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Abstract. We present effective oscillation conditions for all solutions of a linear first-order delay
differential equation written in terms of the Riemann–Stiltjes integral and including equations with
concentrated and distributed delays as special cases. The main result of the paper is a generalization
of the so-called low-limit oscillation test for the equation with several concentrated delays.
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რეზიუმე. რიმან-სტილტიესის ინტეგრალის საშუალებით ჩაწერილი დაგვიანებული წრფივი
პირველი რიგის დიფერენციალური განტოლებისთვის, რომელიც მოიცავს განტოლებებს კონცენ-
ტრირებული და განაწილებული დაგვიანებით, როგორც სპეციალურ შემთხვევებს, მოცემულია
ყველა ამონახსნის რხევის ეფექტური პირობები. ნაშრომის მთავარი შედეგია ე.წ. ქვედა-
ზღვარის რხევის ტესტის განზოგადება ასეთი განტოლებისთვის რამდენიმე კონცენტრირებული
დაგვიანებით.
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1 Introduction
We say that a function f : [0,∞) → R oscillates if it has zeros to the right of any point T > 0.

It is well known that all solutions to an autonomous linear delay differential equation ẋ(t)+ax(t−
r) = 0 oscillate if and only if ar > 1/e. Oscillation of solutions of nonautonomous equations was first
studied by Myshkis [9] in the middle of the XXth century. In particular, it was Myshkis who first
proposed to express the conditions for the oscillation of solutions in terms of the estimate of the lower
limit of some functional defined on equation parameters. However, the interest to oscillation conditions
for delay equations of the first order, in contrary to equations of the second order, appeared in the
international literature only in the early 1970s. Estimating the upper and lower limits of a function

v(t) =

t∫
h(t)

a(s) ds

determined by parameters of an equation

ẋ(t) + a(t)x(h(t)) = 0, t ≥ 0, (1.1)

where h(t) ≤ t, gave rise to two main areas of obtaining the oscillation conditions for delay differential
equations of the first order. These areas are still developing, influencing each other. In the 1990s,
the idea arose of “filling the gap” between the results obtained in two directions. This idea in various
forms continues to be, explicitly or implicitly, the main point of application of the efforts of modern
researchers. Modern lines of research are characterized, for example, by the following recent works:
in [3] and [4], a search is underway for equations that are similar in properties to autonomous equations;
in [10], an attempt is made to take into account the interaction between retarded terms; in [11], a
refinement of estimating lim sup v(t) is proposed.

This paper is devoted to another line of research coming from Myshkis and generalizing the well-
known Koplatadze–Chanturia theorem on an estimate of lim inf v(t) [5]. Our main result generalizes
the theorem from paper [1] on conditions for the oscillation of solutions to a linear differential equation
with several concentrated delays. The main advantage of these conditions is that all delays are taken
into account equally. We show that the key idea of the proof of the theorem can be transferred to a
linear equation written in the most general form using the Stieltjes integral. For such an equation,
the result takes on a clear and complete form.

2 The Koplatadze–Chanturiya theorem
and its generalizations

Equation (1.1) is called an equation of stable type if a(t) ≥ 0 and h(t) → ∞ as t → ∞. Consider
such an equation assuming that the functions a and h are continuous and solutions are continuously
differentiable functions.

Theorem 2.1 (see [5]). If equation (1.1) is an equation of stable type and

lim inf
t→+∞

t∫
h(t)

a(s) ds >
1

e
,

then all solutions to (1.1) oscillate.

The author of this article knows at least three fundamentally different proofs of this theorem. The
first one was proposed by the authors of [5], and this proof, apparently, underlies all generalizations
of Theorem 2.1 published over the past 40 years. The second proof was proposed in the work by
Koplatadze and Kvinikadze [6], where the iterative approach in estimating parameters of (1.1) was
first applied. The third method of proof, proposed by V. V. Malygina, consists in deriving Theorem 2.1
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directly from the results by Myshkis using a change of variables. This approach is very illustrative
and effective, but is hardly applicable to more general equations.

Let us pass to the case of several delays. Suppose ak, hk : [0,∞) → R, k = 1,m, are integrable
functions, and consider an equation

ẋ(t) +

m∑
k=1

ak(t)x(hk(t)) = 0, (2.1)

with respect to a locally absolutely continuous function x. Define m families of sets

Ek(t) =
{
s ≥ t | hk(s) < t

}
.

If ak(t) ≥ 0 and hk(t) ≤ t almost everywhere and hk(t) → ∞ as t → ∞, then equation (2.1) is an
equation of stable type.

Theorem 2.2 (see [1]). If (2.1) is an equation of stable type and

lim inf
t→+∞

m∑
k=1

∫
Ek(t)

ak(s) ds >
1

e
,

then all solutions to (2.1) oscillate.

Note that this theorem is an essential generalization of Theorem 2.1 even in the case m = 1.
Indeed, the meaning of Theorem 2.1 does not change when the function x(t) is replaced by the
function δ(t) = max{h(s) | s ∈ [0, t]}, while Theorem 2.2 takes into account the case where the
nonincrease of the function h is essential.

However, the main advantage of Theorem 2.2 is that it overcomes the main imperfection of the
known iterative oscillation tests, which is using an integral along the segment [max{h(s) | s ∈ [0, t]}, t],
where t− h(t) is the least delay at the point t. This segment may be arbitrarily small and even equal
to zero.

The proof of Theorem 2.2 inherits the scheme of the proof of Theorem 2.1 proposed in [5], although
the method of taking into account the after-effect essentially changes. The idea of passing from
Theorem 2.1 to Theorem 2.2 and some related known results are discussed in [1], and there is an
attempt to compare different approaches in applying low-limit oscillation conditions in [2].

3 Oscillation conditions for equation of general form
In this section, we formulate and prove our main result.

Consider an equation

ẋ(t) +

t∫
0

x(s) dsr(t, s) = 0, t ≥ 0. (3.1)

Here, the integral is understood in the Riemann–Stieltjes sence, the function r(t, · ) has bounded

variation for each t, the variation function ρ(t) =
t∨

s=0
r(t, s) is locally integrable, r(t, 0) = 0, and the

function r( · , s) is measurable for each s.
We say that a solution to equation (3.1) is a locally continuous function x : [0,+∞) → R that

satisfies equality (3.1) almost everywhere. Given an initial condition x(0) = x0, equation (3.1) is
uniquelly solvable.

This general form (3.1) of a linear delay differential equation was first studied in [8] and [7].
It contains, as special cases, equations without delay, equations with one and several concentrated
delays, integro-differential equations with delay, and equations containing delay terms corresponding
to different mentioned types. To determine the solution of equations (1.1) and (2.1), an initial function
is needed, which is absent in equation (3.1). This does not limit the generality of (3.1), since equations
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(1.1) and (2.1) with a nonzero initial function can be written in the form of the inhomogeneous equation
corresponding to (3.1).

We say that equation (3.1) is an equation of stable type if for each t, the function r(t, · ) does not
decrease and for each s ≥ 0, there exists T (s) > s such that for each t ≥ T (s), we have r(t, s) = 0.

The main results of this work is the following

Theorem 3.1. If equation (3.1) is an equation of stable type and

lim inf
t→+∞

+∞∫
t

t∫
0

dτ r(s, τ) ds >
1

e
, (3.2)

then all solutions to (3.1) oscillate.

Note that in Theorem 3.1 and everywhere below, the outer integral in double integrals is understood
in the sense of Lebesgue. Under the assumed conditions, this integral is always defined.

Proof.
1. Denote

C(t) =

+∞∫
t

t∫
0

dτ r(s, τ) ds, y(t) =

+∞∫
t

t∫
0

x(τ) dτ r(s, τ) ds.

Note that, in general,
t∫

0

dτ r(s, τ) ≤ r(s, t).

Consider an arbitrary solution x : R+ → R of equation (3.1). Suppose it does not oscillate, while
condition (3.2) is fulfilled. Without loss of generality, we suppose the solution to be positive from
some point. In virtue of the equation and the theorem conditions, there are t0 ∈ R+ and K ∈ (1/e, 1)
such that for all t ≥ t0, we have x(t) > 0 and

C(t) ≥ K. (3.3)

It follows from the theorem conditions that x(t) → 0 for t → +∞. Indeed, there is a strongly
increasing sequence {tn}∞n=1 such that r(t, tn) = 0 for all t > tn+1, hence

x(tn+1) = x(tn)−
tn+1∫
tn

s∫
0

x(τ) dτ r(s, τ) ds

≤ x(tn)−
+∞∫
tn

tn∫
0

x(τ) dτ r(s, τ) ds ≤ x(tn)(1− C(tn)) < x(tn)
e− 1

e
.

Thus, in virtue of equation (3.1), for t ≥ 0 we have

x(t) = −(0− x(t)) =

+∞∫
t

s∫
0

x(τ) dτ r(s, τ) ds,

therefore, for some t1 ≥ t0 and for all t ≥ t1, we have y(t) < x(t).
Denote ε(t) = x(t)−y(t). In the subsequent items 2–5 we show that ε(t)/x(t) → 0 for t → +∞. For

this, we show that for any c > 0, if there is t2 ≥ t1 such that for all t ≥ t2 an inequality x(t)/ε(t) ≥ c
holds, then there is t3 ≥ t2 such that for all t ≥ t3, the inequality x(t)/ε(t) ≥ K · e · c > c is satisfied.
We show in item 6 that the deduced fact contradicts the conditions of the theorem.

2. Suppose c > 0, t1 ≥ t0, and for all t ≥ t1, we have x(t) ≥ c ε(t).
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Fix t2 ≥ t1 such that for all t ≥ t2 and s ≤ t1, we have r(t, s) = 0, hence
∞∫
t

t1∫
0

dτ r(s, τ) ds = 0.

For convenience, define

T (t) = inf
{
s ≥ t |

∞∫
s

dτ r(t, τ) = 0

}
.

So,
∞∫

t2

t2∫
0

ds r(t, s) dt =

T (t2)∫
t2

t2∫
0

ds r(t, s) dt = C(t2).

Divide the double integral
T (t2)∫
t2

t2∫
0

into h terms, each is equal to C(t2)/h.

Decompose the segment [t1, t2] by a sequence of points si, i = 0, h:

t1 = s0 < s1 ≤ · · · ≤ sh−1 ≤ sh = t2. (3.4)

Define functions p : [t2,∞)× (t1, t2) → R and Q : (t1, t2) → R by the equalities

p(t, s) = lim
σ→s+0

σ∫
t1

dτ r(t, τ),

Q(s) =

T (t2)∫
t2

p(t, s) dt =

T (t2)∫
t2

lim
σ→s+0

σ∫
t1

dτ r(t, τ) dt,

and complete the definition by

p(t, t1) ≡ 0, p(t, t2) =

t2∫
t1

dτ r(t, τ), Q(t1) = 0, Q(t2) = C(t2).

For each t, the function r(t, · ) is not decreasing, hence the function p(t, · ), as well as the function
Q(s), is not decreasing on the segment [t1, t2].

For brevity, denote
qi =

i

h
C(t2), i = 1, h− 1 .

Choose arbitrarily
si ∈

{
inf{s | Q(s) ≥ qi}, sup{s | Q(s) ≤ qi}

}
.

If the function Q has the inverse and qi is in the range of values of Q, then si ∈ Q−1(qi). So, we
obtain decomposition (3.4).

Note that one can describe the division by the other way: put si, i = 1, h− 1 such that

qi ∈
[

lim
s→si−0

Q(s), Q(si)
]
.

3. Define ui ∈ [t2, T (t2)], i = 1, h, in the following way.
If q1 = Q(s1), then put u1 = T (t2). If, conversely,

q1 < Q(s1) =

T (t2)∫
t2

p(s, s1) ds =

T (t2)∫
t2

(p(s, s1)− p(s, s0)) ds,
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then in virtue of the boundedness of the function p, there is a number u1 such that

S1 =

u1∫
t2

p(s, s1) ds =

u1∫
t2

lim
σ→s1+0

σ∫
s0

dτ r(s, τ) ds = q1 =
C(t2)

h
.

Further, choose ui ∈ [t2, T (t2)], i = 2, h, and compose the terms Si, i = 2, h, expressed in the form
of integrals of the function p. Each of such terms is equal to C(t2)/h.

If si−1 < si, then Q(si−1) < qi. Put ui and Si so that

Q(si−1) +

ui∫
t2

(p(s, si)− p(s, si−1)) ds =
i C(t2)

h
=

i∑
j=1

Sj ;

However, if si = · · · = si−k+1, si−k < si, then put
ui∫

ui−1

(p(s, si)− p(s, si−k)) ds =
C(t2)

h
= Si

or, which is the same,

Q(si−k) +

ui∫
t2

(p(s, si)− p(s, si−k)) ds =
i C(t2)

h
=

i∑
j=1

Sj .

Note that uh = T (t2), Sh = C(t2)/h,

h∑
j=1

Sj =

T (t2)∫
t2

t2∫
t1

dτ r(s, τ) ds = C(t2).

4. Define a function

P (t, s) = lim
σ→s+0

σ∫
t1

x(τ) dτ r(t, τ)

and a sequence {Xi}hi=1, each term of which Xi is obtained from the expression for the corresponding
term Si by replacing the function p with the function P . So, for example,

X1 =

s1∫
t2

P (s, s1) ds.

Define a sequence {ξi}, i = 0, h, as follows:

ξ0 = x(t2); ξ1 = ξ0 −
i∑

j=1

Xj , i = 2, h .

We obtain

ξh = ξ0 −
T (t2)∫
t2

t2∫
t1

x(τ) dτ r(s, τ) ds = x(t2)− y(t2) = ε(t2),

that is,
x(t2)

ε(t2)
=

ξ0
ξh

.
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Show that x(si) ≥ c ξi, i = 0, h . We have

x(si) ≥ c ε(si) = c(x(si)− y(si)) = c

(
x(si)−

T (t2)∫
si

si∫
0

x(τ) dτ r(s, τ) ds

)

= c

(
x(si)−

t2∫
si

si∫
0

x(τ) dτ r(s, τ) ds−
T (t2)∫
t2

si∫
t1

x(τ) dτ r(s, τ) ds

)
.

Compare the expression in braces with ξi. If si = · · · = si−k+1, si−k < si, then

ξi = ξ0 −
i∑

j=1

Xj = x(si)− (x(si)− x(t2))−
i∑

j=1

Xj

≤ x(si)−
t2∫

si

si∫
0

x(τ) dτ r(s, τ) ds−
T (t2)∫
t2

P (s, si−k) ds−
ui∫

t2

[P (s, si)− P (s, si−k)] ds

≤ x(si)−
t2∫

si

si∫
0

x(τ) dτ r(s, τ) ds−
T (t2)∫
t2

P (s, si) ds

= x(si)−
t2∫

si

s∫
0

x(τ) dτ r(s, τ) ds−
T (t2)∫
t2

si∫
s0

x(τ) dτ r(s, τ) ds.

Thus x(si) ≥ c ξi.
5. Show that x(t2)/ε(t2) ≥ K · e · c. For i = 1, h, we have

ξi = ξi−1 −Xi ≤ ξi−1 − x(si)Si ≤ ξi−1 − c ξi
C(t2)

h
,

that is,
ξi

(
1 +

cC(t2)

h

)
≤ ξi−1,

and so,
ξ0 ≥ ξh

(
1 +

cC(t2)

h

)h

.

Since one can take h arbitrarily large, taking account the inequalities C(t2) ≥ K and ex ≥ ex for
x ≥ 0, we obtain

ε(t2) = ξh ≤ ξ0 exp(−cC(t2)) ≤
x(t2)

K · e · c
.

Thus, in items 2–5, we have fulfilled our program given at the end of item 1, and it has been shown
that ε(t)/x(t) → 0 for t → +∞.

It remains to show that the obtained fact contradicts the conditions of the theorem.
6. We have (see item 1) x(t) → 0 for t → ∞ and K ∈ (1/e, 1). For all t ≥ t0, define f(t) ≥ t0 so

that
x(f(t)) ∈

(Kx(t)

e
,
x(t)

e

)
. (3.5)

For t ≥ t0, we have

ε(t) = x(t)− y(t) =

+∞∫
t

s∫
t

x(τ) dτ r(s, τ) ds

≥
∞∫

f(t)

f(t)∫
t

x(τ) dτ r(s, τ) ds ≥ x(f(t))

∞∫
f(t)

f(t)∫
t

dτ r(s, τ) ds >
K

e
x(t)

∞∫
f(t)

f(t)∫
t

dτ r(s, τ) ds.
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Hence the assertion that
∞∫

f(t)

f(t)∫
t

dτ r(s, τ) ds ̸→ 0 for t → ∞

contradicts the established above fact that ε(t)/x(t) → 0 for t → ∞. So,

∞∫
f(t)

f(t)∫
t

dτ r(s, τ) ds → 0 for t → ∞.

Taking into account inequality (3.3), it follows that for t large enough we have

∞∫
f(t)

t∫
0

dτ r(s, τ) ds ≥ K >
1

e
.

Therefore,

x(f(t)) ≥
∞∫

f(t)

t∫
0

x(τ) dτ r(s, τ) ds ≥ x(t)

∞∫
f(t)

t∫
0

dτ r(s, τ) ds >
x(t)

e
.

This contradicts definition (3.5).
So, the assertion that a solution x of equation (3.1) does not oscillate leads to contradiction.
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