what follows, we exploit the following particular limit known as w

1

[v

i

m

; v

j

n

] = [(j + 1)m� (i+ 1)n]v

i+j

m+n

:

This algebra can be enlarged to w

1+1

with conformal spins s = i+ 2 � 1,

simply by allowing the indices i and j to take the value �1 as well as the

non negative integers.

The resulting algebra admits a geometrical interpretation as the algebra

of area-preserving di�eomorphisms.

The quantum version of w

1+1

is known as W

1+1

. It reads

[V

i

n

; V

j

m

] = (jn� im)V

i+j�1

n+m

+ q(i:j;m; n)V

i+j�3

n+m

+ � � �+ c

i

(n)�

i;j

�

n+m;0

:

Here i + 1 = h � 1 represents the conformal spin of the generator V

i

n

,

while �1 < n < +1 is the angular momentum. The �rst term on the

right hand side reproduces the classical w

1

algebra by the correspondence

v

i

i�n

! V

i

n

and identi�esW

1+1

as the algebra of \quantum area-preserving

di�eomorphisms". The additional terms are quantum operator corrections

with polynomial coe�cients q(i; j; n;m) due to the algebra of higher deriva-

tives. The c-number term c

i

(n) is the quantum anomaly.

4. Infinite Symmetry and Similarity Transformation

The current understanding of the quantum Hall e�ect is essentially based

on the Laughlin's picture of the incompressible two-dimensional quantum

uid which exhibits an energy gap [99], [14], [56], [57].

As we have already noted, the notion of incompressibility can be related

to an in�nite symmetry, which on the classical level is represented by the

group of area preserving di�eomorphisms [20], [21], [81].

As an outcome, a two-dimensional quantum uid can be characterized by

the unitary irreducible highest weight representations of the W

1+1

algebra

[22].

The derivation of this basic conclusion is straightforward for the IQHE,

when liquid is formed by the non-interacting planar electrons in the lowest
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Landau level (� = 1). For the clarity and to �x the notations, we will

reproduce some essential points.

In the appropriately chosen system of units (c = ~ = m = 1; e = 2; B =

1), and symmetric gauge A =

B

2

(�y; x), the quantum-mechanical Hamil-

tonian and angular momentum of N electrons in the orthogonal uniform

magnetic �eld B = �

ik

@

i

A

k

(i; k = 1; 2) can be written in terms of har-

monic oscillator operators

^

H =

1

2m

N

X

I=1

[p

I

� eA(r

I

)]

2

=

N

X

I=1

�

a

I

a

+

I

+ a

+

I

a

I

�

;

^

J =

N

X

I=1

�

z

i

@

I

� �z

I

�

@

i

�

=

N

X

I=1

�

b

+

i

b

I

� a

+

I

a

I

�

:

In the complex notations

z = x+ iy; @ =

1

2

(@

x

� i@

y

);

these operators are given by

a

I

=

z

I

2

+

�

@

I

a

+

k

=

�z

I

2

� @

I

;

b

I

=

�z

I

2

+ @

I

b

+

I

=

z

I

2

�

�

@

I

;

�

a

I

; a

+

J

�

=

�

b

I

; b

+

J

�

= �

IJ

:

The W

1+1

is generated by the operators

v

i

n

= �

N

X

I=1

(b

+

I

)

n+i

(b

I

)

i

; i � 0; n+ i � 0;

which commute with the Hamiltonian and satisfy the commutation relations

�

v

i

n

; v

j

m

�

= (jn� im)v

i+j�1

n+m

+ � � � ; (2.2)

where ellipses correspond to the quantum deformations [20].

The � = 1 ground state is given by the wave function

	

0

(z

1

; : : : ; z

N

) =

Y

1�I<K�N

(z

I

� z

K

)e

�1=2

P

J

jz

J

j

2

; (2.3)

^

H	

0

= E

0

	

0

= N	

0

;

^

J	

0

=

N(N � 1)

2

	

0

:

The action of generators v

i

n

on this state can be easily calculated (especially

if one uses the second quantization formalism). The basic results are as
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follows [22]:

a) v

i

n

	

0

= 0

for � i � n < 0; i � 1

b) v

i

0

	

0

= const �	

0

c) v

i

n

	

0

= �

i

n

(z

1

; : : : ; z

N

) �	

0

for n � 0; i � 1:

(2.4)

Here �

i

n

(z

1

; : : : ; z

N

) is some symmetric polynomial.

The equality a) in (2.4) is the highest weight condition which is a math-

ematical transcription of the incompressibility. b) and c) characterize the

excitation spectrum.

The situation is drastically changed in the case of fractional �llings. Now

the ground state (for � =

1

2p+1

, p-integer) is given by the Laughlin wave

function

	

p

(z

1

; : : : ; z

n

) =

Y

1�K<L�N

(z

k

� z

l

)

2p+1

e

�1=2

P

I

jz

I

j

2

(2.5)

and is believed to describe the incompressible state of interacting electrons.

Now if one wants to construct an algebraic classi�cation of a quantum

uid, the ground state (2.5) must be subjected to the action of the symme-

try generators. In order to carry out these calculations, in the paper [54]

the authors have changed the de�nition of operators b

k

by introducing an

interaction term

b

K

=) B

K

= b

K

� 2p

X

I 6=K

1

z

K

� z

I

: (2.6)

Note that b

+

K

is not changed

b

+

K

=) B

+

K

= b

+

K

: (2.7)

The in�nite symmetry is generated by the operators

V

i

n

= �

N

X

K=1

(B

+

K

)

n+i

(B

K

)

i

which satisfy the same algebra as v

i

n

in (2.2) up to the terms involving

delta-functions. These terms can be ignored, because the wave functions

vanish as z

K

! z

I

. As a result, it can be shown that V

i

n

acts on 	

p

as on

the highest weight state.

The operators B

K

and B

+

K

are not Hermitian conjugate. This will be

improved if one introduces a new integration measure in the con�guration

space, i.e.,

dz

1

� � � dz

N

=) dz

1

� � � dz

N

�(z; �z);
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where [130]

�(z; �z) =

Y

I<J

jz

I

� z

J

j

�4p

;

and simultaneously changes the de�nition of operators a

K

and a

+

K

in the

following way:

a

K

=) A

K

= a

K

;

a

+

K

=) A

+

K

= a

+

K

+ 2p

X

L6=K

1

z

K

� z

L

:

Note that the newly introduced operators B

K

act on the ground state of

interacting electrons 	

p

in a way analogous to the action of b

K

's on 	

1

:

b

K

	

1

=

X

K 6=J

1

z

K

� z

J

	

0

;

B

K

	

p

=

X

K 6=J

1

z

K

� z

J

	

p

:

It seems that this circumstance has initiated the Ansatz -type substitutions

(2.6){(2.7), which in turn leads to the introduction of the measure �(z; �z)

and operators A

K

and A

+

K

.

Now we can make a simple observation, which perhaps clari�es the mean-

ing of this procedure [42]: wave functions and algebra generating operators

for the fractional (� =

1

2p+1

) and integer (� = 1) �lling fractions are related

by the following similarity transformation

	

p

(z

1

; : : : ; z

N

) = S

p

(z

1

; : : : ; z

N

)	

0

(z

1

; : : : ; z

N

); (2.8)

^

O

p

= S

p

(z

1

; : : : ; z

N

)

^

O

0

S

�1

p

(z

1

; : : : ; z

N

); (2.9)

where

S

p

(z

1

; : : : ; z

N

) =

Y

k<l

(z

k

� z

l

)

2p

: (2.10)

(2.8) is evident (S

p

is a mapping operator T

n�m

between the ground states

corresponding to di�erent �lling fractions [3]), and (2.9) can be easily veri-

�ed by the direct calculations, letting

^

O

0

= fb

K

; b

+

K

; a

K

; a

+

K

; v

i

n

g and

^

O

p

=

fB

K

; B

+

K

; A

K

; A

+

k

; V

i

n

g, respectively.

Following the scheme of algebraic classi�cation [22] all the essential infor-

mation about a Hall uid for the fractional �lling is encoded in the action

of symmetry generators V

i

n

on the highest weight state 	

p

, which due to

(2.8) - (2.10) can be simply deduced from (2.4):

V

i

n

	

p

= S

p

� v

i

n

	

0

:

In particular, one automatically obtains the highest weight condition

V

i

n

	

p

= 0; for � i � n < 0; i � 1:
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Transformation (2.10) becomes singular as z

K

! z

L

but it acts in the

space of functions which vanish in that limit. What seems to be more

important, is that it is not an unitary transformation:

S

y

p

S

p

=

Y

K<L

jz

K

� z

L

j

4p

= �(z; �z)

�1

:

The last equality is not accidental. In the Hilbert space where the operators

^

O

0

and

^

O

y

0

act. the Hermitian conjugation is de�ned by the scalar product

h	j

^

O

y

0

j�i = h�j

^

O

0

j	i: (2.11)

It is evident, that the operators

^

O

p

and

^

O

y

p

= (S

�1

p

)

y

O

y

0

S

y

p

are not Hermitian

conjugate in the sense of (2.11). Introduce a metric operator �̂ and de�ne

a new scalar product

h	j�̂

^

O

y

p

j�i = h�j�̂

^

O

p

j	i:

This operator is given by

�̂ = (S

�1

p

)

y

� S

�1

p

= �(z; �z):

The transformations (2.8){(2.10) interconnect the ground state vectors and

spectrum generating quantum operators corresponding to two di�erent phys-

ical phenomena: IQHE can be understood using a picture of non-interacting

electrons, while FQHE is essentially a manifestation of inter-electron inter-

actions. On the other hand, one can say that from the point of view of

algebraic classi�cation in the sense of [22], the IQHE and FQHE are non-

unitary equivalent realizations of the same underlying symmetry.

Evidently 	

p

is an eigenfunction of the transformed Hamiltonian

^

H

p

=

^

H + 4p

X

I 6=K

1

z

I

� z

K

a

I

+ 2p�

X

I 6=K

�(z

I

� z

K

)

which must be considered as a Hamiltonian of an interacting electron sys-

tem.

Similar consideration relates the � = m states and operators to the rep-

resentation of W

1+1

at � =

m

2mp+1

. The corresponding similarity transfor-

mation is given by

S

p;m

=

Y

A<B

Y

I<J

(z

A

I

� z

B

J

)

K

A;B

Y

A

Y

I<J

(z

A

I

� z

B

J

)

K

A;A

�1

;

where the m�m matrix K

AB

is de�ned by [57]

K =

�

�

�

�

�

�

�

�

2p+ 1 2p ::: 2p

2p 2p+ 1 ::: 2p

: : : :

2p ::: 2p 2p+ 1

�

�

�

�

�

�

�

�

:
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It is interesting to note that non-unitary similarity transformations recently

have been considered in the context of the quantum gravity, where they are

related to the temporal evolution between unstable quantum backgrounds,

indicating a deep connection between the string quantum gravity and in-

compressible Hall uid [48].

Note that the non-unitary transformations (2.9) induce non-canonical,

complex transformations of the phase space variables { complex coordinates

z

K

= x

K

+ iy

K

and conjugated momenta �p

K

=

1

2

(p

Kx

� ip

Ky

):

z

k

! S

p

z

k

S

�1

p

= z

k

; �p

k

! S

p

�p

k

S

�1

p

= �p

k

+ i2p

X

l6=k

1

z

k

� z

l

;

�z

K

! S

p

�z

K

S

�1

p

= �z

K

; p

K

! S

p

p

K

S

�1

p

= p

K

:

The substitutions p ! p �

e

2

f , �p ! �p �

e

2

�

f can be interpreted as the

introduction of complex, non-local vector potentials

f

K

(r

1

; : : : ; r

N

) � f

Kx

+ if

Ky

= 0; (2.12)

�

f

k

(r

1

; : : : ; r

N

) � f

kx

� if

ky

= �i2p

X

l6=k

1

z

k

� z

l

; (2.13)

which depend on the positions of all N particles.

The magnetic �eld associated to these potentials which acts on the k -

th particle, is given by the curl

B

K

= i

�

�

@

K

�

f

K

� @

K

f

K

�

= 2p�

X

K 6=L

�(z

K

� z

L

);

i.e., each particle sees the N � 1 others as vortices carrying 2p elementary

ux quanta.

In the chosen system of units, ux quantum �

0

= �, and the density of

Landau states n

B

=

eB

2�

= 1=�. Hence the �lling fraction

� =

N

(�=�

0

)

=

1

2p+ 1

;

where the total ux � = �N(2p+ 1).

Using mean-�eld arguments, one can say that electrons move in the aver-

age magnetic �eld 2p+1, in accordance with Jain's hierarchical construction

[86]. However, the additional magnetic �eld B = 2p is generated now by

complex gauge potentials, in contrast to the composite fermion approach

[87], where magnetic uxes attached to point particles are produced by the

real singular vector potentials

~

A

K

= p

~

r

K

X

L6=K

'

KL

; '

KL

= �i arg(z

K

� z

L

);
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or, in complex notation,

A

K

= ip

X

L6=K

1

�z

K

� �z

L

;

�

A

K

= �ip

X

L6=K

1

z

K

� z

L

: (2.14)

The corresponding ground state is known to be [87], [100]

�

p

=

Y

K<L

(z

K

� z

L

)

2p

jz

K

� z

L

j

2p

	

0

(z

1

; : : : ; z

N

) �

� U

p

(r

1

; : : : ; r

N

)	

1

(z

1

; : : : ; z

N

)

which contains one particle states from the higher Landau orbitals and its

energy is higher than the FQHE ground state energy.

Note that the gauge potentials (2.14) can be introduced as a singular

unitary transformation

U

p

p

K

U

y

p

= p

K

�

e

2

A

K

;

U

p

�p

K

U

y

p

= �p

K

�

e

2

�

A

K

:

The last remark can be related to the equivalence between a system of

electrons bounded to the even number of magnetic ux quanta and the

same system without these uxes [108]. From our consideration it follows

that these two theories can be related by a unitary operator U

p

as well as by

a similarity transformation S

p

. In the former case, the equivalence assertion

given in [108] is in fact a quantum-mechanical unitary equivalence. At the

same time, the non-unitary character of S

p

is a loophole which enables

to evade the consequences of the equivalence statement, and reduces the

study of FQHE of the mutually interacting electrons to the IQHE of non-

interacting composite particles.

The potentials (2.12), (2.13) and (2.14) have a form typical for a statis-

tical interaction with a parameter � = 4p� (see, e.g., [105]) and naturally

can be incorporated into the framework of the Chern{Simons theories.

Introduce the particle density at the point r:

%(r) =

N

X

l=1

�(r� r

l

);

and vector potentials satisfying

�

ik

@

i

f

k

(r) = 2p�%(r) (2.15)

and

@

i

f

i

(r) = �i2�p%(r): (2.16)
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The solutions to (2.15)-(2.16) can be easily found:

f

i

(r) = �ip@

i

Z

dr

0

ln(z � z

0

)%(r

0

): (2.17)

Here G

c

(r) =

1

2�

ln r is a Green's function, and '(z) = �i arg z.

Substituting the particle density into (2.17) and letting r = r

k

, we im-

mediately recover (2.12) and (2.13).

Note that the potential (2.14) can be written in an analogous form

A

i

(r)=�2p��

ik

@

k

Z

dr

0

G

c

(r� r

0

)%(r

0

)=p@

i

Z

dr

0

'(z � z

0

)%(r

0

): (2.18)

At the same time, (2.15) is a �eld equation for the Chern-Simons La-

grangian

L = i 

y

(@

0

+ iea

0

) �

1

2

(D

k

 

y

)(D

k

 )�

e

2

8�p

"

���

a

�

@

�

a

�

;

D

i

 = (@

i

+ ieA

i

+ iea

i

) ; D

i

 

y

= (@

i

� ieA

i

� iea

i

) 

y

:

(2.19)

The solutions given by (2.17) and (2.18), produce a magnetic �eld

b(r) = 2p�

N

X

l=1

�(r� r

l

);

and are related by the complex gauge transformation

f

k

(r) = A

k

(r) � ip@

k

Z

dr

0

ln jz � z

0

j%(r

0

):

In conclusion, we can say the following. According to [22] the quantum

states of an incompressible uid can be exhaustively classi�ed by unitary

irreducible highest weight representations of the algebra W

1+1

. Applying

to the representation at � =integer the similarity transformation (2.8) or

(2.10), one automatically (at least in principle) obtains the corresponding

classi�cation for the fractional values of �lling fraction. This transformation

seems to be equivalent to the introduction of a complex abelian C-S gauge

potentials in terms of which a �eld-theoretic description of FQHE can be

given.

5. On the Composite Fermion Approach in the FQHE

Practically all the essential information about the quantum Hall e�ect

can be encoded analytically in the form of the Laughlin wave function (2.1),

which describes the incompressible ground state of N

e

spin-polarized pla-

nar electrons moving in the orthogonal magnetic �eld B. At the same time,

two-dimensional Hall uid can be classi�ed by the unitary irreducible repre-

sentations of the in�nite dimensional algebra W

1+1

, where Lauglin state is

a highest weight vector [22]. The analytic and algebraic aspects of QHE are
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supplemented in the physically transparent way by Jain's composite elec-

tron picture [86], [87], [88]. In this picture, FQHE is related to a system of

non-interacting composite particles consisting from electrons bound to the

magnetic uxes 2p�

0

(�

0

=

ch

e

=

2�

e

).

These �ctitious magnetic uxes can be associated with the singular gauge

potential a(r) such that the magnetic �eld

b(r) = �

ik

@

i

a

k

(r) = 2p�

0

%(r); (2.20)

where %(r) is the particle density.

The statistical gauge �eld

a

i

(r) = �i

p�

0

�

@

i

Z

dr

0

arg(z � z

0

)�(r

0

) (2.21)

provides the required amount of magnetic ux [137], but the corresponding

ground state turns out to be compressible and can not be related to FQHE

[100].

As an alternative, there exists another gauge potential satisfying (2.20),

the Knizhnik-Zamolodchikov connection [96]:

a

i

(r) = �i

p�

0

�

@

i

Z

dr

0

ln(z � z

0

)%(r

0

): (2.22)

The �rst-quantized form of covariant derivatives with this connection

D

I

=

@

@z

I

� 2p

X

J 6=I

1

z

I

� z

J

;

�

D

I

=

@

@�z

I

(2.23)

has been used in [130] to study the scattering problem for particles obeying

braid statistics, and in [54] to construct the Hamiltonian andW

1+1

algebra

generators for the Laughlin function as a highest weight state.

It is not di�cult to notice that these covariant derivatives can be pre-

sented in the form of the similarity transformation [42], [43],

D

I

= S

p

(z

1

; � � � ; z

N

e

)

@

@z

I

S

�1

p

(z

1

; � � � ; z

N

e

);

�

D

I

= S

p

(z

1

; � � � ; z

N

e

)

@

@�z

I

S

�1

p

(z

1

; � � � ; z

N

e

);

where

S

p

(z

1

; � � � ; z

N

) =

Y

K<L

(z

K

� z

L

)

2p

is a singular non-unitary operator. This observation is helpful in expressing

the wave function and quantum operators for the fractional value of the

�lling factor as a similarity transformation of the corresponding quantities

for the non-interacting quasi-particle system.
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Note that analogous transformations earlier have been introduced as a

mapping operator between ground states with di�erent �lling factors [3],

[91].

In this section, we will consider the second-quantized version of this trans-

formation. Introduce the fermion Hamiltonian

H =

1

2m

Z

dr (@

k

� ieA

k

(r))�

y

(r) (@

k

+ ieA

k

(r))�(r) (2.24)

and de�ne the transformed �elds

 (r) = S

p

�(r)S

�1

p

= e

2p

R

dr

0

ln(z�z

0

)%(r

0

)

�(r);

 

?

(r) = S

p

�

y

(r)S

�1

p

= �

y

(r)e

�2p

R

dr

0

ln(z�z

0

)%(r

0

)

:

The operator S

p

can be represented as S

p

= e

G

p

, where the generator G

p

is a singular quadratic functional of the density operator (see Appendix B)

%(x) =  

?

(x) (x) = �

y

(x)�(x):

It is not di�cult to show that the transformed �elds obey the normal

Fermi statistics

�(r

1

)�(r

2

) = (�1)e

!(z

2

�z

1

)�!(z

1

�z

2

)

�(r

2

)�(r

1

) = (�1)e

�2ip�

�(r

2

)�(r

1

);

�(r

1

)�

y

(r

2

) = �(r

1

� r

2

)� e

!(z

1

�z

2

)�!(z

2

�z

1

)

�

y

(r

2

)�(r

1

);

= �(r

1

� r

2

)� e

2ip�

�

?

c

(r

2

)�

c

(r

1

):

Here

!(z

1

� z

2

) = �2p ln(z

1

� z

2

):

Following [86], we will interprete  (r) as an electron �eld, and associate

�(r) with composite particles carrying an even (2p) number of magnetic

ux quanta. In terms of the electron �eld, the Hamiltonian (2.24) reads as

H =

1

2m

Z

dr (@

k

 

?

� ie 

?

A

k

� ie 

?

a

k

) (@

k

 + ieA

k

 + iea

k

 ) ;

where

a

k

(r) = i

2p

e

@

k

Z

dr

0

ln(z � z

0

)%(r

0

):

In the Fock space where the operators �(r) and �

y

(r) act, the Hermitian

conjugation is de�ned by the scalar product

h�

1

j

^

O

y

j�

2

i = h�

2

j

^

Oj�

1

i: (2.25)

It is evident that the operators  (r) and  

?

(r) are not Hermitian conjugate

in the sense of (2.25). Introduce the metric operator �̂ and de�ne a new

scalar product

h�

1

j�̂ 

?

(r)j�

2

i = h�

2

j�̂ (r)j�

1

i:
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This operator will be given by

�̂ = (S

�1

p

)

y

� S

�1

p

;

and its matrix element in theN -particle subspace coincides with the integra-

tion measure (4) introduced in [130], [54]. (These aspects will be discussed

in the next chapter.)

The coordinate representation bra- and ket vectors are generated by

the action of the physical electron �eld  (r) on the vacuum (which is not

changed under the action of S

p

), and are de�ned by the expressions

hz

1

; : : : ; z

N

j = h0j (1) (2) � � � (N) =

= h0je

2p

P

N

K=1

R

dr ln(z�z

K

)%(r)

Y

J<L

e

2p ln(z

J

�z

L

)

�(1)�(2) � � ��(N) =

=

Y

K<L

(z

K

� z

L

)

2p

h0j�(1) � � ��(N)

and

jz

1

; : : : ; z

N

i =  

?

(N) � � � 

?

(2) �  

?

(1)j0i =

= �

y

(N) � � ��

y

(2)�

y

(1)

Y

J<L

e

�2p ln(z

J

�z

L

)

e

�2p

R

dr[

P

N

K=1

ln(z�z

K

)]%(r

0

)

j0i =

=

Y

K<L

(z

K

� z

L

)

�2p

�

y

(N) � � ��

y

(1)j0i:

The quasi-particle �eld satisfy the Schr�odinger equation for the fermion

in the uniform magnetic �eld. Expand �(r) into modes

�(r) = �

0

(r) + ~�(r);

where

�

0

(r) =

N

B

�1

X

j=0

f

j

u

j

(r)

contains only the lowest Landau level wave functions. For the disk geome-

try and the symmetric gauge A =

B

2

(�x; y), they are angular momentum

eigenfunctions

u

j

(r) � z

j

e

�

eB

4

jzj

2

: (2.26)

The Fock space operators satisfy usual fermionic anticommutation relations

ff

j

; f

+

l

g = �

jl

:

The modes corresponding to the lowest Landau level satisfy

�

@

@�z

+

eB

4

z

�

�

0

(r) = 0;
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and the similarity transformation does not cause the level mixing

�

@

@�z

+

eB

4

z

�

S

p

�

0

(r)S

�1

p

= 0:

The ground state of the Hamiltonian H is extremely degenerate. All the

N -particle states of the form

jNi = f

+

j

1

f

+

j

2

� � � f

+

j

N

j0i

have the same energy. One can select a particular ground state applying

Bogolubov's concept of quasi-averages [16]. Following this method, modify

the Hamiltonian by the in�nitesimal perturbation which lifts the degener-

acy, and �nd the unique ground state. After performing necessary calcula-

tions and taking the thermodynamic limit, the perturbation is switched o�,

leaving the results marked by this particular ground state.

In the case under consideration, such a degeneracy lifting naturally arises

due to an external con�ning potential which keeps particles together. This

circumstance selects the ground state as the state with a minimal angular

momentum. It has been shown that the transition to the states with a

higher angular momentum costs energy [21], promoting the incompressible

state of non-interacting quasi-particles as a unique candidate for the ground

state.

Consider the Hamiltonian eigenstate

j
;Ni =

N�1

Y

j=0

f

+

j

j0i:

Case N = N

B

corresponds to the complete �lling of the lowest Landau

level. The Laughlin ground state is given by

hz

1

; : : : ; z

N

e

j
;N

e

i =

Y

K<L

(z

K

� z

L

)

2p

h0j�(1) � � ��(N

e

)j
;N

e

i;

where the last factor

h0j�(1) � � ��(N

e

)f

+

0

� � � f

+

N

e

�1

j0i =

Y

1�K<L�N

e

(z

K

� z

L

)e

�

eB

ext

4

P

N

e

I=1

jz

I

j

2

is the Slater determinant of one-particle states (2.26).

Consequently, the Laughlin function can be de�ned as a similarity trans-

formation of an incompressible state of N

e

non-interacting composite par-

ticles.

The spectrum generating quantum operators are related by the S

p

trans-

formation to the corresponding quantities of the non-interacting quasi-par-

ticle theory. In particular, W

1+1

is generated by the operators

V

i

n

= �

Z

dr�

y

(r)(B

y

0

)

n+i

(B

0

)

i

�(r) = �

Z

dr 

?

(r)(B

y

p

)

n+i

(B

p

)

i

 (r);
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where

B

p

=

@

@z

+

eB

4

�z � 2p

Z

dr

0

%(r

0

)

z � z

0

;

B

y

p

= �

@

@�z

+

eB

4

z:

Unlike the conformal �eld theory, the generators V

i

n

are bounded from

below (n + i � 0), i.e., they form so called \wedge" W

�

= fV

i

n

; jnj > ig,

plus the positive modes n > i [21].

At the same time, the operators

W

i

n

= �

Z

dr 

?

(r) expfnB

y

p

g(B

p

)

i

 (r)

satisfy the W -algebra commutation relations for any integer n 2 ZZ, i � 0,

i.e., they correspond to the full W

1+1

.

When p 6= 0, only N

e

=

N

B

1+2p

states in the lowest Landau level are

occupied. The remaining N

h

= N

B

�N

e

= N

B

(1�

1

1+2p

) states are empty,

i.e., they are described by the hole wave function [64]

	

h

p

(N

e

+ 1; : : : ; N

e

+N

h

)=h
;N

B

jS

�1

p

 

?

(N

e

+N

h

)� � � 

?

(N

e

+1)j
;N

e

i=

=

Z

� � �

Z

N

h

Y

K=1

[dr

K

]h
;N

B

jS

�1

p

 

?

(N

e

+N

h

)� � � 

?

(N

e

+1) 

?

(N

e

)� � � 

?

(1)j0i�

�h0j (1) � � � (N

e

)j
;N

e

i =

=

Z

� � �

Z

N

e

Y

K=1

[dr

K

]	

e

0

(1; � � � ; N

B

)�	

e

p

(1; � � � ; N

e

):

The same wave function reappears while considering a particle-hole con-

jugate system or, equivalently, a system of electrons in a magnetic �eld

�B < 0. Consider a Hamiltonian

H

c

=

1

2m

Z

dr (@

k

+ ieA

k

)�

y

c

(r)(@

k

� ieA

k

)�

c

(r) ;

where �

c

is a composite hole �eld.

The physical holes are introduced by the transformations

 

c

(r) =

�

S

p

�

c

(r)

�

S

�1

p

= e

2p

R

dr

0

ln(�z��z

0

)%

c

(r

0

)

�

c

(r);

 

?

c

(r) =

�

S

p

�

y

c

(r)

�

S

�1

p

= �

y

c

(r)e

�2p

R

dr

0

ln(�z��z

0

)%

c

(r

0

)

;

%

c

(x) =  

?

c

(x) 

c

(x) = �

y

c

(x)�

c

(x):

Express the quasi-hole Hamiltonian in terms of physical �elds

H

c

=

1

2m

Z

dr (@

k

 

?

c

+ ie 

?

c

A

k

+ ie 

?

c

�a

k

) (@

k

 

c

� ieA

k

 � ie�a

k

 

c

) ;
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where

�a

k

(r) = �i

2p

e

@

k

Z

dr

0

ln(�z � �z

0

)%

c

(r

0

)

is charge-conjugate to the connection (2.22).

Charge-conjugate operators can be used to construct the state vectors

for �lling factors others then � = 1=(2p+ 1).

Expand �

c

(r) into the modes

�

c

(r) =

N

B

�1

X

j=0

f

cj

u

cj

(r) + ~�

c

(r); (u

cj

(r) = �u

j

(r))

and de�ne the vacuum j0

c

i (completely �lled Fermi-Dirac sea):

�

c

(r)j0

c

i = 0:

Introduce an incompressible quasi-hole state

j


c

;Ni =

N�1

Y

j=0

f

+

cj

j0

c

i;

and the state representing N

B

holes in the lowest Landau level

�

S

p

j


c

;N

B

i: (2.27)

Note that (2.27) is not an eigenvector of the Hamiltonian H

c

. Then

h


c

;N

B

j

�

S

�1

p

 

?

c

(1) � � � 

?

c

(N

e

)j


c

;N

h

i =

=

Z

� � �

Z

N

B

Y

K=N

e

+1

[dr

K

]h


c

;N

B

j

�

S

�1

p

 

?

c

(1) � � � 

?

c

(N

B

)j0

c

i �

�h0

c

j 

c

(N

B

) � � � 

c

(N

e

+ 1)j


c

;N

h

i =

=

Z

N

B

Y

K=N

e

+1

[dr

K

]	

e

p

(N

e

+ 1; � � � ; N

B

)�	

e

0

(1; � � � ; N

B

) (2.28)

will be the electron wave function for the �lling factor

� = 1�

1

1 + 2p

:

So the \chiral" partners of (2.23)

D

I

=

@

@z

I

;

�

D

I

=

@

@�z

I

� 2p

X

J 6=I

1

�z

I

� �z

J

are engaged in the charge conjugate sector of the theory.

Concluding this chapter, note that the similarity transformation relating

the integral and fractional QHE represents an isometric transformation.

Such isometries can be used to study physically equivalent theories or to
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reduce the problem to a more tractable form. Naturally, this transformation

needs the introduction of a special measure in the Hilbert space [4].
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CHAPTER 3

ON THE HOLOMORPHIC GAUGE QUANTIZATION

1. Introduction

In chapter 2 we have described some aspects of the FQHE in terms of

similarity transformation and complex Chern{Simons gauge potentials. In

this chapter, we consider the problem from the point of view of canonical

quantization.

One of the characteristic features of two-dimensional systems is that the

Green functions (correlators) can be factorized into the product of holomor-

phic and antiholomorphic parts, and corresponding gauge connections can

take complex values.

A known example of a non-real gauge potential is provided by an inte-

grable connection over the con�guration space arising from the Yang-Baxter

equations. This connection is represented by the one-form [95]

! = const �

X

I 6=J

T

a

I


 T

a

J

d ln(z

I

� z

J

); (3.1)

where z

I

= x

I

+ iy

I

are the complex coordinates and T

a

I

are the genera-

tors of the symmetry group for the I

th

particle. This connection governs

the monodromy behavior of conformal blocks in (1+1) dimensional current

algebra and enters into the Knizhnik - Zamolodchikov (KZ) [96] equation

0

@

@

@z

I

�

1

k + c

X

I 6=J

T

a

I


 T

a

J

z

I

� z

J

1

A

	(z

1

; : : : ; z

N

) = 0; (3.2)

@

@�z

I

	(z

1

; : : : ; z

N

) = 0:

The KZ connection plays an essential role in the physics of particles

obeying the braid statistics and in the theory of the quantum Hall e�ect (see,

e.g., [126]). In the latter case, the holomorphic part of the Laughlin wave

function satis�es (3.2) and could be expressed as an N -point correlation

function in a certain conformal �eld theory [114].

The gauge potential (3.1) can be incorporated into the framework of the

Chern-Simons (CS) gauge theory in 2+1 dimensions. Formally, the problem

reduces to the quantization of the theory describing the matter interacting

with the CS �elds in the holomorphic gauge, where the corresponding gauge

condition is expressed by a complex matrix equation

A

x

+ iA

y

= 0 (3.3)

(A

�

is a Lie-algebra-valued gauge connection).

Remind that this type of gauge has been presented as a solution of a

Gau� law constraint in discussions of quantum holonomies [68], and BRST

quantization of non-abelian CS gauge theories [103].
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Note that the holomorphic gauge quantization as considered in, e.g.,

[103] leads to a non-Hermitean Hamilton operator, and for consistency one

has to introduce in the Hilbert space a compensating integration measure,

respectively to which the Hamiltonian is self-adjoint [130].

It must be emphasized that as well as the complex gauge condition is

imposed in the CS theory with a compact gauge group and real gauge

�elds, equation (3.3) must be understood in the sense of some analytic

continuation.

It is worth pointing out at this point that in the paper [140], Witten had

considered the theory with a non-compact (complex) gauge transformation

group and complex CS gauge �elds.

It was shown in this paper that the quantization of self-interacting CS

gauge �elds can be performed as precisely as for compact groups, using

standard tools and without any speci�c di�culties (see also [18], [47]).

In the present item we consider the same scheme as in [140], enlarging the

system by the matter �elds. The point of departure is the observation that

in a holomorphic gauge, in order to have a real Lagrangian (i.e., a unitary

theory), the matter �elds as well as the gauge degrees of freedom must be

accompanied by their complex conjugate counterparts. In the quantization

procedure, we follow Dirac's classical method [29].

As a physical application, we will try to give some convincing arguments,

that the models with complex gauge groups can provide a consistent descrip-

tion of a variety of QHE wave functions.

In Section 2, we consider holomorphic polarization and corresponding

wave functionals for the Chern{Simons �eld interacting with matter. In

Section 3, we de�ne the action and Euler-Lagrange equations for complex

non-Abelian CS gauge �elds interacting with non-relativistic fermions. Im-

posing the holomorphic gauge we perform the Dirac quantization.

In Section 4, we introduce the non-unitary similarity transformation and

reduce the Hamiltonian to a (quasi)free form. Diagonalization is complete

in the Abelian case. In Section 5, we consider a system of planar electrons

in an external magnetic �eld. As an output, we give the construction of

the relevant wave functions for a quantum Hall uid with both Abelian and

non-Abelian CS gauge interactions.

Together with the conventional cartesian coordinates r = x

k

= (x; y), it

is convenient to use the complex notation

z = x+ iy; @ =

@

@z

=

1

2

(@

x

� i@

y

);

�z = x� iy;

�

@ =

@

@�z

=

1

2

(@

x

+ i@

y

)

for particle coordinates and the corresponding Cauchy-Riemann operators.

The vector �elds A(r) = (A

x

; A

y

) will be represented by their holomorphic
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and antiholomorphic components

A(r) = A

x

+ iA

y

;

�

A(r) = A

x

� iA

y

:

A non-Abelian matrix-valued vector potential can be decomposed with re-

spect to a basis of the real Lie algebra of a compact gauge group G:

A

�

(x) =

X

a

A

a

�

(x) � t

a

; a = 1; 2; : : : ; r = dimG: (3.4)

The group generators are anti-Hermitean, traceless matrices t

a

obeying the

Lie algebra

t

a

y

= �t

a

; [t

a

; t

b

] = f

abc

t

c

(3.5)

with f

abc

totally antisymmetric, real structure constants. In the case of an

abelian group, (3.4) is replaced by A

�

(x) = iA

�

(x).

We will abbreviate the spatial coordinates of I

th

particle r

I

to I , when

this will not be ambiguous.

2. Complex Chern{Simons Gauge Fields and Wave Functionals

The Lagrangian describing a Chern{Simons �eld coupled to matter can

be written in the Hamiltonian form

L = i

~

 

_

 �

1

2m

D

k

~

 D

k

 �

1

2

��

ik

f

i

_

f

k

� f

0

(x)[

~

  � ��

ik

@

i

f

k

]:

Canonical momenta are de�ned as usual

�(x) = i

~

 (x); �

k

(x) =

1

2

��

km

a

m

(x);

and the canonical Hamiltonian density is given by

H

c

= �

_

 +�

k

_

f

k

�L =

=

1

2m

D

k

~

 (x)D

k

 + f

0

(x)[

~

 (x) (x) � ��

ik

@

i

f

k

(x)]:

The system is singular. The primary constraint

�

1

(x) = �

0

(x) � 0

reects the absence of canonical momentum conjugate to time component

of the gauge �eld, and the secondary constraint

�

2

(x) =

~

 (x) (x) � ��

ik

@

i

f

k

(x)

is the Gau� law.

Canonical Poisson brackets are given by

n

 (x);

~

 (y)

o

x

0

=y

0

= �i�(x� y)
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and

ff

i

(x); f

k

(y)g

x

0

=y

0

=

2

�

�

ik

�(x� y):

Following Dirac's [29] treatment of constraint systems, the dynamics is gov-

erned by the extended Hamiltonian

H

0

= H

c

+ �

1

�

1

+ �

2

�

2

;

where �

1;2

are the Lagrange multipliers which must be determined by the

gauge choice.

First consider the Coulomb gauge [60] determined by the conditions

�

1

(x) = a

0

= 0; �

2

(x) =

1

2

�

�1

@

m

a

m

(x):

In this gauge, one gets

f

i

(x) =

e

�

�

ik

@

�1

k

 

y

(x) (x):

Here the non-local operator @

�1

k

is de�ned with the help of the Green func-

tion

@

�1

k

f(r) = @

k

Z

G

c

(r� r

0

)f(r

0

);

where

G

c

(r� r

0

) = �

�1

=

1

2�

ln jr� r

0

j

is the Green function in the Coulomb gauge.

Another reasonable gauge choice is the axial one [7]:

�

1

(x) = a

0

(x) = 0 �

2

(x) = a

y

(x) = 0:

The Gau� law can be solved in an explicit way:

f

x

= �

e

�

@

�1

y

 

y

 ; f

y

= 0:

The formal solution for @

�1

y

is given by the Green function

@

�1

y

f(r) =

Z

dr

0

G

a

(r� r

0

)f(r

0

);

where

G

a

(r� r

0

) =

1

2

�(x� x

0

)�(y � y

0

):

For the needs of the Chern{Simons description of the quantum Hall e�ect,

in what follows we will use the called holomorphic gauge. In this gauge, the

gauge �xing conditions are expressed by the complex equations [68], [103],

[42], [46]

�

1

= a

0

= 0; �

2

= a

x

+ ia

y

= 0;

and the solution for the gauge �eld is given by

a

�

(x) = �

i

2�

@

�

Z

dr

0

1

�

ln(z � z

0

) 

y

(r

0

) (r

0

):
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To get P better insight into the problem, consider �rst the complex gauge

determined by the conditions

�

1

(x) = a

0

= 0; �

2

(x) = @

m

f

m

(x) � �

~

  :

Here � is a complex number.

The Lagrange multipliers are determined from the self-consistency con-

ditions

_

�

a

(x) = f�(x); H

0

g � 0:

In this gauge, one gets �

1

= 0, and �

2

is determined from the equation

��

2

(x) =

1

2

�@

t

�

~

 (x) (x)

�

which is reduced to

��

2

(x) = �

1

�

@

i

�

ik

J

k

(x) � �

i

2m

�

~

 (x)D

k

D

k

 (x)�D

k

D

k

~

 (x) (x)

�

=

=

1

2

�@

t

�

~

 (x) (x)

�

:

The Chern{Simons �eld can be determined from the constraint equation

��

ik

@

i

f

k

(x) =

~

 (x) (x):

De�ne the holomorphic Green function

G(r� r

0

) =

1

�

ln(z � z

0

):

The Green functions in di�erent gauges are related by the equation

G(r � r

0

) = 2G

c

(r� r

0

) +

i

�

arg(z � z

0

):

The main properties of the introduced functions are summarized below:

�G

c

(r) = �(r); �G(r) = �(r); �arg(z � z

0

) = 0

and

�

ik

@

i

@

k

G

c

(r) = 0; �

ik

@

i

@

k

G(r) = 2i�(r);

�

ik

@

i

@

k

arg(z � z

0

) = 2��(r); �

ik

@

k

G

c

(r) = �

1

2�

@

i

arg z:

We see that as a solution, one can take

f

k

(x) � a

k

+ ib

k

(x);

where

a

k

(x) = �

1

�

�

kn

@

n

Z

dr

0

G

c

(r � r

0

)

~

 (r

0

);

b

k

(x) = �i�@

k

Z

dr

0

G

c

(r� r

0

)

~

 (r

0

) (r

0

):
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Consider the particular case

� = �

i

�

:

Then

f

k

(x) = �

i

�

@

k

Z

dr

0

�

G

c

(r� r

0

) +

i

2�

arg(z � z

0

)

�

~

 (r

0

) (r

0

)

or

f

k

(x) = �

i

2�

@

k

Z

dr

0

G(r� r

0

)

~

 (r

0

) (r

0

):

These gauge �elds satisfy the equation

f

x

(x) + i f

y

(x) = 0

which in fact is the holomorphic gauge condition.

The corresponding Lagrange multiplier

�

2

(x) � f

0

(x) = �

i

2�

@

t

Z

dr

0

G(r� r

0

)

~

 (r

0

) (r

0

):

Dynamics is governed by the Hamiltonian

H

0

=

1

2m

D

k

~

 (x)D

k

 (x) + f

0

[

~

 (x) (x) � ��

ik

@

i

f

k

(x)]:

After calculating all the commutators, the constraint �

2

is set to zero and

for the gauge �eld, we take the solution

f

�

(x) = �

i

2�

@

�

Z

dr

0

G(r� r

0

)

~

 (r

0

) (r

0

):

Above we have quantized the system after solving the constraints. There

is an alternative way: �rst quantize and afterwards implement the con-

straints as relations for the quantum states.

The Chern{Simons Lagrangian written in the Hamiltonian form

L

CS

= ��

ik

_

f

i

(x)f

k

(x)

determines a symplectic structure of the theory, and establishes the canon-

ical commutation relations

[f

i

(x); f

k

(y)] =

2i

�

�

ik

�(x � y):

As a further step, one must choose a polarization [83], [84], or declare which

one of the phase space variables is a canonical coordinate and momentum.

One possible choice is the Cartesian polarization

�(x) = f

1

(x); �(x) = �

i�

2

f

2

(x):
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Another choice is the so called holomorphic polarization which reects the

complex structure of the underlying two-dimensional manifold. In the com-

plex notation canonical commutation relations look like

�

f(r; t);

�

f(r

0

; t)

�

=

4

�

�(r � r

0

): (3.6)

Introduce the holomorphic variables

a

?

(x) =

p

�

2

�

f(x); a(x) =

p

�

2

f(x);

[a(r; t); a

?

(r

0

; t)] = �(r � r

0

); (3.7)

In the functional space, these operators are realized by

a(x) =

�

�a

?

(x)

; a

?

(x) = a

?

(x):

The quantum states j	 > are represented by the wave functionals 	[a

?

].

The physical states must satisfy the constraint equation

�

�(x) + 2i

p

�

�

�

@a

?

(x) � @a(x)

��

j	i = 0:

In terms of the wave functionals, this equation reads

�

�(x) + i2

p

�

�

@a

?

(x)� @

�

�a

?

(x)

��

	[a

?

] = 0: (3.8)

The solution to (3.8) can be easily found:

	[a

?

] = e


[a

?

]

F [ ;

~

 ];

where


[a

?

] =

Z

dr

�

�

i

2

p

�

a

?

(r)@

�1

�(r) +

1

2

a

?

(r)

�

@

�1

�

@a

?

�

(r)

�

; (3.9)

and F [ ] depends only on the matter �eld variables. (Here we use the

symbolic notation for integro-di�erential operators).

One can now �x the gauge. In the holomorphic gauge, the physical states

satisfy the functional equation

a(x)j	i = 0 or

�

�a

?

(x)

	[a

?

] = 0:

The solution to this equation is

a

?

(x) =

i

2

p

�

�

@

�1

�(x) (3.10)

and the corresponding wave functional is given by

	

H

[�] = exp

�

1

8�

Z

dr

�

@

�1

�(r)@

�1

�(r)

�

F =
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= exp

�

�

1

8�

Z

dr

Z

dr

0

�(r)G(z � z

0

)�(r

0

)

�

F;

where the holomorphic Green function is used.

3. Action and Quantization

Let G be a compact r-dimensional Lie group. The group elements are

parametrized by the set of real parameters g = g(!

1

; !

2

; : : : ; !

r

). The ir-

reducible unitary representations of G are denoted by D

(�)

(g) � D

(�)

(!

a

).

Matrices T

a

(�)

are the corresponding group generators. They satisfy the

commutation relations

�

T

a

(�)

; T

b

(�)

�

= �

��

f

abc

T

c

(�)

; 1 � a; b; c � r:

The matter �elds and quantum states in the representation D

(�)

are labeled

by the weight vectors w

�

� w

m

�

(m = 1; : : : ; R = rankG) .

Consider the non-compact group G

c

( the complex extension of G), re-

garding the group parameters !

a

as complex quantities and with a group

multiplication law given by a holomorphic function.

Recall some facts about representations of complex groups.

� Associated with any irreducible representation D

(�)

of a Lie group

G one, can de�ne its analytic and antianalytic continuations, �

(�)

(g)

= D

(�)

(!

a

) and �

?

(�)

(g) = D

(�)

(!

?

a

), respectively.

� For any two representations D

(1)

and D

(2)

, the tensor product

�

(1;2)

(g) = �

(1)

(g) 
 �

?

(2)

(g) is an irreducible representation of

G

c

.

The other irreducible representations of interest are contragradient

~

�

(1;2)

,

and complex conjugate representations �

?

(1;2)

and

~

�

?

(1;2)

. Introduce the

matter �elds. It is convenient to de�ne the doublet �eld

	(x) =

�

 (x)

~

 

?

(x)

�

; (3.11)

transforming under reducible representation R(g) = �

(1;2)

�

~

�

?

(1;2)

. (The

complex conjugation

?

for fermions is de�ned as an involution operation for

Grassmann variables [12].)

The corresponding contravariantly transforming �elds

~

	(x) =

�

~

 (x);  

?

(x)

�

are uni�ed in the representation

~

R(g) =

~

�

(1;2)

� �

?

(1;2)

. It means that

there exists a non-degenerate real bilinear form <

~

	;	 > invariant under

the group transformations.
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Gauging the rigid group G

c

, we consider the group parameters as com-

plex functions of the space-time coordinates. The Lie-algebra valued gauge

potential F

�

(x) � F

A

�

(x) � T

A

transforms as follows

F

�

(x)! F

!

�

(x) = R(g)F

�

(x)R(g)

�1

+ @

�

R(g) � R(g)

�1

: (3.12)

The matrices T

A

(A = 1; ; : : : ; r; r + 1; : : : 2r) are anti-Hermitean Lie-

algebra generators in the representation of the matter �eld :

T

a

=

 

T

a

(1)


 I

(2)

0

0 I

(1)


 T

a

(2)

!

;

T

r+a

=

 

I

(1)


 T

a

(2)

0

0 T

a

(1)


 I

(2)

!

:

(3.13)

These generators are associated with the group parameters !

a

and !

r+a

�

!

?

a

. The de�ning commutation relations are

�

T

A

; T

B

�

= f

ABC

T

C

; A;B = 1; : : : ; 2r:

With the help of the gauge �elds F

a

�

(x); F

r+a

�

(x) � (F

a

�

(x))

?

, de�ne the

covariant derivatives:

D

�

	(x)=@

�

	(x)�F

�

(x)	(x); D

�

~

	(x)=@

�

~

	(x)+

~

	(x)F

�

(x) (3.14)

These ingredients permit to construct a real Lagrangian invariant under

the involution and the group of complex gauge transformations G

c

:

L =

�

2

"

���

[F

A

�

(x)@

�

F

A

�

(x) +

1

3

f

ABC

F

A

�

F

B

�

F

C

�

] +

+i <

~

	(x); D

0

	(x) >�

1

2m

< D

k

~

	(x); D

k

	(x) > (3.15)

The Euler{Lagrange equations for the matter and gauge �elds are given by

the set

1

�

J

A

= �2i

�

@F

A

0

� i@

0

F

A

� if

ABC

F

B

F

C

0

;

1

�

�

J

A

= �2i@F

A

0

+ i@

0

�

F

A

+ if

ABC

�

F

B

F

C

0

;

i

�

�

A

=

�

@

�

F

A

� @F

A

�

i

4

f

ABC

(F

B

�

F

C

�

�

F

B

F

C

);

i@

t

 = �

1

m

(D

�

D +

�

DD) + iF

0

 :

(3.16)

Here

D =

1

2

(D

x

� iD

y

) = @ +

1

2

�

F ;

�

D =

1

2

(D

x

+ iD

y

) =

�

@ +

1

2

F
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are covariant derivative operators.

The gauge invariant currents

J

A

0

(x) � �

A

(x) = i <

~

	; T

A

	 >;

J

A

(x) = J

A

x

(x) + iJ

A

y

(x) =

1

m

[<

~

	; T

A

�

D	 > � <

�

D

~

	; T

A

	 >];

�

J

A

= J

A

x

� iJ

A

y

=

1

m

[<

~

	; T

A

D	 > � < D

~

	; T

A

	 >]

are covariantly conserved:

@

t

�

A

+ @J

A

+

�

@

�

J

A

� f

ABC

[F

B

0

�

C

�

1

2

(F

B

�

J

C

+

�

F

B

J

C

)] = 0: (3.17)

Note that the gauge coupling constant is set to 1. Its actual value can

be restored by rescaling the gauge �elds and the statistical parameter

A

�

! gA

�

; �!

�

g

2

:

For the canonical quantization, we will use Dirac's method, and try to

adapt it for the case of the complex gauge group.

To begin with, consider the classical theory and discuss the setup of

holomorphic gauge quantization. The canonical Hamiltonian is given by

the expression

H

c

=

Z

dr

h

1

m

�

<D

~

	(r);

�

D	(r>+<

�

D

~

	(r); D	(r)>

�

+F

A

0

(r)�

A

(r)

i

:(3.18)

The system is constrained by the �rst class constraints

�

A

0

=

@L

@

_

F

A

0

� 0;

and

�

A

= �

A

+ i�

h

�

@

�

F

A

� @F

A

�

1

4

f

ABC

(F

B

�

F

C

�

�

F

B

F

C

)

i

� 0: (3.19)

The canonical variables satisfy the Poisson brackets relations

f	(r; t);

~

	(r

0

; t)g

PB

= �i�(r� r

0

)

�

1 0

0 1

�

; (3.20)

fF

A

(r; t);

�

F

B

(r

0

; t)g

PB

= �i

4

�

�

AB

�(r � r

0

): (3.21)

Due to the presence of quadratic terms, the constraint equations (3.19)

are not easy to solve. The obvious way out is to impose the gauge conditions

which linearize them. This possibility is realized in the axial type gauge,

e.g., F

A

y

= 0 [7].

As an alternative solution, one can use a holomorphic gauge, with the

gauge �xing conditions

�

A

= F

A

0

= 0; �

a

= F

a

= 0; �

r+a

=

�

F

r+a

= 0: (3.22)
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In conformity with Dirac's procedure, introduce the total Hamiltonian

H

T

= H

c

+

Z

dr�

A

(r)�

A

(r); (3.23)

where �

A

(r) are the Lagrange multipliers. These functions must be sub-

jected to the self-consistency conditions

@

t

�

A

(r) = f�

A

(r; H

T

g = 0 and @

t

�

A

(r) = f�

A

(r); H

T

g = 0;

and are given by

�

a

(r) =

i

2�

Z

dr

0

G(r� r

0

) � J

a

(r

0

); (3.24)

�

r+a

(r) = �

i

2�

Z

dr

0

�

G(r� r

0

) � J

r+a

(r

0

): (3.25)

Here we have formally introduced the operator

�

@

�1

which de�nes the Green

function

�

@

�1

J

a

(r) =

Z

dr

0

G(r� r

0

)J

a

(r

0

): (3.26)

The Green function

�

@

�1

= G(r) can be represented as a derivative of the

holomorphic Green function

G(r) = @G(z) =

1

�z

= @

1

�

ln z: (3.27)

We see that (3.27) is an ill-de�ned multivalued function. In the non-

relativistic case when the particle density is a sum of �-functions, using

appropriate regularization one may ignore this point and consider G(z) as

a normal function vanishing at the origin [85], [105].

In an analogous way, one can de�ne the antiholomorphic Green functions

�

G(r) =

�

@

�

G(z) =

1

��z

=

1

�

�

@ ln �z: (3.28)

In the holomorphic gauge, the Gau� law constraints (3.19) look like

�

a

= �

a

+ i�

�

@

�

F

a

= 0; �

r+a

= �

r+a

� i�@F

r+a

= 0;

and can be easily solved

�

F

a

(r) =

i

�

Z

dr

0

G(r � r

0

) � �

a

(r

0

); (3.29)

F

r+a

(r) = �

i

�

Z

dr

0

�

G(r� r

0

) � �

r+a

(r

0

): (3.30)
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In the chosen gauge, J

a

= 0;

�

J

r+a

= 0. Using the continuity equation

(3.17), one can express the Lagrange multipliers (3.24) and (3.25) as time

derivatives:

�

a

(r) = �

i

2�

@

t

Z

dr

0

G(r� r

0

)�

a

(r

0

; t); (3.31)

�

r+a

(r) =

i

2�

@

t

Z

dr

0

�

G(r� r

0

)�

r+a

(r

0

; t): (3.32)

The last expressions may be uni�ed with (3.29) and (3.30) composing 3-

vectors

a

a

�

(x) � (�

a

; F

a

k

) = �

i

2�

@

�

Z

dr

0

G(r � r

0

)�

a

(r

0

; t); (3.33)

a

r+a

�

(x) � (�

r+a

; F

r+a

k

) =

i

2�

@

�

Z

dr

0

�

G(r� r

0

)�

r+a

(r

0

; t) (3.34)

which is the solution for the CS gauge �elds in the holomorphic gauge.

Up to now, we have been considering the classical canonical formalism.

The corresponding second quantized Hamiltonian operator is given by

H

T

=

Z

dr

h

1

m

�

< D

~

	(r);

�

D	(r) >+<

�

D

~

	(r); D	(r) >

�

+�

A

(r) � �

A

(r)

i

:

Dynamical equations are de�ned by the commutator

i@

t

O(r; t) �

�

O(r; t); H

T

�

: (3.35)

The Heisenberg equation of motion for the matter �eld is given by

i@

t

	(r; t) = H

S

	(r; t) � �

1

m

(D

�

D +

�

DD)	(r; t) + ia

A

0

T

A

	(r): (3.36)

Here the operator H

S

contains the solutions (3.29){(3.30) for the statistical

gauge �elds.

It is not di�cult to notice that the many-particle wave function

�(r

1

; : : : ; r

N

; t) =< 0j	(r

1

; t) � � �	(r

N

; t)j� >

satis�es the Shr�odinger equation

i@

t

�(r

1

; : : : ; r

N

; t) = �

1

m

N

X

I=1

h

�

D

I

D

I

+D

?

I

�

D

?

I

�

�(r

1

; : : : ; r

N

; t) (3.37)

with the derivative operators given by

D

I

= @

I

�

1

2��

X

I 6=J

T

a

I


 T

a

J

z

I

� z

J

;

�

D

I

=

�

@

I

;

D

?

I

= @

I

;

�

D

?

I

= @

I

+

1

2��

X

I 6=J

T

r+a

I


 T

r+a

J

�z

I

� �z

J

(the matrices T

A

I

act on the group variables of I

th

particle).
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As the �rst application of the framework described above, consider the

case where the fermions are in the fundamental (\chiral") representation

T

a

(1)

= t

a

and T

a

(2)

= 0. The Hamiltonian takes the form

H = �

1

m

X

I

h

�

D

I

D

I

�

�

1 0

0 0

�

+D

?

I

�

D

?

I

�

�

0 0

0 1

�

i

;

where the covariant derivative operators are given by the KZ connections

D

I

= @

I

�

1

2��

X

I 6=J

t

a

I


 t

a

J

z

I

� z

J

;

�

D

I

=

�

@

I

;

D

?

I

= @

I

;

�

D

?

I

=

�

@

I

+

1

2��

X

I 6=J

t

a

I


 t

a

J

�z

I

� �z

J

:

Another case of interest is a \symmetric" representation T

a

(1)

= T

a

(2)

= t

a

.

Now

T

a

= T

r+a

=

�

t

a

0

0 t

a

�

:

The corresponding Hamiltonian is given by

H = �

1

m

X

I

h

�

D

I

D

I

�

�

1 0

0 1

�

+D

?

I

�

D

?

I

�

1 0

0 1

�

i

:

Note that in the case of \chiral" representation the Hamiltonian is not

Hermitean [130], [103], and conjugation causes the interchange between up-

per and lower components of the matter �eld doublet (3.11). At the same

time, in the \symmetric" representation, H

y

= H .

4. Similarity Transformation and Hamiltonian Diagonalization

The matter Hamiltonian

H

Matter

=

Z

dr

0

1

2m

< D

k

~

	(r); D

k

	(r) > (3.38)

contains the gauge connection in the form of a gradient

F

k

(r) =

i

2�

@

k

h

Z

dr

0

G(r � r

0

)�

a

(r

0

) � T

a

�

Z

dr

0

�

G(r� r

0

)�

r+a

(r

0

) � T

r+a

i

:

The situation is simpli�ed when G = U(1): the generators commute and

CS �elds can be eliminated by means of a suitably chosen complex gauge

transformation, reducing the Hamiltonian to the free (diagonal) form.

Formally the gauge �elds can be removed by going to the new �eld vari-

ables

X(x) =

�

�(x)

~�

?

(x)

�

and

~

X(x) = (~�(x); �

?

(x))

de�ned by

	(r) = U(r; )X(r);

~

	(r) =

~

X(r)U

�1

(r; ); (3.39)
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where U(r; ) is a holonomy operator (or monodromy matrix) associated to

an oriented open path  in R

2

connecting the points r

0

and r:

U(r; ) = P exp

�

Z



dx

k

F

k

(x)

�

: (3.40)

(In (3.40), P is a path ordering operation and r

0

is some �xed point.)

Note that due to the non-commutativity of density operators

[�

A

(r); �

B

(r

0

)] = f

ABC

�

C

(r)�(r � r

0

);

the path-ordering is a non-trivial operation. Below we describe a much

simpler procedure which in principle permits to get some information on

non-Abelian wave functions.

Introduce the operator


(r)=�

i

2�

Z

dr

0

G(r� r

0

)�

m

(r

0

) �H

m

+

i

2�

Z

dr

0

�

G(r� r

0

)�

r+m

(r

0

) �H

r+m

;

where

�

M

(r) = i

~

	(r)H

M

	(r)

are mutually commuting charge densities. The matrices

H

m

=

 

H

m

(1)

0

0 H

m

(2)

!

; H

r+m

=

 

H

m

(2)

0

0 H

m

(1)

!

; m = 1; : : : ; R;

are the Cartan generators in the representation R(g). Consider the trans-

formations

	(r) = e


(r)

X(r);

~

	(r) =

~

X(r)e

�
(r)

: (3.41)

The action of the diagonal Cartan generators on the 	-�elds

H

M

	

w

= �

M

w

�	

w

(3.42)

de�nes a 2R dimensional weight vector �

M

w

(M = 1; : : : ; R; r+1; : : : ; r+R)

�

m

w

=

�

w

m

1

0

0 w

m

2

�

; �

r+m

w

=

�

w

m

2

0

0 w

m

1

�

:

(Remind that w

�

's are the weight vectors of the representation D

(�)

.)

The transformation (3.41) can be written in the component form

	

w

(r) =

X

w

0

�

e


(r)

�

w;w

0

X

w

0

(r) = e




w

(r)

X

w

(r); (3.43)

where the operators




w

(r) = �

i

2�

Z

dr

0

G(r� r

0

)�

m

(r

0

) ��

m

w

+

+

i

2�

Z

dr

0

�

G(r� r

0

)�

r+m

(r

0

) ��

r+m

w
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are labeled by the corresponding weight vectors.

In order to �nd the (anti)commutation rules obeyed by matter �elds, we

use the relations

[


w

(1);	

w

0

(2)] = �

1

2�

G(1� 2) < w; w

0

>

�

1 0

0 1

�

	

w

(2): (3.44)

Suppose that both matter �elds X(x) and 	(x) correspond to fermions.

Straightforward calculations show that the requirement of the fermionic

commutation relations together with (3.43) and (3.44) leads to the condi-

tions imposed on the weight vectors of the representations D

(1)

and D

(2)

:

e

i

2�

<w

1

;w

0

1

>

= e

i

2�

<w

2

;w

0

2

>

= 1: (3.45)

Note that in certain circumstances, it is more suitable to considerX(x) as

bosonic �elds (e.g., in the Ginzburg{Landau description of QHE). In these

cases, instead of (3.45) we have to choose a weight lattice which satis�es the

condition

e

i

2�

<w

1

;w

0

1

>

= e

i

2�

<w

2

;w

0

2

>

= �1: (3.46)

Let j� > be the eigenstate of the Hamiltonian H

matter

. The correspond-

ing N -particle wave function is given by the matrix elements

< 0j	

w(1)

(r

1

) � � �	

w(N)

(r

N

)j� >=

=

Y

I<K

U(z

I

;w(I); z

J

;w(J)) < 0je

P




w

(I)(r

I

)

X

w(1)

(r

1

) � � �X

w(N)

(r

N

)j� > :

Here

U(z

I

;w(I); z

J

;w(J) >)=G(z

I

�z

K

)

�

w

m

1

(I)�w

m

1

(K) 0

0 w

m

2

(I)�w

m

2

(K)

�

�

�

�

G(z

I

� z

K

)

�

w

m

2

(I) � w

m

2

(K) 0

0 w

m

1

(I) � w

m

1

(K)

�

:

Following (3.45), the weight vectors must belong to a lattice de�ned by

the equations

1

2��

< w

1

(I);w

1

(K) >= �2p

IK

;

1

2��

< w

2

(I);w

2

(K) >= �2q

IK

with p

IK

and q

IK

integers. (In the bosonized theory, r.h.s. of these relations

are changed by �1 giving odd numbers)

As we see, the wave function is factorized into a \kinematical" prefactor

and some dynamical part. The typical term in the prefactor is of the form

�

(z

I

�z

K

)

�2p

IK

(�z

I

��z

K

)

�2q

IK

0 (z

I

�z

K

)

�2q

IK

(�z

I

��z

K

)

�2p

IK

�

; (3.47)
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and depends on representations and quantum numbers carried by particles

under consideration.

As a practical application of the proposed scheme, one can indicate the

theory of the quantum Hall e�ect (see, e.g., [126]), where the expressions

like (3.47) are used as building blocks for many-particle wave functions.

This and other developments will be considered in the subsequent section.

5. The Quantum Hall Effect and the Laughlin States

In the Abelian case which is obtained by the formal substitutions H

A

!

i; �

a

! �� = �

~

  ; �

A

! i, the gauge �elds can be removed by the non-

unitary similarity transformations [91], [42]

 (r) = S�(r)S

�1

= e

�

1

2�

R

dr

0

G(z�z

0

)~�(r

0

)�(r

0

)

�(r); (3.48)

~

 (r) = S ~�(r)S

�1

= ~�(r)e

1

2�

R

dr

0

G(z�z

0

)~�(r

0

)�(r

0

)

: (3.49)

(Here and hereafter we abandon the doublet notation.) The � �elds will

satisfy the Fermi{Dirac commutation relations, i.e.,

1

2�

= �2�p (3.50)

with a positive integer p.

Note that in the Abelian case, the holomorphic (A = 0) and axial (A

y

=

0) gauges are related by the complex gauge transformation

A

k

axial

= A

k

hol

� i

1

�

@

k

� = �

1

2�

�

k1

Z

dr

0

�(x� x

0

)�(y � y

0

)%(r

0

); (3.51)

where

�(r) =

1

2�

Z

dr

0

ln jz � z

0

j%(r

0

) +

+

i

2�

Z

dr

0

tan

�1

j

y � y

0

x� x

0

j�(x� x

0

)�(y � y

0

)%(r

0

):

The Hamiltonian

H

matter

=

Z

dr

0

1

2m

[D

k

~

 D

k

 +D

?

k

 

?

D

?

k

~

 

?

]

can be represented in a free form:

H

matter

=

Z

dr

0

1

2m

[@

k

~�@

k

�+ @

k

�

?

@

k

~�

?

]: (3.52)

Remind that in the theory there are two pairs of canonically conjugate

variables: (�; ~�) and (�

?

; ~�

?

). It can be shown (see Appendix C) that

in the Abelian case tilde -operation can be identi�ed with the Hermitean

conjugation, i.e.,

~� = �

y

; ~�

?

= �

?y

: (3.53)
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(This fact will be useful in order to study completeness relations in the

corresponding Hilbert space.)

For further needs, it is convenient to use a charge conjugate �eld �

c

� �

?

.

In terms of newly introduced �elds, the Hamiltonian is expressed as follows

H

matter

=

Z

dr

0

1

2m

@

k

�

y

(r

0

)@

k

�(r

0

)�

�

Z

dr

0

1

2m

@

k

�

y

c

(r

0

)@

k

�

c

(r

0

) + �

1

; (3.54)

i.e., it corresponds to the two types of free fermions. �

1

is a reordering

constant which will be speci�ed below. The basic anticommutators are

given by the relations

f�(r); �

y

(r

0

)g = �(r� r

0

); f�

c

(r); �

y

c

(r

0

)g = �(r� r

0

):

The quantum Hall e�ect is a condensed matter phenomenon, taking place

at low temperatures when the planar system is exposed to a strong perpen-

dicular magnetic �eld B = �

ik

@

i

A

k

. Below we consider the standard case

of external homogeneous magnetic �eld generated by the symmetric gauge

potential A

x

= �

1

2

By;A

y

=

1

2

Bx. The corresponding Hamiltonian will be

now

H

matter

=

Z

dr

0

1

2m

fr

k

�

y

(r

0

)r

k

�(r

0

)�r

k

�

y

c

(r

0

)r

k

�

c

(r

0

)g+�

1

; (3.55)

where the covariant derivatives are de�ned by

r

k

� = (@

k

� ieA

k

)�; r

k

�

c

= (@

k

+ ieA

k

)�

c

:

For simplicity assume that the system is spin polarized and treat electrons

as scalar fermions. The fermion �elds can be decomposed into the normal

modes

�(r; t) =

1

X

n=0

N

B

�1

X

j=0

F

nj

U

nj

(r)e

�iE

n

t

; (3.56)

�

c

(r; t) =

1

X

n=0

N

B

�1

X

j=0

F

c

nj

�

U

nj

(r)e

iE

n

t

; (3.57)

where U

nj

(r) are solutions of the one-particle Schr�odinger equation

�

1

2m

r

2

k

U

nj

(r) = E

n

U

nj

(r);

and E

n

=

jeBj

m

(n+

1

2

) are the energy eigenvalues. The quantity

N

B

=

jeBj

2�

� (Area)
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is the number of quantum states per Landau level. F

nj

and F

y

nj

are the Fock

space lowering and rising Fermi operators and satisfy the usual relations

fF

nj

; F

y

ml

g = �

nm

�

jl

:

The same is valid for the charge conjugate operators F

c

nj

and F

c+

ml

.

The Hamilton and angular momentum operators are given by

H

matter

=

X

nj

E

n

F

+

nj

F

nj

�

X

nj

E

n

F

c+

nj

F

c

nj

+�

1

; (3.58)

J =

X

nj

[jF

+

nj

F

nj

� jF

c+

nj

F

c

nj

] + �

2

: (3.59)

In (3.58){(3.59), we abbreviate

X

nj

�

1

X

n=0

N

B

�1

X

j=0

:

The reordering constants

�

1

=

1

X

n=0

N

B

�1

X

j=0

E

n

= N

B

1

X

n=0

E

n

; (3.60)

�

2

=

1

X

n=0

N

B

�1

X

j=0

j =

N

B

(N

B

� 1)

2

1

X

n=0

1 (3.61)

are the energy and the angular momentum of a state with totally occupied

one-particle excitations.

The eigenstates of the Hamiltonian H

m

are represented by the direct

products

jN > 
jM

c

>� F

+

n

1

j

1

� � �F

+

n

N

j

N

j0 > 
F

c+

m

1

l

1

� � �F

c+

m

M

l

M

j0

c

>; (3.62)

where the vacuum states are annihilated by the lowering operators

F

nj

j0 >= F

c

ml

j0

c

>= 0; n;m = 0; 1; : : : ; j; l = 0; 1; : : : ; N

B

� 1: (3.63)

The state vector (3.62) corresponds to the energy eigenvalue

jeBj

m

[

N

X

i=1

[(n

i

+

1

2

)�

M

X

k=1

(m

k

+

1

2

)] + �

1

:

The angular momentum of this state is

J =

N

X

i=1

j

i

�

M

X

k=1

l

k

+�

2

:

Represent the matter Hamiltonian as the sum

H

matter

= H +H

c

; (3.64)
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where

H =

X

nj

E

n

F

+

nj

F

nj

; H

c

= �

X

nj

E

n

F

c+

nj

F

c

nj

+�

1

: (3.65)

The �rst term here corresponds to the particle degrees of freedom while

the second one to the holes in the charge conjugate sector. In order to

justify this assertion, de�ne the states

j
 >=

1

Y

n=0

N

B

�1

Y

j=0

F

+

nj

j0 > (3.66)

and

j


c

>=

1

Y

m=0

N

B

�1

Y

l=0

F

c+

ml

j0

c

> : (3.67)

Together with the vacua j0 > and j0

c

>, they satisfy the following relations

H j0 >= H

c

j


c

>= 0; H j
 >= �

1

j
 >; H

c

j0

c

>= �

1

j0

c

> :

The elementary charged excitations with the energy E

n

and angular mo-

mentum j can be identi�ed with the states

F

+

nj

j0 > or F

c

nj

j


c

> :

In the same time, the states

F

nj

j
 > or F

c+

nj

j0

c

>

can be interpreted as opposite charge hole excitations with the energy �E

n

and the angular momentum �j.

The corresponding wave functions are determined by the matrix elements

< 0j�(r; t)F

+

nj

j0 >=< 


c

j�

y

c

(r; t)F

c

nj

j0 >= U

nj

(r)e

�iE

n

t

;

< 0

c

j�

c

(r; t)F

c+

nj

j0

c

>=< 
j�

y

(r; t)F

nj

j
 >=

�

U

nj

(r)e

iE

n

t

:

As basic sets in the Hilbert space, one can use the coordinate represen-

tation vectors which satisfy the completeness relations

j0 >< 0j+

X

N�1

1

N !

Z

[

Y

1�I�N

dr

I

]�

y

(1) � � ��

y

(N)j0 >

< 0j�(N) � � ��(1) = 11; (3.68)

j
 >< 
j+

X

N�1

1

N !

Z

[

Y

1�I�N

dr

I

]�(1) � � ��(N)j
 >

< 
j�

y

(N) � � ��

y

(1) = 11: (3.69)

Similar relations hold in the conjugate sector. Note that the validity of

these completeness relations is guaranteed by (3.53).
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So the multi-particle states can be represented by the wave functions

< 0j�(1) � � ��(N

e

)j�

e

> or < 
j�

y

(1) � � ��

y

(N

h

)j�

e

> (3.70)

and multi-hole state by the wave functions

< 0

c

j�

c

(1) � � ��

c

(N

h

)j�

h

> or < 


c

j�

y

c

(1) � � ��

y

c

(N

e

)j�

h

> : (3.71)

In the theory of QHE, a distinguished role is played by the states where

all the particles are in the lowest Landau level (LLL). For the LLL (n = 0)

operators and wave functions, we will use the simpli�ed notation

F

0j

� f

j

; U

0j

(r) � u

j

(r):

Decompose

�(r) = �

0

(r) + �

0

(r);

where

�

0

(r) =

N

B

�1

X

j=0

f

j

u

j

(r)

is the lowest level �eld operator and LLL states are built up by the appli-

cation of lowering and rising operators satisfying the oscillator algebra:

ff

j

; f

y

l

g = �

jl

:

Totally �lled LLL state is presented by the vector

j! >=

Y

0�j�N

B

�1

f

y

j

j0 > :

The analogous state in the conjugate sector will be given by

j!

c

>=

Y

0�j�N

B

�1

f

cy

j

j0

c

> :

Instead of the identity resolution (3.69) for the LLL states, one can use

the LLL projection operator

� = j! >< !; j+ (3.72)

+

X

1�N�N

B

1

N !

Z

[

Y

1�I�N

dr

I

]�(1) � � ��(N)j! >< !j�

y

(N) � � ��

y

(1)

and its conjugate partner

�

c

= j!

c

; N

B

>< !

c

; N

B

j+ (3.73)

+

X

1�N�N

B

1

N !

Z

[

Y

1�I�N

dr

I

]�

c

(1) � � ��

c

(N)j!

c

>< !

c

j�

y

c

(N) � � ��

y

c

(1):

The eigenstates of the Hamiltonian (3.58) are expressed in terms of �

quanta excitations. At the same time, the physical observables and wave

functions must be expressed in terms of the �elds  . As we have already
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noted, these operators are related by the similarity transformations (3.48){

(3.49). In terms of  �elds, the completeness relations and the projection

operators are given by

Sj0 >< 0jS

�1

+ (3.74)

+

X

N�1

1

N !

Z

[

Y

1�i�N

dr

i

]

~

 (1) � � �

~

 (N)Sj0><0jS

�1

 (N) � � � (1)=11;

Sj0

c

>< 0

c

jS

�1

+ (3.75)

+

X

N�1

1

N !

Z

[

Y

1�i�N

dr

i

]

~

 

?

(1) � � �

~

 

?

(N)Sj0

c

><0

c

jS

�1

 

?

(N) � � �

~

 

?

(1)=11

c

;

� = Sj! >< !jS

�1

+ (3.76)

+

X

1�N�N

B

1

N !

Z

[

Y

1�I�N

dr

I

] (1) � � � (N)Sj!><!jS

�1

~

 (N) � � �

~

 (1);

�

c

= Sj!

c

>< !

c

jS

�1

+ (3.77)

+

X

1�N�N

B

1

N !

Z

[

Y

1�I�N

dr

I

] 

?

(1) � � � 

?

(N)Sj!

c

><!

c

jS

�1

~

 

?

(N) � � �

~

 

?

(1):

Equations (3.74){(3.77) together with the properties of the similarity

transformation can be used in order to make a reasonable choice of the

Hilbert space basis. Below we list these sets indicating the corresponding

coordinate representation bra-vectors.

1. Vacua are invariant under the similarity transformation

Sj0 >= j0 >; < 0jS

�1

=< 0j ! < 0j (1) � � � (N); (3.78)

Sj0

c

>= j0

c

>; < 0

c

jS

�1

=< 0

c

j ! < 0

c

j 

?

(1) � � � 

?

(N): (3.79)

2. The operator S does not lead to the Landau level mixing

S�S

�1

= � ! < !jS

�1

~

 (1) � � �

~

 (N); (3.80)

S�

c

S

�1

= �

c

! < !

c

jS

�1

~

 

?

(1) � � �

~

 

?

(N): (3.81)

The LLL projected Hamiltonian is

H

0

= H+H

c

; (3.82)

where

H = E

0

N

B

�1

X

j=0

f

+

j

f

j

and

H

c

= �E

0

N

B

�1

X

j=0

f

c+

j

f

c

j

+N

B

E

0

:
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The corresponding angular momentum operator is given by

J

0

=

N

B

�1

X

j=0

j[f

+

j

f

j

� f

c+

j

f

c

j

] +

N

B

(N

B

� 1)

2

:

Consider the state

j�;N

e

>=

N

e

�1

Y

j=0

f

+

j

j0 > : (3.83)

This state corresponds to a system ofN

e

electrons in LLL with the energy

N

e

E

0

and the minimal total angular momentum J =

1

2

N

e

(N

e

� 1).

The supplementary state in the conjugate sector

j�

c

;N

h

>=

N

h

�1

Y

j=0

f

c+

j

j0

c

> (3.84)

describes a system of N

h

= N

B

�N

e

holes with the same total energy and

the angular momentum

J

c

=

1

2

N

B

(N

B

� 1)�

1

2

N

h

(N

h

� 1):

Consequently,

jL;N

e

>= j�;N

e

> 
j!

c

> (3.85)

and

jG;N

e

>= j0 > 
j�

c

;N

h

> (3.86)

are degenerate eigenstates of H

0

with the energy N

e

E

0

.

Now it is easy to show that (3.85) describes the Laughlin state [99] with

�lling fraction

� =

1

2p+ 1

:

The corresponding wave function is obtained by applying the projection

operator �:

11
�jL;N

e

>! 	

e

�

(1; ; ; ; ; N

e

) =< 0j (1) � � � (N

e

)j�; N

e

>=

=

Y

K<L

(z

K

� z

L

)

2p

h0j�(1) � � � �(N

e

)j�;N

e

i: (3.87)

The last factor

h0j�(1) � � ��(N

e

)f

+

0

� � � f

+

N

e

�1

j0i =

Y

1�K<L�N

e

(z

K

� z

L

)e

�

eB

4

P

N

e

I=1

jz

I

j

2

is the Slater determinant of one-particle LLL states.
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As an alternative, one can use the bosonized version of a similarity trans-

formation, take as �(x) the Bose �elds and �x the statistical parameter by

�

1

2��

= 2p+ 1:

As a ground state, consider

j�

b

;N

e

>=

�

f

+

0

�

N

e

j0 > : (3.88)

The wave function is given by the matrix element

	

e

�

(1; ; ; ; ; N

e

) =< 0j (1) � � � (N

e

)j�

b

; N

e

>=

=

Y

K<L

(z

K

�z

L

)

2p+1

h0j�(1)� � ��(N

e

)j�

b

;N

e

i: (3.89)

The factor

h0j�(1) � � ��(N

e

)

�

f

+

0

�

N

e

j0i = e

�

eB

4

P

N

e

I=1

jz

I

j

2

is a symmetric wave function describing N

e

lowest Landau level bosons

condensed in the state with the zero angular momentum.

Another state of interest is the Girvin state (3.86). The corresponding

wave function is extracted acting by the projection operator �

c

:

11
�

c

jG;N

e

>! 	

e

�

c

(1; : : : ; N

e

) = h!

c

jS

�1

~

 

?

(1) � � �

~

 

?

(N

e

)j�

c

i =

=

Z

� � �

Z

N

B

Y

K=N

e

[dr

K

]h!

c

jS

�1

~

 

?

(1) � � �

~

 

?

(N

B

)j0

c

i �

�h0

c

j 

?

(N

B

) � � � 

?

(N

e

+ 1)j�

c

>=

=

Z

� � �

Z

N

e

Y

K=1

[dr

K

]	

e

0

(1; � � � ; N

B

)�	

e

p

(1; � � � ; N

e

); (3.90)

where the relation < !

c

jS

�1

=< !

c

j is assumed to be valid. This wave

function describes the state with �lling fraction �

c

= 1� � = 2p=2p+1 [64]

(	

e

0

corresponds to the totally �lled lowest level).

Another representation of the same state will be given by the matrix

element

h!jS

�1

~

 (N

e

+N

h

) � � �

~

 (N

e

+ 1)j�i =

=

Z

� � �

Z

N

h

Y

K=1

[dr

K

]h!jS

�1

~

 

(

N

e

+N

h

) � � �

~

 (N

e

+ 1)

~

 

(

N

e

) � � �

~

 

(

1)j0i �

�h0j (1) � � � (N

e

)j!i =

Z

� � �

Z

N

e

Y

K=1

[dr

K

]	

e

0

(1; � � � ; N

B

)�	

e

p

(1; � � � ; N

e

): (3.91)
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The holomorphic factor

Q

(z

I

� z

J

)

2p

is usually associated to the 2p

magnetic ux quanta attached to electrons forming what is called Jain's

composite particles [86]. In the present discussion, it is a matrix element of a

complex gauge transformation relating two di�erent, non-unitary equivalent

bases.

In the same way, one can consider wave functions for noncompressible

states of fractionally charged quasiparticles.

Although in the non-Abelian case we do not know the exact wave func-

tion, one can nevertheless get some sort of kinematical information con-

tained in the form of similarity transformations (3.43). In order to �nd the

N -particle wave function, we need some basis vectors, e.g.,

< 0j 

w(1)

(1) � � � 

w(N)

(N) =

=< 0j exp[

X




w(I)

(I)] exp [

1

2�

X

I>K

G(z

I

� z

K

) < w(I);w(K) >]

< 0j�

w(1)

(1) � � ��

w(N)

(N) =

=

Y

I<K

(z

I

� z

K

)

�

1

2��

<w(I);w(K)>

< 0j�

w(1)

(1) � � � �

w(N)

(N): (3.92)

(deriving (3.92) we have used the fact that vacuum is annihilated by the

operators 


w(I)

(I)).

Apply this formula to the case of SU(2) non-Abelian theory. For the  's

in the fundamental representation, the weight vectors

w

�

= �i

correspond to the isospin up " an down # components. The corresponding

basis vector is given by the expression

Y

(z

I"

� z

K"

)

2p

Y

(z

R#

� z

S#

)

2p

�

�

Y

(z

I"

� z

R#

)

�2p

< 0j�

w(1)

(1) � � ��

w(N)

(N): (3.93)

So we see that the wave function of any Hamiltonian eigenstate in this

basis contains an holomorphic prefactor indicating the attraction between

di�erent isospins and repulsion between the same ones. It was conjectured

that this type of wave functions may be related to the multilayered QHE

states [71], [50].
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CHAPTER 4

ANYON SUPERCONDUCTIVITY

1. Introduction

The BCS theory of superconductivity contains two essential points: the

�rst one is a temperature dependent gap in the spectrum of charged parti-

cles, and the second one is the spontaneous breaking of U(1) gauge symme-

try.

The gap provides the rigidity of the wave function. It is given in terms

of the order parameter which is a characteristic of a spontaneous symme-

try breaking and can be calculated using microscopical equations or the

Ginzburg-Landau e�ective theory.

The Nambu-Goldstone particle associated with the broken symmetry is

combined with an electromagnetic potential resulting a massive photon and

hence the Meissner e�ect. The gauge group U(1) is broken to the Z

2

and

according to general assertions about the spontaneously broken symmetries

a massless excitation is described by a �eld that transforms under U(1) like

the coordinates of the coset space U(1)=Z

2

. In other words, under a gauge

transformation with a parameter �, the electron �eld transforms as

 (x)! e

i

e

~c

�

 (x)

and the Nambu-Goldstone �eld undergoes the transformation

�(x)! �+

2e

~c

�:

Remind the essence of the Anderson-Higgs-Kibble mechanism in the U(1)

gauge theory (see, e.g., [1], [70]).The exact photon propagator can be rep-

resented as

D

��

(q) �

�

��

q

2

1

1� e

2

�(q

2

)

:

Here the �(q

2

) is the invariant structure function determined from the

current-current correlator:

(q

2

�

��

� q

�

q

�

)�(q

2

) �

Z

dxe

iqx

< 0jT (J

�

(x)J

�

(0))j0 > :

A photon becomes massive if q

2

�(q

2

) does not vanish as q

�

! 0, i.e., if there

is a pole in the structure function. This pole at q

2

= 0 must be associated

with the zero mass particles which interact with the electromagnetic current.

In order to make our discussion more transparent, recall some facts about

the Meissner e�ect and London's equation [52]. London's equation for the

supercurrent describes a linear response of a superconductive matter to an

external electromagnetic �eld. The supercurrent is de�ned by

j

s

=

~e

2m

n

s

(r��

2e

~c

A); (4.1)
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where e = �jej is the electron charge, m is its mass and n

s

is the den-

sity of the superconducting electrons. �(x) is the phase of the condensate

wave function and is de�ned by the phase of the abnormal electron Green

function.

This de�nition is invariant under the gauge transformation

A! A+r�(r);

�! �+

2e

~c

�:

Equation (4.1) leads to London's equation

r

2

B = �

2

L

B (4.2)

for the magnetic �eld inside the superconductor.

The quantity

�

2

L

=

mc

2

4�n

s

e

2

is known as the London penetration depth. The superconducting density

and the penetration depth are temperature dependant quantities.

The solution of (4.2)

B = B

0

e

�x=�

L

explains the Meissner e�ect.

The phase function � is associated with a scalar massless mode { a phason

or a Goldstone particle, which couples to the Maxwell �eld. This coupling

is provided by the term

L � (@

�

��

2e

~c

A

�

)

2

:

In 3+1 dimensions, the presence of zero mass particles is guaranteed by the

Goldstone theorem [65], and is a consequence of a spontaneous symmetry

breaking. However, in the lower dimensions, there is no spontaneous sym-

metry breaking (see, e.g., [70]) and the origin of the zero mass pole must

be founded somewhere else. Such a mechanism was proposed by the Fetter,

Hanna and Laughlin in their paper on the Chern{Simons superconductivity

[53].

In 2 + 1 dimensions, a conserved current can couple not only the elec-

tromagnetic potentials, also the Chern{Simons gauge �eld. The gauge in-

variance tells us that the corresponding interaction is described by the La-

grangian

L

int

� j

�

(x)

�

A

�

(x)� �"

���

@

�

a

�

(x)

�

;

where j

�

is a gauge invariant current and �-is a constant.

The needed massless �eld is associated with the three dimensional curl

@

�

� � "

���

@

�

a

�

;
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and hence with the gauge �eld a

�

(x) (in 2+1 dimensions, a massless gauge

�eld has one degree of freedom).

The kinematical part for this �eld can be constructed from the Chern-

Simons term "

���

a

�

@

�

a

�

which is gauge invariant up to the total divergence.

The Maxwell-like term

�

1

4

(@

�

a

�

(x) � @

�

a

�

(x))

2

contains higher derivatives and seems to be less important in the static

limit.

In the absence of electromagnetic interactions, the massless pole must be

presented in the current-current correlators. Besides the massless pole, there

must be a gap in the fermion spectrum. This gap stabilizes the Goldstone

mode against decay into fermion-hole pairs.

In summary, a reasonable criterion for superconductivity is the presence

of a massless pole in the current-current correlation function combined with

a gap in the fermion spectrum.

These conditions can be realized in a model describing a matter interact-

ing with the Chern{Simons �eld and the external electromagnetic potential.

The magnetic part of the Chern{Simons �eld can provide a homogeneous

background which organizes the electrons into Landau bands with a �nite

gap. Integrating out the matter �elds, one gets an e�ective Lagrangian of

the following form [10]

�[f

��

] = �e

2

i

+ �

i

e

i

� �b

2

+ �b+ �"

���

A

�

@

�

a

�

:

Here

b = "

ik

@

i

a

k

; e

i

= @

0

a

i

� @

i

a

0

are the Chern{Simons magnetic and electric �elds. The corresponding

strength tensor is f

��

= @

�

a

�

� @

�

a

�

. Quantities �; �

i

; � do not depend

on the Chern{Simons �elds.

Consider the partition function

Z =

Z

Da

�

e

i

R

d

3

x�[a

�

]

: (4.3)

Performing the change of variables, this integral can be rewritten as [110],

[31]

Z =

Z

D'e

i

R

d

3

xL

eff

[']

;

where

L

eff

['] = �

1

4�

�

2

i

+

1

4�

�

2

�

1

2

(@

0

'� qA

0

)

2

�

v

2

2

(@

k

'� qA

k

)

2

�

�

r

�

2�

2

"

ik

�

i

(@

k

'� qA

k

) +

1

p

2�

�(@

0

'� qA

0

) (4.4)
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is expressed in terms of a scalar �eld '. This �eld represents the sound

wave with characteristic speed of propagation v. The parameters are given

by

q =

�

p

2�

; v

2

=

�

�

:

The e�ective Lagrangian (4.4) is invariant under the gauge transformation

'! '+ q�; A

�

! A

�

+ @

�

�

(' transforms as the phase of the complex �eld carrying the charge q).

In the present chapter, we study the application of the Chern{Simons

theory to the description of the anyon superconductor. In Section 2, we

consider the problem using the formalism of thermo �eld dynamics. In

Sections 3, we introduce a relativistic model and in Section 4, we calculate

the thermodynamical potential. In Section 5, this model is applied to the

analysis of the Meissner e�ect.

2. Anyon Superconductivity in Thermo Field Dynamics

In 1989, Fetter, Hanna and Laughlin [53] showed, that a free gas of

anyons, has a massless pole in the electromagnetic linear response function.

This result was con�rmed by di�erent authors [24], [120], [10], [110], [77],

[61], [76], [40] with a hope to realize the anyonic mechanism of the high

temperature superconductivity. The central objects of this calculations are

current-current correlation functions, in terms of which one can express both

the linear response and the e�ective action or the free energy.

The assertion that the Chern{Simons theory provides an adequate frame-

work for the description of planar superconductors can be easily justi�ed.

Consider a matter interacting with a statistical gauge �eld with a statistical

parameter �. A common approach is based on the expansion around a sys-

tem of planar fermions in the homogeneous Chern{Simons magnetic �eld

which is generated by the net particle density

�

b = �

mn

@

m

�a

n

= �

e

�

�:

The �lling fraction

� =

�

n

L

is expressed in terms of the electron density � and the density of states n

L

.

n

L

=

eb

2�

; � = �

2��

e

2

for spin 0;

n

L

=

eb

�

; � = �

��

e

2

for spin

1

2

:

For spinless particles the statistical parameter � =

�

�

(� = �

e

2

�

2�

) and for

fermion doublet � =

�

2�

(� = �

e

2

�

�

).
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Consider the situation when the ground state j�

0

i corresponds to the N

totally �lled Landau levels, i.e., � = N .

The threshold behavior of the linear response can be studied using the

corresponding formulae of the preceding chapter. The pole in correlator

corresponds to the zero of the function (1.47)

D(q) =

�

1 +

1

�

�

1

(q)

�

�

1

�

2

�

!

2

�

0

(q) + q

2

�

2

(q)

�

:

For the spinless particles, the threshold values of structure functions are

given by (1.42)

�

0

(0) =

1

2

N

�

m`

2

; �

1

(0) =

1

2

N

�

and �

2

(0) = �

1

2

N

2

�m

:

(For spin 1/2 fermions, the same quantities are to be taken with factor 2.)

As we have seen, �

1

(0) = ��, and the dispersion law for the zero mass

excitation is given by

!

2

=

2��

m

2

q

2

for spin 0;

!

2

=

��

m

2

q

2

for spin

1

2

:

The linear response function for the system under consideration was calcu-

lated several times. We will utilize the abbreviations of the paper [24], and

quote the result for the kernel

K

��

(q) =

e

m

� (�

��

� �

�0

�

�0

)� ie�

��

(q); q

�

= (!; q);

�

00

(q) = �

8

>

>

:

�

2

�

mN

2

D

9

>

>

;

�1

q

2

�

0

(q);

�

0i

(q) = �

8

>

>

:

�

2

�

mN

2

D

9

>

>

;

�1

h

� q

i

!�

0

(q) + "

ij

q

j

e

2

�

m�

�(q)

i

;

�

ik

(q) = �

8

>

>

:

�

2

�

mN

2

D

9

>

>

;

�1

n

�

2

�

2

m

2

N

2

[ �(q) ��

1

(q) + �

2

(q)]�

ik

+

+

q

i

q

k

q

2

h

!

2

�

0

(q) �

�

2

�

2

m

2

N

2

(�(q) ��

1

(q) + �

2

(q) + �

3

(q)D)

i

�

� i"

ik

��

mN

!�(q)

o

:

The functions �

a

, � and D are the following combinations of the structure

functions

�

0

(q) = �

�

2

�

mN

2

�

0

(q);

�

1

(q) = �

�

N

�

1

(q);
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�

2

(q) = �

m

�

[!

2

�

0

(q) + �

3

(q) + q

2

�

2

(q)];

D(q) = [1 + �

1

(q)]

2

��

0

(q) [1 + �

2

(q)];

�(q) = ��

1

(q)[1 + �

1

(q)] + �

0

(q)[1 + �

2

(q)]:

Note that the existent calculations of this functions are rather tedious and

the results are usually given in the form of the low momentum expansion

[53], [24], [61], [77].

In the preceding chapter, we have demonstrated a more transparent way

to calculate the correlators. It was shown that all invariant functions actu-

ally can be expressed with the help of a single function, both for the zero and

�nite temperatures. At the same time, we do not use the low-momentum

expansion.

All the above consideration is valid for the case of the non-zero temper-

ature. The crucial moment is to get information on the �nite temperature

behavior of the response function and the correlators. This can be done

using the Matsubara formalism or some real time statistical �eld theory.

As a �rst step, we consider the problem in the framework of a real time

thermal �eld theory.

Here we present a brief account of the evaluation of the thermodynamic

potential of a non-relativistic fermion matter  in 2+1 dimensions, cou-

pled to Chern{Simons and Maxwell �elds [41] (for other �nite temperature

calculations see [120], [76], [77], [61], [90]). The basic Lagrangian is given

by

L = �

1

4

F

��

F

��

�

e

2

�

2�

"

���

a

�

@

�

a

�

+ en

e

A

0

+

+ i 

y

i D

0

 �

1

2m

jD

k

 j

2

+ U 

y

 :

Here

D

�

= @

�

+ i(eA

�

+ ga

�

);

and n

e

is a background neutralizing charge density.

Maxwell and Chern-Simons electric and magnetic �elds are de�ned by

the equalities

E

i

= F

i0

; B = "

mn

@

m

A

n

;

e

i

= f

i0

; b = "

mn

@

m

a

n

:

In the present discussion, we will use the mean-�eld approximation (MFA):

gauge �elds are replaced by the average values which are divided into given

backgrounds and small uctuations

A

�

!< A

�

>=

�

A

�

+A

�

; a

�

!< a

�

>= �a

�

+ a

�

:
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Background �elds are chosen to correspond to homogeneous magnetic �elds

�

B and

�

b. The matter part of the Hamiltonian is given by

H

e

=

Z

�

1

2m

jr

k

 j

2

+ (e

�

A

0

+ g�a

0

) 

y

 

�

dr+

+

Z

fF

0

I

0

� F

k

I

k

g dr = H

0

+H

I

: (4.5)

Here

r

k

= @

k

+ i(e

�

A

k

+ g�a

k

);

F

0

= e

�

A

0

+ g�a

0

+

1

2m

(e

�

A

k

+ g�a

k

)

2

; F

k

= e

�

A

k

+ g�a

k

;

I

0

=  

y

 ; I

k

=

i

2m

�

 

y

r

k

 � (r )

y

 

�

:

The dynamical equations for the gauge �elds in MFA are given by

@

�

< F

��

(x) >=< J

�

(x) > �en

e

�

�0

;

�

e

2

�

2�

"

���

< f

��

>=< j

�

> :

Here < J

�

> and < j

�

> are the thermal averages

< J

�

> =

�

�H

e

�A

�

(x)

�

=

�


� < A

�

(x) >

;

< j

�

> =<

�H

e

�a

�

(x)

>=

�


� < a

�

(x) >

:

The thermodynamic potential 
f< A

�

>;< a

�

>; �g is de�ned with the

help of the grand canonical partition function

e

��


= Tre

��(H

e

��N)

;

where � = 1=T is the inverse temperature, � is the chemical potential, and

N is the particle number operator.

In order to calculate this quantity, we adopt the real-time formalism

known as Thermo Field Dynamics (TFD) [129], [102]. TFD was constructed

by the requirement to express thermal averages of quantum operators in the

form of vacuum expectation values. This idea was achieved by introducing

�ctitious \tilde" operators

~

A corresponding to each of the operators A de-

scribing the system under consideration, and of a thermal vacuum j0; � >,

which is required to satisfy

< 0; �jAj0; � >=

TrAe

��H

Tre

��H

:
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For the hamiltonian H = H

0

+H

I

, the free energy is given by [113]




e

= 


0

+

1

Z

0

ds < 0; �jTfH

I

(t

0

)e

�is

R

+1

�1

dt

^

H

I

(t)

gj0; � >;

where j0; � > is the thermal vacuum in the interaction representation with

respect to H

0

. The thermal interaction Hamiltonian is

^

H

I

(t) = H

I

(t)�

~

H

I

(t):

In our case,H

0

andH

I

are given by (4.5) (the term with a chemical potential

must be added to H

0

), and for the free energy, we obtain


 = 


0

+

Z

F

�

(x) < 0; �jI

�

(x)j0; � > dr�

�

i

2

Z

F

�

(x)F

�

(x

1

)[< 0; �jTfI

�

(x)I

�

(x

1

)gj0; � > �

� < 0; �jTfI

�

(x)

~

I

�

(x

1

)gj0; � >]drdr

1

dt

1

+O(e

4

);

where




0

= ��

�1

lnTrfe

��H

0

g

does not depend on the gauge �eld uctuations.

For our purposes, it is su�cient to consider time independent uctua-

tions. In that case, the �nal expression for the free energy up to the desired

order in gauge coupling constants will be given by


 = 


0

+

Z

�

0

�

0

(r)dr+ (4.6)

+

i

4�`

2

Z

�(r

1

)[S(�`

2

�

1

=2;�`

2

�

2

=2)�(r

1

� r

2

)]�(r

2

)dr

1

dr

2

�

�

i"(h)

2�m`

2

Z

�(r

1

)[S

0

(�`

2

�

1

=2;�`

2

�

2

=2)�(r

1

� r

2

)]H(r

2

)dr

1

dr

2

+

+

i

4�m

2

`

2

Z

H(r

1

)[S

00

(�`

2

�

1

=2;�`

2

�

2

=2)�(r

1

� r

2

)]H(r

2

)dr

1

dr

2

:

Here h = e

�

B + g

�

b is determined by the background (`

2

= 1=jhj), and

�

0

= eA

0

+ ga

0

; H = eB + gb:

The di�erential operator S(�`

2

�

1

=2;�`

2

�

2

=2) is determined as follows

S(x; y) = e

�(x+y)=2

1

X

n=0

1

X

�=0

n!

(n+ �)!

x

�

+ y

�

2

L

�

n

(x)L

�

n

(y)�

�

n

(�); (4.7)

where L

�

n

(x) is an adjoint Laguerre polynomial, and the temperature de-

pendence is determined by the functions

�

0

n

(�) = i�(1� sin

2

�

n

) sin

2

�

n

;
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�

�

n

(�) = 2 i

sin

2

�

n

� sin

2

�

n+�

E

n+�

�E

n

:

Here

sin

2

�

n

=

1

1 + e

�E

n

is the Fermi distribution, and E

n

is the Landau level energy

E

n

=

1

m`

2

(n+ 1=2)� �:

The quantities S

0

and S

00

are given by

S

0

(x; y) =

@

@x

S(x; y);

S

00

(x; y) =

@

2

@x@y

S(x; y)

and

�

0

=

jhj

2�

X

n

sin

2

�

n

:

Corresponding currents are given by

< J

0

(r) > =

�


�A

0

(r)

= e�

0

+

ie

2�`

2

S�

0

(r) �

ie"(h)

2�m`

2

S

0

H(r);

< J

k

(r) > =

�


�A

k

(r)

=

=

i

2�m`

2

"

kl

@

l

n

[e

0

S=2 + e"(h)S

0

]�

0

(r) �

�

"(h)

m

[e

0

S

0

=2 + e"(h)S

00

]H(r)

o

;

(4.8)

< j

0

(r) > =

�


�a

0

(r)

= g�

0

+

ig

2�`

2

S�

0

(r)�

ig"(h)

2�m`

2

S

0

H(r);

< j

k

(r) > =

�


�a

k

(r)

=

=

i

2�m`

2

"

kl

@

l

n

[g

0

S=2 + g"(h)S

0

]�

0

(r)�

�

"(h)

m

[g

0

S

0

=2 + g"(h)S

00

]H(r)

o

:

(4.9)

As a practical application of obtained results, we will reconsider the simplest

model already studied in [120], [77], [76].Now,  will be a two-component

spinor, the Chern{Simons gauge coupling g = e. The background

�

B = 0,

e

2

�

�

b = �en

e

,

�

A

0

= �a

0

= 0.

Note that our main result { formulas (4.6) and (4.8)- (4.9) must be

slightly modi�ed, taking into account the doubling of fermion degrees of

freedom.
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It can be shown that at zero temperature,

S = �im`

2

(�`

2

�+ 3�

2

`

4

�

2

=8);

S

0

= im`

2

(� + 3�

2

`

2

�=4);

S

00

= �im`

2

(�

2

+ �

3

`

2

�=2);

�

0

= n

e

:

Hence the fermionic contribution to the free energy is given by


 =

Z

drfen

e

(A

0

+ a

0

) + e

2

"(h)

�

�

(A

0

+ a

0

)(B + b) +

+e

2

[�

1

2

(

�

�

)

2

m

n

e

(E

i

+ e

i

)

2

+

1

2

(

�

�

)

2

�

m

(B + b)

2

] +

+e

2

[

3

16

(

�

�

)

4

�m

n

2

e

@

i

(E

i

+ e

i

) � @

k

(E

k

+ e

k

)�

�

1

4

�

�

�

�

4

�

2

mn

e

@

i

(B + b) � @

i

(B + b)�

3

4

"(h)

�

�

�

�

3

�

n

e

@

i

(E

i

+ e

i

) � (B + b)]g:

From the gauge �eld equations,

��A

0

=< J

0

> �en

e

;

�B = �"

mn

@

m

< J

n

>;

e

2

��a

0

= �"

mn

@

m

< j

n

>;

e

2

��b = �� < j

0

>;

and from the equations (4.8){(4.9) it follows

�

e

2

+

3e

2

�

2

4�n

e

��

m

n

e

��

3m�

2

8�n

2

e

�

2

�

B +

+

�

e

2

m�

�n

e

�+

3e

2

m�

3

8�

2

n

2

e

�

2

�

3�

4n

e

�

2

�

A

0

= 0; (4.10)

�

e

2

�

m

��

3�

4n

e

�

2

+

e

2

�

3

2m�n

e

�

2

�

B +

+

�

e

2

�+

3e

2

�

2

4�n

e

�

2

��

2

�

A

0

= 0: (4.11)

Adopting numerical estimates used in [76],

e

2

�m

= 1:1 � 10

�5

;

me

2

�

2

n

e

= 24;

�n

e

m

2

= 4:7 � 10

�7

the dominant terms of (4.10) and (4.11) are given by

�

e

2

�

m

n

e

�

�

B +

e

2

m�

�n

e

�A

0

= 0;
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�

e

2

�

m

��

3�

4n

e

�

2

�

B +

�

e

2

�+

3e

2

�

2

4�n

e

�

2

��

2

�

A

0

= 0:

The superconducting solution of this coupled system is given by the con�g-

urations

A

0

= �

~

Ee

�n�r

; B =

~

Be

�n�r

; n

2

= 1=�

2

:

The relevant equations are now given by

(1� )

~

B +

e

2

�

�

�

~

E = 0;

�

�

�

1�

3

4



�

1

�

~

B +

�

1�

�

�n

e

m

2

�

3e

2

�

2

4�m

��

~

E = 0;

where  = �

2

L

=�

2

and �

L

= (m=e

2

n

e

)

1=2

is the London penetration depth.

For  we obtain

 =

�

1 +

e

2

�

2

4�m

�

�1

� 1�

e

2

�

2

4�m

in a good agreement with a result cited in [76].

It can be shown that at high temperatures  remains positive, so in this

model there is no phase transition to the normal phase. (The temperature

dependence will be considered in the subsequent section).

In conclusion, note that the proposed scheme of calculations permits one

to analyse in principle a large variety of models for arbitrary static gauge

�eld con�gurations up to any desired order in the derivative expansion.

3. Relativistic Anyon Superconductors

The zero-temperature Meissner e�ect presented in the 2+1 dimensional

anyon matter provoked considerable e�orts in order to promote the Chern-

Simons gauge theory as a hypothetical candidate for the high T

c

supercon-

ductivity.

The most important points in that development are the existence of the

massless (Goldstone) pole in the current correlators [53], the cancelation of

bare and induced C-S terms [10], and detailed calculations of the e�ective

action and the thermodynamical potential for the fermions interacting with

the C-S and Maxwell �elds [24], [120], [76], 110].

Among the others, it was shown that the Meissner e�ect is partial, i.e.,

the magnetic �eld starts to penetrate into the sample at any non-zero tem-

perature [76].

In the present section, we try to give some complementary insights into

these intriguing question.

It will be demonstrated that the Meissner e�ect exists only if a matter

consists of two types of fermions with opposite signs of the magnetic moment

interaction. Such a system can be naturally realized considering planar

relativistic fermions. Note that di�erent versions of the relativistic anyon
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superconductivity have been considered in [110], [31], [128]. Below we follow

[45].

The model under consideration describes 2+1 dimensional Dirac fermions

coupled to the Maxwell electromagnetic (A

�

) and the Chern-Simons (a

�

)

gauge �elds.

Metric �

��

and Levi -Civita tensors "

���

in 2+1 dimensions are de�ned

by

�

��

= diag(+1;�1;�1) "

012

= +1; "

kl

� "

0kl

: (4.12)

The space-time coordinates and the vector �elds are de�ned by

x

�

= (ct ; r); A

�

= (A

0

; A) = (c

�1

' ; A); a

�

= (a

0

; a); (4.13)

where ' is the Maxwell scalar potential, and the magnetic �eld is

B = @

x

A

y

� @

y

A

x

= � "

kl

@

k

A

l

:

For the Dirac matrices in 2+1 dimensional space - time we use the represen-

tation



0

=

8

>

>

>

:

1 0

0 �1

9

>

>

>

;

; 

1

=

8

>

>

>

:

0 �1

1 0

9

>

>

>

;

; 

2

=

8

>

>

>

:

0 i

i 0

9

>

>

>

;

;

f

�

; 

�

g = 2�

��

; [

�

; 

�

] = 2 i "

���



�

: (4.14)

The fermionic Lagrangian, including the interaction with gauge �elds, is

given by

L

e

=

Z

�

 fi~c

�

D

�

� �mc

2

g dr;

D

�

= @

�

+ i(e=~)(A

�

+ a

�

);

(4.15)

where m > 0 and � = �1. In order to clarify the meaning of the parameter

�, consider translation and Lorentz rotation generators, which in the spinor

representation are given by

P

�

= � i~@

�

; L

��

=

i

4

[

�

; 

�

] =

1

2

"

���



�

:

Introducing the Pauli -Lubanski scalar W = (1=2 ) "

���

L

��

P

�

, we get

W = �

1

2

i~

�

@

�

:

Obviously, W coincides (up to a constant factor) with the kinetic part of

the Dirac operator. Further, taking m > 0, we have

P

�

P

�

=

E

2

c

2

� P

2

= m

2

c

2

! mc = (P

�

P

�

)

1=2

> 0;

and rewrite the 2+1 dimensional free Dirac equation as

n

W + s � (P

�

P

�

)

1=2

o

 = 0:
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We see that � = �1 corresponds to the particles with opposite helicities.

In the non-relativistic limit, the corresponding one -particle Hamiltonian

takes the form

H

NR

= �

~

2

2m

D

2

� �

e~

2m

B + e':

As we see, di�erent values of � in 2+1 dimensions give rise to di�erent signs

of the magnetic moment interaction, which (as we will see later) leads to

non-trivial e�ects in the magnetic and thermal properties of the system.

As it follows from (4.15), spinors carry the dimensionality [ ] = length

�1

and consequently, J

�

= ec

�

 

�

 turns out to be the planar density describ-

ing the current distribution over the layer of a sample. On the other hand,

we consider A

�

as the � = 0; 1; 2 part of the real 3+1 dimensional elec-

tromagnetic �eld. The latter should satisfy the Maxwell equations where

the sources are spatial densities of fermion current. Spatial densities in

a multilayered system can be introduced using the planar ones, averaging

them along the interplanar distance, i.e., as �

�1

J

�

(� � 10

�9

cm). In this

consideration, the Maxwell equations take the form

1

�

0

@

�

F

��

=

1

�

ec

�

 

�

 ;

where �

0

is the universal magnetic constant.

These equations can be derived from (4.15) and the Maxwell Lagrangian

which, being adapted to 2+1 dimensions, reads as

L

Maxwell

= �

�

4�

0

Z

F

��

F

��

dr;

where the �eld strengths E

x

, E

y

and B � B

z

are usual in 3+1 dimensional

quantities.

The total Lagrangian for this system is a sum of matter and gauge �eld

Lagrangians

L = �

�

4�

0

F

��

F

��

�

c

~

e

2

�

0

2�
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���
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@
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+ ecn
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�

D
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� �mc

2

g ;

D

�

= @

�

+ i(e=~)(A

�

+ a

�

); m > 0; � = �1;

(4.16)

where en

e

is the planar density of the background neutralizing charges.

The Euler-Lagrange equations derived from (4.16) are given by

ecn

e

g

�0

+ (�=�

0

)@

�

F

��

= ec

�

 

�

 ;

c

~

e

2

�

0

�

"

���

@

�

a

�

= ec

�

 

�

 ;

i~c

�

D

�

 � �mc

2

 = 0:

In what follows, we consider the case of an external (non dynamical)

Maxwell �eld. The Chern{Simons �eld will be considered in the mean
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�eld approximation (MFA), operating with its quantum average. In this

consideration, we take classical values for the gauge �elds, while the Dirac

�eld will be quantized.

In order to study static properties of this relativistic system, we can

take into account only the time-independent con�gurations of gauge �elds

(@

0

A

�

= @

0

a

�

= 0). Analysis will be performed in a self-consistent �eld

approximation developed in [76]. It means that fermionic currents in the

classical equations of motion will be replaced by the corresponding thermal

averages which are de�ned in terms of the grand canonical ensemble

h� � � iTre

�(H

e

��mc

2

N)=k

B

T

= Tr

n

� � � e

�(H

e

��mc

2

N)=k

B

T

o

:

Here H

e

is the quantized fermionic hamiltonian

H

e

=

Z

 

y

(r)fi~c

0



k

D

k

(r)+ecA

0

(r) + eca

0

(r)+�mc

2



0

g (r)dr; (4.17)

and N is the particle number operator

N =

Z

 

y

(r) (r)dr

while k

B

, T and � are the Boltzmann constant, the temperature and the

dimensionless chemical potential, respectively.

The resulting set of dynamical equations is given by

�

�

�

0

�A

0

+ ecn

e

= hJ

0

(r)i; (4.18)

�

�

�

0

"

kn

@

n

B = hJ

k

(r)i; (4.19)

c

~

e

2

�

0

�

b = hJ

0

(r)i; (4.20)

c

~

e

2

�

0

�

"

kn

@

n

B = hJ

k

(r)i: (4.21)

Introduce the thermodynamic potential




e

(T; �; A; a) = �k

B

T lnTr exp

�

�

H

e

(A; a)� �mc

2

N

k

B

T

�

:

The current operators can be expressed in terms of functional derivatives

J

�

(r) =

�H

e

�A

�

(r)

=

�H

e

�a

�

(r)

:

Using the cyclic property of the trace operation, one gets

hJ

�

(r) i =

�


e

�A

�

(r)

=

�


e

�a

�

(r)

: (4.22)
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Present the gauge �elds as sums of �xed background and uctuating parts

A

�

= A

b

�

+A

f

�

; a

�

= a

b

�

+ a

f

�

:

Background corresponds to the uniform Maxwell and Chern{Simons mag-

netic �elds B

b

= const; b

b

= const.

Separate the fermionic Hamiltonian into the free and interacting parts

H

e

= mc

2

(H

0

+H

int

), where

H

0

=

Z

 

y

(r)fi `

0



0



k

D

b

k

(r) + �

0

g (r)dr;

D

b

k

(r) = @

k

+ i(e=~)(A

b

k

+ a

b

k

);

H

int

=

1

mc

2

Z

J

�

(r)fA

f

�

(r) + a

f

�

(r)gdr

(4.23)

(`

0

= ~=mc is the Compton wave length for the fermions).

Applying the perturbation theory formalism, we get for the thermody-

namic potential




e

= 


0

� k

B

T ln

*

Texp

8

<

:

�

�

Z

0

H

int

(�)d�

9

=

;

+

0

; � =

mc

2

k

B

T

: (4.24)




0

is the thermodynamical potential for the system in the uniform mag-

netic background




0

(T; �; A

b

; a

b

) = �k

B

T lnTr exp

�

��(H

0

(A

b

; a

b

)� �N)

	

(4.25)

and h� � � i

0

is de�ned as

h� � � i

0

Tr

n

e

��(H

0

��N)

o

= Tr

n

� � � e

��(H

0

��N)

o

:

In (4.24), H

int

(�) is the interaction Hamiltonian in the Matsubara repre-

sentation

H

int

(�) =

1

mc

2

Z

�

 (�; r)

�

 (�; r)fA

f

�

(r) + a

f

�

(r)gdr;

and T denotes a � -ordering. Matsubara �elds are given by

 (�; r) = e

�(H

0

��N)

 (r)e

��(H

0

��N)

; (4.26)

�

 (�; r) = e

�(H

0

��N)

�

 (r)e

��(H

0

��N)

=  

y

(��; r)

0

: (4.27)

One -particle Hamiltonian describing a fermion in the uniform magnetic

background is given by

H

b

= i `

0



0



k

D

b

k

+ �

0

;

D

b

k

= @

k

+ i(e=~)(A

b

k

+ a

b

k

);

A

b

k

(r) + a

b

k

(r) =

1

2

"

kl

x

l

(B

b

+ b

b

)� @

k

�(r);
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where �(r) is the gauge �xing term.

Solving the Schr�odinger equation for H

b

(�; "), one gets the following set

of the positive and the negative energy eigenvectors (see Appendix A)

H

b

(�; ")u

n

(�; ") = + !

n

u

n

(�; ");

H

b

(�; ")v

n

(�; ") = � !

n

v

n

(�; ");

(4.28)

where the eigenvalues, being independent of � and ", are given by

!

n

=

p

1 + 2hn; h =

`

2

0

`

2

:

Note that except the lowest energy eigenvalues, the solutions of the Dirac

equation are always paired. For the lowest energy, there is an asymmetry,

i.e., there is no v

0

mode for �" = 1 and no U

0

mode for �" = �1.

As a complete set of commuting operators, we take the Hamiltonian H

b

and operator

p = �i`D

b

1

� "`

�1

y: (4.29)

The fermion �eld operators are presented as follows

 =

X

np

fa

np

u

np

+ b

y

np

v

np

g;

�

 =

X

np

fa

y

np

�u

np

+ b

np

�v

np

g:

Fermion creation-annihilation operators satisfy the standard relations

fa

np

; a

y

n

0

p

0

g = f b

np

; b

y

n

0

p

0

g = �

nn

0

�(p� p

0

);

u

np

= u

n

� jp >; n

np

= v

n

� jp > :

The quantized Hamiltonian H

0

and the particle number operator N are

de�ned in the normal ordered form

H

0

=

X

np

!

n

a

y

np

a

np

+

X

np

!

n

b

y

np

b

np

; (4.30)

N =

X

np

a

y

np

a

np

�

X

np

b

y

np

b

np

(4.31)

avoiding the problems with the negative energy states.
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4. Thermodynamic Potential

In this section we will �nd an analytic expression for the thermodynamic

potential in the second order approximation with respect to the gauge �eld

uctuations. All the operator expressions like Hamiltonian, currents, etc.,

are assumed to be normal ordered.

Substituting H

0

into (4.25), we get




0

(A

b

; a

b

) = k

B

T

X

np

ln(1� �

+

n

) + k

B

T

X

np

ln(1� �

�

n

);

where �

+

n

and �

�

n

are the Fermi distribution functions for the particles and

antiparticles

�

�

n

= f1 + exp[�(!

n

� �)]g

�1

; !

n

=

p

1 + 2hn;

while n and p are the quantum numbers labeling the one-particle states.

Due to the degeneracy of the Landau levels, summation over p gives the

factor V=2�`

2

, where V is the area occupied by the sample. We get
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)

V
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n

) +

k

B

T
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2

X

n
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�

n

); (4.32)

where ` is a magnetic length.

Calculating the linear and second order correction to 


0

, one needs an

explicit form of the averages hJ

�

(�; r)i

0

and hJ

�

(�

1

; r

1

)J

�

(�

2

; r

2

)i

0

.

The thermal �elds are given by

 (�; r) = e

��

X

np

fa

np

u

np

(r)e

�!

n

�

+ b

y

np

v

np

(r)e

!

n

�

g;

�

 (�; r) = e

���

X

np

fa

y

np

�u

np

(r)e

!

n

�

+ b

np

�v

np

(r)e

�!

n

�

g:

The non-vanishing thermal averages are
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y
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a
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0

= �
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0

�
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�
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;

where �

pp

0

stands for �(p� p

0

). Using normal ordered current operators, we

get

hJ

�

(�; r)i

0

= hJ

�

(0; r)i

0

= hJ

�

(r)i

0

= ec�
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(r); (4.33)
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(r)g: (4.34)

Wick's theorem for non vanishing quartic combinations yields
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As a result, the current-current correlators are expressed by

hJ
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):(4.35)

The second term in the last expression is the contribution of the connected

part
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where the summation over n andm should be performed, taking into account

the spectral asymmetry of the one-particle Hamiltonian.

Using (4.35) and performing the � -integrations, we get
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Terms with n = m in the �rst two lines of the last expression are de�ned

as

�

�
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� �
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m
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)�:

In (4.37), we made the zero temperature subtraction at zero chemical po-

tential.

Expanding (4.24) with respect to gauge uctuations and substituting

(4.33) and (4.36), we get the thermodynamic potential in the second order

approximation
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Expressions for �
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) can be presented in the translation
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where u

n

and v

n

are the one-particle states in the occupation number rep-

resentation, while Z � Z(k) is the coherent state operator.

Due to the spectral asymmetry, summations in the di�erent terms of

(4.38) and (4.39) are performed either from 0 to 1 or from 1 to 1.

Operator �

��

(k) can be represented in a planar-transverse form. In

particular, consider the following identity
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where H

b

is the relativistic Hamiltonian.

Using equations (4.39), (4.40) and (4.28), we get
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This expression and analogous ones for "
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(k) and k
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together with f
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Since the vectors k

m

= (k
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) and "
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) de�ne a local

orthogonal basis, one can rewrite the polarization operator as
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where �

E

, �

CS

and �

M

are the structure functions (the explicit expressions

for these functions are given in the Appendix E). These structure functions

for the non-relativistic case have been evaluated in [41].

Explicit calculations show that
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The corresponding expression for the thermodynamic potential is given by
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where

^

� stands for the di�erential operators �(�`

2

�=2) (� is the Laplace

operator).

Now, using (4.22), we get the desired expressions for the current averages.

They are represented as linear functions of the gauge �eld uctuations

hJ

0

(r) i = ec�

0

+

e

2

mc

2

~

2

^

�

E

�

A

f

0

+ a

f

0

�

+

e

2

c

~

^

�

CS

�

B

f

+ b

f

�

; (4.47)

hJ

k

(r) i = � "

kn

@

n

�

e

2

c

~

^

�

CS

�

A

f

0

+ a

f

0

�

+

e

2

m

^

�

M

�

B

f

+ b

f

�

�

: (4.48)

5. Uniform Magnetic Field and the Meissner Effect

As a starting point, consider the system in the zeroth order approxima-

tion, i.e., A

f

�

= a

f

�

= 0. Equations of motion (4.18) and (4.19) are reduced

to

n

e

= �

0

; (4.49)

b

b

=

�~

e�

0

n

e

; (4.50)
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where �

0

is given by (4.45).

Note that n

e

is the free fermion density in the sample and (4.49) serves

to de�ne the chemical potential � = �(T;B

b

; b

b

; n

e

).

We will study a compound system consisting of two sorts of fermions

with equal gauge couplings e

1

= e

2

= e and di�erent helicities �

1

= ��

2

corresponding to di�erent signs of the magnetic moment interaction, which

on its turn can be associated with spin up and spin down fermions. In

that case, the r.h.s. of the equation (4.49) gets the contributions, de�ned

by (4.45) from both sorts of particles. Remark that, since the di�erent

sorts have the equal charges, corresponding magnetic lengths are also equal.

Moreover, as it follows from (4.50),realistic values of B

b

are small compared

with those of b

b

and can be neglected:

" = sgn(eB

b

+ eb

b

) = sgn(eb

b

):

In other words, " can be considered as independent of B

b

, and without

loss of generality we can set �

1

"

1

= ��

2

"

2

= 1. Taking into account the

contributions of both types, the equation of motion (4.49) can be rewritten

as

n

e

=

h

2�`

2

0

(�

1

+ �

2

); (4.51)

where �

1

and �

2

are the corresponding �lling fractions

�

1

�

X

n=0

�

+

n

(�

1

)�

X

n=1

�

�

n

(�

1

); (4.52)

�

2

�

X

n=1

�

+

n

(�

2

)�

X

n=0

�

�

n

(�

2

); (4.53)

and �

1

and �

2

are the chemical potentials for the particle types 1 and

2, respectively. In (4.52) and (4.53), we took into the consideration the

spectral asymmetry of the one-particle Hamiltonian, which is reected in

the absence of n = 0 modes in certain terms.

Introduce the partial contributions to the particle density

n

(1;2)

e

=

h

2�`

2

0

�

1;2

: (4.54)

By means of (4.51), we can express h in terms of the average �lling

fraction

h =

�n

e

`

2

0

�

; � =

�

1

+ �

2

2

: (4.55)

Using (4.54) and (4.55), we express the partial �lling fractions in terms of

the average one

�

1;2

=

2n

(1;2)

e

n

(1)

e

+ n

(2)

e

�: (4.56)
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Substituting h and �

1;2

from (4.55) and (4.54) into (4.52) and (4.53), we see

that the chemical potentials depend on the temperature and the average

�lling fraction �.

At the same time, the expression for the magnetic length (4.32) together

with equations (4.50) and (4.55) yields

1

�

=

"

�

0

+

"eB

b

�n

e

~

; (4.57)

which reects the one-to-one correspondence between � and B

b

. Conse-

quently, any quantity depending on B

b

can be also viewed as a function of

�, and vice versa.

The value of the background magnetic �eld is determined by the external

magnetic �eld B

ext

and the magnetization M

B

b

= B

ext

+M(B

b

); M(B

b

) = �

�

0

�

dF(B

b

)

dB

b

; (4.58)

where F = F

1

+ F

2

is the Helmholtz free energy density of the composite

system. The individual contributions are

F

1;2

(B

b

) =

1

Area

f


0

(�

1;2

) + �

1;2

mc

2

hN

1;2

ig;

where hN

1;2

i are the thermal averages of the fermion numbers de�ned by

hN

1

i

Area

=

h

2�`

2

0

X

n=0

�

+

n

(�

1

)�

h

2�`

2

0

X

n=1

�

�

n

(�

1

) = n

(1)

e

;

hN

2

i

Area

=

h

2�`

2

0

X

n=1

�

+

n

(�

2

)�

h

2�`

2

0

X

n=0

�

�

n

(�

2

) = n

(2)

e

:

Here the quantities h, �

1

and �

2

are functions of �. In order to exhibit

the global behaviour of F(�), we have used numerical methods. Consider

the case of the equal concentrations n

(1)

e

= n

(2)

e

= n

e

=2. As one can see,

the free energy density of the composite system has local minima at integer

values of the average �lling fraction. However, the individual contributions
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of each type of particles exhibit no minima (see Fig.1).
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Figure 1. Helmholtz free energy densities versus � for �� = 0 and

T = 50

�

K.

The cusp-like structure of the free energy is the manifestation of the

Meissner e�ect, when the system tries to expel the magnetic �eld from

inside the sample [76].

As we see, in contrast with the previous calculations, the Meissner e�ect

does not exist in the single fermion system, but only in the composite one,

where the diversity in the magnetic moment interaction plays a decisive

role.

Magnetization is expressed with a help of the free energy. The lateer

contains additive contributions from the one-particle state energies. One-

particle Hamiltonian considered in [76] takes into account the magnetic mo-

ment interaction only with Maxwell magnetic �eld. Further simpli�cation

is achieved by taking

E

n

=

~

2

m`

2

�

n+

1

2

�

; (4.59)

assuming that the magnetic moment interaction vanishes.

In our approximation, the magnetic interaction term contains contri-

butions from both Maxwell and Chern-Simons magnetic �elds. The non-
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relativistic limit of eru one-particle energy spectrum is given by

E

n

(�") =

~

2

m`

2

�

n+

1� �"

2

�

:

Note that (4.59) is in fact the half sum of E

n

(+) and E

n

(�). Separate use

of E

n

(+) or E

n

(�) does not lead to the free energy with localized minima

and only their simultaneous contribution has a cusp-like structure.

Equations for the chemical potentials cannot be solved in general. How-

ever, one can �nd an analytic form of �

1;2

(�) nearby integer values of �,

where the free energy achieves local minima. This enables to analyze the

system in more details near these minima, where the Meissner e�ect just

takes place. Below we present these calculations for asymmetric concentra-

tions, i.e., when n

(1)

e

6= n

(2)

e

.

Here we will deal with the minimum corresponding to � = 1, and for

concreteness we will set e > 0 and " = 1. In that case, we have �

0

= 1 and

h = �n

e

`

2

0

(1 + �); � =

eB

�n

e

~

: (4.60)

Note that for the characteristic values of the internal magnetic �eld (B <

200Gauss)b we have � < 10

�5

, (1 + �)

�1

= 1� � and represent (4.56) as

�

1

= (1 + ��)(1 � �) � 1 � �

1

;

�

2

= (1 � ��)(1 � �) � 1 � �

2

;

�� =

n

(1)

e

� n

(2)

e

n

(1)

e

+ n

(2)

e

:

Here �� measures the asymmetry in the concentrations of di�erent types of

fermions.

Further simpli�cations are due to the fact that in the considered range

of temperaturesb we have � > 3 � 10

7

, and consequently for �

1;2

> 0

�

�

n

(�

1;2

) =

1

1 + e

�(!

n

+�

1;2

)

< e

�10

7

;

meaning that main contributions to (4.52) and (4.53) come from �

+

n

(�

1;2

),

forcing �

1;2

to be positive. With this assumption, we take �

1

> 0 and

represent it as

�

1

= 1 +

1 � w

1

2

h;

where w

1

is to be found. Due to (4.60), one has h � 5 �10

�7

. Consequently,

for the Landau levels with 2hn << 1b we can use !

n

= 1 + hn and write

down

�(!

n

� �

1

) = �h

�

n �

1

2

+

w

1

2

�

:
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The characteristic values of � and h are such that �h > 15, allowing to

neglect the contributions coming from higher Landau levels. This permits

to write (4.52) as �

1

= �

+

0

(�

1

) + �

+

1

(�

1

) or in the equivalent form

1 � �

1

=

1

1 + e

��

e

�w

1

+

1

1 + e

�

e

�w

1

;

where � � �n

e

`

2

0

�(1 + �)=2. From this equation, we easily �nd a solution

for w

1

:

e

��w

1

=

1

1� �

1

�

q

1 + �

2

1

sh

2

� � �

1

ch�

�

; �

1

= � � �� + ���: (4.61)

At the same time, taking

�

2

= 1 +

3� w

2

2

h

and performing the same manipulations, we obtain

e

��w

2

=

1

1� �

2

�

q

1 + �

2

2

sh

2

� � �

2

ch�

�

; �

2

= � + �� � ���: (4.62)

So, the leading contributions in the di�erent physical quantities come

from the following Fermi distribution functions

�

+

0

(�

1

) =

1

1 + e

��

e

�w

1

; �

+

1

(�

1

) =

1

1 + e

�

e

�w

1

;

�

+

1

(�

2

) =

1

1 + e

��

e

�w

2

; �

+

2

(�

2

) =

1

1 + e

�

e

�w

2

;

(4.63)

where e

�w

1

and e

�w

2

are de�ned by (4.61) and (4.62). In this approximation,

the system magnetization is M = M

1

+ M

2

where

M

1

(B

b

) = �

e�

0

mc

2

2�~�

N

X

n=0

�

1

�

ln [ 1� �

+

n

(�

1

)] +

hn

!

n

�

+

n

(�

1

)

�

�

�

�n

e

`

2

0

2

(w

1

� 1) �

"e�

0

n

e

~

4m�

ff(� � ��N) + 1g ;

M

2

(B

b

) = �

e�

0

mc

2

2�~�

N+1

X

n=1

�

1

�

ln [ 1� �

+

n

(�

2

)] +

hn

!

n

�

+

n

(�

2

)

�

�

�

�n

e

`

2

0

2

(w

2

+ 1) �

"e�

0

n

e

~

4m�

ff(� + ��N) � 1g ;

while the basic function f(z) which de�nes all magnetic and thermal prop-

erties of the system is given by

f(z) =

1

�

ln

p

z

2

+ 4e

��

� z

p

z

2

+ 4e

��

+ z

; � =

1

N

�n

e

~

2

mk

B

T

:

Its typical form is depicted in �gure 2.
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Figure 2. Typical behaviour of the function f(z).

In the case of equal concentrations (�� = 0), the system magnetization

becomes independent of " and of the electric charge sign. It reads as

M(T;B

b

) =

jejn

e

�

0

~

2m�

1

�

ln

p

B

2

+ 4e

��

� B

p

B

2

+ 4e

��

+ B

; B =

�

2

0

jej

�n

e

~

B

b

:

Consider the values of B

b

satisfying B

2

<< 4e

��

. Then the magnetiza-

tion takes the simple form

M = ��B

b

; � = �

@M

@B

b

=

N

2

e

2

�

0

2�m�

e

�=2

�

;

where � is the magnetic susceptibility of the system.

Now the equation (4.58) can be easily solved, and we get

B

b

= (1 + �)

�1

B

ext

:

The magnetic susceptibility of the system becomes exponentially large

in the low temperature (large values of �) regime. Consequently, the mag-

netic �eld is expelled from the sample, what is just the manifestation of

the Meissner e�ect. However, B

b

does not vanish exactly, but only with

exponential precision, i.e., the Meissner e�ect is not complete. Originally

such an observation was made in [76]. Note that the complete Meissner ef-

fect is achieved at absolute zero, when the magnetic susceptibility becomes

in�nite.

Consider now the case B

2

>> 4e

��

. The corresponding expression for

M is given by

M = � sgn(B

b

)

jejn

e

�

0

~

2m�

�

1 +

2

�

lnjBj

�

;
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and for large values of �, one can drop the logarithmic term. In that case,

one gets

B

b

= � sgn(B

b

)

jejn

e

�

0

~

2m�

+ B

ext

;

and for su�ciently large values of B

ext

, the �rst term on the r.h.s. of the

last equation can be neglected, meaning that the external magnetic �eld

practically penetrates inside the sample.
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Figure 3. Typical behaviour of function B

b

(B

ext

).

The region of this curve which is almost horizontal corresponds to B

2

<<

4e

��

, while those with greater slope correspond to B

2

>> 4e

��

. As one can

see, the magnitude of B

b

is quite small until B

ext

reaches some critical

value B

cr

. Above this value, the external magnetic �eld begins a notable

penetration in the sample. The critical value of the external magnetic �eld

is evidently related to a small interval at B

b

axis, where the magnetization

curve drastically changes its direction, i.e., where the curve passes the point

of maximal curvature (PMC). The lower is temperature (greater is �), more

narrow is the interval and it is easier to establish the corresponding critical

magnetic �eld. In order to �nd the approximated value of B

cr

, we can use

the derivative

@M

@B

b

= �

�

2

0

�

0

e

2

�m�

1

�

�

�

2

+ 4e

��

�

�1=2

and consider its behaviour in the low temperature regime.

Until the curve M(B

b

) reaches the PMC, its slope can be considered to

be constant and therefore can be determined by its value at the origin which

is exponentially large. On the other hand, the curve becomes practically

horizontal after passing the PMC. Obviously, somewhere in the vicinity of

the PMC one has @M=@B

b

= �1, and using this relation as the de�nition

of the location of PMC, one gets the corresponding value of the internal
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magnetic �eld to be

B

0

(T ) =

(

�

en

e

�

0

~

m�

1

�

�

2

�

�

2�n

e

~

�

2

0

e

�

2

e

��

)

1=2

:

Substituting B

0

(T ) into B

cr

= B

0

� M(B

0

) and keeping the leading

terms, one gets

B

cr

(T ) =

jejn

e

�

0

~

2m�

+

jej�

0

Nk

B

T

�~�

ln

e

2

�

0

N

3

k

B

T

�

2

~

2

n

e

�

:

We observe that starting from the absolute zero and rising the temper-

ature, the value of the critical magnetic �eld decreases. The area of the

maximal curvature becomes smeared for high temperatures and the critical

magnetic �eld becomes ill-de�ned. On the contrary, the PMC is well local-

ized for T = 0

�

K and the corresponding value of the critical magnetic �eld

is given by

B

cr

(0) =

jejn

e

�

0

~

2m�

:

As a practical realization, we present results for concrete values of the

parameters m, e, n

e

and �. In particular, the mass and the electric charge

are identi�ed with those of an electron. For the neutralizing background

density we take n

e

= 10

18

m

�2

used in [76] while the value of the interplanar

distance in the high T

c

superconductors is of order of � = 10

�9

m, and

we consider the case N � j�

0

j = 1. In the range jB

b

j < 200Gauss and

T < 200

�

K, we have

�

�

�

�

e�

0

B

b

�n

e

~

�

�

�

�

< 5 � 10

�5

�n

e

`

2

0

< 4:7 � 10

�7

e

����n

e

`

2

0

< e

�30

:

As we see, the given values satisfy the conditions (2.52){(2.54). Figures 4{8

represent the corresponding results for symmetric concentrations of fermion

types.
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Figure 4. M [Gauss] versus B

b

[Gauss] for �� = 0.
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b

[Gauss] versus B

ext

[Gauss] for �� = 0.
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Figure 6. Critical magnetic �eld [Gauss] versus temperature [

�

K] for

�� = 0.
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Figure 8. M [Gauss] versus B

b

[Gauss] for (�n

e

~=e) � �� = 30 Gauss and

T = 40

�

K.

6. Penetration Depth

Consider now non-vanishing gauge uctuations. In particular, we study

the equations of motion (4.18){(4.21) for a compound system in the second

order approximation, i.e., with the current averages (4.47) and (4.48), where

the structure functions take the contributions from both types of fermions.

The equations of motion lead to the following solution for the Chern-

Simons �eld

a

f

0

= �

�n

e

`

0

�

2

L

�

0

B

f

; b

f

= �

�n

e

`

0

�

2

L

�

0

�A

f

0

;

where �

L

is the London penetration depth given by

�

2

L

=

m�

e

2

n

e

�

0

:

Now, the equations of motion get the following e�ective form

�

^

�

tot

E

+n

e

`

2

0

�

2

L

�

1�

�

�

0

^

�

tot

CS

�

�

�

A

f

0

+

�

^

�

tot

CS

�n

e

�

2

L

�

�

0

^

�

tot

E

�

`

0

B

f

=0; (4.64)

�

^

�

tot

CS

�n

e

`

2

0

�

2

L

�

�

0

^

�

tot

M

�

�

A

f

0

+

�

^

�

tot

M

+n

e

�

2

L

�

1�

�

�

0

^

�

tot

CS

��

`

0

B

f

=0; (4.65)

where the superscript \tot" means that both sorts of fermions contribute.

Consider a sample with the geometry of a semi-plane, where the boundary

is located at x = 0 and the sample occupies the region x > 0. The magnetic

�eld inside the sample is B(r) = B

b

+B

f

(r) and we look for the uctuations

of the form

B

f

(r) =

�

B

ext

�B

b

�

e

� x = �

; A

f

0

(r) / e

� x = �

(4.66)
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which agree with B(x ! 0) = B

ext

and B(x ! 1) = B

b

. Here � de-

notes the bare penetration depth which di�ers from the e�ective one [76].

Substituting (4.66) into (4.64) and (4.65), we obtain a uniform system of al-

gebraic equations which has a non-trivial solution only if the corresponding

determinant vanishes. This condition can be written as

�

2

n

2

e

`

2

0

�

4

L

�

�

tot

CS

(z)�

tot

CS

(z)��

tot

E

(z)�

tot

M

(z)� n

e

�

2

L

�

tot

E

(z)

	

=

=

1

n

e

�

2

L

�

tot

M

(z)�

�

2

�

2

0

�

tot

E

(z)�

tot

M

(z) +

�

1�

�

�

0

�

tot

CS

(z)

�

2

;

and if solved for z � �`

2

=2�

2

, sets the bare penetration depth as a function

of B

ext

and the temperature. In �gs. 9 and 10, we present the results

obtained by numerical methods. (We use the power series expansion of

�

tot

(z) given in Appendix D).
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Figure 9. �

2

=�

2

L

versus temperature [

�

K] for �� = 0.
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Figure 10. �

2

=�

2

L

versus B

ext

[Gauss] for �� = 0.

The e�ective penetration depth is de�ned as a gradient of the magnetic

�eld inside the sample

1

�

e�

(d)

= �

1

d

d

Z

0

@B(x)

@x

dx

B(x)

=

1

d

ln

B(0)

B(d)

:

Obviously, �

e�

(d) measures how fast the magnetic �eld changes over the

distance d from the boundary towards the bulk of the sample.

In BCS theory, the magnetic �eld inside the sample is given by B(x) =

B

ext

e

� x=�

causing the e�ective penetration depth to be coincident with the

bare one and to be independent of d. Here this is not the case since the

Meissner e�ect is incomplete, i.e., the magnetic �eld inside the sample is

given by

B(x;B

ext

; T ) = B

b

(B

ext

; T ) +

�

B

ext

�B

b

(B

ext

; T )

	

e

� x=� (B

ext

;T )

;

and the e�ective penetration depth takes the form

1

�

e�

(d;B

ext

; T )

=

1

d

ln

B

ext

B

b

+ (B

ext

�B

b

) e

� d=�

:

It is reduced to � when the complete Meissner e�ect (B

b

= 0) takes place.

The e�ective penetration depth as a function of the temperature is repre-

sented in �gure 11.
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Figure 11. �

2

L

=�

2

e�

versus temperature [

�

K] for �� = 0 and d = �

L

.
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CHAPTER 5

ON THE EFFECTIVE POTENTIAL

IN THE QUANTUM THEORY

1. Introduction

It is well realized that practically all the physical information contained

in the quantum �eld theory can be encoded in the Green function generating

functional (see, e.g., [15]).

Z[J ] � e

iW [J]

=< 0jT exp(i

Z

d

4

xJ(x)�(x))j0 >; (5.1)

where the Schwinger functional W [J ] generates the connected Green func-

tions:

W [J ]=�i lnZ[J ]=

1

X

n

1

n!

Z

dx

1

� � � dx

n

J(x

1

) � � � J(x

n

)G

c

n

(x1; : : : ; x

n

): (5.2)

Closely related objects are the e�ective action and e�ective potential,

which in principle permit to formulate quantum problems in terms of c-

number quantities and variational equations.

Remind that one of the central problems in the quantum �eld theory is

the determination of the ground state (vacuum) which, in its own turn, is

characterized by the vacuum expectation value of the quantum �eld �(x).

This expectation value should be determined in terms of parameters ap-

pearing in the Lagrangian. The classical meaning of this vacuum average

is the lowest energy con�guration which can be found by minimizing the

classical potential. Consider the Lagrangian

L =

1

2

@

�

'(x)@

�

'(x) � U(�): (5.3)

The energy of the system is given by the functional

E['] =

Z




d

3

x

�

1

2

_'

2

+

1

2

(r')

2

+ U(�)

�

(
 is the volume). U(�) is the potential energy density and its minimum

corresponds to the minimal energy �eld con�guration. In the quantum case,

U(�) contains the interaction terms and the vacuum expectation values

are altered by perturbative corrections and the renormalization procedure

must be applied. In any case, it is natural to expect that there must be

some quantum object which includes the classical potential and its quantum

corrections.

The functional derivative of W [J ] gives the expectation value of � in the

presence of varying source:

�W [J ]

�J(x)

=< vacj�(x)jvac >

J

= �

c

(x): (5.4)
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The efective action is de�ned as a functional Legendre transformation of

the Schwinger functional

�[�

c

] �W [J ]�

Z

d

4

yJ(y)�

c

(y): (5.5)

If the external source is set to zero, the e�ective action satis�es the equation

�

��

c

(x)

�[�

c

] = 0:

The solutions of this equation are the values of < �(x) > in stable quan-

tum states of the theory. For a translation-invariant vacuum state, �

c

is

independent of x. Sometimes this equation has additional solutions corre-

sponding to localized lumps of �eld held together by their self-interaction.

In this states, called solitons, the solution �

c

(x) depends on x.

The e�ective action �[�

c

] is an extensive quantity, and for the constant

classical �elds is proportional to the volume of the space-time region over

which the functional integral is taken:

�[�

c

] = �(V T ) � V

eff

(�

c

):

The function V

eff

(�

c

) is called the e�ective potential [26], [1], [125].

The equilibrium condition reduces to the simple equation

@

@�

c

V

eff

(�

c

) = 0: (5.6)

Each solution of the last equation corresponds to a translation-invariant

state with J = 0, and V

eff

evaluated at that solution is just the energy

density of this quantum state.

The local maxima or saddle points of V

eff

are unstable con�gurations.

The local minimum corresponds to the metastable vacuum state which can

decay to the true vacuum by quantum-mechanical tunneling. The absolute

minimum of the e�ective potential is the state of lowest energy, i.e., the true

stable vacuum. A system with a spontaneously broken symmetry will have

several minima of V

eff

, all with the same energy by virtue of the symmetry.

The choice of one among these vacua is the spontaneous symmetry breaking.

(A spontaneously broken symmetry corresponds to the non-zero values of

solutions of (5.6).)

Consequently, the central objects are the vacuum expectation value

�

c

(x) =

< 0j�(x)j0 >

J

< 0j0 >

J

and a functional �[�

c

] such that �

c

(x) is a solution of the classical variational

equation

��[�

c

]

��

c

(x)

= �J(x):
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In order to compute the e�ective action , one must �rst �nd W [J ] and

then invert (5.4) to obtain J as a functional of �

c

and replace J in (5.5).

At the tree level, e�ective action is just the classical action and the full

e�ective action includes all the quantum corrections: the e�ective action

generates proper (connected, truncated, one particle irreducible ) n-point

functions �

(n)

(x

1

; : : : ; x

n

) via a functional Taylor expansion [19], [82]

�[�

c

] =

X

n

1

n!

Z

dx

1

� � � dx

n

�

(n)

(x

1

; : : : ; x

n

)�

c

(x

1

) � � ��

c

(x

n

):

The e�ective action can be expanded in another way, this time in powers of

the momentum, i.e., space-time derivatives of �

c

(x) [79]

�[�

c

] =

Z

dx(�V

eff

[�

c

]�

1

2

Z[�

c

](@

�

�

c

)

2

+ � � � ):

In this expansion, the lowest order term which can be separated out by

setting �

c

(x) = const is the e�ective potential V

eff

(�

c

).

The e�ective potential can be computed using operator or path integral

representations.

In the operator approach, the Schwinger functional W [J ] is de�ned from

(5.1). The formal series expansion of the exponential leads to the Taylor ex-

pansion of the generating functional, where the coe�cients of the expansion

are time-ordered products of the �eld in the vacuum or Green functions.

A perturbative expansion of this coe�cients leads to the series represented

by diagrams, and the Feynman rules are used to evaluate each diagram. If

the e�ective action is expressed as an expansion in powers of momentum,

then the lowest order term independent of p is the e�ective potential. If

we expand in powers of ~, then the term in the expansion of order ~ is the

collection of all 1-loop proper diagrams with vanishing external momenta.

Below we give a well-known expression for the one-loop e�ective poten-

tial for the case of a self-interacting scalar �eld with a Lagrangian (5.3).

Rotating to the Euclidean space, one �nds [25], [26]

V

eff

(�

c

) = U(�

c

) +

1

2

Z

d

4

k

E

(2�)

4

ln

�

1 +

U

00

(�

c

)

k

2

E

�

: (5.7)

Integrating the last expression over k

4

, one gets

V

eff

(�

c

) = U(�

c

) +

Z

d

3

k

(2�)

3

p

k

2

+ U

00

(�

c

):

The second term is a quantum correction to the classical potential and

corresponds to uctuations about a classical �eld value. In other words,

the e�ective potential is the sum of the classical potential and all zero-point

energy uctuations about �

c

.

As it stands, the expression (5.7) is divergent. In a renormalizable the-

ory, it must be possible to absorb the divergence by rede�ning the theory

parameters.
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Consider the case of the scalar �eld with a quartic interaction. The

Lagrangian is given by

L =

1

2

�(x)(@

�

@

�

�m

2

0

)�(x) �

�

0

4!

�

4

(x):

The e�ective potential to one loop is

V [�

c

] =

1

2

m

2

0

�

2

c

+

�

0

4!

�

4

c

�

i

2

Z

d

4

p

(2�)

4

ln

�

1�

�

0

�

2

c

=2

p

2

�m

2

0

+ i�

�

: (5.8)

The renormalized mass and coupling can be de�ned as follows

d

2

d�

2

c

V [�

c

]

�

�

�

�

c

=0

= m

2

;

d

4

d�

4

c

V [�

c

]

�

�

�

�

c

=0

= �: (5.9)

Since we are only dealing with the e�ective potential, we can put the wave

function renormalization equal to one. The substraction points are arbitrary

and we are free to change them using the �nite renormalization.

Application of eq.(5.9) yields

m

2

= m

2

0

+

1

2

�

0

Z

d

4

p

(2�)

4

i

p

2

�m

2

0

+ i�

and

� = �

0

+

3

2

i�

2

0

Z

d

4

p

(2�)

4

�

1

p

2

�m

2

0

+ i�

�

2

:

Solving these equations for bare mass and coupling (in the one-loop ap-

proximation), we can rewrite the e�ective potential in terms of �nite renor-

malized quantities

V [�

c

] =

1

2

m

2

�

2

c

+

�

4!

�

4

c

�

i

2

Z

d

4

p

(2�)

4

ln

�

1�

(��

2

c

=2)

p

2

�m

2

+ i�)

�

�

�

1

4

��

2

c

Z

d

4

p(2�)

4

i

p

2

�m

2

+ i�

�

� i

�

2

16

�

4

c

Z

d

4

p

(2�)

4

�

1

p

2

�m

2

+ i�

�

2

: (5.10)

An alternative but equivalent de�nition of the e�ective potential can be

given using the Schr�odinger representation. Here the appropriate method

to �nd the static e�ective action is by solving the appropriate functional

Schr�odinger equation, or by variational procedure. Both methods arise

because the e�ective potential is the minimum expected energy per unit

volume in the set of states where the expected value of the �eld is �

c

. The

vacuum state will minimize this energy density, hence we solve the appro-

priate Schr�odinger equation or use the variational calculation.



113

In the classical case, the potential for a given constant �eld con�guration

� = �

c

=const coincides with the energy density

V

cl

=

1




E[�

c

]:

The quantum version of this formula will be

V (�

c

) =

1




min <  jH(�; �)j > : (5.11)

Minimization must be carried out under the conditions

<  j�(x)j >= �

c

; <  j >= 1:

The static e�ective action �

static

[�

c

] is de�ned as minus the minimum of

energy

�

static

= � <  

0

jH j 

0

> (5.12)

in a state j 

0

> subject to the constraints

<  

0

j 

0

>= 1; <  

0

j�(x)j 

0

>= �

c

(x):

In order to solve this problem we have to introduce the Lagrange multipliers

E and J(x) and �nd the unconstrained minimum of

<  

0

j

Z

d

3

x(H� J(x)'(x)) �Ej 

0

>; (5.13)

J(x) here is a time independent external source and �

c

(x) is the �eld vac-

uum average in the presence of the source. Thus minimizing eq.(5.12) is

equivalent to solving the functional Schr�odinger equation for the vacuum

state functional j 

0

> of the Hamiltonian H

0

�

H �

Z

d

3

xJ(x)'(x)

�

j 

0

>= E

0

j 

0

> :

The energy eigenvalue E

0

[J ] is a source-dependent functional. The appli-

cation of the Feynmann-Hellmann theorem yields

�E

0

�J(x)

=<  

0

j

�

�J(x)

H

0

j 

0

>= � <  

0

j'(x)j 

0

>= ��

c

(x):

The last equation implies that the static e�ective action is the Legendre

transform of the vacuum energy

�

static

[�

c

] = �E

0

[J ]�

Z

d

3

xJ(x)�

c

(x);

where J(x) is solved in terms of �

c

.

In the path integral representation, the generating functional is given by

Z[J ] = N

Z

D� exp(iS[�; J ]): (5.14)
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It is well known that the loop expansion is equivalent to the stationary

phase approximation. In order to develop this approximation, we Taylor

expand the classical action

S[�; J ] =

Z

d

4

x (L(x) + J(x)�(x))

about the solution of the Euler-Lagrange equation

�S

��(x)

= 0; �(x) = �

c

(x):

This results in a Gaussian approximation to the path integral (5.14) which

we can compute exactly.

Using this approximation, Z[J ] becomes

Z[J ] � N

Z

D� exp

�

iS[�

c

; J ] +

i

2

�

2

S

��

2

�

�

�

�=�

c

(�� �

c

)

2

�

:

After shifting integration variables, � ! � � �

c

, the Gaussian integration

yields

Z[J ] � N exp(iS[�

c

; J ])det

�

1

2

�

�

2

S

��

2

�

�

�

�=�

c

�

:

Here

�

2

S[�; J ]

��(x)��(y)

�

�

�

�

c

= �

�

@

2

+m

2

0

+

�

0

2

�

2

c

�

�

4

(x � y):

In the absence of the spontaneously broken symmetry, the classical �eld

�

c

= 0 when J = 0. Consequently the normalization factor

N = det

1

2

((@

2

+m

2

0

)�

4

(x� y)):

Therefore

Z[J ] � exp(iS[�

c

; J ])det

�

1

2

�

1 +

�

0

2

G

(0)

2

(x� y)�

2

c

(y)

�

;

where G

(0)

2

is the free-�eld Green function. Using the formula

detM = exp(tr lnM);

one can extract the functional W [J ]

W [J ] � S[�

c

; J ] +

i

2

tr ln

�

1 +

�

0

2

G

(2)

2

(x� y)�

2

c

(y)

�

and the e�ective potential

�[�

c

] � S[�

c

; 0] +

i

2

~tr ln

�

1 +

�

0

2

G

(0)

2

(x� y)�

2

c

(y)

�

+O(~

2

):

Setting �

c

= const, the matrix becomes diagonal in the momentum space,

and one obtains theexpression identical to (5.8).

After this lengthy introduction, we can turn to the problem which will

be discussed below.
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The e�ective potential (5.8) can be written in the Euclidean variables

V [�

c

] =

1

2

m

2

0

�

2

c

+

�

0

4!

�

4

c

+

i

2

Z

d

4

p

E

(2�)

4

ln

�

1�

�

0

�

2

c

=2

p

2

E

+m

2

0

�

: (5.15)

The last expression can be obtained directly if one considers the Euclidean,

or Wick rotated Green functions generating functional

Z

E

[J ] = N

Z

D�

E

exp(�S

E

[�

E

; J ]) = e

W

E

[J]

�

�

Z

d�(�

E

)e

R

d

4

x

E

J(x)�

E

(x)

: (5.16)

Here �

E

(�;x) = �(�i�;x) is the Wick rotated �eld variable and S

E

is the

corresponding Euclidean action:

S

E

[�

E

; J ] =

Z

d

4

x

E

[L

E

� J(x

E

)�

E

(x

E

)]:

The functional L

E

has the form of energy: it is bounded from below and

becomes a large when the �eld � has large amplitude.

With the positively de�ned integration measure d�, the Schwinger func-

tional W

[

J ] satis�es the H�older inequality [127], [79]

e

W

E

[�J

1

+(1��)J

2

]

� e

�W

E

[J

1

]

e

(1��)W

E

[J

2

]

;

which is equivalent to say thatW

E

[J ] is a convex functional. The Euclidean

e�ective action is a Legendre transformation ofW

E

[J ]. It is well known, that

Legendre transform of a convex function is also convex. Now, the e�ective

potential is a value of the e�ective action for a constant �eld multiplied by

a 4-volume. Consequently, the e�ective potential given by (5.15 ) must be

a convex function of the classical constant �eld variable.

Our main objective will be the study of the e�ective potential for theo-

ries with degenerate ground states. As it will be discussed in Section 2, in

such cases there is some contradiction between the de�nition of the e�ective

potential and actual computations: as we have seen, the e�ective potential

must be a convex function while in the theories with vacuum degeneracy,

the potential is a non-convex. In the subsequent Section 3, we propose a

procedure which permits to rede�ne generating functionals in such a way

that the resulting e�ective potential is a convex function. In Section 4, we

study the same problem from the point of view of path integral represen-

tation and show how convexity is related to the correct de�nition of the

boundary conditions.
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2. Spontaneous Symmetry Breaking and Convex Effective

Potential

Up to now, in our discussion we have tacitly assumed that the system

possesses unique vacuum state. At the same time, practically all the physi-

cally signi�cant theories are built up using the ideology of degenerate ground

states and spontaneous symmetry breaking.

Consider the theory, where the classical potential corresponds to a spon-

taneously broken symmetry, i.e., there are di�erent minima with equal en-

ergy. The simplest example is given by the potential

V

cl

['] = �

1

2

m

2

0

+

�

0

4!

: (5.17)

For this potential, �

c

= 0 is an unstable local extremum. There are now

two stable minima occurring at

�

c

= �

�

6m

2

0

�

0

�

1=2

:

The potential (5.17) is symmetric under the transformation �

c

! ��

c

, and

the symmetry operation takes us from one vacuum to the other, thus the

particular vacuum does not respect or reect the symmetry present in the

action.

The corresponding loop expansion for the e�ective potential can be ob-

tained if one naively performs the analytic continuation term by term in m

2

0

from m

2

0

> 0 to m

2

0

< 0 in (5.10).

Introducing the cuto� and integrating over the momentum variables, one

obtains (see, e.g., [125])

V [�

c

] =

1

2

m

2

�

2

c

+

�

4!

�

4

c

+

1

64�

2

M

2

(�

c

) ln

M

2

(�

c

)

m

2

+

�

1

128�

2

��

2

c

(m

2

+

3

4

��

2

c

);

where

M

2

(�

c

) = m

2

+

�

2

�

2

c

:

In the case of spontaneously broken symmetry, we havem

2

< 0. From the

two last expressions it follows that the one-loop e�ective potential is complex

within the points of inexion of the classical potential, i.e., those �

c

for

which M

2

(�

c

) � 0. This complexity is genuinely disturbing, because from

the functional integral representation of the Euclidean generating functional

(5.16) it follows that both W

E

[J ] and its Legendre transform must be real

functionals. Furthermore, the resulting e�ective potential is not convex in

the same domain of �eld variable.

The same conclusion must be valid if one uses the de�nition of the e�ec-

tive potential given by (5.11). This de�nition becomes problematic if one

allows states j	i which are not localized in �. If one includes nonlocalized
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states, the set of j	

0

>'s is too general and the e�ective potential so de�ned

is always convex. If, however, we restrict ourselves to localized j	

0

>'s, V

eff

can be nonconvex, and even complex in the region where it is nonconvex

(the complex part is related to an instability for the localized state to decay

into a superposition of states [132]).

So one can conclude, that in the theories where the classical potential

possesses several minima, the corresponding e�ective potential in general is

neither real nor convex.

3. Quasiaverages and Interpolated Loop Expansion

As we have seen in the previous section, there is some kind of discrep-

ancy in the de�nition of the e�ective potential. Namely, in the cases of the

theories with spontaneously broken symmetries, the naively applied loop

expansion leads to the expression which contradicts the requirement of con-

vexity and reality.

Since the most interesting �eld theory models are essentially based on

the ideas of broken symmetries (for a review, see [70]), the aforementioned

contradiction created a de�nite interest to clarify the situation (see, e.g.,

[11], [59], [119]).

Below we follow the presentation given in the papers [33], [34], [35], [36].

A general approach to the discussion of the systems with degenerate

ground states was proposed by N.Bogolubov and is known as the method

of quasiaverages [16].

The essence of this method is to add a small symmetry-breaking pertur-

bation �H

1

to the symmetric Hamiltonian H which removes degeneracy. At

�rst one must calculate the expectation values for the volume 
:

< O >

�;


=

tr




Oe

��(H+�H

1

)

tr




e

��(H+�H

1

)

;

where tr




denotes the trace over the Hilbert space of the system in volume


. Then one must take the limit of in�nite volume, and �nally let � ! 0,

obtaining

� O �= lim

�!0

lim


!1

< A >

�;


: (5.18)

It is characteristic of the broken symmetry that the order of these limits

is not reversible and actually the condition � O �6= 0 may be taken as a

de�nition of a broken symmetry.

In the case of zero temperatures, the interaction �H

1

breaks the degener-

acy of the ground states and in the limiting case of in�nite volume, a single

member of the set of degenerate states is selected.

The role played by the correct limiting procedure can be illustrated by

condensed matter system exhibiting these phenomenon in a physically trans-

parent way { quantum ferromagnetics.
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Ferromagnetic systems have a spontaneous magnetization at low temper-

atures, i.e., below the Curie temperature. When a spontaneous magnetiza-

tion is present, the Hamiltonian of the system is invariant under transfor-

mations that change the sign of the magnetization; however, the state of the

system, i.e., probability distribution, is not invariant under this transforma-

tion. This possibility can be realized only in the in�nite volume limiting

case and when this happens, we say that the symmetry is spontaneously

broken.

Consider the magnetization density and the free energy as a function of

H in the in�nite volume limiting case. The symmetry arguments tells us

that f(H) = f(�H) and

m(H) = �

@f(H)

@H

= �m(�H);

i.e., f(H) and m(H) are even and odd functions of H , respectively. We

have two possibilities: either m(h) is continuous at H = 0 and m(0) is

consequently zero, or m(H) is discontinuous at H = 0 and m(0) is not well

de�ned; this second case corresponds to a spontaneous symmetry breaking.

More precisely, these two possibilities correspond to

{) f(H) = f(0) +O(H

�

) � > 1;

{{) f(H) = f(0)�m

s

jH j+O(H

�

):

In the second case, we have

m

+

� lim

H!0

+

m(H) = m

s

6= m

�

� lim

H!0

�

m(H) = �m

s

:

The symmetry relation implies only m

+

= �m

�

= m

s

.

The non-di�erentiability of the free energy with respect to a parame-

ter and the existence of two or more equilibrium states is the distinctive

feature of a phase transitions. The nonanalytic nature of the free energy

in the in�nite volume limiting case can be demonstrated by the following

toy model. Consider a system of the volume 
 which can stay in only two

states (of equal energy at zero magnetic �eld) having total magnetization

�
, respectively. The statistical sum as a function of the magnetic �eld is

given by

Z(H) = e

�
H

+ e

��
H

= 2 cosh(�
H):

The corresponding free energy and magnetization are

f(H) = �

1

�


ln[2 cosh(�
H)]; m(H) = tanh(�
H):

Spontaneous magnetization in the limit 
!1 will be

m

+

= lim

H!0

+

lim


!1

= +1; m

�

= lim

H!0

�

lim


!1

= �1:
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It means that in order to have a mathematical discontinuity, we must �rst

go to the in�nite volume limit and only afterwards switch o� the external

�eld.

Let us apply the quasiaverages approach to the calculations of the gen-

erating functional and the e�ective potential. In other words, we will take

into account the e�ect of the limiting procedure 
!1.

The generating functional in D-dimensions can be written in the following

form

Z[J

a

] = N

Z

Y

a

D�

a

e

�

R

d

D

x[L

E

(�)�J

a

�

a

]

= e

W [J

a

]

:

Here 1 � a � n, where n is a number of scalar �elds, L

E

{ the invariant

Euclidean Lagrangian, J

a

{ external currents, and N is a normalization

constant. Integration is performed over the in�nite D-dimensional volume.

Following the ideology of quasiaverages, preliminary the system must be

considered in the �nite D-dimensional volume 
 and under a small external

perturbation J

a

�

a

, which breaks the symmetry. De�ne the Green functions

generating functional

Z




[J

a

] = N




Z

Y

a

D�

a

e

�

1

~

R




d

D

x[L

E

(�)�J

a

�

a

]

= e

W




[J

a

]

;

where we introduced the parameter of quasiclassical expansion ~.

The object of our interest is the functional W




[J

a

] for small values of

currents and large volumes. The quasiaverages are de�ned as follows

� �

a

�= lim

J!0

lim




�W




[J ]

�J

a

:

Remind that the order of the limiting procedure is essential: initially one

has to go to the in�nite volume limit, and afterwards put J

a

= 0. The

last limit must be taken in the de�nite way, i.e., the result depends on the

direction how the perturbation vanishes.

In the limiting case of the in�nite volume, the functionalW




[J ] coincides

with the generating functional W [J ]. In what follows, we will consider the

domain of small external sources since this region determines the convexity

property of the e�ective potential.

The functional integral can be calculated using the interpolated loop

expansion [11], [119], i.e., by the Laplace method. In the one-loop approxi-

mation, we have

Z




[J

a

] = N

X

�

�

a

"

2�~

det(�

�

2

A




��

a

��

b

)

#

1

2

�

�

a

exp

2

4

�1=~

�

A




[

�

�]�

Z




d

D

xJ

a

�

�

a

�

3

5

:
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Here the summation is performed over the set of all the minima of the action

functional

S




[J ] =

Z




d

D

x[L

E

� J

a

�

a

] � A




[�]�

Z




d

D

xJ

a

�

a

:

The �elds

�

�

a

are solutions of the extremal equations

�A




��

a

j

�

�

a

= J

a

:

They correspond to the minimum, i.e.,

�

2

A




��

a

��

b

j

�

�

a

> 0:

Consequently,

Z




[J ] = N

X

�

�

p

2�~e

�1=~[A




[

�

�]�

R




d

D

xJ

a

�

�

a

]

� e

�1=2tr ln(

�

2

A




��

a

��

b

)j

�

�

a

=

= e

1=~W




[J

a

]

:

The e�ective potential is determined as a functional Legendre transforma-

tion of W




[J ], when the sources J

a

are x-independent constants:

V




(�

a

)[�

Z




d

D

x] = [W




[J

a

]�

Z




d

D

xJ

a

�

a

]; �

a

=

�W




�J

a

;

i.e., it is an ordinary Legendre transformation

V




= [J

a

�

a

� w




(J

a

)]; �

a

=

@w




@J

a

;

where

W




[J

a

] = w




(J

a

)

Z




d

D

x:

It is important to note that such a de�nition of the Legendre transformation

is valid only for smooth one-side convex functions. In that case,

@

2

V

@�

a

@�

b

�

@

2

w

@J

b

@J

a

= �

ac

:

In what follows, we will use a more general de�nition of the Legendre trans-

formation, which is valid for arbitrary (non-convex or non-di�erentiable)

functions [5]

J

a

; w(J

a

)! �

a

; V (�

a

);

V (�

a

) = sup

J

a

[J

a

�

a

� w(J

a

)]:



121

As an illustrating model, consider D = 0 dimensional case, when the gen-

erating functional is given by the ordinary integral

z




(j

a

) = N

Z

� � �

Z

Y

d�

a

e

1=~
[J

a

�

a

� v(�

a

)]

:

In order to maximally maintain the resemblance with the realistic theory

here we formally have introduced the \volume" 
. The one-loop integration

gives

z




(J

a

) =

X

�

�

a

N

p

2�~e


=~[J

a

�

�

a

� v(

�

�

a

)]

e

�




2

1




tr ln v

00

(

�

�

a

)

:

The summation is performed over the maxima of the function

s(�; J) = J

a

�

a

� v(�

a

);

i.e.,

�

�

a

satis�es the equation

@v

@�

a

= J

a

(5.19)

under the conditions

v

00

ab

(

�

�) > 0:

Equation (5.19) constitute a system of nonlinear (as usually cubic) equa-

tions, which can be solved using the perturbation theory, expanding the

currents J

a

into series over the small quantities. As we know, the domain

in the vicinity of vanishing currents is essential for the convexity and spon-

taneous symmetry breaking.

After this formal introduction, let us go to the concrete case and consider

the simplest two-minima potential

v =

1

4

g(�

2

� a

2

)

2

:

For small values of J ,(J �

4

27

g

2

a

2

), the maxima of the function

S(�; J) = J�� v(�)

are determined by solutions of the cubic equation

@v

@�

= g�

3

� ga

2

� = J:

These solutions are given by

�

�

(J) = �a+

1

2

J

ga

2

�

3

8

J

2

g

2

a

5

+

1

2

J

3

g

3

a

8

�

105

128

J

4

g

4

a

11

+ � � � :

Here

S(�

+

) = a

4

g[j +

1

4

j

2

�

1

8

j

3

+

1

8

j

4

+ � � � ];
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S(�

�

) = a

4

g[�j +

1

4

j

2

+

1

8

j

3

+

1

8

j

4

+ � � � ];

where

j �

J

a

3

g

:

In the tree approximation, one gets

e

1

~


w




(J)

= e

1

~


a

4

g[j +

1

4

j

2

�

1

8

j

3

+

1

8

j

4

+ � � �]

+

+ e

1

~


a

4

g[�j +

1

4

j

2

+

1

8

j

3

+

1

8

j

4

+ � � �]

:

For large 
 >> 1 and small positive j > 0, the main contribution is due to

the �rst term, and for negative values of the current j < 0, it dominates the

second one. Consequently, for small external sources, one can construct the

interpolating expression

e

1

~


w




(J)

= e

1

~


a

4

g[jjj+

1

4

j

2

�

1

8

j

2

jjj+

1

8

j

4

+ � � �]

:

In this way, we get the �rst term of the quasiclassical expansion

w(J) = a[jJ j+

1

4

J

2

a

2

g

�

1

8

J

2

jJ j

a

5

g

2

+

1

8

J

4

a

8

g

3

+ � � � :

The quasiaverage

� � �= lim

J!0

�

@w

@J

�

= lim

J!0

a[�(J) +

1

2

J

a

2

g

+ � � � ]

depends on the current vanishing procedure

� � �

J=0

�
= �a:

It must be noted that the function w(j) is non-analytic: the terms like

jJ j; jJ jJ

2

etc. make the function non di�erentiable at the origin. Here the

�rst derivative is discontinues.

The e�ective potential will be calculated using the generalized Legendre

transformation

V (�) = sup

J

[�J �W (J)]:

The simple graphical construction shows that the formula above de�nes a

convex function. The convexity is not strict: in the interval �a � � � +a

there is a plateau { a region where the potential achieves its minimal value.

It is not di�cult to get the desired expression for the e�ective potential:

V (�) = a

4

g sup

j

[

^

�j � (jjj+

1

4

j

2

�

1

8

jjjj

2

+

1

8

j

4

+ � � � ];

^

� �

1

a

�; j �

1

a

3

g

J:

The source function is given by

J(�) = a

3

g�(j�j � a)�(�)[2(j

^

� � 1) + 3(j

^

�� 1)

2

+
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+ (j

^

� � 1)

3

�

105

4

(j

^

�� 1)

4

+ � � � ]:

The �nal result looks as [33]

V (�) = a

2

g�(j�j � a)[(j�j � a)

2

+

1

2

(j�j � a)

3

+

1

4a

2

(j�j � a)

4

+ � � � ]:

The potential V (�) and its derivative remain everywhere continuous but

the second derivative

V

00

(�) = 2a

2

g�(j�j � a) + � � �

changes discontinuously at the points of inexion of the classical potential.

Concluding this item, let us briey discuss the loop corrections. It is not

di�cult to see that the one-loop result is given by

e

1

~

W




(J)

=

X

�

�=�

�

e




~

[S(

�

�)�

~

2


ln

1

2ga

2

V

00

(

�

�)]

=

= exp

h

1

2~


(Q

+

+Q

�

) + ln 2 cosh




2~

(Q

+

�Q

�

)

i

=

= exp




~

h

1

2

(Q

+

+Q

�

)+

1

2

jQ

+

+Q

�

j+

~




ln(1+e

�




~

jQ

+

�Q

�

j)

)

i

:

Here we have introduced the notation

Q

�

= [S(�

�

)�

~

2


ln

1

2ga

2

V

00

(�

�

)] =

= a

4

g[�j +

1

4

j

2

�

1

8

j

3

+

1

8

j

4

� � � ]�

�

~

2


[1 +

3

2

(�j �

1

2

j

2

�

5

8

j

3

� j

4

� � � )]:

Consequently, for small values of the currents j, for the generating functional

we get

W




(J) = a

4

gf(1�

~3


4a

4

g

)jjj+

1

4

(1 +

~15


4a

4

g)

j

2

�

�

1

8

(1 +

~51


4a

4

g

)jjjj

2

+

1

8

(1 +

~393


16a

4

g

)j

4

� � � g+

+

~




ln[1+expf�


a

4

g

~

[(1�

~3


4a

4

g

)jjj�

1

8

(1+

~51


4a

4

g

jjjj

2

� � � ]g]:

It is evident that the factors

~




1

a

4

g

correspond to the one-loop contributions which in their turn also exhibit a

non-analytic structure.
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4. A Model with Two Scalar Fields

Without any doubt, it is interesting to consider the theories where the

scalar interactions have a more complicated character, e.g., there are several

multiplets of Higgs �elds. In that case, the physical content of the theory

becomes richer and the problem of minimization is more complex [106].

Consider a D = 0 dimensional toy-model with two scalar �elds [33]. The

classical potential is

V

cl

= ���

2

� ��

2

+ ��

2

�

2

+ ��

4

+ �

4

:

The form of this potential can be easily established studying its extrema.

Consider the case where the parameters satisfy the conditions

�� � 2� > 0; ��� 2�� > 0; �

2

� 2� > 0:

It is not di�cult to �nd out that this potential possesses

� A local maximum at the point (� = 0; � = 0)

V

a

= V

cl

(0; 0):

� A pair of degenerate local minima at the points (� = 0; � = �

q

�

2

)

V

b

= V

cl

�

� = 0; � = �

r

�

2

�

= �

�

2

4

:

� A pair of degenerate local minima in the points (� = �

q

�

2�

, � = 0)

V

c

= V

cl

�

� = �

r

�

2�

; � = 0

�

= �

�

2

4�

:

� Four saddle points with the coordinates

�

2

=

�� � 2�

�

2

� 4�

; �

2

=

��� 2��

�

2

� 4�

:

The classical potential is invariant under the transformations: � !

��; � ! ��. Our goal is to construct the corresponding convex e�ec-

tive potential and to study the mechanism of the spontaneous symmetry

breaking.

The generating functional is given by

Z




(J;K) = N

+1

Z

�1

d�

+1

Z

�1

d�e




~

[J�+K��V

cl

(�;�)]

:

In order to calculate this integral using the Laplace method, preliminary we

have to �nd out the maxima of the function

S(�; �; J;K) = J� +K�� V

cl

(�; �):
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The extrema equations

@V

cl

@�

= J;

@V

cl

@�

= K

will be solved using the perturbation theory for small values of external

currents by expanding over the powers of sources.

The tree approximation result reads as follows:

Z




(J;K) = e




~

W




(J;K)

= N

X

A

e

1

~

S

A

(�

a

;�

a

;J;K)

;

where �

A

= �

A

(J;K) and �

A

= �

A

(J;K) are solutions of the extrema

equations at the points of maxima. S

A

are the corresponding values of

classical action.

For the classical potential under consideration, we have four solutions

corresponding to the maxima of the e�ective potential.

The corresponding contributions up to the forth order terms are

S

�<�>

=

�

2

4

� < � > K +

1

2

(pJ

2

+

1

4�

K

2

)�

� < � > [

�p

2

2�

J

2

K +



16�

3

K

3

]

+

�

2

� 4�

4

p

4

J

4

+

�p

2

8�

2

(1 +

2�p�



)J

2

K

2

+



32�

4

K

4

;

S

�<�>

=

�

2

4�

� < � > J +

1

2

(qK

2

+

1

4�

J

2

)�

� < � > [

�q

2

2�

JK

2

+

�

16�

3

J

3

]

+

�

2

� 4�

4�

q

4

K

4

+

�q

2

8�

2

(1 +

2�q�

�

)J

2

K

2

+

�

32�

4

J

4

:

Here we have introduced the notation

< � >=

r

�

2

; < � >=

r

�

2�

;

p =



�� � 2�

; q =

�

��� 2��

:

Hence

e




hbar

W




(J;K)

= e




~

S

+<�>

+ e




~

S

�<�>

+ e




~

S

+<�>

+ e




~

S

�<�>

:

The quasiclassical result reads as follows

e




~

W




(J;K)

= exp




~

f

�

2

4

+ < � > jKj+

1

2

(pJ

2

+

1

4�

K

2

)�

� < � > [

�p

2

2�

J

2

+



16�

3

K

2

]jKj+
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+

�

2

� 4�

4

p

4

J

4

+

�p

2

8�

2

(1 +

2�p�



)J

2

K

2

+



32�

4

K

4

g+

+ exp




~

f

�

2

4�

+ < � > jJ j+

1

2

(qK

2

+

1

4�

J

2

)�

� < � > [

�q

2

2�

K

2

+

�

16�

3

J

2

]jJ j+

+

�

2

� 4�

4�

q

4

K

4

+

�q

2

8�

2

(1 +

2�q�

�

)J

2

K

2

+

�

32�

4

J

4

g =

= e




~

Q

+

+ e




~

Q

�

:

We see that W (J;K) exhibits a nonanalytic dependence on the external

currents. Performing further simpli�cations, one gets

W =

1

2

(Q

+

+Q

�

) +

1

2

jQ

+

�Q

�

j+

~




ln[1 + exp(�




~

jQ

+

�Q

�

j]:

For the small values of currents, we have

Q

+

�Q

�

=

�

2

4

�

mu

2

4�

+ < � > jKj� < � > jJ j;

and for the nonvanishing

� =

�

2

4

�

�

2

4�

;

we have

W (J;K) ' �(�)Q

+

+ �(��)Q

�

:

Let � > 0. Then

W (J;K) '

�

2

4

+ < � > jKj+

1

2

(pJ

2

+

1

4�

K

2

):

The corresponding quasiaverages are given by

� � �= (

@W

@K

)

K!0

= 0;

� � �= (

@W

@J

)

J!0

= � < � > :

We see that the symmetry � ! �� is spontaneously broken while the

reexion of � does not break the symmetry.

The e�ective potential

V (�; �) = sup

J;K

[�J + �K �W (J;K)]

is a quasi-convex function with a shape of hull.
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5. Boundary Conditions

The conventional method to calculate the e�ective potential is a loop

expansion which to each order maintains the symmetries of the input La-

grangian. In this section, we will show that a more transparent understand-

ing of the convexity problem can be achieved if the boundary conditions

in the path integral representation of the Green functions generating func-

tional are properly speci�ed. As we have already noted, the loop expansion

corresponds to the integration by the Laplace method, and actually it is an

expansion around a solution of the classical equation

@

@�

[U(�)� J�] = 0: (5.20)

For the convex classical potential which possesses a single minimum, the

equation (5.20) has a unique solution which provides a minimum of the

function U(�)� J�. As a result w(J), is a well de�ned smooth and convex

function, and its Legendre transformation, i.e., the e�ective potential V (�)

satis�es all the desired properties.

Let us now turn to the case of non-convex classical potentials, and as an

example, consider the double-well potential

U(�) = �

m

2

2

�

2

+

�

4

�

4

:

This potential possesses two degenerate minima at � = �

m

p

�

and a local

maximum at � = 0.

Consequently, (5.20) in general has three di�erent solutions denoted here

by

�

+

(J); �

�

and �

0

(J):

One can consider the function

�

�(J) { an analytic continuation of this three

di�erent solutions which is a smooth multivalued function. The correspond-

ing Schwinger functional W (J) is neither convex nor single-valued and ev-

erywhere real. We can distinguish three regions: two physical ones which

correspond to the global minima, and a unphysical one, which corresponds

to the local maximum. Using the analogy with a ferromagnetic system, one

can say that in the last region, the magnetic suspectibility is negative. The

corresponding e�ective potential in the tree approximation coincides with

the classical potential.

The boundary values of �

�

(J)'s at J = 0 are given by the extrema

of V

cl

. Consequently, one may say that in the standard loop expansion,

the functional integral is dominated by the paths �

�

(J) which satisfy the

di�erent boundary conditions as J ! 0. Now we must remark that the

very de�nition of the path integral implies the speci�cation of the boundary

conditions in the functional space, i.e., the precise form of the transition
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amplitude is given by the functional integral

h�

2

; �

2

j�

1

; �

1

i

J

= N

�(�

2

)

Z

�(�

1

)

D� exp[�

Z

d

4

x(L(�)� J�]: (5.21)

The text-book derivation of the generating functionals proceeds as follows

[1]: assuming that the external source J(�) vanishes outside a su�ciently

large time interval [T

0

; T

00

], the l.h.s. of (5.21) can be written in the form

of the double sum over the eigenstates of the Hamiltonian H :

h�

2

; �

2

j�

1

; �

1

i

J

=

=

Z

d�

00

Z

d�

0

f

X

n;m

< �

2

jn >< nj�

00

; 0 > e

�E

n

(�

2

�T

00

)

g

< �

00

; T

00

j�

0

; T

0

>

J

< �

0

; 0jm >< mj�

1

> e

�E

m

(T

0

��

1

)

: (5.22)

The demanded expression for W [J ] is obtained in the limit

T

00

; �

2

! +1; T

0

; �

1

! �1:

Then the r.h.s. of (5.22) receives its dominant contribution from the

lowest energy state j0 >. Consequently,

h�

2

; �

2

j�

1

; �

1

i

J

= 	

0

(�

2

)	

?

0

(�

1

)e

�E

0

(�

2

��

1

)

< 0; T

00

j0; T

0

>

J

; (5.23)

where 	

0

(�) �< �j0 > is the ground state wave functional, and

< 0; T

00

j0; T

0

>

J

=

Z

d�

00

Z

d�

0

	

?

0

(�

00

; T

00

) < �

00

; T

00

j�

0

; T

0

>

J

	

0

(�

0

; T

0

);

	

0

(�; T ) = e

�E

0

T

	

0

(�)

is the vacuum to vacuum transition amplitude. Recalling the de�nition

(5.20), we obtain for the Green functions generating functional the following

expression:

e

W [J]

=

< 0;+1j0;�1 >

J

< 0;+1j0;�1 >

=

< �

2

;+1j�

1

;�1 >

J

< �

2

;+1j�

1

;�1 >

=

=

R

�

2

�

1

D� exp[�

R

d

4

x(L(�)� J�]

R

�

2

�

1

D� exp[�

R

d

4

x(L(�)]

(5.24)

which due to (5.23 ) does not depend on any particular choice of the bound-

ary conditions, i.e., on �

1

and �

2

.

Note, however, that if we want to compute the r.h.s. of (5.24) using the

steepest descent method, we have to specify boundary conditions in such a

way that a dominant path would satisfy them.

Now, it is important to emphasize that (5.23) and (5.24) are valid if the

Hamiltonian does not have degenerate lowest energy states, i.e., the classical

potential has a single minimum, say at � = v. Then the steepest descent
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path

�

�(J) satis�es the boundary condition

�

�(0) = v, and it is natural that

the functional integral

e

W [J]

=

R

v

v

D� exp[�

R

d

4

x(L(�) � J�]

R

v

v

D� exp[�

R

d

4

x(L(�)]

calculated within the loop expansion leads to the correct result.

Consider now a situation, when H possesses a set of degenerate ground

states, i.e.,

H j0

�

i = E

0

j0

�

i:

Instead of (5.23 ), the equation (5.22 ) now leads to the following expansion:

lim

�

1

!1

lim

�

2

!�1

h�

2

; �

2

j�

1

�

1

i

J

=

=

X

��

	

0;�

(�

2

)	

?

0;�

(�

1

)e

E

0

(�

2

��

1

)

h0

�

;+1j0

�

;�1i

J

:

Let us suppose that there is no tunneling between di�erent vacua, i.e.,

h0

�

;+1j0

�

;�1i

J

� �

��

and that the ground state wave functional 	

0�

is essentially a Gaussian

centered around � � v

�

.

De�ne the Green functions generating functional corresponding to the

particular choice of boundary conditions

Z

�

[J ] = e

W

�

[J]

=

h0

�

;+1j0

�

;�1i

J

h0

�

;+1j0

�

;�1i

;

where

h0

�

;+1j0

�

;�1i

J

=

= lim

�

2

!1

lim

�

1

!�1

Z

d�

2

Z

d�

1

	

?

0;�

(�

2

)	

0;�

(�

1

)e

E

0

(�

2

��

1

)

h�

2

; �

2

j�

1

; �

1

i:

Then

h0

�

;+1j0

�

;�1i

J

� lim

�

1

!1

lim

�

2

!�1

e

E

0

(�

2

��

1

)

hv

�

; �

2

jv

�

; �

1

i

J

;

and we �nally get

e

W

�

[J]

=

hv

�

;+1jv

�

;�1i

J

hv

�

;+1jv

�

;�1i

=

=

R

v

�

v

�

D� exp[�

R

d

4

x(L(�) � J�]

R

v

�

v

�

D� exp[�

R

d

4

x(L(�)]

: (5.25)

The r.h.s of this equation can be calculated by the steepest descent

method. In this method, the integral is dominated by the minimal Eu-

clidean action path which satis�es the boundary conditions

�

�(� ! �1) = v

�

:
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Consequently, we have to �nd a solution �

�

(J) of the extremal equation

@U(�)

@�

= J; � = �

�

(J)

such that it provides the minimum of

U(�)� J�; U

00

(�

�

(J)) > 0

and satis�es the condition �

�

(0) = v

�

.

It is not di�cult to guess that within quasiclassical approximation, v

�

is

one of the minima of the classical potential V

cl

(�), so that we can quote the

�nal result [34], [35], [36]

W

�

[J ] =

Z

d

4

xfJ�

�

(J)� U(�

�

(J)) �

1

2

Z

d

4

q

(2�)

4

ln[q

2

+ U

00

(�

�

(J))] +

+ U(v

�

) +

1

2

Z

d

4

q

(2�)

4

ln[q

2

+ U

00

(v

�

)]: (5.26)

It is essential to note that (5.26) is only valid while �

�

(J) provides the

minimum of U(�)�J�, i.e., for a de�nite domain of variations of the source

J . In this region, W

�

[J ] is a convex and real function. It is a matter of

simple deduction to realize that convexity can be proven only for functional

integrals with well de�ned boundary conditions (like (5.25)) while the stan-

dard loop expansion su�ers the lack of this prescription.

The convex e�ective potential can be de�ned as a generalized Legendre

transformation

V (�) = sup

J

[J�� V (J)] (5.27)

of the interpolated generating functional

W [J ] �

Z

d

4

x!(J) = max

�

W

�

[J ]: (5.28)

In the tree approximation, V (�) coincides with the convex hull of the clas-

sical potential V

cl

(�).

The de�nitions (5.27 ) and (5.28) can be justi�ed if one appeals to the

classical analogue, where e�ective potential is the minimal energy of the sys-

tem with a given con�guration �, and �w(j) is the minimal energy density

of the system interacting with a given classical external source J .

The function w(J) is not analytic and its derivative changes discontinu-

ously. For the double-well potential,

�

dw(J)

dJ

�

J!0

= �

m

p

�

+O(~):

This is a natural manifestation of the spontaneous breaking of the discrete

symmetry �! ��.
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Above we have tried to point out that the convexity property is satis�ed

by the functional integrals with well de�ned boundary conditions which can

be represented in the following form:

�

d!

dJ

�

J=0

= �

�

(J = 0) = v

�

:

For the Schwinger functional W [J ] given by the standard loop expansion,

the derivative

d!

dJ

is ill-de�ned as J ! 0, so one would not expect that the

convexity will be maintained.

What kind of physical interpretation can be given to the all this consi-

deration? Let us take for concreteness the double-well potential. The

Schwinger functionals W

�

[J ] will give the Green's functions for two dif-

ferent vacua: j0

�

>. The functional W

0

[J ] corresponds to the quantization

near the unstable vacuum j0

0

>, and is given by the path integral

R

0

0

D� exp[�

R

d

4

x(

1

2

(@�)

2

+

1

2

m

2

�

2

+

�

4

�

4

� J�]

R

0

0

D� exp[�

R

d

4

x(L(�)]

:

For m

2

< 0, the Gaussian integration will lead to a divergent expres-

sion, but noticing that due to the negative �

4

terms, the integrals must be

convergent, we can calculate them in the usual way �rst for m

2

> 0 and

afterwards perform an analytic continuation in m

2

from m

2

> 0 to m

2

< 0.

In this manner, we can obtain a multivalued non-convex Schwinger func-

tionalW [J ] composed from the three di�erent branches with three di�erent

vacua and Green functions. It is just the standard loop expansion result

which claims that double-well potential will lead to a theory with two de-

generate ground states and one unstable vacuum.

A quite di�erent picture arises when one considers the convex W [J ] and

V (�), and its adequate interpretation is usually associated with the Maxwell

construction in thermodynamics.

Here we have two separate Hilbert spaces built up on the vacuum states

j0

�

> and j0

+

> with the properties that < 0

j

Aj0

+

>= 0 for any observable

A, and < 0

�

j�j0

�

>= �v = �a+O(~). Furthermore, one can construct a

superposition

j� >= �j0

+

> +�j0

�

>; j�j

2

+ j�j

2

= 1

which is also a Hamiltonian eigenstate with the ground state energy

< �jH j� >=< 0

+

jH j0

+

>=< 0

�

jH j0

�

>;

and where the �eld average takes a value

< �j�j� >= (j�j

2

� j�j

2

)v; �v �< �j�j� >� v:

Thus one obtains the state with the vacuum energy and a quantum �eld

average anywhere between the minima of the classical potential. Remark
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that only the states � = 0 or � = 0 are accessible on removing the external

source, and this is the fact that determines the symmetry of the theory.

Consider once more the procedure of the calculation of the e�ective po-

tential. For concreteness, take a theory with a single scalar �eld and La-

grangian

L =

1

2

(@

�

�)

2

� U(�);

where U(�) is a polynomial containing the mass term and interactions.

The loop expansion is not a�ected by the division of L into the free and

interacting parts [26], and the functional �[�

c

] which generates the one

particle irreducible proper diagrams does not depend on the choice of the

free part in the Lagrangian. It can be written as follows

�[�]=

X

1

n!

Z

dx

1

� � �

Z

dx

n

�

n

v

(x

1

; : : : ; x

n

)(�(x

1

)�v(x

1

))� � �(�(x

n

)�v(x

n

));

where v(x) is some given con�guration. By the construction, the derivatives

�

��(x

1

)

� � �

�

��(x

n

)

�[�]j

�=v

are the sum of 1PI diagrams representing the average values of T -ordered

Heisenberg �eld products. The essentialis that the averages are taken with

respect to the ground state j�

v

> such that

< �

out

v

j�(x)j�

in

v

>= �

v

(x)

(in the translation invariant theories, �

v

(x) = v = const).

In another terms, the same generating functional �[�] can generate the

Green functions for di�erent phases of the theory. Now, it is well-known that

any connected Green function generated by Schwinger's functionalW [J ] can

be written as the sum of three graphs in a theory whose \e�ective action" is

given by �[�] [19]. Consequently, the connected Green functions also must

be labeled by the phase index v.

W [J ] =

=

X

1

n!

Z

dx

1

� � � dx

n

W

n

v

(x

1

; : : : ; x

n

)(J(x

1

)�J

v

(x

1

)) � � � (J(x

n

)�J

v

(x

n

)):

It may happen that W [J ] is non-di�erentiable for some values of J . As

a simplest example consider again the case of the double-well potential

U(�) =

�

4

(�

2

(x) � a

2

)

2

.

Taking in the e�ective action �

v

= �a + O(~), one reconstructs the

Green functions for the two stable phases. The corresponding Schwinger's

functional is non-di�erentiable

�

�W [J ]

�J(x)

�

J=0

�

= �a+O(~):
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We have already seen that this can be interpreted as the fact of existence

of two di�erent branches of the Schwinger's functionalW

�

[J ]. The third

branch W

0

[J ] corresponds to the unstable vacuum �

0

= 0:

�

�W

0

[J ]

�J(x)

�

J=0

= 0:

Let us translate this observation into the language of path integrals. As we

have noted, di�erent branches correspond to di�erent choice of boundary

conditions in the de�nitions of generating functionals (see also [115], [[27]).

Constructive de�nition of path integrals can be given in terms of a positively

de�ned normalizable integration measure. For the theories with a unique

vacuum state, such a de�nition can be given in terms of Gaussian integrals

(in Euclide rotated version). When the free part describes the physical

particles, the boundary conditions in the path integrals correspond to the

in and out asymptotic solutions of the Heisenberg equations.

In the case of the unstable vacuum, the quadratic part of the Lagrangian

corresponds to the tachions: imaginary mass particles. The corresponding

Gaussian measure is not normalizable. But due to the �

4

term, the path

integral is convergent. In other words, the integration measure does not cor-

respond to the free asymptotic states. In the practical calculations, one uses

the Green functions of the normal theory and then performs the analytic

continuations m

2

! �m

2

term by term.
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CHAPTER 6

ON THE TEMPORARY SYMMETRY BREAKING

AT HIGH TEMPERATURES

1. Introduction

The �nite temperature e�ective action can be interpreted as the Gibbs

free energy of a system in statistical mechanics. Therefore V

eff

(T ) is useful

for determining the equilibrium state of the system since it gives a picture

of the preferred thermodynamic state and includes all e�ects of thermal

uctuations. This aspect of temperature-dependent generating functionals

plays a major role in the applications of the quantum �eld theory to the

problems of symmetry breaking phase transitions in particle physics [107].

To study the �eld theory at �nite temperature, we imagine the system

to be placed in contact with a thermal bath at temperature T . Then the

background in which we study a particular scattering process is no longer

an empty vacuum, but rather a thermal distribution of particles. The �nite

temperature Green functions are de�ned in terms of ensemble averages:

G

�

(x

1

; : : : ; x

N

) =

Tr

h

e

��H

�(x

1

) � � ��(x

N

)

i

Tre

��H

:

In analogy with the zero temperature case, one can de�ne a generating

functional

Z

�

[J ] =

Tr

h

e

��H

e

i

R

dxJ(x)�(x)

i

Tre

��H

from which the temperature Green functions are obtained by varying Z

�

[J ]

with respect to J(x) in the usual way. The functional Z

�

[J ] can be written

in terms of a Euclidean path integral over scalar �elds satisfying periodic

(antiperiodic in the case of fermions) boundary conditions in Euclidean time

�~:

Z

�

[J ] = N

Z

D

�

�e

�

R

�

0

d�

R

d

3

x(L

E

�J�)

;

where the measure is restricted to periodic paths �(0;x) = �(�;x) and L

E

is the Euclidean Lagrangian.

Let us briey discuss the �nite temperature calculation of the e�ective

potential, and focus attention on the Green functions generating functional

Z

T

[J ] =

~

Z

T

[J ]

~

Z

T

[0]

=

Tr expf�

�

~

(H �

R

d

3

xJ�)g

Tr expf�

�

~

Hg

=

=

R

+1

�1

d�

R

�

�

D

T

� expf�

1

~

R

�
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d�

R

d

3

x[L(�) � J�]g

R

+1

�1

d�

R

�

�

D

T

� expf�

1

~

R

�

0

d�

R

d

3

xL(�)g

; (6.1)

� =

1

T

:
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In (6.1), the functional integral variables satisfy periodic boundary con-

ditions: �(0) = �(�) = �. Now we have

~

Z

T

[J ]=N

+1

Z

�1

d�

0

Z

0

D

T

� expf�

1

~

�

Z

0

d�

Z

d

3

x[L(� + �

p

~)� J(�+ �

p

~)]g;

and in the one-loop approximation may write down

~

Z

T

[J ] = N

+1

Z

�1

d�

0

Z

0

expf�

1

~

�

Z

0

d�

Z

d

3

x[U(�) � J�+

+

(U

0

(�) � J)

2

2U

00

(�)

+ V

T

1

(�)]g;

where V

T

1

(�) is the well-known one-loop correction [30]

V

T

1

(�) = V

0

1

(�) + �V

T

1

(�) =

~

2

Z

d

4

q

(2�)

4

ln[q

2

+ U

00

(�)] +

+

~

2�

2

�

4

1

Z

0

dxx

2

ln[1� expf�(x

2

+ �

2

U

00

(�))

1

2

g]:

The last integration in (6.1) will be performed using the steepest descent

method. Keeping in the mind that we are treating problems in the one-loop

approximation, we can state the result:

~

Z

T

[J ] = N

X

�

expf�

1

~

�

Z

0

d�

Z

d

3

x[U(�

T

�

(J)) � J�

T

�

+ V

T

1

(�

T

�

)];

where �

T

�

(J)'s are the minima of the function U(�) � J�+ V

T

1

(�).

In the scope of the one-loop approximation, it can be shown that

�

T

�

(J) = �

�

(J) + �

T

1�

(J);

where �

�

(J) are the extrema of U(�) � J�, and

�

T

1�

(J) = �

1

2U

00

(�

�

)

�

dv

T

1

d�

�

�

�

(J)

:

Note that there is a crucial di�erence between the zero and �nite tem-

perature cases: at T = 0, only the minima of the classical potential con-

tribute to the functional integral, whilst at �nite temperatures, it is essen-

tial to take into account the minima of the temperature-dependent poten-

tial U(�) + V

T

1

(�). Above some critical temperature T

c

, the minimum of

U(�) + V

T

1

(�) coincides with the maximum of the classical potential U(�).
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Let us de�ne the generating functionals

Z

T

�

[J ] =

expf�

1

~

R

�

0

d�

R

d

3

x[U(�

T

�

(J)) + V

T

1

(�

T

�

(J))� J(�

T

�

(J))]g

expf�

1

~

R

�

0

d�

R

d

3

x[U(�

T

�

(J)) + V

T

1

(�

T

�

(J))g

=

= expf

1

~

W

T

�

[J ]g: (6.2)

Then

W

T

[J ] = max

�

W

T

�

[J ] �

�

Z

0

d�

Z

dxw(J)

will be a convex function, and the �nite temperature e�ective potential

V

T

eff

(�) = sup

J

[J�� w(J)]

appears to be the convex hull of the function

U

T

(�) = U(�) + V

T

1

(�):

Usually U

T

(�) is treated as a �nite temperature e�ective potential.

One can calculate the averages

< �

T

(J) >=

dw

T

(J)

dJ

;

and in the case of the double-well potential obtain

�

dw

T

(J)

dJ

�

J!0

�

= �

�

p

�

�

1� ~

�

16�

2

T

2

�

+O(~

2

)

for

T

2

< T

2

c

=

16�

2

~�

;

and

�

dw

T

(J)

dJ

�

J!0

�

= 0

for T

2

> T

2

c

in accordance with the scenario of the high temperature sym-

metry restoration.

In the present chapter, we consider simple models, where the symmetry

behaviour is in some sense opposite to the normal one. In Section 2, we

expose the main characteristic features of such model and in Sections 3 and

4, we �nd its supersymmetric versions.
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2. Two Higgs Model

The standard scheme of spontaneous symmetry breaking predicts the

symmetry restoration above some critical temperature [107], [93]. This well

known phenomenon of the symmetry restoration is presented in most cosmo-

logical applications of the gauge theories. On the other hand, it is possible

that at T = 0 the symmetry is exact, but at �nite temperatures it becomes

broken spontaneously, i.e., thermal uctuations lead to a reduction of sym-

metry. It should be emphasized that a possibility of such a behaviour was

pointed out by S. Weinberg [131] for a model with a global O(n) � O(n)

symmetry. Following the tradition to illustrate �nite temperature e�ects

using analogies with the condensed matter physics, we note that a typical

phenomenon characterized by the symmetry restoration is, e.g., the van-

ishing magnetization of ferromagnetics above the Curie point; on the other

hand, the spontaneous polarization of ferroelectrics at �nite temperatures

corresponds to the symmetry lowering.

In the case of complicated scalar interactions heating may lead to the

increase of symmetry as well as to the reduction or to the symmetry breaking

in a de�nite interval of temperature.

The choice of the symmetry temperature beheviour depends on the struc-

ture of the Lagrangian under the consideration, and a careful tuning of

parameters is needed to realize a concrete one.

In this item, we will consider a simplest scalar model which exhibits some

general properties of theories which are characterized by the temporary

symmetry breaking at high temperatures [39]. By the temporary breaking

we mean the that symmetry is lowered only in some de�nite temperature

interval, being unbroken at the zero tempreture as well as at high ones.

This model reproduces some essential points of the so called two Higgs

theories of electro-weak interactions studied by di�erent authors with the

goal to �nd out the possible scenarios for the high temperature phase tran-

sitions in the early Universe.

Consider a model with two real scalar �elds � and �. The corresponding

Lagrangian is given by

L(�; �) =

1

2

@

�

�@

�

� +

1

2

@

�

�@

�

�� V (��):

A tree potential is given by

V (�; �) = �

�

2

2

�

2

�

m

2

2

�

2

+



2

4

�

4

+

f

2

4

�

4

+ g�

2

�

2

: (6.3)

This potential is invariant under two symmetries: discrete transforma-

tions (reections)

� ! ��; �! ��: (6.4)

In what follows, we will concentrate our attention on the high tempera-

ture behaviour of the symmetry �! ��. The invariance � ! �� plays an
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auxiliary role. (In the physical applications, one can think of these �elds as

a standard and additional Higgs's.)

In order to determine the symmetry properties, one has to study the

extrema of the high-temperature e�ective potential [107], [30], [131], [13]

V

T

(�; �) = V

(

�; �) + �

T

V; (6.5)

where

�

T

V =

T

2

24

TrM

2

�

�

2

90

NT

4

:

The mass matrix is de�ned by the second derivatives of the potential and

is given by

M

2

=

�

�

�

�

��

2

+ 3

2

�

2

+ 2g�

2

4g��

4g�� �m

2

+ 3f

2

�

2

+ 2g�

2

�

�

�

�

: (6.6)

De�ne the zero temperature stationary points of the potential (6.3). The

extrema equations are given by

@V

@�

= 2�[�

1

2

�

2

+

1

2



2

�

2

+ g�

2

] = 0; (6.7)

@V

@�

= 2�[�

1

2

m

2

+

1

2

f

2

�

2

+ g�

2

] = 0: (6.8)

Let us enumerate the solutions for the equations (6.7)-(6.8). The kind

of the corresponding extremum (minimum, maximum or saddle point) is

determined by the value of the mass matrix (6.6).

A simple analysis leads to the following set of stationary points:

0

�

. The local maximum

(� = 0; � = 0); where V

0

= V (0; 0) = 0: (6.9)

1

�

. The extremum

�

2

=

�

2



2

; � = 0;

where

V

1

= V (�

2

=

�

2



2

; � = 0) = �

�

2

4

2

: (6.10)

Supposing that

�m

2

+ 2

g



2

�

2

> 0; (6.11)

we conclude that this solution corresponds to a local minimum. In the

opposite case, one gets a saddle point;

2

�

. The extremum

� = 0; � = �

s

m

2

f

2

: (6.12)
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The corresponding value of the potential is

V

2

= V (� = 0; � = �

m

2

f

2

) = �

m

2

4f

2

: (6.13)

If

��

2

+ 2

g

f

2

m

2

> 0 (6.14)

this solution provides a local minimum. As in the previous case, the viola-

tion of (6.14 ) leads to a saddle point.

3

�

Under the condition

4g

2

� f

2



2

> 0; (6.15)

there are non-zero solutions for the extrema equations (6.7){(6.8). This

extrema correspond to stationary saddle points.

The conditions (6.11), (6.14) and (6.15) determine the shape of the po-

tential which has one local maximum and four local minima (pairwise de-

generated).

In order to de�ne the global minimum, one has to compare the potential

values (6.10) and (6.13).

Supposing that

�

2



2

>

m

2

f

2

; (6.16)

we arrive to a pair of degenerate global minima 1

�

at � = 0; � = ��=.

So we concertize the model supposing that the model parameters satisfy

the conditions (6.11), (6.14), (6.15) and (6.16). In other terms, we arrange

the vacuum expectation values to lie purely in the direction �.

If the parameters g; �

2

and f

2

are of the same order, we do not expect that

loop corrections will signi�cant change the extrema distribution picture.

So, at the zero temperature the system is in the ground state with a

nonbroken symmetry � ! ��. In this phase, the condensates < � >= 0

and < � >6= 0, and the scalar �elds get the masses

m

2

�

= 2�

2

= 2

2

< � >

2

;

m

2

�

= 2g < � >

2

�m

2

:

(6.17)

At high temperatures (T

2

� m

2

�

;m

2

�

), the symmetry properties are de-

termined by the minima of the e�ective potential (6.5):

V

T

= �

1

2

�

2

(T )�

2

�

1

2

m

2

(T )�

2

+

+

1

4



2

�

4

+

1

4

f

2

�

4

+ g�

2

�

2

�

�

2

90

NT

4

: (6.18)
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Here

�

2

(T ) = �

2

(1�

T

2

T

2

1

); T

2

1

=

6�

2

g +

3

2



2

; (6.19)

m

2

(T ) = m

2

(1�

T

2

T

2

2

); T

2

2

=

6m

2

g +

3

2

f

2

: (6.20)

The extrema of the temperature-dependent potential (6.18) are deter-

mined as in the case of the zero temperature with the self-evident substitu-

tions m

2

! m

2

(T ); �

2

! �

2

(T ):

Taking into account this remark, we can recompute the positions of the

extrema, this time as a function of temperature.

0

�

. The solution � = � = 0, where V

T

0

= 0. For T < min(T

1

; T

2

), this

solution corresponds to a local maximum. As the temperature increases in

the range

min(T

1

; T

2

) < T < max(T

1

; T

2

)

this extremum evolves into the saddle point, and for T > max(T

1

; T

2

), the

solution determines potential minimum.

In what follows, we will suppose that T

1

< T

2

.

1

�

. For T < T

1

, there is a solution

�(T ) = 0; �

2

(T ) =

�

2

(T )



2

: (6.21)

This solution corresponds to a minimum. The necessary condition is ex-

pressed by

m

2

(T ) <

2g



2

�

2

(T ): (6.22)

The last inequality de�nes the corresponding temperature range:

T

2

� �

2

1

=

2

g



2

�

2

�m

2

2

g



2

�

2

T

2

1

�

m

2

T

2

2

: (6.23)

2

�

. For T � T

2

, there is a solution

�(T ) = 0; �

2

(T ) =

m

2

(T )

f

2

(6.24)

which provides a minimum of the temperature

T

2

� �

2

2

=

2

g

f

2

m

2

� �

2

2

g

f

2

�

2

T

2

2

�

�

2

T

2

1

: (6.25)

3

�

. The non-zero solutions �(T )�(T ) 6= 0 correspond to saddle points

and we do not consider them further.
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Now we can compare the extremal values of the e�ective potential given

by (6.21) and (6.24)

V

1

(T ) = �

�

4

4

2

�

1�

T

2

T

2

1

�

+O(T

4

);

V

2

(T ) = �

m

4

4f

2

�

1�

T

2

T

2

2

�

+O(T

4

):

(6.26)

Remember that we consider the case where T

1

< T

2

, one can conclude

that there exists a critical temperature �

c

such that

V

1

(T ) < V

2

(T ) for T < �

c

and

V

1

(T ) > V

2

(T ) for T < �

c

:

Now we see that in some temperature interval, the global minimum corre-

sponds to a solution with a non-zero condensate h�i, i.e., a spontaneously

broken symmetry �! ��.

The critical temperature �

c

can be obtained from the phase equilibrium

condition V

1

(�

c

) = V

2

(�

c

)

�

2

c

=

f�

2

� m

2

f

�

2

T

2

1

� 

m

2

T

2

2

:

Consequently, up to the temperature �

c

, the symmetry �! �� is unbro-

ken. For the temperature interval (�

c

; T

2

), the global minimum is provided

by a spontaneously broken solution. For higher temperatures (T > Y

2

), a

symmetric solution restores symmetry.

Note in conclusion that the theories with a nonstandard symmetry be-

haviour at high temperatures require the complications in the scalar sector

and necessitate a very accurate adjustment of the model parameters [98],

[97].

3. SUSY Model

In the previous section, we considered the toy model mimicking some

possible properties of the so called two Higgs models [69]. Since supersym-

metry requires two (or more) Higgs doublets, it is natural to realize the

mechanism of temporary symmetry breaking in SUSY model [112], [32].

Note that in that case, such a temperature behaviour does not mean the

parameter �ne tuning because of the SUSY constraints. Below we will con-

sider the simplest SUSY model which exhibits most characteristic features

of the global symmetry breaking over the �nite range of high temperatures

[38]. The case of gauge symmetry will be considered in the subsequent

section.
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The model contains a pair of chiral super�elds (for SUSY see [51], [135])

�(x; �) = �(x) +

p

2� (x) + �

2

F (x) =

1

p

2

(A� iB) + � � � ;

�(x; �) = �(x) +

p

2��(x) + �

2

H(x) =

1

p

2

(a� ib) + � � � :

(6.27)

The superpotential

W (�;�) = ���+

1

3!

�

3

+

1

2

��

2

(6.28)

leads to a theory invariant under the discrete transformations

�(x; �)! ��(x; �)�(x; �) ! ��(x; �): (6.29)

Suppose that SUSY is softly broken by the term [63]

V

SB

= !

2

Re�

2

+ �

2

Re�

2

: (6.30)

The corresponding scalar potential is given by

V = V

SUSY

+ V

SB

= j � �+

1

2

�

2

+

1

2

f�

2

j

2

+ f

2

j�j

2

j�j

2

+

+ !

2

Re�

2

+ �

2

Re�

2

: (6.31)

While solving the extrema equations

@V

@z

a

= 0;

@V

@�z

a

= 0 (z

a

= �; �); (6.32)

one can take into account only a P-invariant manifold of the real scalar

�elds

< Imz

a

>=< B >=< b >= 0:

It is not di�cult to �nd the local maximum

V

0

(� = 0; � = 0) = �

2

(6.33)

and 4-pairwize degenerate minima

V

1;2

� V

�

� = 0; � = �

q

2

��!

2



2

�

= �

2

�

�

��

!

2



2

�

2

; (6.34)

V

3;4

� V

�

� = �

q

2

�f��

2

f

2

; � = 0

�

= �

2

�

�

��

�

2

f

2

�

2

: (6.35)

These minima exist under the conditions

1

2

f

2

f

2

+

1

2

f

<

�f � �

2

� � !

2

< 2

f

2

+

1

2

f



2

: (6.36)

Note that the non-zero solutions for equations (5.7), i.e., such that � �� 6=

0 do not satisfy the minimum condition and correspond to saddle points. In

other words, there are potential barriers between minima locations (6.34)

and (6.35).
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Letting ! = 0, �

2

> 0, we get

V

1;2

< V

3;4

;

i.e., (6.34) correspond to the global minima, while (6.35) to the local ones.

Consequently, in the model there are several (quasi)stable states w ex-

hibiting di�erent symmetry. The quantum vacuum corresponds to the

global minima ( (6.34)) with unbroken symmetry � ! ��. It is evi-

dent, that the concrete choice of the ground state is provided by the SUSY

breaking (! = 0; �

2

> 0). At the same time, the additional symmetry

�(x; �) ! ��(x; �) is spontaneously broken.

These conclusions are reached at the tree level, but are valid for higher

corrections. This is guaranteed by the SUSY and the nature of the soft

breaking.

Now we have to establish the changes caused by the temperature. Sym-

metry properties are determined by the �nite temperature e�ective potential

[62]

V

T

= �

2

�

1

2

�

2

(T )�

2

�

1

2

m

2
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+
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+

+
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�

�

2
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: (6.37)

The temperature dependent masses are given by

�

2

(T ) = 2�

�

1�

T

2

T

2

1

�

; T

2

1

=

8�
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+ f

2

m

2

(T ) = 2(�f � �

2

)

�

1�

T

2

T

2

2

�

; T

2

2

=

4(�f � �

2

)

f

2

:

(6.38)

Further we assume that T

1

< T

2

.

It is not di�cult to �nd the solutions for the extrema equations

@V

T

@�

= 0;

@V

T

@�

= 0:

a) A temperature independent solution: �(T ) = �(T ) = 0 with the

corresponding energy

V

0

(T ) = �

2

�

�

2

90

NT

4

; (6.39)

b) For the temperatures T < T

1

, there is a solution

�(T ) = �

s

2�



�

1�

T

2

T

2

1

�

; �(T ) = 0; (6.40)

V

1;2

= �

2

� �

2

�

1�

T

2

T

2

1

�

2

�

�

2

90

NT

4

; (6.41)
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c) If T < T

2

, the corresponding solution is given by

�(T ) = 0; �(T ) = �

s

2

�f � �

2

f

2

�

�

1�

T

2

T

2

2

�

; (6.42)
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T

2

T
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2

�

2

�

�

2

90

NT

4

: (6.43)

Analyzing the minima existence conditions, we see that for the tempera-

ture range T > T

2

, there is one unique minimum (6.39). In the temperature

interval T

1

< T < T

2

, there is a pair of degenerate minima (6.43). At lower

temperatures T < T

1

, the situation becomes more complicated. The ex-

trema (6.39) and (6.42) are augmented by the plus stationary points (6.40).

All these solutions correspond to minima up to the temperature �

1

< T

1

,

where �

1

is determined by the condition

�f � �

2

�

= 2

f

2

+

1

2

f



2

�

1�

�

2

1

T

2

1

1�

�

2

1

T

2

2

:

Taking into account that at the temperature

�

c

=

s

8�

2

f( � f)

2

< �

1

< T

1

;

the depth of the two minima (6.40) and (6.42) becomes equal to

V

1;2

(�

c

) = V

3;4

(�

c

):

It must be noted that

V

1;2

(T < �

c

) < V

3;4

(T < �

c

);

V

1;2

(T < �

c

) > V

3;4

(T > �

c

):

Now we can restore the picture of how the global minimum depends on

the temperature, and trace the temperature evolution of the symmetry.

At T = 0, the system possesses a global minimum (6.34) with unbro-

ken symmetry � ! ��, and local minima (6.35). There are also a local

maximum (6.33) and saddle points.

While the temperature rises, the di�erence between the minima de-

creases, and starting from the temperature �

c

, the solutions with the broken

symmetry (6.35) give location of the true vacuum. For higher temperatures

(T > T

2

), there remains a single minimum (� = � = 0) and the symmetry

is restored.

As we see, the heating results in the competing change of the global

minimum. In some temperature range, T � �

c

, the symmetric ground

state transforms into the metastable false vacuum and must decay into a

new degenerate ground state.
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The size of the temperature interval where symmetry is temporarily bro-

ken is determined by the SUSY breaking parameters.

4. Symmetry Antirestoration in SUSY QED

In the previous sections, we have considered a class of models, where

the e�ect of �nite temperature is to lower the symmetry, in contrast to the

standard scenario of symmetry restoration. Up to now, we presented the

cases of some global symmetry. The SUSY model with global U(1) invari-

ance was studied in [112], where the phenomenon of temporary symmetry

breaking is referred as symmetry anti-restoration.

In this section, we present a model of SUSY electrodynamics, where

the symmetry under consideration is local U(1) [32], [37]. It will be demon-

strated that symmetry anti-restoration still occur when the theory is gauged

(see also [109]).

Consider the SUSY model with a U(1) gauge symmetry. The theory con-

tains the gauge super�eld V (A

�

; �) and three chiral super�elds �

A

(z

A

;  

A

)

(two of them carrying opposite charges and one neutral)

�

a

= z

a

+

p

2� 

a

+�

2

f

a

; a = 1; 2; (6.44)

�

0

= z

0

+

p

2� 

0

+�

2

f

0

: (6.45)

Supergauge transformations are written as usually [51], [135]

�V = i(�� �

+

);

��

a

= ie�"

ab

�

b

; "

12

= 1;

��

0

= 0:

(6.46)

The superpotential { a gauge-invariant function of the neutral and charged

super�elds looks like

W (�

A

) = ���

0

+

1

3!

�

2

:

+

1

2

h�

0

(�

2

1

+�

2

2

): (6.47)

As in the previous section, supersymmetry is assumed to be softly broken.

This will be achieved if one introduces in the Lagrangian the SUSY non

invariant term

L

SB

= �V

SB

= �[!

2

Rez

2

0

+ �

2

(Rez

2

1

+Rez

2

2

)]: (6.48)

The SUSY Lagrangian contains gauge couplings and mass terms, qubic

and quadratic interactions for the particles of scalar multiplets. L

SB

has

a simple SUSY transformation property: it transforms like rmA - term of

the chiral super�eld. It is the simplest explicit breaking among those con-

sidered in [63], and what is essential, it does not generate divergences, at

least in the �eld-dependent part of the e�ective potential. Furthermore, it
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is known that explicit breaking of such a type can be generated by the spon-

taneous breaking of the supersymmetry without appearance of the physical

goldstinos.

Thr symmetry is determined by the scalar �elds vacuum expectation val-

ues. They are given by the minimizing solutions to the extremal equations:

@V

@z

A

= 0;

@V

@�z

A

= 0 (z

a

= �; �): (6.49)

Here V

T

is the high temperature e�ective potential. In the high temper-

ature approximation, it is given by [62]

V

T

(z

A

; �z

A

) = V (Z

A

; �z

A

) + �

T

V (z

A

; �z

A

): (6.50)

Here

V (z

A

; �z

A

) = V

SUSY

+ V

SB

=

=

X

A

�

�

�

@W

@z

A

�

�

�

2

+

1

2

e

2

[�z

a

"

ab

z

b

]

2

++!

2

Rez

2

0

+ �

2

(Rez

2

1

+Rez

2

2

) (6.51)

is the zero temperature part, and

�

T

V (z

A

; �z

A

) =

T

2

8

f

X

A;B

@

2

W

@z

A

@z

B

j

2

+ 4e

2

�z

a

z

A

g �

�

�

2

90

(N

B

+

7

8

N

F

)T

4

is the temperature dependent one-loop correction.

Assuming the theory is invariant with respect to the parity operation, one

can consider the vacua manifold with < Imz

A

>= 0. With this remark,

our e�ective potential takes the form

V

T

(�; �) = �

2

�

1

2

�

2

(T )�

2

�

1

2

m

2

�

2

+

+

1

4



2

�

4

+

1

4

h

2

�

4

+ (h

2

+

1

2

h)�

2

�

2

: (6.52)

In this expression, we use the notation � = Rez

0

and �

2

= Rez

2

�

2

(T ) = 2(� � !

2

)

�

1�

T

T

2

1

�

; m

2

(T ) = 2(�h� �

2

)

�

1�

T

T

2

2

�

;

T

2

1

=

2�

2

(0)

h

2

+

1

2



2

; T

2

2

=

2m

2

(0)

h

2

+ 2e

2

:

(6.53)
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For concreteness in what follows we will assume that T

1

< T

2

. Find the

potential extema location and for this purpose solve the equations

@V

T

@�

= 2�

@V

T

@�

2

;

@V

T

@�

= 2�

@V

T

@�

2

:

(6.54)

Enumerate the corresponding solutions a) �(T ) = �(T ) = 0. Depending on

the temperature, T this solution corresponds to:

a1) T < T

1

{ local maximum,

a2) T

1

< T < T

2

{ saddle point,

a3) T > T

2

{ minimum.

b) In the temperature range 0 < T < T

1

, there are the solutions

�

2

(T ) = �

�

2



2

(� � !

2

) �

�

1�

T

T

2

1

��

1=2

; �(T ) = 0 (6.55)

corresponding to the degenerate local minima with unbroken U(1). Here

the potential takes the value

V

T

1;2

= V

T

(� = �(T ); � = 0) =

= �

2

�

�

��!

2



�

2

�

�

1�

T

T

2

1

2

�

�

�

2

90

�

N

B

+

7

8

N

F

�

T

4

:

(6.56)

c) When the temperature T < T

2

, there are solutions with the broken

gauge symmetry:

� = 0; �(T ) = �

"

2

h

2

(�h� �

2

)

�

1�

T

T

2

2

�

2

#

1=2

: (6.57)

The value of the corresponding local minimum is given by

V

T

3;4

= V

T

(� = 0; � = �(T )) =

=�

2

�

�

�h��

2

h

�

2

�

�

1�

T

T

2

2

2

�

�

�

2

90

�

N

B

+

7

8

N

F

�

T

4

: (6.58)

d) Nonzero solutions �(T )�(T ) 6= 0 correspond to saddle points.

The concrete location of the e�ective potential extrema depends on the

model parameters. If the solutions a) and b) are minima, one has the
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conditions

1=2

2

h

2

+ 1=2h

<

� � !

2

�h� �

<

h

2

+ 1=2h

1=2h

2

;

� � !

2

�h� �

>



h

1

2

h

2

h

2

+

1

2

h

<

h

2

+ 2e

2

h

2

+

1

2



2

< 2

h

2

+

1

2

h



2

;

(h

2

+ 2e

2

) < h(h

2

+

1

2



2

):

(6.59)

Assuming the validity of the inequalities (6.59), we get the following picture.

1. At T = 0, the e�ective potential possesses:

� global minima with exact U(1) symmetry,

� local minima with the spontaneously broken gauge invariance,

� a local maximum � = � = 0,

� a saddle point � = � 6= 0, corresponding to the potential barriers

between the minima points.

2. When the temperature increases up to the T = �

c

with

�

2

c

= 4

�

2

� h=!

2

(h

2

+ 1=2

2

)h= � (h

2

+ 2e

2

)

;

the minimum with unbroken U(1) lies below the minimum with the non-

invariant ground state : V

1;2

(T < �

c

) < V

3;4

(T < �

c

).

3. At T = �

c

, the minima with exact and broken U(1) become equal to

V

1;2

(�

c

) = V

3;4

(�

c

). For higher temperatures �

c

< T < T

2

, the symmetry

is broken, i.e., the symmetry anti restoration takes place.

4. At high temperatures T > T

2

, the symmetry is restored and the

system undergoes the phase transition to the normal symmetric phase.

In conclusion, one can say that in the model under consideration the

gauge symmetry can be broken for some �nite temperatures.

Thus, depending on the SUSY breaking, one can realize di�erent patterns

of the gauge symmetry breaking at �nite temperatures, i.e., SUSY breaking

drives the internal symmetry.

In this connection, we have to mention a theory [98] where the magnetic

monopole production is suppressed by the breaking chain

SU(5) ! H

1

! � � � ! H

n

! SU(3)

c

�U(1)

em

occurring at temperatures T

1

> T

2

> � � � > T

c

. In this scheme, the interme-

diate symmetry group H

i

does not contain a U(1) factor, i.e., at T > T

c

the

gauge U(1) symmetry is broken, just what we have in the model considered

above.
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APPENDIX

A. Fermions in Magnetic Field

A particle (charge e mass m) constrained to move in a plane perpendicu-

lar to a constant magnetic �eld B is described by a stationary wave function

 (x) satisfying the Schr�odinger equation

1

2m

(P� eA)

2

 (x) = E (x); (A.1)

where A(x) is a vector potential such that

"

ik

@

i

A

k

(x) = B:

In what follows, we will ignore the electron spins, assuming that they are

aligned along the �eld since the energy required for the reversal of a spin is

comparable with the spacing of the Landau levels.

Di�erent solutions of the equation (A.1) are related by gauge transfor-

mations. The usual choices are symmetric by

A

x

= �

1

2

By; A

y

=

1

2

Bx;

and asymetric (Landau) gauges

A

x

= �By; A

y

= 0:

These gauges are applied in the cases of the disk and rectangular geometry,

respectively. Consider �rst the case of an asymmetric gauge.

It is suitable to introduce new pairs of canonical variables

Q = �

i

p

!

c

D

1

; P = �

i"

p

!

c

D

2

; [Q;P ] = i;

q =

p

!

c

x+ P; p = �"

p

!

c

y +Q; [q; p] = i; " = sign(eB):

Here !

c

= jeBj =

1

`

2

, ` is the magnetic length. Operators q and p are known

as guiding canter coordinates. In fact, they are the magnetic translation

generators for the matter �eld

P

x

=

1

`

p P

y

=

1

`

q:

Note that they do not commute among themselves.

Rotations are generated by the operator

J =

1

2

(q

2

+ p

2

)�

1

2

(Q

2

+ P

2

):

It is natural to de�ne the oscillator operators

a =

Q+ iP

p

2

; a

y

=

Q� iP

p

2

;
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b =

q + ip

p

2

; b

y

=

q � ip

p

2

in terms of which the Hamiltonian and the angular momentum operators

are given by

H =

!

c

m

(a

y

a+ 1=2); J = b

y

b� a

y

a:

As a commuting set, one can chooseH and one of the momentum operators.

Another commonly used set is formed by the Hamiltonian and the angular

momentum.

In what follows, we will work in the basis jn; pi = jni 
 jpi. Here jni

is the occupation number basis and jpi is the basis in which the transla-

tion generator P

x

is diagonal. In the coordinate representation, the wave

function is given by

hrjn; pi =

1

p

2�`

e

i("xy�'(x;y))

e

ip

x

�x

	

n

(

p

!

c

y + `p

x

): (A.2)

Here 	

n

(Q) is a ordinary oscillatory wave function and the function '(x; y)

is determined by the detailed form of the background gauge �eld. In the

assymetric gauge ' = "!xy. Classically the particle moves around a circle

in the x,y plane. The conserved quantity y

0

= �`p

x

corresponds to the y

coordinate of the canter of the classical orbit. To the coordinate x of the

centre there corresponds the operator `q.

The assymetric gauge has the feature that the wave functions (A.2) are

extended in the direction x but sharply peaked about y = y

0

= �

l

p

!

c

, so

the parameter y

0

represents the site of the Landau orbital. Notice that the

Landau and symmetric gauges are related by the gauge transformation

A

Landau

= A

sym

+r�

with the gauge function � =

B

2

xy.

Usually non-degenerate wave functions are simply related by the phase

factor e

i�

. However, due to the degeneracy of the Landau levels, the gauge

invariance only implies that e

i�

 

j

n

symm

is some linear combination of the

 

n;k

asymm

with the same energy. The particular form of this linear com-

bination is gauge dependent, and the conversion of the density from one

gauge to another is not such a straightforward matter.

The Landau site y

0

depends only on p

x

. So each level is highly degenerate.

If the system is of the �nite size (with the area L

x

L

y

), then the allowed

values of p

x

are discrete: �p

x

= 2�=L

x

. Moreover, the condition implies

0 � jp

x

j � `

�2

L

y

, so the number of allowed values p

x

is �nite and given by

L

y

2�`

2

p

x

= jeBjL

x

L

y

= e�;
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and the degeneracy or the number of allowed quantum states per unit area

is

n

L

=

jeBj

2�

: (A.3)

(For B = 1 Tesla, there are 2:7�10

14

states perm

2

.) The quantity !

c

=

eB

mc

is the classical cyclotron frequency. The corresponding harmonic oscillator

energy ~!

c

sets the scale for the physics. Taking m to be the free electron

mass, we �nd, for B = 1 Tesla, that the corresponding energy is about 10

�4

eV, or � 1:2 degrees Kelvin. The system should be at lower temperature

than this to observe any e�ect of energy quantization.

In the case of the disk geometry, it is convenient to use the symmetric

gauge A(x) =

B

2

(�y; x) and as the unit of length the quantity

p

2`. This

gauge has the property that it is well adapted to the use of complex variables

z = x+ iy, @ =

1

2

(@

x

� i@

y

). Oscillator operators are given by

a =

z

2

+

�

@; a

+

=

�z

2

� @;

b =

�z

2

+ @; b

+

=

z

2

�

�

@:

With these notations, the one-particle Hamiltonian reads

H =

1

m`

2

[a

+

a+

1

2

]:

The operators a and a

+

are lowering and raising operators between di�erent

Landau levels characterized by the quantum number n. The energy levels

are

E

n

=

~eB

m

(n+ 1=2);

the operators b and b

+

commute with H , and generate in�nitely many

degenerate states

The properly normalized one-body Landau wave functions are

 

j

n

(z; �z) =

s

n!

�2

j+1

(n+ j)!

z

j

L

j

n

(jzj

2

)exp(�

jzj

2

2

);

where n � 0 and j � �n are integers and L

j

n

are the adjoint Laguerre

polynomials. They satisfy

H 

j

n

= E

n

 

j

n

and

J 

j

n

= (z@ � �z

�

@) 

j

n

= j 

j

n

:

The states of the lowest Landau level have n = 0, and are annihilated by

the operator a. The general solution of the equation

a =

�

@ +

z

2

 = 0
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is of the form

 (z; �z) = �

�1=2

exp(�

z�z

2

)�(z);

where � is a function only of z, i.e., an analytic (entire) function. The

complete orthonormal basis is given by the monomials

�

j

(z) =

z

j

p

l!

; j = 0; 1; 2; : : : :

The operator J becomes z@, giving the degree of homogeneity and hence

the orbital angular momentum around a �xed origin. The fact that these

eigenvalues are bounded from below arises from the preferred chirality in-

troduced in the plane by the magnetic �eld: it requires energy to overcome

chirality (for B < 0 we must replace z by �z).

The probability density of the j-th state is concentrated in a ring centered

around r �

p

j since

< jj�zzjj >= j + 1:

In the second quantized formalism, the �eld operator will be expanded

over a set of energy eigenfunctions:

 (r; t) =

X

n�0

Z

dp

x

e

�iE

n

t

	

np

x

(r)a

np

x

:

Here E

n

=

!

c

M

(n+1=2)�� is the energy of the Landau level. The operator

a

np

x

and its Hermitean conjugate must satisfy the canonical anticommuta-

tion relations

fa

np

x

; a

y

n

0

p

0

x

g = �

nn

0

�(p

x

� p

0

x

):

As a ground state, consider

j�

0

i =

Y

p

x

��1

Y

n=0

a

y

np

x

j0i:

This ground state corresponds to the totally �lled N = � Landau levels.

Obviously

N =

%

n

L

:

Let us calculate the energy density

E = h�

0

jH(r)j�

0

i = n

L

N�1

X

n=0

eB

m

(n+ 1=2) =

�

m

%

2

: (A.4)

So the energy density does not depend on N .

Now consider the case of the partial �lling, which takes place when the

�lling factor

� =

2�%

jeBj
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is not integer. Let us perform a small variation of the magnetic �eld:

B ! B

0

= B + �B:

It is not di�cult to show that the energy density is given by the expression

E

0

=

�%

2

m

[1 + j

^

Bj � (N

2

�Nsign

^

B)

^

B

2

];

where

^

B =

�(eB)

2�%

:

So we see that the switching on of the additional magnetic �eld increases

the energy { energetically it is favorable to remain in the state with the

integer �lling factor. The energy density as a function of B has cusps for

those values of the magnetic �eld which correspond to the integer values of

the �lling factor.

Now we can introduce the Green functions for the fermion �eld. At the

zero temperature, it is de�ned as the ground state average:

G(x; x

0

) = ih�

0

jT ( (x) 

y

(x

0

))j�

0

i = hrjG(t � t

0

)jr

0

i =

= �

Z

dE

2�

e

�iE(t�t

0

)

hrjG(E)jr

0

i; (A.5)

where the kernel G(E) is given by

G(E) =

N�1

X

n=0

jnihnj

E �E

n

� i�

+

1

X

n=N

jnihnj

E �E

n

+ i�

=

= �

Z

C

N

dE

2�

e

�iE(t�t

0

)

1

X

n

jnihnj

E �E

n

: (A.6)

At �nite temperatures, one can use imaginary time(Matsubara) or real

time formalisms. In the imaginary time formulation, the �nite tempera-

ture Green function is de�ned as a quantum statistical average

G

�

(r; � ; r

0

; �

0

) = �

1

Z

Trf�T

�

[ (r; �) 

y

(r

0

; �

0

)]g; (A.7)

where � = exp[��(H � �N)] is the grand canonical distribution and Z =

Tr�. The Matsubara �elds are de�ned as follows

 (r; �) =

1

X

n

Z

dpe

�E

n

�

 

np

(r)a

np

;

 

y

(r; �) =

1

X

n

Z

dpe

E

n

�

 

y

np

(r)a

np

:
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Due to the antiperiodicity, this thermal Green function can be Fourier ex-

panded over the half-integer frequencies:

G

�

(r; � ; r

0

; �) =

1

�

+1

X

s=�1

e

�i�

s

(���

0

)

hrjG(i�

s

)jr

0

i;

�

s

=

2�

�

(s+ 1=2):

The kernel

G(i�

s

) =

1

X

n=0

jnihnj

i�

s

�E

n

(A.8)

can be obtained from zero temperature kernel by the formal substitution

E ! i�

s

; E

n

! E

n

= E

n

� � (� is a chemical potential).

In the thermo �eld dynamics, the Green functions are de�ned in a close

analogy with the standard �eld theory. They are given by a 2� 2 matrix

G

ab

(x; x

0

) = ih0(�)jT ( 

a

(x)

~

 

y

b

(x

0

))j0(�)i =

= hrj �

Z

dE

2�

e

�iE(t�t

0

)

G

ab

(E)jr

0

i; a; b = 1; 2: (A.9)

The kernels G

ab

(E) are given by

G

11

(E) =

X

n

[

cos

2

�

n

(�)

E �E

n

+ i�

+

sin

2

�

n

(�)

E �E

n

� i�

]jnihnj;

G

12

(E) =

X

n

[

1

E �E

n

+ i�

�

1

E �E

n

� i�

] sin �

n

(�) cos �

n

(�)jnihnj =

= �G

21

(E);

G

22

(E) =

X

n

[

sin

2

�

n

(�)

E �E

n

+ i�

+

cos

2

�

n

(�)

E �E

n

� i�

]jnihnj;

(A.10)

where

sin

2

�

n

(�) =

1

1 + e

�E

n

:

One particle Hamiltonian describing a relativistic planar electron in the

uniform magnetic background is given by

H

b

= i `

0



0



k

D

b

k

+ �

0

;

D

b

k

= @

k

+ i(e=~)(A

b

k

+ a

b

k

);

A

b

k

(r) + a

b

k

(r) =

1

2

"

kl

x

l

(B

b

+ b

b

)� @

k

�(r);

where �(r) is the gauge �xing term. Introduce the canonical transformation

(x; y;�i@

x

;�i@

y

)! (Q; q; P; p)

Q = �i`D

b

1

; P = �i"`D

b

2

;
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q = �i"`D

b

2

+ `

�1

x; p = �i`D

b

1

� "`

�1

y;

where " � sgn(eB

b

+ eb

b

), and the magnetic length ` is de�ned by

1

`

2

=

1

~

j eB

b

+ eb

b

j:

One can easily verify that the non-vanishing commutators are only [Q; P ] =

[q; p] = i.

Rewritten in terms of new variables, the Hamiltonian takes the form

H

b

(�; ") =

8

>

>

>

>

>

:

�

p

h (Q� i "P )

p

h (Q+ i "P ) ��

9

>

>

>

>

>

;

;

where h = `

2

0

=`

2

and `

0

= ~=mc.

Now we introduce the lowering and rising operators

Q+ iP =

p

2 c; Q� iP =

p

2 c

y

and use the occupation number representation

c jni =

p

n jn� 1i; c

y

jni =

p

n+ 1 jn+ 1i:

Solving the Schr�odinger equation for H

b

(�; "), one �nds the following set

of the positive and the negative energy eigenvectors

H

b

(�; ")u

n

(�; ") = + !

n

u

n

(�; ");

H

b

(�; ")v

n

(�; ") = � !

n

v

n

(�; ");

where the eigenvalues, being independent of � and ", are given by

!

n

=

p

1 + 2hn:

Explicit expressions for the eigenvectors are (� = " = 1)

u

n

(+; +) =

1

p

2!

n

8

>

>

>

>

:

p

!

n

+ 1 jni

p

!

n

� 1 jn� 1i

9

>

>

>

>

;

; n = 0; 1; 2; : : : ;

v

n

(+; +) =

1

p

2!

n

8

>

>

>

>

:

p

!

n

� 1 jni

�

p

!

n

+ 1 jn� 1i

9

>

>

>

>

;

; n = 1; 2; 3; : : : ;

and as one can see, each u

n

except u

0

has the partner v

n

with the opposite

energy eigenvalue. Consequently, there exists some asymmetry between the

positive and the negative energy spectra.

Eigenfunctions are normalized as follows

u

y

m

u

n

= v

y

m

v

n

= !

m

�u

m

u

n

= �!

m

�v

m

v

n

= �

mn

; u

y

m

v

n

= 0:
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The completeness condition and the eigenbasis expansion of H

b

(+; +)

are

X

n=0

u

n

u

y

n

+

X

n=1

v

n

v

y

n

= 1;

X

n=0

!

n

u

n

u

y

n

�

X

n=1

!

n

v

n

v

y

n

= H

b

:

These relations established for the case � = " = 1 can be easily generalized

to the di�erent values of � and ". In particular, the Dirac Hamiltonian has

the following properties

H

b

(��; ") = �

0

H

b

(�; ")

0

;

H

b

(�; � ") = �

1

H

b

(�; ")

1

which immediately yield

u

n

(��; ") = 

0

v

n

(�; ");

v

n

(�; � ") = 

1

u

n

(�; "):

Asymmetry between the positive and the negative energy eigenstates is

generalized as follows: there is no v

0

mode for �" = +1, and no u

0

mode

for �" = �1.

Choosing (H

b

; p) as a full set of commuting operators and denoting u

np

=

u

n

� jpi and v

np

= v

n

� jpi, we write the quantum spinor �elds as

 =

X

np

fa

np

u

np

+ b

y

np

v

np

g;

�

 =

X

np

fa

y

np

�u

np

+ b

np

�v

np

g;

where a

y

np

and b

y

np

are the operators creating the particles and antiparticles,

respectively, while a

np

and b

np

are the corresponding annihilating ones.

These operators satisfy the ordinary anticommuting relations

fa

np

; a

y

n

0

p

0

g = f b

np

; b

y

n

0

p

0

g = �

nn

0

�(p� p

0

):

For completeness, we give the formulae for (Q; q) and (x; y) representa-

tions

hQjni = (

p

� 2

n

n!)

�1=2

e

�Q

2

=2

H

n

(Q) � 	

n

(Q);

hqjpi = (2�)

�1=2

e

ipq

;

hx; yjQ; qi =

1

2�`

expfi`

�1

(Qx+ "qy)� (i=2)"`

�2

xy � iQq + i(e=~)�g;

hx; yjn; pi =

1

`

p

2�

	

n

(p+ "`

�1

y) expfi`

�1

px+ (i=2)"`

�2

xy + i(e=~)�g;

where H

n

(Q) are the Hermite polynomials.
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The quantized Hamiltonian H

0

and the particle number operator N are

de�ned in the normal ordered form

H

0

=

X

np

!

n

a

y

np

a

np

+

X

np

!

n

b

y

np

b

np

;

N =

X

np

a

y

np

a

np

�

X

np

b

y

np

b

np

allowing to avoid problems with negative energy states.

For the Fourier transformation, one can use the relation

e

�ikr̂

= e

i`(k

x

q̂�"k

y

p̂)

Z(k);

where

Z(k) = e

"`

2

"

mn

k

m

D

n

= e

`[k

+

a

y

�k

�

a]

is a coherent state operator k

�

= 1=

p

2(k

x

� i"k

y

). It is not di�cult to

show, that the following relations are valid:

fD

m

; Z(k)g = �

2"

`

2

"

mn

@

@k

n

Z(k);

Z

dre

�ikr

hrjA(a

y

; a)jri =

2�

`

2

tr[Z(k)A];

Z

dr

Z

dr

0

e

�ikr

e

ik

0

r

0

hrjA(a

y

; a)jr

0

ihr

0

jB(a

y

; a)jri =

=

2�

`

2

�(k� k

0

)tr[Z(k)AZ

y

(k

0

)B]:

B. Similarity Transformation

The generator of similarity transformation must satisfy the commutation

relation

[G

p

; �(r)] = 2p�

Z

dr

0

G(z � z

0

)%(r

0

) � �(r):

Represent G

p

as a bilinear functional of the density operator:

G

p

=

Z

dr

0

Z

dr

00

%(r

0

)�

p

(r

0

; r

00

)%(r

00

) +

Z

drL

p

(r)%(r):

Using the commutator

[%(r

0

); �(r)] = ��(r� r

0

)�(r);

we get

Z

dr

0

[�

p

(r; r

0

) + �

p

(r

0

; r)]%(r

0

) = �2p�

Z

dr

0

G(z � z

0

)%(r

0

)

and

L

p

(r) = ��

p

(r; r):
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Consequently

�

p

(r; r

0

) = �p�G(z � z

0

) +

i�

2

p;

and

L

p

(r) = � lim

r

0

!r

�

p

(r; r

0

) = i

�

2

p:

In the last expression, we have used the regularized Green function, satis-

fying the condition G(0) = 0. As an example of such a regularization, one

can try to use the function

G(z) = lim

�!0

G

�

(z); G

�

=

1

�

ln z � e

��=jzj

2

:

C. Toy Model

Consider a toy model describing the couple of fermion oscillators. The

basic anticommutators are

ff; f

y

g = 1; ff

c

; f

y

c

g = 1:

The Hamiltonian is

^

H = f

y

f � f

y

c

f

c

:

The explicit realization of basic operators and Hilbert space can be given

in terms of Grassmann variables � and �

�

:

f =

@

@�

; f

y

= �; f

c

=

@

@�

�

; f

y

c

= �

�

:

The Hamiltonian takes the form

^

H = �

@

@�

� �

�

@

@�

�

:

The state vectors are represented by their expansion

	 =  

00

+  

10

� +  

01

�

�

+  

11

��

�

:

Introduce the dual vector

	

#

= �

�

 

00

��

�

+

�

 

01

�

�

�

�

 

10

� �

�

 

11

:

The scalar product is de�ned by the Berezin integral over the Grassmann

numbers

(�;	) =

Z

d�d�

�

�

#

�	 =

�

�

00

 

00

+

�

�

10

 

10

+

�

�

01

 

01

+

�

�

11

 

11

:

We see that the pairs of Hermitian conjugate operators are given by

(�; �

y

=

@

@�

) and (�

?

; �

�y

=

@

@�

�

):

So our Hamiltonian is Hermitian and invariant under the involution op-

eration.
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D. Structure functions

Below we present the structure functions for the relativistic fermion cur-

rent correlators

�

E

(x)=�

h

2�

I(x)�

1

4�

e

� x

S

3

(x; x)+

h

2�

e

� x

@

@x

x

@

@x

S

0

(x; y)

�

�

�

�

y=x

;

�

CS

(x) =

1

4�

e

�x

�

@

@x

S

1

(x; y)�

@

@x

S

2

(x; y) + S

2

(x; y)

�

�

�

�

�

y=x

;

�

M

(x) = �

1

2�

e

�x

@

2

@x@y

S

0

(x; y)

�

�

�

�

y=x

;

where I(x) and S

a

(x; y) are given by

I(x) = e

�x

1

X

n=0

1

X

�=1

n !

(n+ �) !

�

2

�

0

(n; �) x

��1

L

�

n

(x)L

�

n

(x);

S

a

(x; y) =

1

X

n=0

�

a

(n)L

n

(x)L

n

(y) +

+

1

X

n=0

1

X

�=1

n !

(n+ �) !

�

a

(n; �) (x

�

+ y

�

)L

�

n

(x)L

�

n

(y):

Here L

�

n

(x) are the adjoint Laguerre polynomials, while �

a

are temperature-

dependent quantities

��

a

(n; �) = �

a

(n) � �

a

(n+ �); �

a

(n) = lim

�!0

�

a

(n; �);

�

0

(n) =

�

n

!

n

; �

1

(n) = �

�

n

!

n

+ " ��

n

; �

2

(n) = �

�

n+1

!

n+1

� " ��

n+1

;

�

3

(n) =

1

2

�

!

n

+

1

!

n

�

�

n

+

1

2

�

!

n+1

+

1

!

n+1

�

�

n+1

+ �" (��

n

� ��

n+1

);

�

n

� �

+

n

(�) + �

�

n

(�); ��

n

� �

+

n

(�) � �

�

n

(�):

Structure functions which include the contributions from both sorts of

fermions are denoted as �

tot

E

(x), �

tot

CS

(x) and �

tot

M

(x). For our purposes, we

consider the case of T = 0 and �� = 0. If the applied magnetic �eld B

ext

does

not exceed the critical one, then at T = 0 it is completely expelled from

the sample (B

b

= 0), and according to (4.55) and (4.56), we have �

1

=

�

2

= � = �

0

= N + 1 where N is any non-negative integer. Consequently,

the only non-vanishing terms in (4.51) and (4.52) in the zero temperature

limiting case (� =1) are

�

+

0

(�

1

) = � � � = �

+

N�1

(�

1

) = �

+

N

(�

1

) = 1;

�

+

1

(�

2

) = � � � = �

+

N

(�

2

) = �

+

N+1

(�

2

) = 1
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while all others, including the antiparticle contributions vanish exactly.

These values of the Fermi distribution functions lead to the following zero

temperature expressions

�

tot

E

(x)=

1

2�

N

X

n=0

�

�4x+ 3x

2

(2n+ 1)�

x

3

9

(30n

2

+ 30n+ 11)

�

; (D.1)

�

tot

CS

(x) =

1

�

N

X

n=0

�

1 �

3x

2

(2n + 1) +

x

2

12

(30n

2

+ 30n + 11)

�

+

+

x

3

72�

N

X

n=0

(70n

3

+ 105n

2

+ 85n + 25); (D.2)

�

tot

M

(x) =

1

�

N

X

n=0

�

2n + 1 �

3x

2

(2n

2

+ 2n + 1)

�

+

+

x

2

12�

N

X

n=0

(30n

3

+ 30n

2

+ 32n + 11) +

+

x

3

72�

N

X

n=0

(35n

4

+ 70n

3

+ 120n

2

+ 85n + 25); (D.3)

where the structure functions are expanded up to x

3

, i.e., up to k

6

terms.
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