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Abstract. For the system of generalized linear ordinary differential equations, the boundary value
problem

dx = dA(t) · x+ df(t) (t ∈ I), ℓ(x) = c0

is considered, where I = [a, b] is a closed interval, A : I → Rn×n and f : I → Rn are, respectively,
the matrix- and vector-functions with components of bounded variation, ℓ is a linear bounded vector-
functional, c0 ∈ Rn. Under a solution of the system is understood a vector-function x : I → Rn with
components of bounded variation satisfying the corresponding integral equality, where the integral is
understood in the Kurzweil sense.

Along with a number of questions, such as solvability, construction of solutions, etc., we investigate
the problem of the well-posedness. Effective sufficient conditions, as well as effective necessary and
sufficient conditions, are established for each of these problems.

The obtained results are realized for the above boundary value problem for linear impulsive system
dx

dt
= P (t)x+ q(t), x(τl+)− x(τl−) = G(τl)x(τl) + u(τl) (l = 1, 2, . . . ),

where P and q are, respectively, the matrix- and vector-functions with Lebesgue integrable compo-
nents, τl (l = 1, 2, . . . ) are the points of impulse actions, and G(τl) and u(τl) (l = 1, 2, . . . ) are the
matrix- and vector-functions of discrete variables.

Using the well-posedness results, the effective sufficient conditions, as well as the effective necessary
and sufficient conditions, are established for the convergence of difference schemes to the solution of
linear boundary value problem for impulsive systems of differential equations, as well for ordinary
differential equations. The analogous results are obtained for the stability of difference schemes.
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ÒÄÆÉÖÌÄ. ÂÀÍÆÏÂÀÃÄÁÖË ÜÅÄÖËÄÁÒÉÅ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÉÓÈÅÉÓ ÂÀÍáÉ-
ËÖËÉÀ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÀ

dx = dA(t) · x+ df(t) (t ∈ I), ℓ(x) = c0,

ÓÀÃÀÝ I = [a, b] ÍÄÁÉÓÌÉÄÒÉ ÜÀÊÄÔÉËÉ ÉÍÔÄÒÅÀËÉÀ, A : I → Rn×n ÃÀ f : I → Rn ÀÒÉÓ
ÛÄÓÀÁÀÌÉÓÀÃ ÌÀÔÒÉÝÖËÉ ÃÀ ÅÄØÔÏÒÖËÉ ×ÖÍÝÉÄÁÉ, ÒÏÌÄËÈÀ ÊÏÌÐÏÍÄÍÔÄÁÉ ÓÀÓÒÖËÉ ÅÀÒÉÀ-
ÝÉÉÓ ×ÖÍØÝÉÄÁÉÀ, ℓ ßÒ×ÉÅÉ ÛÄÌÏÓÀÆÙÅÒÖËÉ ÅÄØÔÏÒÖËÉ ×ÖÍØÝÉÏÍÀËÉÀ, c0 ∈ Rn. ÓÉÓÔÄÌÉÓ
ÀÌÏÍÀáÓÍÉÓ ØÅÄÛ ÂÀÉÂÄÁÀ ÉÓÄÈÉ ÓÀÓÒÖËÉ ÅÀÒÉÀÝÉÉÓ ÅÄØÔÏÒÖËÉ ×ÖÍØÝÉÀ x : I → Rn,
ÒÏÌÄËÉÝ ÀÊÌÀÚÏ×ÉËÄÁÓ ÛÄÓÀÁÀÌÉÓ ÉÍÔÄÂÒÀËÖÒ ÔÏËÏÁÀÓ ÊÖÒÝÅÀÉËÉÓ ÀÆÒÉÈ.

ÀÌÏáÓÍÀÃÏÁÉÓÀ ÃÀ ÓáÅÀ ÓÀÊÉÈáÄÁÈÀÍ ÄÒÈÀÃ, ÂÀÍáÉËÖËÉÀ ÀÌ ÀÌÏÝÀÍÉÓ ÊÏÒÄØÔÖËÏÁÉÓ
ÓÀÊÉÈáÉ. ÂÀÍáÉËÖËÉ ÀÌÏÝÀÍÄÁÉÓÈÅÉÓ ÃÀÃÂÄÍÉËÉÀ ÒÏÂÏÒÝ Ä×ÄØÔÖÒÉ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ,
ÀÓÄÅÄ Ä×ÄØÔÖÒÉ ÀÖÝÉËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ.

ÌÉÙÄÁÖËÉ ÛÄÃÄÂÄÁÉ ÒÄÀËÉÆÄÁÖËÉÀ ßÒ×ÉÅ ÉÌÐÖËÓÖÒ ÂÀÍÔÏËÄÁÀÈÀ

dx

dt
= P (t)x+ q(t), x(τl+)− x(τl−) = G(τl)x(τl) + u(τl) (l = 1, 2, . . . )

ÓÉÓÔÄÌÉÓÈÅÉÓ ÀÙÍÉÛÍÖËÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓÈÅÉÓ, ÓÀÃÀÝ P ÃÀ q ÛÄÓÀÁÀÌÉÓÀÃ ËÄÁÄÂÉÓ
ÀÆÒÉÈ ÉÍÔÄÂÒÄÁÀÃÉ ÌÀÔÒÉÝÖËÉ ÃÀ ÅÄØÔÏÒÖËÉ ×ÖÍØÝÉÄÁÉÀ, τl (l = 1, 2, . . . ) ÉÌÐÖËÓÖÒÉ
ØÌÄÃÄÁÉÓ ßÄÒÔÉËÄÁÉÀ, áÏËÏ G(τl) ÃÀ u(τl) (l = 1, 2, . . . ) ÊÉ ÃÉÓÊÒÄÔÖËÉ ÀÒÂÖÌÄÍÔÉÓ
ÌÀÔÒÉÝÖËÉ ÃÀ ÅÄØÔÏÒÖËÉ ×ÖÍØÝÉÄÁÉÀ.

ÊÏÒÄØÔÖËÏÁÉÓ ÛÄÃÄÂÄÁÉÓ ÓÀ×ÖÞÅÄËÆÄ ÃÀÃÂÄÍÉËÉÀ ÒÏÂÏÒÝ Ä×ÄØÔÖÒÉ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏ-
ÁÄÁÉ, ÀÓÄÅÄ Ä×ÄØÔÖÒÉ ÀÖÝÉËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ, ÒÏÌËÄÁÉÝ ÖÆÒÖÍÅÄËÚÏ×Ó
ÓáÅÀÏÁÉÀÍÉ ÓØÄÌÄÁÉÓ ÊÒÄÁÀÃÏÁÀÓ ßÒ×ÉÅÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓÊÄÍ ÒÏÂÏÒÝ ÉÌ-
ÐÖËÓÖÒ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ, ÀÓÄÅÄ ÜÅÄÖËÄÁÒÉÅ ÃÉ×ÄÒÄÍÝÉÀËÖÒ
ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ. ÂÀÒÃÀ ÀÌÉÓÀ, ÓáÅÀÏÁÉÀÍÉ ÓØÄÌÄÁÉÓ ÌÃÂÒÀÃÏÁÉÓÈÅÉÓ ÃÀÃÂÄÍÉ-
ËÉÀ ÀÍÀËÏÂÉÖÒÉ ÛÄÃÄÂÄÁÉ.
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Introduction
In the present monograph, we consider the linear boundary value problems for systems of the so-called
linear generalized ordinary differential equations in the Kurzweil sense. We propose the solvability
and uniqueness conditions for the problems and consider the related questions on the well-posedness
of the problem and the numerical solvability. The obtained results are realized for the the linear
boundary value problem and its particular cases, that is, for the multi-point, Cauchy–Nicolletti,
Cauchy–Nicolletti type and periodic problems, as well as for linear boundary value problems for
linear systems of impulsive differential equations. The results on the well-posedness are used for
the numerical solvability of the corresponding problems for systems of linear impulsive and ordinary
differential equations and for the stability of difference schemes.

Since the middle of the past century, the question on the well-posedness of the initial problem for
ordinary differential equations has become very topical among many mathematicians. In particular,
such a question for the initial problem for linear systems was treated very thoroughly (see, e.g.,
[3, 15, 46, 47, 51, 63, 65, 75] and the references therein). The essence of the problem was to investigate
under what conditions the small perturbations of the right-hand sides and the initial data of the given
initial problem affect the nearness (in a uniform sense) of the solutions of the perturbed initial problem
to the solutions of the given one. Note that unprovable sufficient conditions, as well as unprovable
necessary and sufficient conditions were obtained in [3] both for the initial and for the linear boundary
value problems.

The theory of generalized ordinary differential equations has been introduced by the Czech math-
ematician J. Kurzweil in 1957. In [52], he investigated the above problem and constructed an example
of the problem which fails to have any solution in the classical sense, i.e., a “solution” has the points of
discontinuity. The perturbation problems have a classical solution converging to the “solution” of the
given problem only in a pointwise sense. So, in this case, the convergence may not occur in a uniform
sense. In this connection, J. Kurzweil introduced an integral of certain type (see [52–54,61,71,73,74])
known in literature as the Kurzweil-Hanstock integral. He considered the solutions of differential
equations defined as the functions satisfying the corresponding integral equations, where the integral
is understood in the introduced sense. Such differential equations, called as generalized ordinary dif-
ferential equations, may have solutions with the points of discontinuity. For such differential equations
J. Kurzweil has proved the well-posed theorem. In such a case, the convergence takes place only in a
pointwise sense. So, the above-constructed example was in conformity with the theorem.

To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enabled one to investigate ordinary differential,
impulsive differential and difference equations from a unified point of view. In particular, all of them
can be rewritten in the form of generalized ordinary differential equations

dx = dA(t) · x+ df(t),

where A and f are the matrix- and vector-functions of bounded variation, respectively, for the following
systems : a) the impulsive system

dx

dt
= P (t)x+ q(t), x(τl+)− x(τl−) = G(τl)x(τl) + u(τl) (l = 1, 2, . . . ),

where P and q are, respectively, the matrix- and vector-functions with Lebesgue integrable compo-
nents, τl (l = 1, 2, . . . ) are the points of impulse actions, and G(τl) (l = 1, 2, . . . ) and u(τl) (l = 1, 2, . . . )
are the matrix- and vector-functions of discrete variables;

b) the difference system

∆y(k − 1) = G1(k − 1)y(k − 1) +G2(k)y(k) + g0(k) (k = 1, . . . ,m0),

where m0 is a fixed natural number, and G1, G2 and g0 are, respectively, the matrix- and vector-
functions of discrete variables; the differential-difference systems, etc.

Therefore, we can consider the ordinary differential, impulsive differential and difference equations
as such of the same type. In particular, when for the generalized ordinary differential equations we
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investigate the question of the well-posedness of the linear boundary value problems in the uniform
sense, we obtain, as a particular case, the results dealing with the convergence of difference schemes
to solutions of linear boundary value problems for impulsive differential and ordinary differential
equations. Analogous concept has been used for investigation of the initial problem for linear systems
of ordinary differential equations (see [15,23]).

In the present work, we investigate a general question on the linear boundary value problems for
linear generalized ordinary differential equations. Moreover, such a concept can be used for the initial
and general boundary value problems for nonlinear cases.

Note that another conception of the investigation enabling one to study the continuous and discrete
problems can be found in [30] (see also the references therein).

The initial and boundary value problems for generalized ordinary differential equations are inves-
tigated reasonably satisfactory for linear and nonlinear cases. The questions on the existence and
well-posedness for linear problems are also considered. In particular, one of such questions for the
initial problem for linear systems has been treated very thoroughly, e.g., in [2, 4, 10, 12, 15–25, 28, 29,
39, 40, 44, 61, 72–74] (see also the references therein). The same questions for the nonlinear case are
studied in [5–9,11,13,14,52–54,71] (see also the references therein).

The results obtained in the present monograph are new, they make more precise similar results
given in our earlier works.

In particular, we investigate the question on the solvability of the linear boundary value prob-
lem satisfying the following particular cases of the boundary value problem: the general multi-point
boundary problem, the Cauchy–Nicoletti problem, the two-point problem and periodic problem.

We present a short description of the results given in the paper.
The work consists of six chapters.
Chapter 1. Section 1.1 is devoted to the question of solvability of general linear boundary value

problems for systems of linear generalized ordinary differential equations. It is well known that on a
closed interval there does not exist a unified form of a linear functional given on the set of functions
with bounded variations. In this connection, we consider two types of general linear boundary value
problems. The first case considers the linear operator without any restriction to its form. As to the
second case, the linear functional here is of specific form, in particular, of integral form. For each case,
the Green type theorems are proved for the unique solvability of the problems, and the solutions are
represented by the Green formula.

In the same section, we propose the spectral type theorems on the unique solvability of the problem.
Section 1.2 studies the question of the well-posedness of the general linear boundary value problems

for linear systems of generalized differential equations. Here, we establish new effective sufficient
conditions and an effective criterion for the well-posedness of the problem in the uniform sense on the
closed interval. The results obtained in the paper are new for impulsive differential systems and some
of them for ordinary differential case, as well.

Chapter 2. In Section 2.1, the results of Section 1.1 are realized for the general multi-point boundary
value problem. We present here the spectral type theorems on the solvability of the problem under
consideration. The special type existence theorems corresponding to the Cauchy–Nicoletti type and
Cauchy–Nicoletti problems are established in Section 2.2. In Section 2.3, we established the conditions
guaranteeing the existence of nonnegative solutions of the Cauchy–Nicoletti type and Cauchy–Nicoletti
problems. A method for constructing solutions of the Cauchy–Nicoletti type and Cauchy–Nicoletti
problems is established in Section 2.4.

Chapter 3 is devoted to the realization of the results obtained in Chapter 2 for the two-point
boundary value problems for linear systems of generalized ordinary differential equations. In Sections
3.1–3.3, we suggest the results concerning the unique solvability, existence of nonnegative solutions
and also a method for constructing solutions.

In Chapter 4, we consider the periodic problem for systems of generalized ordinary differential
equations.

In Section 4.1 we formulate specific theorems on the existence and uniqueness of solutions. Section
4.2 deals with auxiliary propositions and proofs of the results.

Chapter 5 proposes investigation of linear boundary value problems for systems of linear impulsive
differential equations. In the same chapter, we realize the results of Chapter 1 for the impulsive
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differential systems. Sections 5.1–5.3 consider the general linear boundary value problems, periodic
problem and the numerical solvability of the general linear boundary value problem. Section 5.4
investigates the question on the stability of difference schemes. Some questions involving solvability,
well-posedness, stability in the Lyapunov sense, etc., are studied in earlier works [2, 18, 21, 24, 26, 27,
32, 33, 57, 60, 64, 68, 69] (see also the references therein). Unlike another works, in this chapter we
obtain somewhat different necessary and sufficient conditions for the well-posedness and stability of
difference schemes.

The questions on the well-posedness and numerical solvability of the general linear boundary value
problems for systems of ordinary differential equations are considered in Chapter 6. In the same
chapter, we realize the results of Chapter 1 for ordinary differential systems. In particular, in Sections
6.1–6.3, we present the necessary and sufficient conditions guaranteeing the well-posedness of the
problem, convergence of the difference schemes to the solution of the problem and also convergence of
discontinuous vector-functions to the solution of the given problem, respectively. The results, obtained
for this case, generalize our earlier results. Note that for the convergence of difference schemes we have
used the concept that it is possible to consider both continuous and difference problems as generalized
ones and, therefore, the convergence is a particular case of the well-posedness in the uniform sense for
the latter problems.

The problem of numerical solvability of the initial and boundary value problems for the differential
systems is classical one. The questions of solvability, stability and convergence of difference schemes
were studied earlier in [1,2,17,18,23,30,34,35,37,38,42,56,58,66,70] for linear and nonlinear difference
systems. In the above-cited papers, there take place only the sufficient conditions for the convergence
of difference schemes, and it should be noted that neither necessary and, the more so, nor necessary
and sufficient conditions were found therein. As we have noted above, unlike our earlier works, in
the present work, we have obtained the necessary and sufficient conditions (i.e., the criterion) for the
convergence and stability of the difference schemes.

The above-considered difference schemes are of the 1-order type. As to the 2-order type difference
schemes, as in [17], the 2-order n × n-difference linear problem can be reduced to some 1-order
2n × 2n-difference linear problem. Therefore, we can obtain the necessary and sufficient conditions
for the convergence of the corresponding 2-order difference schemes. Analogously, we can consider the
3-order difference problem, etc.

The above-investigated problems are actual for the functional differential equations, as well. Some
related problems are studied in works [31, 37, 41, 48–50] (see also the references therein). Obviously,
the methods used in the present monograph can, likewise, be applied to the study of similar problems
for functional differential equations.
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Basic notation and definitions
In the present monograph, the use will be made of the following notation and definitions.

N = {1, 2, . . . }, Z is the set of all integers.
R = ] − ∞,+∞[ , R+ = [0,+∞[ ; [a, b] and ]a, b[ (a, b ∈ R) are, respectively, closed and open

intervals.
I is an arbitrary finite or infinite interval from R. We say that some properties are valid in I if

they are valid on every closed interval from I.
[t] is the integer part of t ∈ R.
χ

M
is the characteristic function of the set M ⊂ R, i.e., χ

M
(t) = 1 for t ∈ M , and χ

M
(t) = 0 for

t /∈M ; we use the designation χ
a
(t) ≡ χ

M
(t) if M = {a}.

Rn×m is the space of all real n×m matrices X = (xij)
n,m
i,j=1 with the norm

∥X∥ = max
j=1,...,m

n∑
i=1

|xij |.

Rn×m
+ = {(xij)n,mi,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)}.

On×m (or O) is the zero n×m matrix. We designate the zero n vector by 0n (or 0), as well.
If X = (xij)

n,m
i,j=1 ∈ Rn×m, then

|X| =
(
|xij |

)n,m
i,j=1

.

X⊤ is the matrix transposed to X, i.e., X⊤ = (xji)
m,n
i,j=1.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ = Rn×1
+ .

x ∗ y is the scalar product of the vectors x, y ∈ Rn.
If X ∈ Rn×n, then X−1, det(X) and r(X) are, respectively, the matrix inverse to X, the determi-

nant of X and the spectral radius of X;
diag(X1, . . . , Xm), where Xi ∈ Rni×ni (i = 1, . . . ,m), n1 + · · · + nm = n is a quasidiagonal

n× n-matrix. In particular, if X = (xij)
n
i,j=1, then diag(X) = diag(x11, . . . , xnn).

λ0(X) and λ0(X) are, respectively, the minimum and maximum eigenvalues of the symmetric
matrix X ∈ Rn×m.

In is the identity n × n-matrix; diag(λ1, . . . , λn) is the diagonal matrix with diagonal elements
λ1, . . . , λn.

δij is the Kroneker symbol, i.e., δii = 1 and δij = 0 for i ̸= j (i, j = 1, . . . ); Zn = (δi+1 j)
n
i,j=1.

The inequalities between the real matrices are understood componentwise.
b∨
a
(X) is the sum of total variations of components xij (i = 1, . . . ,m; j = 1, . . . ,m) of the matrix-

function X : [a, b] → Rn×m,
a∨
b

(X) = −
b∨
a
(X); V (X)(t) = (v(xij)(t))

n,m
i,j=1 for t ∈ [a, b], where

v(xij)(a) = 0, v(xij)(t) ≡
t∨
a
(xij).

X(t−) and X(t+) are, respectively, the left and the right limits of X at the point t (X(a−) = X(a)
and X(b+) = X(b)).

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
∥X∥∞ = sup{∥X(t)∥ : t ∈ I}, |X|∞ = (|xij |∞)n,mi,j=1.
BV([a, b];Rn×m) is the set of all matrix-functions X : [a, b] → Rn×m with bounded variation (i.e.,

such that
b∨
a
(X) <∞).

BV∞([a, b];Rn×m) is the normed space of all matrix-functions X : [a, b] → Rn×m with bounded
variation with the norm ∥X∥∞.

BVloc(I;D), where D ⊂ Rn×m, is the set of all matrix-functions X : I → D for which
b∨
a
(X) <∞

for every closed interval [a, b] from I.
BVloc(I;Rn×m

+ ) = {X ∈ BVloc(I;Rn×m) : X(t) ≥ On×m for t ∈ I}.
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BVω(R;Rn×m), where ω > 0, is the set of all matrix-functions X : R → Rn×m, whose restrictions
on [0, ω] belong to BV([0, ω],Rn×m), and there exists a constant matrix C ∈ Rn×m such that

X(t+ ω) = X(t) + C for t ∈ R. (0.0.1)

C(I;Rn×m) is the space of all continuous and bounded matrix-functions X : I → Rn×m with the
norm ∥X∥∞,I = sup{∥X(t)∥ : t ∈ I}.

C(I;D), where D ⊂ Rn×m, is the set of all continuous and bounded matrix-functions X : I → D.
If X ∈ C([a, b];Rn×m), then ∥X∥c = max

{
∥X(t)∥ : t ∈ [a, b]

}
.

AC([a, b];D) is the set of all absolutely continuous matrix-functions X : [a, b] → D.
ACloc(I;D) is the set of all matrix-functions X : I → D, whose restrictions to an arbitrary closed

interval [a, b] from I belong to AC([a, b];D).
ACloc(I \ T ;D), where T = {τ1, τ2, . . . }, τl ∈ I (l = 1, 2, . . . ), τl ̸= τk (i ̸= k), is the set of all

matrix-functions X : I → D, whose restrictions to an arbitrary closed interval [a, b] from I \ T belong
to AC([a, b], D).

BVACloc(I, T ;D) = BV (I;D) ∩ ACloc(I \ T ;D).
B(T ;Rn×m) is the set of all matrix-functions G : T → Rn×m such that

+∞∑
l=1

∥G(τl)∥ < +∞.

Bloc(T,Rn×m) is the set of all matrix-functions G : T → Rn×m such that∑
τl∈T[a,b]

∥G(τl)∥ < +∞ for every [a, b] ⊂ I.

Let ω > 0. If the set T = {τ1, τ2, . . . }, where τl ∈ R (l = 1, 2, . . . ), τl ̸= τk (i ̸= k), is such that
τl + ω ∈ T (l = 1, 2, . . . ), then by Bω(T,Rn×m) we denote the set of all ω-periodic matrix-functions
G : T → Rn×m such that ∑

τl∈[0,ω]

∥G(τl)∥ < +∞.

|∥ℓ∥| is the usual norm of the linear bounded operator ℓ.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components

is such.
A matrix-function X = (xij)

n
i,j=1 : [a, b] → Rn×n is quasi-nondecreasing if the functions xij (i ̸= j;

i, j = 1, . . . , n) are nondecreasing on [a, b].
We say that a matrix-function X : I → Rn×n is nonsingular if det(X(t)) ̸= 0 for every t ∈ I.
If B1 and B2 are normed spaces, then an operator g : B1 → B2 (nonlinear, in general) is positive

homogeneous if
g(λx) = λg(x)

for every λ ∈ R+ and x ∈ B1.
An operator φ : BV([a, b],Rn) → Rn is called nondecreasing if for every x, y ∈ BV([a, b],Rn) such

that x(t) ≤ y(t) for t ∈ [a, b], the inequality φ(x)(t) ≤ φ(y)(t) holds for t ∈ [a, b].
If α ∈ BV([a, b],R) has no more than a finite number of discontinuity points and m ∈ {1, 2},

then Dαm = {tαm1, . . . , tαmnαm} (tαm1 < · · · < tαmnαm) is the set of all points from [a, b] for which
dmα(t) ̸= 0.

µαm = max{dmα(t) : t ∈ Dαm} (m = 1, 2).
If β ∈ BV([a, b],R), then

ναmβj = max
{
djβ(tαml) +

∑
tαm l+1−m<τ<tαm l+2−m

djβ(τ) : l = 1, . . . , nαm

}
(j,m = 1, 2);

here, tα20 = a− 1, tα1nα1+1 = b+ 1.
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s1, s2, sc : BVloc(I;R) → BVloc(I;R) are the operators defined, respectively, by

s1(x)(a) = s2(x)(a) = 0, sc(x)(a) = x(a)

(somewhere we use the designations s0 instead of the operator sc);

s1(x)(t) = s1(x)(s) +
∑

s<τ≤t

d1x(τ), s2(x)(t) = s2(x)(s) +
∑

s≤τ<t

d2x(τ)

and

sc(x)(t) = sc(x)(s) + x(t)− x(s)−
2∑

j=1

(sj(x)(t)− sj(x)(s)) for s < t, s, t ∈ I,

where a ∈ I is an arbitrary fixed point.
If g ∈ BV([a, b];R), f : [a, b] → R and a ≤ s < t ≤ b, then we assume

t∫
s

x(τ) dg(τ) = (L− S)

∫
]s,t[

x(τ) dg(τ) + f(t) d1g(t) + f(s) d2g(s),

where (L − S)
∫

]s,t[

f(τ) dg(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[. It is

known (see [52, Theorem 1.2.1] and [67, Chapter VI, (8.1) Theorem]) that if the integral exists, then

the Kurzweil–Stieltjes integral (K − S)
t∫
s

f(τ) dg(τ) exists and the right-hand side of the last integral

equality is equal to the Kurzweil–Stieltjes integral and, therefore,
t∫
s

f(τ) dg(τ) = (K−S)
t∫
s

f(τ) dg(τ).

If a = b, then we assume
b∫

a

x(t) dg(t) = 0.

Moreover, we put
t+∫
s

x(τ) dg(τ) = lim
ε→0, ε>0

t+ε∫
s

x(τ) dg(τ),

t−∫
s

x(τ) dg(τ) = lim
ε→0, ε>0

t−ε∫
s

x(τ) dg(τ).

L+∞([a, b],R; g) is the space of all µ(g)-measurable and µ(g)-essentially bounded functions x :
[a, b] → R with the norm

∥x∥∞,g = ess sup
g

{
|x(t)|

}
≡ inf

{
r > 0 : |x(t)| ≤ r for µ(g) almost all t ∈ [a, b]

}
.

L([a, b],R; g), where g(t) ≡ g1(t)− g2(t) and gi (i = 1, 2) are nondecreasing functions, is the set of
all functions x : [a, b] → R, measurable and integrable with respect to the measures µ(gi) (i = 1, 2),
i.e., such that

b∫
a

|x(t)| dgi(t) < +∞ (i = 1, 2).

If G = (gik)
l,n
i,k=1 ∈ BV([a, b];Rl×n) and X = (xkj)

n,m
k,j=1 : [a, b];→ Rn×m, then

Sc(G)(t) ≡
(
sc(gik)(t)

)l,n
i,k=1

, Sj(G)(t) ≡
(
sj(gik)(t)

)l,n
i,k=1

(j = 1, 2)

and
b∫

a

dG(τ) ·X(τ) =

( n∑
k=1

b∫
a

xkj(τ) dgik(τ)

)l,m

i,j=1

.
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Sometimes we use the designation
.∫
a

dG(s)·X(s) for the integral
t∫
a

dGs ·X(s) as the vector-function

to the variable t.
Lp([a, b],Rn×m;G) is the space of all matrix-functions X = (xkj)

n,m
k,j=1 : [a, b] → Rn×m satisfying

xkj ∈ Lp([a, b],R;gik) with the norm

∥X∥p,G =

n∑
i,k,j=1

∥xkj∥p,gik .

If G(t) ≡ diag(t, . . . , t), then we assume ∥X∥Lp = ∥X∥p,G and omit G in the notation containing G.
Lp([a, b], D;G), where D ⊂ Rn×m, is the set of all matrix-functions X ∈ LP ([a, b],Rn×m;G) such

that X(t) ∈ D for t ∈ [a, b].
Lp
ω(R,Rn×m;G) is the set of all matrix-functions X : R → Rn×m satisfying condition (0.0.1),

whose restrictions on [0, ω] belong to Lp([0, ω],Rn×m;G).
Lω(R,Rn×m) is the set of all ω-periodic matrix-functions X : R → Rn×m which are integrable on

[0, ω].
We introduce the operators A(X,Y ), B(X,Y ) and I(X,Y ) in the following way:

(a) if X ∈ BVloc(I;Rn×n), det(In+(−1)jdjX(t)) ̸= 0 for t ∈ I (j = 1, 2), and Y ∈ BVloc(I;Rn×m),
then

A(X,Y )(a) = On×m,

A(X,Y )(t)−A(X,Y )(s) = Y (t)− Y (s) +
∑

s<τ≤t

d1X(τ) (In − d1X(τ))−1 d1Y (τ)

−
∑

s≤τ<t

d2X(τ) (In + d2X(τ))−1 d2Y (τ) for s < t, s, t ∈ I, (0.0.2)

(b) if X ∈ BVloc(I;Rn×n) and Y : I → Rn×n, then

B(X,Y )(a) = On×m,

B(X,Y )(t) = X(t)Y (t)−X(a)Y (a)−
t∫

a

dX(τ) · Y (τ) for t ∈ I, (0.0.3)

(c) if X ∈ BVloc(I;Rn×n), det(X(t)) ̸= 0, and Y : I → Rn×n, then

I(X,Y )(a) = On×m,

I(X,Y )(t) =

t∫
a

d
(
X(τ) + B(X,Y )(τ)

)
·X−1(τ) for t ∈ I, (0.0.4)

where a ∈ I is a fixed point.
In addition, we use the following notation and definitions:
Ñ = {0, 1, . . . }.
For l ∈ N, we denote Nl = {1, . . . , l} and Ñl = {0, 1, . . . , l}.
If J ⊂ Z, then E(J ;Rn×m) is the space of all bounded matrix-functions Y : J → Rn×m with the

norm
∥Y ∥J = max

{
∥Y (k)∥ : k ∈ J

}
.

∆ is the difference operator of the first order, i.e.,

∆Y (k − 1) = Y (k)− Y (k − 1) for Y ∈ E(Ñl,Rn×m), k ∈ Nl.

If a function Y is defined on Nl or Ñl−1, then we assume Y (0) = On×m, or Y (l) = On×m,
respectively, if necessary.
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For m ∈ N, Y ∈ E(Ñm;Rn×m) and i ∈ Nm, τm = (b − a)/m, τ0m = a, τkm = a + kτm and
Ikm = ]τk−1m, τkm[ for m ∈ N and k ∈ Nm. Moreover, for m ∈ N, we define the function νm by

νm(t) =
[ t− a

b− a
m
]

for t ∈ [a, b].

Obviously, νm(τkm) = k for all m ∈ Nm and k ∈ Ñm.
If α ∈ E(J,R+), then

∥Y ∥ν,α =
(∑

k∈J

α(k)∥Y (k)∥ν
) 1

ν if 1 ≤ ν < +∞, and ∥Y ∥+∞,α = ∥Y ∥J

(if α(k) ≡ 1, then we omit α in this notation).
For all m ∈ N, define the operators pm : BV([a, b];Rn) → E(Ñm;Rn) and qm : E(Ñm;Rn) →

BV([a, b];Rn), respectively, by

pm(x)(k) = x(τkm) for x ∈ BV([a, b];Rn) and k ∈ Ñm

and

qm(y)(t) =

y(k) if t = τkm for some k ∈ Ñm,

y(k)− 1

m
G1m(k)y(k)− 1

m
g1m(k) if t ∈ ]τk−1m, τkm[ for some k ∈ Ñm

for y ∈ E(Ñm;Rn), t ∈ [a, b].

We say that the matrix-function X ∈ BV([a, b];Rn×n) satisfies the Lappo–Danilevskiĭ condition
at the point a if the matrices Sc(X)(t) − Sc(X)(a), S1(X)(t) − S1(X)(a) and S2(X)(t) − S2(X)(a)
are pairwise permutable and

t∫
a

Sc(X)(τ) dSc(X)(τ) =

t∫
a

dSc(X)(τ) · Sc(X)(τ) for t ∈ [a, b]. (0.0.5)

Here, the use is made of the following formulas:

b∫
a

f(t) dg(t) =

b∫
a

f(t) dg(t−) + f(b) d1g(b), (0.0.6)

b∫
a

f(t) dg(t) =

b∫
a

f(t) dg(t+) + f(a) d2g(a), (0.0.7)

t−∫
a

x(τ) dg(τ) =

t∫
a

x(τ) dg(τ)− x(t) d1g(t), (0.0.8)

t+∫
a

x(τ) dg(τ) =

t∫
a

x(τ) dg(τ) + x(t) d2g(t). (0.0.9)

b∫
a

f(t) dg(t) +

b∫
a

g(t) df(t) = f(b)g(b)− f(a)g(a) +
∑

a<t≤b

d1f(t) · d1g(t

−
∑

a≤t<b

d2f(t) · d2g(t) (integration-by-parts formula), (0.0.10)
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b∫
a

h(t) d(f(t)g(t)) =

b∫
a

h(t)f(t) dg(t) +

b∫
a

h(t)g(t) df(t)−
∑

a<t≤b

h(t) d1f(t) · d1g(t

+
∑

a≤t<b

h(t) d2f(t) · d2g(t) (general integration-by-parts formula), (0.0.11)

b∫
a

f(t) ds1(g)(t) =
∑

a<t≤b

f(t) d1g(t),

b∫
a

f(t) ds2(g)(t) =
∑

a<t≤b

f(t) d2g(t), (0.0.12)

b∫
a

f(t) d

( s∫
a

g(s) dh(s)

)
=

b∫
a

f(t)g(t) dh(t) for t ∈ I, (0.0.13)

dj

( t∫
a

f(s) dg(s)

)
= f(t) djg(t) for t ∈ I (j = 1, 2), (0.0.14)

b∫
a

fk(t) df(t) =
1

k + 1

[
fk+1(b)− fk+1(a)

+

k−1∑
m=0

( ∑
a<t≤b

fm(t) d1f(t) · d1fk−m(t)−
∑

a≤t<b

fm(t) d2f(t) · d2fk−m(t)
)]

(k = 1, 2, . . . ) (0.0.15)

and

b∫
a

sgn g(t) dg(t) = |g(b)| − |g(a)|

+
∑

a<t≤b

(
|g(t−)| − g(t−) sgn g(t)

)
−

∑
a≤t<b

(
|g(t+)| − g(t+) sgn g(t)

)
(0.0.16)

for f, g ∈ BV([a, b];R).
The proof of formulas (0.0.6), (0.0.10), (0.0.12) and (0.0.13) one can find e.g. in [73, Theo-

rems I.4.25, I.4.33 and Lemma I.4.23]. As to formulas (0.0.11), (0.0.15) and (0.0.16), they are proved
in [23, Lemmas 1.1.1 and 1.1.2].



Chapter 1

Linear boundary value problems for
systems of generalized ordinary
differential equations

1.1 General linear boundary value problems.
Unique solvability

1.1.1 Statement of the problem and formulation of the results
Let A ∈ BV([a, b];Rn×n) and f ∈ BV([a, b];Rn), i.e., A : [a, b] → Rn×n and f : [a, b] → Rn be, respec-
tively, matrix- and vector-functions with bounded total variation components on the closed interval
[a, b].

Consider a linear system of generalized ordinary differential equations of the form

dx = dA(t) · x+ df(t) for t ∈ [a, b]. (1.1.1)

We investigate the problem on the existence and uniqueness of solutions of system (1.1.1) satisfying
the linear boundary condition

ℓ(x) = c0, (1.1.2)
where ℓ : BV∞([a, b];Rn) → Rn is a linear vector-functional bounded with respect to the norm ∥ · ∥∞,
and c0 ∈ Rn.

In particular, we establish Green’s type theorem on the unique solvability of problem (1.1.1),
(1.1.2) and give the representation of the solution.

Also, we consider the same problem for the generalized system of the form

dx = dA(t) · x+ dB(t) · q(t) for t ∈ [a, b], (1.1.3)

where B ∈ BV([a, b];Rn×n) and q : [a, b] → Rn is a vector-function with integrable components on
the closed interval [a, b] with respect to B in the Kurzweil–Stieltes sense.

The boundary value problem (1.1.1), (1.1.2) is considered without restriction on the form of the
linear functional ℓ. Note that there are no normal forms of presentation of the linear functionals
on BV([a, b];Rn). In this connection, we consider the generalized linear differential system of form
(1.1.3). The same situation for ordinary differential case is considered in [46,47].

In particular, we investigate system (1.1.1) for the following particular cases of the boundary
condition (1.1.2):

(a)
b∫

a

dL(t) · x(t) = c0, (1.1.4)

12
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where c0 = (c0i)
n
i=1 ∈ Rn and L ∈ BV([a, b];Rn×n);

(b) the general multi-point boundary condition
n0∑
j=1

Ljx(tj) = c0, (1.1.5)

where tj ∈ [a, b] (j = 1, . . . , n0), Lj ∈ Rn×n (j = 1, . . . , n0) are constant matrixes, and n0 is a
fixed natural number;

(c) the Cauchy–Nicoletti type problem

xi(ti) = ℓi(x1, . . . , xn) + c0i (i = 1, . . . , n),

where ℓi : BV∞([a, b];Rn) → R (i = 1, . . . , n) are linear bounded functionals;

(d) the Cauchy–Nicoletti problem

xi(ti) = c0i (i = 1, . . . , n), (1.1.6)

where c0i ∈ R, and xi is the i-th component of the vector-function x for every i ∈ {1, . . . , n};

(e) the periodic problem
x(a) = x(b).

Note that condition (1.1.4) is the particular case of (1.1.2), where

ℓ(x) ≡
b∫

a

dL(t) · x(t). (1.1.7)

In the present paper, we establish the effective necessary and sufficient conditions for a unique
solvability of the general problem (1.1.3), (1.1.2) (of problem (1.1.1), (1.1.2)). The obtained results
differ from those given in [16,18,72].

The boundary value problems with condition (1.1.6) have been first considered by O. Nicoletti [62]
for systems of ordinary differential equations. The optimal conditions for the solvability and unique
solvability of the problem with the boundary condition (1.1.4) for the linear and nonlinear cases are
established in [46,47,59] (see also the references therein).

The multi-point boundary value problems for functional differential, impulsive differential and
difference equations are investigated in [18,27,37] (see also the references therein).

The multi-point problems for systems of generalized ordinary differential equations were studied
in [6, 8, 14,18].

The results presented in the present monograph generalize the results obtained for the linear case
and presented in our last papers.

A vector-function x ∈ BV([a, b];Rn) is said to be a solution of system (1.1.1) if

x(t)− x(s) =

t∫
s

dA(τ) · x(τ) + f(t)− f(s) for a ≤ s < t ≤ b.

Under a solution of problem (1.1.1), (1.1.2) we understand a solution x ∈ BV([a, b];Rn) of system
(1.1.1) satisfying condition (1.1.2).

By a solution of the system of generalized ordinary differential inequalities

dx(t) ≤ dA(t) · x(t) + f(t) (≥)

we mean a vector-function x ∈ BV([a, b];Rn) such that

x(t)− x(s) ≤
t∫

s

dA(τ) · x(τ) + f(t)− f(s) (≥) for a ≤ s ≤ t ≤ b.
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We assume that
det

(
In + (−1)j djA(t)

)
̸= 0 for t ∈ [a, b] (j = 1, 2). (1.1.8)

Moreover, without loss of generality, we assume A(a) = On×n and f(a) = 0n for every system of
type (1.1.1).

The above inequalities guarantee the unique solvability of the Cauchy problem for the correspon-
ding systems (see, e.g., [73, Theorem III.1.4]).

If s ∈ R and β ∈ BV[a, b],R) are such that

1 + (−1)j djβ(t) ̸= 0 for (−1)j(t− s) < 0 (j = 1, 2),

then by γβ( · , s) we denote the unique solution of the Cauchy problem

dξ(t) = ξ(t) dβ(t), ξ(s) = 1.

It is known (see [39,44,71]) that

γβ(t, s) =



exp(sc(β)(t)− sc(β)(s))
∏

s<τ≤t

(1− d1β(τ))
−1

∏
s≤τ<t

(1 + d2β(τ)) for t > s,

exp(sc(β)(t)− sc(β)(s))
∏

t<τ≤s

(1− d1β(τ))
∏

t≤τ<s

(1 + d2β(τ))
−1 for t < s,

1 for t = s.

(1.1.9)

Alongside with system (1.1.1) and the boundary condition (1.1.2), we consider the corresponding
homogeneous system

dx = dA(t) · x (1.1.10)
and the homogeneous boundary condition

ℓ(x) = 0n. (1.1.20)

Definition 1.1.1. Let condition (1.1.8) hold and let B ∈ BV([a, b];Rn×n), B(a) = On×n. A matrix-
function GB : [a, b] × [a, b] → Rn×n is said to be the Green matrix of problem (1.1.10), (1.1.20) with
respect to the matrix-function B if:

(a) there exist numbers α1 ∈ R and α2 ∈ R, α1 + α2 = 1, such that the restrictions of the matrix-
function GB( · , s) on [a, s[ and ]s, b] satisfy, respectively, the matrix equations

dX = dA(t) ·X + α1dB(t)

and
dX = dA(t) ·X − α2dB(t)

for every s ∈ ]a, b[ ;

(b) (
In − d1A(t)

)−1(GB(t−, t) + α1d1B(t)
)
= (In + d2A(t))

−1
(
GB(t+, t) + α2d2B(t)

)
for t ∈ ]a, b[ ;

(c) GB(t, · ) ∈ BV([a, b];Rn×n) for every t ∈ [a, b];

(d) the vector-function x(t)=
b∫
a

dsGB(t, s)·q(s) satisfies condition (1.1.20) for every q∈L([a, b],Rn;B).

Below, we prove the existence of a matrix-function H ∈ BV([a, b];Rn×n) such that the matrix-
function GB defined by the equalities

GB(t, s) =


Y (t)

(
H(s) +QB(s)− α2QB(t)

)
for a ≤ s < t ≤ b,

Y (t)
(
H(s) + α1QB(t)

)
for a ≤ t < s ≤ b,

arbitrary for t = s

(1.1.10)
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is the Green matrix of problem (1.1.10), (1.1.20) with respect to B for every numbers α1 ∈ R and
α2 ∈ R such that α1 + α2 = 1, where

QB(t) ≡ Y −1(t)B(t)−
t∫

a

dY −1(τ) ·B(τ), (1.1.11)

and Y is the fundamental matrix of the homogeneous system (1.1.10) under the condition

Y (a) = In

(see the proof of Theorem 1.1.1).
The Green matrix is unique in the following sense. If GB(t, s) and G1B(t, s) are two matrix-functions

corresponding to the common constants α1 and α2, satisfying conditions (a)–(c) of Definition 1.1.1,
then

GB(t, s)− G1B(t, s) ≡ Y (t)H∗(s),

where H∗ ∈ BV([a, b];Rn×n) is a matrix-function such that

H∗(s+) = H∗(s−) = C = const for s ∈ [a, b],

and C ∈ Rn×n is a constant matrix.
We use the following propositions.

Proposition 1.1.1 (Variation-of-constants formula). Let the matrix-function A ∈ BV([a, b];Rn×n) be
such that condition (1.1.8) hold and Y be a fundamental matrix of the homogeneous system (1.1.10).
Then each solution of system (1.1.1) admits the representation

x(t) = f(t)− f(s) + Y (t)

{
Y −1(s)x(s)−

t∫
s

dY −1(τ) · (f(τ)− f(s))

}

= Y (t)Y −1(s) +

t∫
s

Y (t)Y −1(τ) dA(A, f)(τ) for t, s ∈ [a, b]. (1.1.12)

Proposition 1.1.2. Let the matrix-function A ∈ BV([a, b];Rn×n) be such that condition (1.1.8) hold
and Y be a fundamental matrix of the homogeneous system (1.1.10). Then

Y −1(t) = Y −1(s)− Y −1(t)A(t) + Y −1(s)A(s) +

t∫
s

dY −1(τ) ·A(τ)

= Y −1(s)− B(Y −1, A)(t) + B(Y −1, A)(s) for s, t ∈ [a, b] (1.1.13)

and

djY
−1(t) = −Y −1(t) djA(t) · (In + (−1)j djA(t)

)−1 for t ∈ [a, b] (j = 1, 2), (1.1.14)
d1Y

−1(t) = −d1A(t) · Y −1(t−), d2Y
−1(t) = −d2A(t) · Y −1(t+) for t ∈ [a, b]. (1.1.15)

In addition,
dY −1(t) = −Y −1(t) dA(A,A)(t) for t ∈ [a, b], (1.1.16)

where A is the operator defined by (0.0.2).
Theorem 1.1.1. Let condition (1.1.8) hold. Then the boundary value problem (1.1.3), (1.1.2) is
uniquely solvable if and only if the corresponding homogeneous problem (1.1.10), (1.1.20) has only a
trivial solution. If the last condition holds, then the solution x of problem (1.1.3), (1.1.2) admits the
representation

x(t) = x0(t) +

b∫
a

dsGB(t, s) · q(s) for t ∈ [a, b], (1.1.17)

where x0 is a solution of problem (1.1.10), (1.1.2), and GB is the Green matrix of problem (1.1.10),
(1.1.20) with respect to the matrix-function B.
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Corollary 1.1.1. Let condition (1.1.8) hold. Then the boundary value problem (1.1.1), (1.1.2) is
uniquely solvable if and only if the corresponding homogeneous problem (1.1.10), (1.1.20) has only a
trivial solution. If the last condition holds, then the solution x of problem (1.1.1), (1.1.2) admits the
representation

x(t) = z0(t) + f(t) +

b∫
a

dsGA(t, s) · f(s) for t ∈ [a, b],

where z0 is the solution of homogeneous system (1.1.20) satisfying the condition

ℓ(x) = c0 − ℓ(f),

and GA(t, s) is the Green matrix of problem (1.1.10), (1.1.20) with respect to the matrix-function A.

Below, in the proof of Theorem 1.1.1, we will show that the homogeneous problem (1.1.10), (1.1.20)
has only a trivial solution if and only if

det(D) ̸= 0, (1.1.18)
where D = ℓ(Y ), and Y is a fundamental matrix of system (1.1.10).

The following proposition is a simple modification of Lemma 3.3 from [72] related to problem
(1.1.3), (1.1.2).

Proposition 1.1.3. Let the matrix-function A ∈ BV([a, b];Rn×n) be such that condition (1.1.8) hold.
Then the boundary value problem (1.1.3), (1.1.2) is solvable if and only if the condition

(c0 − ℓ(F ))⊤γ = 0 (1.1.19)

holds for every γ ∈ Rn such that
(ℓ(Y ))⊤γ = 0n,

where

F (t) ≡ Y (t)

t∫
a

Y −1(τ) dA(A, f)(τ), and f(t) ≡
t∫

a

dB(τ) · q(τ).

So, if condition (1.1.18) holds, then only the vector γ = 0n satisfies the homogeneous system
appearing in Proposition 1.1.3 and, evidently, condition (1.1.19) hold. If condition (1.1.18) is violated,
then problem (1.1.3), (1.1.2) is solvable only for c0, that satisfies the conditions of the proposition.

In connection with problem (1.1.1), (1.1.4), we give the following

Definition 1.1.2. Let condition (1.1.8) hold and let ℓ be an integral operator given by (1.1.7), where
L ∈ BV([a, b];Rn×n). A matrix-function G : [a, b] × [a, b] → Rn×n is said to be the Green matrix of
system (1.1.10) under the condition

b∫
a

dL(t) · x(t) = 0n (1.1.40)

if:

(a) for every s ∈ [a, b[ , the matrix-function G( · , s) satisfies the matrix equation (1.1.10) both on
[a, s[ and ]s, b];

(b) G(t, t+)− G(t, t−) = Y (t)D−1

{ t∫
a

dL(τ) · Y (τ)Y −1(t)(In − d1A(t))
−1

+

b∫
t

dL(τ) · Y (τ)Y −1(t)(In+d2A(t))
−1−d1L(t) · (In−d1A(t))−1−d2L(t) · (In+d2A(t))−1

}
for t ∈ ]a, b[ ,
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where

D =

b∫
a

dL(s) · Y (s) (1.1.20)

and Y is, as above, the fundamental matrix of system (1.1.10) satisfying the condition Y (a) = In;

(c) G(t, · ) ∈ BV([a, b];Rn×n) for every t ∈ [a, b];

(d) the vector-function x(t)=
b∫
a

dsG(t, s) ·f(s) satisfies condition (1.1.40) for every f ∈BV([a, b];Rn).

Without loss of generality, we will assume that L(b) = On×n.
The Green matrix of problem (1.1.10), (1.1.40) exists and is unique in the sense given above. In

particular,

G(t, s) =



−Y (t)D−1

s∫
a

dL(τ) · Y (τ)Y −1(s) for a ≤ s < t ≤ b,

Y (t)D−1

b∫
s

dL(τ) · Y (τ)Y −1(s) for a ≤ t < s ≤ b,

an arbitrary for t = s,

(1.1.21)

where D is the constant matrix defined by (1.1.20) (cf. [72]).

Remark 1.1.1. If ℓ is an integral operator defined by (1.1.7), where L ∈ BV([a, b];Rn×n), then for
the matrix-function H appearing in (1.1.10), we have

H(s) ≡ −D−1

( s∫
a

dL(τ) · Y (τ)QB(τ) +

b∫
s

dL(τ) · Y (τ)QB(s)

)
. (1.1.22)

In addition, from (1.1.12), due to (1.1.13), we get QA(t) ≡ In−Y −1(t) and, therefore, from (1.1.22)
we have

H(s) ≡ −In +D−1

(
L(s)− L(a) +

b∫
s

dL(τ) · Y (τ)Y −1(s)

)
(1.1.23)

for B(t) ≡ A(t). Moreover, in this case, (1.1.10) has the form

GA(t, s) =


Y (t)

(
H(s) + Y −1(t)− Y −1(s)

)
for a ≤ s < t ≤ b,

Y (t)H(s) for a ≤ t < s ≤ b,

arbitrary for t = s

(1.1.24)

if α1 = 0 and α2 = 1.

Corollary 1.1.2. Let condition (1.1.8) hold and let ℓ be an integral operator given by (1.1.7), where
L ∈ BV([a, b];Rn×n). Then the boundary value problem (1.1.1), (1.1.4) is uniquely solvable if and only
if the corresponding homogeneous problem (1.1.10), (1.1.40) has only the trivial solution. If the last
condition holds, then the solution x of problem (1.1.1), (1.1.4) admits the representation

x(t) = x0(t) +

b∫
a

dsG(t, s) · f(s) for t ∈ [a, b], (1.1.25)

where x0 is a solution of problem (1.1.10), (1.1.4) and G : [a, b]× [a, b] → Rn×n is the Green matrix G
of problem (1.1.10), (1.1.40) (see (1.1.21)).
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Remark 1.1.2. If problem (1.1.10), (1.1.20) has a nontrivial solution, then for every f ∈ BV([a, b];Rn)
there exists a vector c0 ∈ Rn such that problem (1.1.1), (1.1.2) has no solution.
Remark 1.1.3. If problem (1.1.10), (1.1.20) has a nontrivial solution, and ℓ : BV∞([a, b];Rn) → Rn

is a surjective mapping, then for every c0 ∈ Rn there exists f ∈ BV([a, b];Rn) such that problem
(1.1.1), (1.1.2) has no solution.
Remark 1.1.4. Let the matrix-function A satisfy the Lappo–Danilevskiĭ condition at the point a.
Then problem (1.1.1), (1.1.4) is uniquely solvable if and only if

det
( b∫

a

dL(t) · exp(S0(A)(t))
∏

a≤τ<t

(In + d2A(τ))
∏

a<τ≤t

(In − d1A(τ))
−1

)
̸= 0.

We give here another form of the Green theorem for the following one-dimensional problem:

du(t) = u(t) dα(t) + dφ(t), (1.1.26)
u(a)− u(b) = c0, (1.1.27)

where α ∈ BV([a, b];R), φ ∈ BV([a, b];R), α(a) = φ(a) = 0 and c0 ∈ R.
Alongside with (1.1.26), (1.1.27), consider the corresponding homogeneous boundary value problem

du(t) = u(t) dα(t), (1.1.260)
u(a)− u(b) = 0. (1.1.270)

If
1 + (−1)j djα(t) ̸= 0 for t ∈ [a, b] (j = 1, 2) (1.1.28)

and
λ(α)(b) ̸= 1, (1.1.29)

where

λ(α)(t) = exp(s0(α)(t))
∏

a≤τ<t

(1 + d2α(τ))
/ ∏

a<τ≤t

(1− d1α(τ)) for t ∈ [a, b], (1.1.30)

then we assume

g0(α)(t, τ) =

{
(1− λ(α)(b))−1λ(α)(b)λ(α)(t)λ−1(α)(τ) for a ≤ t ≤ τ ≤ b,

(1− λ(α)(b))−1λ(α)(t)λ−1(α)(τ) for a ≤ τ < t ≤ b;
(1.1.31)

gj(α)(t, τ) = (1 + (−1)j djα(τ))
−1g0(α)(t, τ) for t ̸= τ, t, τ ∈ [a, b] (j = 1, 2) (1.1.32)

and

gj(α)(t, t) = (1 + (−1)j djα(t))
−1λj−2(α)(b) · g0(α)(t, t) for t ∈ [a, b] (j = 1, 2). (1.1.33)

Notice that λ(α) is the unique solution of system (1.1.260) under the condition u(a) = 1 (see
[39,44]).
Theorem 1.1.11. Let (1.1.28) hold. Then problem (1.1.26), (1.1.27) is uniquely solvable if and only
if the corresponding homogeneous problem (1.1.260), (1.1.270) has only a trivial solution. If the last
condition holds, then the solution u of problem (1.1.26), (1.1.27) admits the representation

u(t) = u0(t) +

b∫
a

g0(α)(t, τ) ds0(φ)(τ)

+
∑

a<τ≤b

g1(α)(t, τ) d1φ(τ) +
∑

a≤τ<b

g2(α)(t, τ) d2φ(τ) for t ∈ [a, b], (1.1.34)

where u0 is a solution of problem (1.1.260), (1.1.27), and gj(α) (j = 0, 1, 2) are defined by (1.1.31)–
(1.1.33), respectively.

The algebraic properties of considered problems are investigated in [72,73].
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1.1.2 The spectral type necessary and sufficient conditions
for the unique solvability of problem (1.1.1), (1.1.4)

In general, it is quite difficult to verify condition (1.1.18) directly even in the case if one is able to
write out the fundamental matrix of system (1.1.10) explicitly. Therefore, it is important to seek for
effective conditions which would guarantee the absence of nontrivial solutions of the homogeneous
problem (1.1.10), (1.1.20). In this subsection, we give the results connected to this topic. Analogous
results for ordinary differential equations have been obtained in [47].

To formulate the results, we use the following designations.
For every matrix-function X ∈ BV([a, b];Rn×n) such that det(In − d1X(t)) ̸= 0 for t ∈ [a, b] we

introduce the matrix-functions [X]i, (X)i and Vi(X) (i = 0, 1, . . . ) by the equalities

[X]0(t) = (In − d1X(t))−1,

[X]i(t) = (In − d1X(t))−1

t∫
a

dX−(τ) · [X]i−1(τ) for t ∈ [a, b] (i = 1, 2, . . . ), (1.1.351)

(X)0(t) = On×n, (X)1(t) = X(t),

(X)i+1(t) =

t∫
a

dX−(τ) · (X)i(τ) for t ∈ [a, b] (i = 1, 2, . . . ), (1.1.361)

and

V0(X)(t) = X(t), V1(X)(t) =
∣∣(In − d1X(t))−1

∣∣V (X−)(t),

Vi+1(X)(t) =
∣∣(In − d1X(t))−1

∣∣ t∫
a

dV (X−)(τ) · Vi(X)(τ) for t ∈ [a, b] (i = 1, 2, . . . ), (1.1.371)

where X−(t) ≡ X(t−); and for every X ∈ BV([a, b];Rn×n) such that det(In+d2X(t)) ≠ 0 for t ∈ [a, b],
we put

[X]0(t) = (In + d2X(t))−1,

[X]i(t) = (In + d2X(t))−1

t∫
b

dX+(τ) · [X(τ)]i−1 for t ∈ [a, b] (i = 1, 2, . . . ), (1.1.352)

(X)0(t) = On×n, (X(t))1 = X(b)−X(t),

(X)i+1(t) =

t∫
b

dX+(τ) · (X)i(τ) for t ∈ [a, b] (i = 1, 2, . . . ) (1.1.362)

and

V0(X)(t) = X(t), V1(X)(t) =
∣∣(In + d2X(t))−1

∣∣(V (X+)(b)− V (X+)(t)|,

Vi+1(X)(t) =
∣∣(In + d2X(t))−1

∣∣ ∣∣∣∣
t∫

b

dV (X+)(τ) · Vi(X)(τ)

∣∣∣∣ for t ∈ [a, b] (i = 1, 2, . . . ), (1.1.372)

where X+(t) ≡ X(t+).
In this subsection, along with system (1.1.1), we consider the differential system

dx(t) = εdA(t) · x(t) + df(t) (1.1.38)
which depends on a small positive parameter ε.
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Theorem 1.1.2. The boundary value problem (1.1.1), (1.1.4) is uniquely solvable if and only if there
exist natural numbers k and m such that the matrix

Mk = −
k−1∑
i=0

b∫
a

dL(t) · [A]i(t) (1.1.39)

is nonsingular and
r(Mk,m) < 1, (1.1.40)

where

Mk,m = Vm(A)(c) +
(m−1∑

i=0

∣∣ [A]i∣∣∞) b∫
a

dV (M−1
k L)(t) · Vk(A)(t), (1.1.41)

the matrix-functions [A]i (i = 0, 1, . . . ) and Vi(A) (i = 0, 1, . . . ) are defined, respectively, by (1.1.35l)
and (1.1.37l) for some l ∈ {1, 2}, and c = b+ (a− b)(l − 1).

Theorem 1.1.21. Let there exist natural numbers k and m such that the matrix

Mk = L(a)−
k−1∑
i=0

b∫
a

dL(t) · (A)i(t) (1.1.42)

is nonsingular and inequality (1.1.40) holds, where

Mk,m = (V (A))m(c) +
(
In +

m−1∑
i=0

|(A)i|∞
) b∫

a

dV (M−1
k L)(t) · (V (A))k(t), (1.1.43)

the matrix-functions (A)i (i = 0, 1, . . . ) and (V (A))i (i = 0, 1, . . . ) are defined by (1.1.36l) for some
l ∈ {1, 2}, and c = b+ (a− b)(l − 1). Then problem (1.1.1), (1.1.4) is uniquely solvable.

Corollary 1.1.3. Let either
det(L(a)) ̸= 0, (1.1.44)

or
L(a) = On×n, (1.1.45)

and the conditions
b∫

a

dL(t) · (A)i(t) = On×n (i = 0, . . . , j − 1) (1.1.46)

and

det
( b∫

a

dL(t) · (A)j(t)
)

̸= 0 (1.1.47)

hold for some natural j, where the matrix-functions (A)i (i = 0, . . . , l) are defined by (1.1.361) or
(1.1.362). Then there exists ε0 > 0 such that problem (1.1.38), (1.1.4) is uniquely solvable for every
ε ∈ ]0, ε0[ .

Theorem 1.1.3. Let a matrix-function A0 ∈ BV([a, b];Rn×n) be such that the homogeneous system

dx(t) = dA0(t) · x(t) (1.1.48)

has only the trivial solution satisfying the boundary condition (1.1.40), and let the matrix-function
A ∈ BV([a, b];Rn×n) admit the estimate

b∫
a

|G0(t, τ)| dV (A−A0)(τ) ≤M for t ∈ [a, b], (1.1.49)
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where G0(t, τ) is the Green matrix of problem (1.1.48), (1.1.4), and M ∈ Rn×n
+ is a constant matrix

such that
r(M) < 1. (1.1.50)

Then problem (1.1.1), (1.1.2) is uniquely solvable.

1.1.3 Proof of the main results
Proof of Propositions 1.1.1 and 1.1.2. The first parts of (1.1.12) and (1.1.13) are the well known re-
sults (see [44,73]).

Let us verify the second part of (1.1.12). Using definition of the operator A (see (0.0.2)) and the
integration-by-parts formula (0.0.10), we have

f(t)− f(s) + Y (t)

{
Y −1(s)x(s)−

t∫
s

dY −1(τ) · (f(τ)− f(s))

}

= f(t)− f(s) + Y (t)

{
Y −1(s)x(s)− Y −1(t)

×
(
f(t)− f(s) +

t∫
s

dY −1(τ) · f(τ)−
∑

s≤τ<t

d1Y
−1(τ) · d1f(τ) +

∑
s<τ≤t

d2Y
−1(τ) · d2f(τ)

)}

= Y (t)Y −1(s)x(s) + Y (t)

t∫
s

Y −1(τ) dA(A, f)(τ) for t, s ∈ [a, b].

Similarly, we can show equality (1.1.16).

Proof of Proposition 1.1.3. Due to (1.1.12), for every solutions of system (1.1.3) we have

x(t) = Y (t)c+ F (t) for t ∈ [a, b],

where c ∈ Rn is a constant vector. So, the vector functions satisfy condition (1.1.2) if and only if c is
a solution of the linear algebraic system

ℓ(Y )c = c0 − ℓ(F ).

But this system is solvable if and only if the statement of the proposition is valid.

Proof of Theorem 1.1.1. Let, as above, Y be a fundamental matrix of system (1.1.10) under the
condition Y (a) = In. According to (1.1.8), such a matrix exists, and by the variation-of-constant
formula (1.1.12) we find that

x(t) = Y (t)c+ B(q)(t) (1.1.51)

for every solution x of system (1.1.3), where c = x(a) and

B(q)(t) =
t∫

a

dB(τ) · q(τ)− Y (t)

t∫
a

dY −1(τ) ·
τ∫

a

dB(s) · q(s). (1.1.52)

It is clear that x satisfies condition (1.1.2) if and only if c is a solution of the system of linear algebraic
equations

ℓ(Y )c = c0 − ℓ(B(q)).

But this system and, consequently, problem (1.1.3), (1.1.2) is uniquely solvable if and only if

det(ℓ(Y )) ̸= 0. (1.1.53)
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On the other hand, it is clear that (1.1.53) is a necessary and sufficient condition for the absence of
the nontrivial solution to problem (1.1.10), (1.1.20).

If (1.1.53) is fulfilled, then from (1.1.51) and (1.1.52) we get the representation

x(t) = x0(t) + Y (t)h(q) + B(q)(t) (1.1.54)

for the solution x of problem (1.1.3), (1.1.2), where

h(q) = −[ℓ(Y )]−1ℓ(B(q)) (1.1.55)

and
x0(t) = Y (t)[ℓ(Y )]−1c0. (1.1.56)

In addition, x0 is a solution of problem (1.1.10), (1.1.2).
Due to (1.1.52) and (1.1.55), h : L([a, b],Rn;B) → Rn is the linear continuous vector-functional.

So, in view of Theorem VII.2.1 from [45], we get

h(q) =

b∫
a

dH(τ) · q(τ), (1.1.57)

where H = (hij)
n
i,j=1 ∈ BV([a, b];Rn×n).

By (1.1.52), (1.1.54) and (1.1.57), we have

x(t) ≡ x0(t) + Y (t)

b∫
a

dH(τ) · q(τ) + B(q)(t). (1.1.58)

Using the integration-by-parts formula (0.0.10) and (0.0.14), we conclude

B(q)(t) = Y (t)

( t∫
a

Y −1(τ) dB(τ) · q(τ)

−
∑

a<τ≤t

d1Y
−1(τ) · d1B(τ) · q(τ) +

∑
a≤τ<t

d2Y
−1(τ) · d2B(τ) · q(τ)

)

= Y (t)

( t∫
a

d(Y −1(τ)B(τ)) · q(τ)−
t∫

a

dY −1(τ) ·B(τ)q(τ)

)
for a < t ≤ b

and, consequently,

B(q)(t) ≡ Y (t)

t∫
a

dQB(τ) · q(τ), (1.1.59)

where the matrix-function QB is defined by (1.1.11). Therefore, due to (1.1.58) and (1.1.59), we find
that

x(t) = x0(t) + Y (t)

b∫
a

dH(τ) · q(τ) + Y (t)

t∫
a

dQB(τ) · q(τ) for t ∈ [a, b]. (1.1.60)

Let the matrix-function GB(t, s) be defined by (1.1.10). In view of (0.0.8) and (0.0.9), from (1.1.60)
we have

b∫
a

dsGB(t, s) · q(s) = Y (t)

t−∫
a

d(H(s) +QB(s)) · q(s)
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+
(
GB(t, t)− GB(t, t−)

)
q(t) + Y (t)

b∫
t+

dH(s) · q(s) +
(
GB(t, t+)− GB(t, t)

)
q(t)

= Y (t)

t∫
a

d(H(s) +QB(s)) · q(s)− Y (t) d1(H(t) +QB(t)) · q(t)− GB(t, t−)q(t)

+ Y (t)

b∫
t

dH(s) · q(s)− Y (t) d2H(t) · q(t) + GB(t, t+)q(t)

= Y (t)

b∫
a

dH(s) · q(s) + Y (t)

t∫
a

dQB(s) · q(s)− Y (t)(H(t+)−H(t−) + d1QB(t))q(t)

+ Y (t)
(
H(t+)−H(t−) + (α1 + α2)QB(t)−QB(t−)

)
q(t) = x(t)− x0(t) for t ∈ [a, b],

i.e., (1.1.17) is proved.
Let us show that the matrix-function GB satisfies the conditions of Definition 1.1.1. To prove this

fact, we use the following

Lemma 1.1.1. The matrix-function Z(t) ≡ Y (t)QB(t), where Y is the fundamental matrix of system
(1.1.10) under the condition Y (a) = In and the matrix-function QB(t) is defined by (1.1.11), satisfies
the generalized differential system

dZ(t) ≡ dA(t) · Z(t) + dB(t) for t ∈ [a, b]. (1.1.61)

Proof. Let a ≤ t1 < t2 < s. Then, using the equality

dY (t) ≡ dA(t) · Y (t) (1.1.62)

and the integration-by-parts formula (0.0.10), we conclude

Z(t2)− Z(t1)−
t2∫

t1

dA(t) · Z(t) = Z(t2)− Z(t1)−
t2∫

t1

dA(t) · Y (t)QB(t)

= Z(t2)− Z(t1)−
t2∫

t1

dY (t) ·QB(t) = J0 − J1 + J2 for a ≤ t1 < t2 ≤ b,

where

J0 =

t2∫
t1

Y (t) dQB(t), J1 =
∑

t1<t≤t2

d1Y (t) · d1QB(t), J2 =
∑

t1≤t<t2

d2Y (t) · d2QB(t).

Moreover, due to (1.1.12), using (0.0.13), (0.0.11) and the general integration-by-parts formula (0.0.11),
we find that

J0 =

t2∫
t1

Y (t) d(Y −1(t)B(t))−
t2∫

t1

Y (t) dY −1(t)B(t)

= B(t2)−B(t1)−
∑

t1<t≤t2

Y (t) d1Y
−1(t) · d1B(t) +

∑
t1≤t<t2

Y (t) d2Y (t) · d2B(t),

J1 =
∑

t1<t≤t2

d1Y (t) ·
(
d1(Y

−1(t)B(t))− d1Y (t)B(t)
)
=

∑
t1<t≤t2

d1Y (t) · Y −1(t−) d1B(t),

J2 =
∑

t1≤t<t2

d2Y (t) ·
(
d2(Y

−1(t)B(t))− d2Y (t)B(t)
)
=

∑
t1≤t<t2

d2Y (t) · Y −1(t+) d2B(t).
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Substituting these expressions into (1.1.62), we get

Z(t2)− Z(t1)−
t2∫

t1

dA(t) · Z(t) = B(t2)−B(t1) for a ≤ t1 < t2 ≤ b,

since

Y (t) d1Y
−1(t) + d1Y (t) · Y −1(t−) ≡ On×n, Y (t) d2Y

−1(t) + d2Y (t) · Y −1(t+) ≡ On×n.

Now we check that the constructed Green’s matrix-function satisfies the conditions of Defini-
tion 1.1.1.

Let, as above, Z(t) ≡ Y (t)QB(t).
Let a ≤ t1 < t2 < s. Then, due to (1.1.10) and (1.1.61), we have

GB(t2, s)− GB(t1, s) = (Y (t2)− Y (t1))H(s) + α1(Z(t2)− Z(t1))

=

t2∫
t1

dA(t) · (Y (t)H(s) + α1Z(t)) + α1(B(t2)−B(t1)) =

t2∫
t1

dA(t) · GB(t, s) + α1(B(t2)−B(t1)).

Analogously, we show that the matrix-function GB satisfies the corresponding equation on the interval
]s, b] of condition (a) of Definition 1.1.1.

Let us show the equality given in condition (b). By definition of GB and the equalities djY (t) =
djA(t) · Y (t) (j = 1, 2) and djZ(t) = djA(t) · Z(t) + djB(t) (j = 1, 2), we have

GB(t−, t) = (In − d1A(t))Y (t)(H(t) + α1QB(t))− α1d1B(t),

GB(t+, t) = (In + d2A(t))Y (t)(H(t) +QB(t)− α2QB(t))− α2d2B(t) for t ∈ ]a, b[ .

Due to the condition α1 + α2 = 1, from the last two equalities follows the equality given in condition
(b) of Definition 1.1.1. Conditions (c) and (d) are obvious.

Let now GB : [a, b] × [a, b] → Rn×n and G1B : [a, b] × [a, b] → Rn×n be arbitrary matrix-functions
corresponding to the common constants α1 and α2 satisfying conditions (a)–(c) of Definition 1.1.1.
Then, by (a), the columns of the matrix-function X(t) ≡ GB(t, s) − G1B(t, s) satisfy system (1.1.10)
for every s ∈ [a, b]. So, there exists a matrix-function H∗ ∈ BV([a, b];Rn×n) such that

GB(t, s)− G1B(t, s) ≡ Y (t)H∗(s).

From this, due to condition (d), the vector-function x(t) = Y (t)
b∫
a

dH∗(s) · q(s) satisfies condition

(1.1.20) and, therefore,

ℓ(Y )

b∫
a

dH∗(s) · q(s) = 0.

In addition, owing to (1.1.53), we have

t2∫
a

dH∗(s) · q(s) = 0 for every q ∈ BV([a, b];Rn),

where H∗ ∈ BV([a, b];Rn×n). According to Proposition I.5.5 from [73],

H∗(s+) = H∗(s−) = C = const for s ∈ [a, b],

where C ∈ Rn×n. Consequently, the Green matrix of problem (1.1.10), (1.1.20) is unique in the above
sense.
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Proof of Corollary 1.1.1. This corollary immediately follows from Theorem 1.1.1, since the vector-
function x ∈ BV([a, b];Rn) is a solution of problem (1.1.1), (1.1.2) if and only if the vector-function
y(t) = x(t)− f(t) is a solution of system (1.1.2) under the boundary condition ℓ(y) = c0− ℓ(f), where
B(t) ≡ A(t) and q(t) ≡ f(t).

Let us check Remark 1.1.1. Let Φ(t) ≡
t∫
a

dL(τ) · Y (τ) and let the matrix-functions B(q)(t) and

QB(t) be defined by(1.1.59) and (1.1.11), respectively. Then, by virtue of (0.0.10), (0.0.11) and
(0.0.13), we have

ℓ(B(q)) =
b∫

a

dL(s) · Y (s)

s∫
a

dQB(τ) · q(τ)

=

b∫
a

dΦ(s)

s∫
a

dQB(τ) · q(τ) = Φ(b)

b∫
a

dQB(s) · q(s)−
b∫

a

Φ(t) dQB(s) · q(s)

+
∑

a<s≤b

d1Φ(s) d1QB(s) · q(s)−
∑

a≤s<b

d2Φ(s) d2QB(s) · q(s)

= Φ(s)

b∫
a

dQB(s) · q(s)−
b∫

a

d(Φ(s)QB(s)) · q(s) +
b∫

a

dΦ(s) ·QB(s)q(s)

=

b∫
a

d

(
(Φ(b)− Φ(s))QB(s) +

s∫
a

dΦ(τ) ·QB(τ)

)
· q(s) = −D

b∫
a

dH(s) · q(s),

where the matrix-function H and the constant matrix D are defined by (1.1.22) and (1.1.20), respec-
tively. From this, according to (1.1.55), we get (1.1.57). The remark is proved.

Proof of Corollary 1.1.2. According to Corollary 1.1.1, we find that

x(t) ≡ x0(t)− Y (t)[ℓ(Y )]−1ℓ(f) + f(t) +

b∫
a

dsGA(t, s) · f(s),

where GA(t, s) and x0 are defined, respectively, by (1.1.24) and (1.1.56) for B(t) ≡ A(t). From this,
due to the equality

f(t) ≡
b∫

a

dsG0(t, s) · f(s),

where G0(t, s) = On×n for s ≤ t and G0(t, s) = In for s > t, it follows that

x(t) ≡ x0(t) +

b∫
a

dsG∗(t, s) · f(s), (1.1.63)

where
G∗(t, s) ≡ G0(t, s) + GA(t, s)− Y (t)D−1(L(s)− L(a)).

Now, using equalities (1.1.23) and (1.1.24), it is not difficult to verify that

G∗(t, s) ≡ In − Y (t) + G(t, s).

Moreover,
b∫

a

dsG∗(t, s) · f(s) =
b∫

a

dsG(t, s) · f(s).

Therefore, due to (1.1.63), equality (1.1.25) holds.
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Remark 1.1.2 is evident, since problem (1.1.10), (1.1.20) has a nontrivial solution if and only if

det(ℓ(Y )) = 0. (1.1.64)

Hence, for every f ∈ BV([a, b];Rn), there exists c0 ∈ Rn such that the system

ℓ(Y )c = c0 − ℓ(B(f)),

where the operator B(f) is defined by (1.1.52) for B(t) ≡ A(t), is not solvable and, therefore, problem
(1.1.1), (1.1.2) is not solvable, too.

Let us check Remark 1.1.3. In view of (1.1.64), there exists c1 ∈ Rn such that the system

ℓ(Y )c = c1 (1.1.65)

has no solution. Let

f(t) ≡ φ(t)− φ(a)−
t∫

a

dA(τ) · φ(τ),

where φ ∈ BV([a, b];Rn) is such that
ℓ(φ) = c0 − c1.

If we assume that problem (1.1.1), (1.1.2) has a solution x∗ for the above-defined vector-function f ,
then the vector-function x(t) = x∗(t) − φ(t) will be a solution of the homogeneous system (1.1.10)
under the condition ℓ(x) = c1. Consequently, we have x(t) = Y (t)c, where c ∈ Rn is a constant
vector satisfying system (1.1.65). But the system is unsolvable. The obtained contradiction proofs
the remark.

By condition (1.1.53), Remark 1.1.4 is evident, since, in the case, the fundamental matrix Y (t),
Y (a) = In, of system (1.1.10) has the form

Y (t) ≡ exp(S0(A)(t))
∏

a≤τ<t

(In + d2A(τ))
∏

a<τ≤t

(In − d1A(τ))
−1.

Proof of Theorem 1.1.11. As above, according to the variation-of-constants formula (1.1.12) and
(1.1.28), we have

u(t) = φ(t) + λ(α)(t)

(
c−

t∫
a

φ(τ) dλ−1(α)(τ)

)

= λ(α)(t)c+ φ(t)− λ(α)(t)

(
λ−1(α)(t)φ(t)−

t∫
a

λ−1(α)(τ) dφ(τ)

+
∑

a<τ≤t

d1λ
−1(α)(τ) · d1φ(τ)−

∑
a≤τ<t

d2λ
−1(α)(τ) · d2φ(τ)

)

= λ(α)(t)c+ λ(α)(t)

( t∫
a

λ−1(α)(τ) ds0(φ)(τ)

+
∑

a<τ≤t

λ−1(α)(τ) · d1φ(τ) +
∑

a≤τ<t

λ−1(α)(τ) · d2φ(τ)

−
∑

a<τ≤t

d1λ
−1(α)(τ) · d1φ(τ) +

∑
a≤τ<t

d2λ
−1(α)(τ) · d2φ(τ)

)
for t ∈ [a, b]

and, therefore,

u(t) ≡ λ(t)c+

2∑
j=0

βj(t) (1.1.66)
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for every solution u of equation (1.1.260), where c = u(0),

β0(t) ≡ λ(α)(t)

t∫
a

λ−1(α)(τ) ds0(α)(τ),

β1(t) ≡ λ(t)
∑

a<τ≤t

λ−1(α)(τ−) d1φ(τ),

β2(t) ≡ λ(t)
∑

a≤τ<t

λ−1(α)(τ+) d2φ(τ),

and λ(α)(t) is defined by (1.1.30).
The function u satisfies condition (1.1.27) if and only if c is a solution of the equation

(λ(α)(b)− 1)c = c0 −
2∑

j=0

βj(b). (1.1.67)

But this equation and, consequently, problem (1.1.26), (1.1.27) is uniquely solvable if and only if
condition (1.1.29) holds. On the other hand, this condition is necessary and sufficient for the absence
of the nontrivial solution to problem (1.1.260), (1.1.270).

If (1.1.29) has been fulfilled, then from (1.1.66) and (1.1.67) we obtain

u(t) =
c0λ(α)(t)

λ(α)(b)− 1
− λ(α)(t)

λ(α)(b)− 1

2∑
j=0

βj(b) +

2∑
j=0

βj(t) for t ∈ [a, b].

Moreover,

β0(t)−
λ(α)(t)

λ(α)(b)− 1
=

λ(α)(t)

1− λ(α)(b)

(
λ(α)(b)

b∫
t

λ−1(α)(τ) ds0(φ)(τ) +

t∫
a

λ−1(α)(τ) ds0(φ)(τ)

)

=

b∫
a

g0(α)(t, τ) ds0(φ)(τ),

β1(t)−
λ(α)(t)

λ(α)(b)− 1
β1(b) =

λ(α)(t)

1− λ(α)(b)

×
(
λ(α)(b)

∑
t<τ≤b

λ−1(α)(τ−) d1φ(τ) +
∑

a<τ≤t

λ−1(α)(τ−) d1φ(τ)

)
=

∑
a<τ≤b

g1(α)(t, τ) d1φ(τ)

and

β2(t)−
λ(α)(t)

λ(α)(b)− 1
β2(b) =

λ(α)(t)

1− λ(α)(b)

×
(
λ(α)(b)

∑
t≤τ<b

λ−1(α)(τ+) d2φ(τ) +
∑

a≤τ<t

λ−1(α)(τ+) d2φ(τ)

)
=

∑
a≤τ<b

g2(α)(t, τ) d2φ(τ)

for t ∈ [a, b], since

λ−1(α)(τ−) = λ−1(α)(τ)(1− d1α(τ))
−1

λ−1(α)(τ+) = λ−1(α)(τ)(1 + d2α(τ))
−1

and, consequently, (1.1.34) holds, where

u0(t) =
c0λ(α)(t)

λ(α)(b)− 1
.
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Proof of Theorem 1.1.2. Let l = 1.
We introduce the following sequence of operators: pi : BV([a, b];Rn×n) → BV([a, b];Rn×n) (i =

0, 1, . . . ):
p0(X)(t) ≡ X(t),

pi(X)(t) ≡ (In − d1A(t))
−1

t∫
a

dA(τ−) · pi−1(X)(τ) (i = 1, 2, . . . ).
(1.1.68)

To prove the theorem, we have to show that the conditions of the theorem are necessary and
sufficient for the absence of nontrivial solutions to the homogeneous problem (1.1.10), (1.1.20).

Let us show the sufficiency. Let x = (xi)
n
i=1 be an arbitrary solution of the homogeneous problem

(1.1.10), (1.1.20). Then

x(t) = c+

t∫
a

dA(τ) · x(τ) for t ∈ [a, b], (1.1.69)

where c = x(a). This, by (0.0.6), (1.1.8) and (1.1.68), yields

x(t) = c+

t∫
a

dA(τ−) · x(τ) + d1A(t) · x(t)

and

x(t) = (In − d1A(t))
−1c+ (In − d1A(t))

−1

t∫
a

dA(τ−) · x(τ) = [A]0(t) · c+ p1(x)(t)

= [A]0(t) · c+ p1([A]0 · c+ p1(x))(t) = [A]0(t) · c+ p1([A]0 · c)(t) + p1(p1(x))(t) =

=
(
[A]0(t) + [A]1

)
(t) · c+ p2(x)(t) =

(
[A]0(t) + [A]1(t)

)
· c+ p2([A]0 · c+ p1(x))(t) =

=
(
[A]0(t) + [A]1

)
(t) · c+ p2([A]0 · c)(t) + p2(p1(x))(t) =

=
(
[A]0(t) + [A]1(t) + [A]2(t)

)
· c+ p3(x)(t) for t ∈ [a, b],

etc. Continuing this process infinitely, we obtain

x(t) =
( j−1∑

i=0

[A]i(t)
)
c+ pk(x)(t) for t ∈ [a, b] (1.1.67k)

for every natural number k.
According to (1.1.351), (1.1.371) and (1.1.68), from (1.1.20) and (1.1.67k) we find that

Mkc−
b∫

a

dL(t) · pk(x)(t) = 0.

Thus, in view of the fact that Mk is a nonsingular matrix, we have

c =M−1
k

b∫
a

dL(t) · pk(x)(t).

Substituting this value of c into (1.1.67m), we get

x(t) = pm(x)(t) +
(m−1∑

i=0

[A]i(t)
) b∫

a

d(M−1
k L(t)) · pk(x)(t). (1.1.70)
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On the other hand, by (1.1.371) and (1.1.68), we have

|pj(x)(t)| ≤ Vj(A)(t) · |x|∞ for t ∈ [a, b] (j = 1, 2, . . . ).

From the latter inequality and from (1.1.41), due to (1.1.70), it follows that

|x|∞ ≤Mk,m|x|∞

and
(In −Mk,m)|x|∞ ≤ 0.

Hence, according to (1.1.40), we obtain
|x|∞ ≤ 0.

Consequently, x(t) ≡ 0. Thus the sufficiency of conditions of the theorem is proved for the absence
of nontrivial solutions to the problem (1.1.10), (1.1.20).

Let us now prove the necessity. Let problem (1.1.10), (1.1.20) have no nontrivial solutions. Then
inequality (1.1.53) holds, where Y is an arbitrary fundamental matrix of system (1.1.10). For defi-
niteness, we mean that Y (a) = In.

Assume

Yk(t) =

k−1∑
i=0

[A]i(t) for t ∈ [a, b] (k = 1, 2, . . . ). (1.1.71)

Analogously to (1.1.67k), we show that

Y (t) =

k−1∑
i=0

[A]i(t) + pk(Y )(t) for t ∈ [a, b] (k = 1, 2, . . . ). (1.1.72)

We now estimate ∥pk(Y )∥∞. Let r0 = ∥Y ∥∞. It is clear that (In − d1A(t))
−1 is a bounded

matrix-function on [a, b]. Therefore,

r = sup
{
∥(In − d1A(t))

−1∥ : t ∈ [a, b]
}
<∞.

Taking into account the fact that A− is a continuous from the left matrix-function and V (A−) is
nondecreasing, by (0.0.15), we have the estimate

∥p1(Y )(t)∥ ≤
∥∥(In − d1A(t))

−1
∥∥ t∫

a

∥Y (τ)∥ d∥V (A−)(τ)∥ ≤ rr0∥V (A−)(t)∥,

∥p2(Y )(t)∥ ≤
∥∥(In − d1A(t))

−1
∥∥ t∫

a

∥p1(Y )(τ)∥ d∥V (A−)(τ)∥

≤ r2r20

t∫
a

∥V (A−)(τ)∥ d∥V (A−)(τ)∥ ≤ r0r
2

2!
∥V (A−)(t)∥2.

Using the induction method, we obtain

∥pk(Y )(t)∥ ≤ r0(r∥V (A−)(t)∥)k

k!
≤ r0(r∥V (A−)(b)∥)k

k!
for t ∈ [a, b] (k = 1, 2, . . . ). (1.1.73)

According to (1.1.73), from (1.1.71) and (1.1.72) it follows that

lim
k→∞

∥Yk − Y ∥∞ = 0. (1.1.74)

Moreover,

∥ℓ(Yk)− ℓ(Y )∥ ≤
b∫

a

∥Yk(t)− Y (t)∥ d∥V (L)(t)∥ ≤ ∥V (L)(b)∥ · ∥Yk − Y ∥∞.
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Therefore, by (1.1.74)), we have
lim
k→∞

ℓ(Yk) = ℓ(Y ).

But in view of (1.1.39) and (1.1.71),

ℓ(Yk) = −Mk,

and hence
lim
k→∞

Mk = −ℓ(Y ).

From the above arguments and (1.1.53), there exist a natural number k0 and a positive number α
such that

det(Mk) ̸= 0, ∥M−1
k ∥ < α (k = k0, k0 + 1, . . . ). (1.1.75)

Moreover, as above, it is easy to verify that

∥V1(A)(t)∥ ≤ r∥V (A−)(t)∥ for t ∈ [a, b],

∥V2(A)(t)∥ ≤
t∫

a

∥V1(A)(τ)∥ d∥V (A−)(τ) ≤ r2
t∫

a

∥V (A−)(τ)∥ d∥V (A−)(τ)∥

≤ r2

2!
∥V (A−)(t)∥2 for t ∈ [a, b],

and so on. Thus

∥Vk(A)(t)∥ ≤ 1

k!

(
r∥V (A−)(t)∥

)k ≤ 1

k!

(
r∥V (A−)(b)∥

)k for t ∈ [a, b] (k = 1, 2, . . . ).

Taking into account these estimates and (1.1.75), from (1.1.41) we get

lim
k,m→∞

Mk,m = On×n.

Hence inequality (1.1.40) holds for some sufficiently large k and m. The theorem has been proved
for l = 1.

Let now l = 2. For this case we define the operators pi (i = 0, 1, . . . ) by

p0(X)(t) = X(t),

pi(X)(t) ≡ (In + d2A(t))
−1

t∫
b

dA(τ+) · pi−1(X)(τ) (i = 1, 2, . . . )

instead of (1.1.68).
We use the equality

x(t) = c+

t∫
b

dA(τ) · x(τ) for t ∈ [a, b]

instead of (1.1.69).
Acting analogously as in proving the case l = 1, we can easily show that the theorem is likewise

true in this case.

Proof of Theorem 1.1.21. The proof is analogous to that of Theorem 1.1.2.
Let l = 1, and let pi : BV([a, b];Rn×n) → BV([a, b];Rn×n) (i = 0, 1, . . . ) be the operators defined

by

p0(X)(t) ≡ X(t), pi(X)(t) ≡
t∫

a

dA(τ) · pi−1(X)(τ) (i = 1, 2, . . . ).
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Let x = (xi)
n
i=1 be an arbitrary solution of problem (1.1.10), (1.1.20). Then, by virtue of (1.1.69),

x(t) = c+ p1(x)(t) = c+

t∫
a

dA(τ) · (c+ p1(x)(τ)

= (In + (A)1(t))c+

t∫
a

dA(τ) · p1(x)(τ) = (In + (A)1(t))c+ p2(x)(t)

= (In+(A)1(t))c+

t∫
a

dA(τ)·
τ∫

a

dA(s)(c+p1(x)(s) = (In+(A)1(t)+(A)2(t))c+p3(x)(t) for t ∈ [a, b],

and so on. Continuing this process infinitely, we obtain

x(t) =
(
In +

j−1∑
i=0

(A)i(t)
)
c+ pj(x)(t) for t ∈ [a, b] (j = 1, 2, . . . ). (1.1.76)

According to (1.1.42) and (1.1.43), from (1.1.20) and (1.1.76) we can find c as above. Substituting
the value of c in (1.1.76) and acting as above, we find that x(t) ≡ 0. The theorem has been proved
for l = 1.

The proof of the theorem is similar for the case l = 2. We only note that the operators pi
(i = 0, 1, . . . ) are defined by

p0(X)(t) ≡ X(t), pi(X)(t) ≡
t∫

b

dA(τ) · pi−1(X)(τ) (i = 1, 2, . . . ).

Proof of Corollary 1.1.3. Let Aε(t) ≡ εA(t). It is evident that

lim
ε→0

(
In + (−1)jε djA(t)

)
= In uniformly on [a, b] (j = 1, 2).

Therefore, there exists ε1 > 0 such that

det
(
In + (−1)j djAε(t)

)
̸= 0 (t ∈ [a, b], j = 1, 2)

for every ε ∈ ]0, ε1].
If condition (1.1.44) holds, then we assume k = 1, while if conditions (1.1.45)–(1.1.47) hold, we

assume k = l + 1. Moreover, we put

Mk(ε) = L(a)−
k−1∑
i=0

b∫
a

dL(t) · (εA)i(t)

and

Mk,1(ε) = (V (εA))1(b) + |M−1
k (ε)|

b∫
a

dV (L)(t) · (V (εA))k(t).

In view of condition (1.1.44) (of conditions (1.1.45)–(1.1.47)), we can easily verify that

Mk(ε) = εk−1Mk, det(Mk) ̸= 0, Mk,1(ε) = εMk,1,

where Mk and Mk1 are the matrices defined by (1.1.42) and (1.1.43), respectively. Let

ε0 = min
{ 1

r(Mk,1)
, ε1

}
.

Then we have
r(Mk,1(ε)) < 1

for every ε ∈ ]0, ε0[ . Therefore, according to Theorem 1.1.21, problem (1.1.38), (1.1.2) has one and
only one solution for every ε ∈ ]0, ε0[ .
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Proof of Theorem 1.1.3. It suffices for the homogeneous problem (1.1.10), (1.1.20) to have only the
trivial solution. Let x=(xi)

n
i=1 be an arbitrary solution of the problem. Since problem (1.1.48), (1.1.20)

has only the trivial solution, by (1.1.17) and the equality

dx(t) = dA0(t) · x(t) + d

( t∫
a

d(A(τ)−A0(τ)) · x(τ)
)

for t ∈ [a, b],

we have the representation

x(t) =

t∫
a

dτG0(t, τ)

τ∫
a

d(A(s)−A0(s)) · x(s) =
t∫

a

d

( s∫
a

G0(t, τ)d(A(τ)−A0(τ))

)
x(s) for t ∈ [a, b],

where G0(t, τ) is the Green matrix of problem (1.1.48), (1.1.20).
Therefore, by (1.1.49),

|x(t)| ≤
t∫

a

s∫
a

|G0(t, τ)| dV (A−A0)(τ) · |x(s)| ≤M |x|∞ for t ∈ [a, b].

Hence
(In −M)|x|∞ ≤ 0.

From the above, owing to (1.1.50), it follows that x(t) ≡ 0. Consequently, problem (1.1.1), (1.1.2)
has one and only one solution.

1.2 The well-posedness of the general linear
boundary value problems

1.2.1 Statement of the problem and formulation of the results
Let A0 ∈ BV([a, b];Rn×n), f0 ∈ BV([a, b];Rn). Consider the system

dx = dA0(t) · x+ df0(t) for t ∈ [a, b] (1.2.1)

under the boundary value condition
ℓ0(x) = c0, (1.2.2)

where ℓ0 : BV∞([a, b];Rn) → Rn is a linear bounded (with respect to the norm ∥ · ∥∞) vector-
functional, and c0 ∈ Rn is an arbitrary constant vector.

Let x0 be a unique solution of problem (1.2.1), (1.2.2).
Along with problem (1.2.1), (1.2.2), consider the sequence of the problems

dx = dAm(t) · x+ dfm(t), (1.2.1m)
ℓm(x) = cm (1.2.2m)

(m = 1, 2, . . . ), where Am ∈ BV([a, b];Rn×n) (m = 1, 2, . . . ), fm ∈ BV([a, b];Rn) (m = 1, 2, . . . ),
ℓm : BV∞([a, b];Rn) → Rn (k = 1, 2, . . . ) are linear bounded vector-functionals and cm ∈ Rn (m =
1, 2, . . . ).

Let Am = (amil)
n
i,l=1 and fm = (fml)

n
l=1 (m = 0, 1, . . . ).

Moreover, as above in Section 1.1, without loss of generality we assume Am(a) = On×n and
fm(a) = 0n (m = 0, 1, . . . ).

In this section, we establish the necessary and sufficient and the effective sufficient conditions for
the boundary value problem (1.2.1m), (1.2.2m) to have a unique solution xm for any sufficiently large
m and prove that

lim
m→+∞

xm(t) = x0(t) (1.2.3)
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uniformly on [a, b].
Along with problems (1.2.1), (1.2.2) and (1.2.1m), (1.2.2m), we consider the corresponding homo-

geneous problems

dx = dA0(t) · x, (1.2.10)
ℓ0(x) = 0 (1.2.20)

and

dx = dAm(t) · x, (1.2.1m0)
ℓm(x) = 0 (1.2.2m0)

for any natural m.

Definition 1.2.1. We say that the sequence (Am, fm; ℓm) (m=1, 2, . . . ) belongs to the set S(A0, f0; ℓ0)
if for every c0 ∈ Rn and for a sequence cm ∈ Rn (m = 1, 2, . . . ) satisfying the condition

lim
m→+∞

cm = c0, (1.2.4)

problem (1.2.1m), (1.2.2m) has the unique solution xm for any sufficiently large m, and condition
(1.2.3) holds uniformly on [a, b].

We assume that

det
(
In + (−1)j djA0(t)

)
̸= 0 for t ∈ [a, b] (j = 1, 2). (1.2.5)

Theorem 1.2.1. Let the conditions

lim
m→+∞

ℓm(x) = ℓ(x) for x ∈ BV([a, b];Rn), (1.2.6)

lim sup
m→+∞

|||ℓm||| < +∞ (1.2.7)

hold. Then the inclusion (
(Am, fm; ℓm)

)+∞
m=1

∈ S(A0, f0; t0) (1.2.8)

holds if and only if there exists a sequence of matrix-functions H0,Hm ∈ BV([a, b];Rn×n) (m =
1, 2, . . . ) such that the conditions

lim sup
m→+∞

b∨
a

(Hm + B(Hm, Am)) < +∞ (1.2.9)

and
inf

{
|det(H0(t))| : t ∈ [a, b]

}
> 0 (1.2.10)

hold, and the conditions

lim
m→+∞

Hm(t) = H0(t), (1.2.11)

lim
m→+∞

B(Hm, Am)(t) = B(H0, A0)(t), (1.2.12)

lim
m→+∞

B(Hm, fm)(t) = B(H0, f0)(t) (1.2.13)

hold uniformly on [a, b].

Theorem 1.2.2. Let conditions (1.2.6), (1.2.7) and

det
(
In + (−1)j djAm(t)

)
̸= 0 for t ∈ [a, b] (m = 0, 1, . . . ) (1.2.14)
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hold. Then inclusion (1.2.8) holds if and only if the conditions

lim
m→+∞

X−1
m (t) = X−1

0 (t) (1.2.15)

and

lim
m→+∞

B(X−1
m , fm)(t) = B(X−1

0 , f)(t)

hold uniformly on [a, b], where Xm is the fundamental matrix of the homogeneous system (1.2.1m0)
for every m ∈ Ñ.

Theorem 1.2.3. Let A∗
0∈BV([a, b];Rn×n), f∗0 ∈BV([a, b];Rn), c∗0∈Rn, and a ℓ∗0 : BV∞([a, b];Rn×n)

→ Rn be a linear bounded vector-functional such that

det
(
In + (−1)j djA

∗
0(t)

)
̸= 0 for t ∈ [a, b] (1.2.16)

and the boundary value problem

dx = dA∗
0(t) · x+ df∗0 (t), (1.2.1∗)
ℓ∗0(x) = c∗0 (1.2.2∗)

has a unique solution x∗0. Let, moreover, there exist the sequences of matrix- and vector-functions
Hm ∈ BV([a, b];Rn×n) (m = 1, 2, . . . ) and hm ∈ BV([a, b];Rn) (m = 1, 2, . . . ) such that

inf
{
|det(Hm(t))| : t ∈ [a, b]

}
> 0 for every sufficiently large m, (1.2.17)

and for the sequences

ℓ∗m(y) = ℓm(H−1
m y) (m = 1, 2, . . . ), A∗

m(t) ≡ I(Hm, Am)(t) (m = 1, 2, . . . ),

f∗m(t) ≡ hm(t)− hm(a) + B(Hm, fm)(t)−
t∫

a

dA∗
m(s) · hm(s) (m = 1, 2, . . . )

the conditions

lim
m→+∞

ℓ∗m(y) = ℓ∗0(y) for y ∈ BV([a, b];Rn), (1.2.18)

lim sup
m→+∞

|||ℓ∗m||| < +∞, (1.2.19)

lim
m→+∞

(cm + ℓ∗m(hm)) = c∗0, (1.2.20)

lim sup
m→+∞

b∨
a

(A∗
m) < +∞ (1.2.21)

hold and the conditions

lim
m→+∞

A∗
m(t) = A∗

0(t), (1.2.22)

lim
m→+∞

f∗m(t) = f∗0 (t) (1.2.23)

hold uniformly on [a, b]. Then problem (1.2.1m), (1.2.2m) has the unique solution xm for any sufficiently
large m and

lim
m→+∞

(
Hm(t)xm(t) + hm(t)

)
= x∗0(t) (1.2.24)

uniformly on [a, b].
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Remark 1.2.1. In Theorem 1.2.3, the vector-function ym(t) ≡ Hm(t)xm(t) + hm(t) is a solution of
the problem

dy = dA∗
m(t) · y + df∗m(t), (1.2.1∗m)
ℓ∗m(y) = c∗m (1.2.2∗m)

for every sufficiently large m, where c∗m = cm + ℓ∗m(hm).
Corollary 1.2.1. Let conditions (1.2.6), (1.2.7), (1.2.9), (1.2.10) and

lim
m→+∞

(cm − φk(a)) = c0 (1.2.25)

hold, and conditions (1.2.11), (1.2.12) and

lim
m→+∞

(
B(Hm, fm − φm)(t) +

t∫
a

dB(Hm, Am)(τ) · φm(τ)

)
= B(H0, f0)(t) (1.2.26)

hold uniformly on [a, b], where Hm ∈ BV([a, b];Rn×n) (m = 0, 1, . . . ), φm ∈ BV([a, b];Rn) (m =
1, 2, . . . ). Then for any sufficiently large m, problem (1.2.1m), (1.2.2m) has the unique solution xm
and

lim
m→+∞

(xm(t)− φm(t)) = x0(t) (1.2.27)

uniformly on [a, b].
Theorem 1.2.4. Let conditions (1.2.4)–(1.2.7) and

lim sup
m→+∞

b∨
a

(Am) < +∞

hold, and the conditions

lim
m→+∞

Am(t) = A0(t), (1.2.28)

lim
m→+∞

fm(t) = f0(t) (1.2.29)

hold uniformly on [a, b]. Then the boundary value problem (1.2.1m), (1.2.2m) has the unique solution
xm for any sufficiently large m and condition (1.2.3) holds uniformly on [a, b].
Corollary 1.2.2. Let conditions (1.2.6), (1.2.7), (1.2.9) and (1.2.10) hold, and conditions (1.2.11),

lim
m→+∞

t∫
a

Hm(s) dAm(s) =

t∫
a

H0(s) dA0(s), (1.2.30)

lim
m→+∞

t∫
a

Hm(s) dfm(s) =

t∫
a

H0(s) df0(s), (1.2.31)

lim
m→+∞

djAm(t) = djA0(t) (j = 1, 2), (1.2.32)

lim
m→+∞

djfm(t) = djf0(t) (j = 1, 2) (1.2.33)

hold uniformly on [a, b], where Hm ∈ BV([a, b];Rn×n) (m = 0, 1, . . . ). Let, moreover, either

lim sup
m→+∞

∑
t∈[a,b]

(
∥djAm(t)∥+ ∥djfm(t)∥

)
< +∞ (j = 1, 2), (1.2.34)

or

lim sup
m→+∞

∑
t∈[a,b]

∥djHm(t)∥ < +∞ (j = 1, 2). (1.2.35)

Then inclusion (1.2.8) holds.
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Corollary 1.2.3. Let conditions (1.2.6), (1.2.7) and (1.2.9) hold, and conditions (1.2.11), (1.2.28),
(1.2.29),

lim
m→+∞

t∫
a

dHm(s) ·Am(s) = A∗(t)−A∗(a) (1.2.36)

and

lim
m→+∞

t∫
a

dHm(s) · fm(s) = f∗(t)− f∗(a) (1.2.37)

hold uniformly on [a, b], where H0(t)≡In, Hm∈BV([a, b];Rn×n) (m=1, 2, . . . ), A∗∈BV([a, b];Rn×n)
and f∗ ∈ BV([a, b];Rn). Let, moreover, the system

dx = d(A0(t)−A∗(t)) · x+ d(f0(t)− f∗(t))

has a unique solution satisfying condition (1.2.2). Then(
(Am, fm; ℓm)

)+∞
m=1

∈ S(A0 −A∗, f0 − f∗; ℓ0).

Corollary 1.2.4. Let conditions (1.2.6) and (1.2.7) hold and let there exist a natural number µ and
matrix-functions Bj ∈ BVloc([a, b];Rn×n) (j = 0, . . . , µ− 1) such that

lim sup
m→+∞

b∨
a

(Amµ) < +∞ (1.2.38)

and the conditions

lim
m→+∞

(Amj(t)−Amj(a)) = Bj(t)−Bj(a) (j = 0, . . . , µ− 1), (1.2.39)

lim
m→+∞

(Amµ(t)−Amµ(a)) = A0(t), (1.2.40)

lim
m→+∞

fmµ(t) = f0(t) (1.2.41)

hold uniformly on [a, b], where

Am0 ≡ Am(t), fm0(t) ≡ fm(t) (m = 1, 2, . . . ),

Amj(t) ≡ Hmj−1(t) + B(Hmj−1, Am)(t), fmj(t) ≡ B(Hmj−1, fm)(t) (j = 1, . . . , µ; m = 1, 2, . . . );

Hm0(t) ≡ In, Hmj(t) ≡
(
In −Amj(t) +Amj(a) +Bj(t)−Bj(a)

)
Hmj−1(t)

(j = 1, . . . , µ− 1; m = 1, 2, . . . ).

Then inclusion (1.2.8) holds.

If µ = 1, then Corollary 1.2.4 coincides with Theorem 1.2.4.
If µ = 2, then Corollary 1.2.4 has the following form.

Corollary 1.2.41. Let conditions (1.2.6), (1.2.7) and (1.2.9) hold, and the conditions

lim
m→+∞

Am(t) = B(t)−B(a),

lim
m→+∞

B(Hm, Am)(t) = A0(t),

lim
m→+∞

B(Hm, fm)(t) = f0(t)

hold uniformly on [a, b], where B ∈ BV([a, b];Rn×n) and

Hm(t) ≡ In −Am(t) +B(t)−B(a) (m = 1, 2, . . . ).

Then inclusion (1.2.8) holds.
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If in Corollary 1.2.41 we choose B(t) ≡ A0(t), then the corollary has the following simple form.
Corollary 1.2.42. Let conditions (1.2.6), (1.2.7) and

lim sup
m→+∞

b∨
a

(
Am − B(Am −A0, Am)

)
< +∞

hold, and the conditions

lim
m→+∞

Am(t) = A0(t),

lim
m→+∞

t∫
a

d(Am(τ)−A0(τ)) ·Am(τ) = On×n,

lim
m→+∞

(
fm(t)− B(Am −A0, fm)(t)

)
= f0(t)

hold uniformly on [a, b]. Then inclusion (1.2.8) holds.

Remark 1.2.2. in particular, in the above corollary, the last limit condition holds if

lim
m→+∞

fm(t) = f0(t) and lim
m→+∞

t∫
a

d(Am(τ)−A0(τ)) · fm(τ) = 0n

uniformly on [a, b].

Corollary 1.2.5. Let conditions (1.2.6) and (1.2.7) hold. Then inclusion (1.2.8) holds if and only if
there exist a sequence of matrix-functions Bm ∈ BV([a, b];Rn×n) (m = 0, 1, . . . ) such that

lim sup
m→+∞

b∨
a

(Am −Bm) < +∞ (1.2.42)

and
det

(
In + (−1)j djBm(t)

)
̸= 0 for t ∈ [a, b] (j = 1, 2; m = 0, 1, . . . ), (1.2.43)

and the conditions

lim
m→+∞

Z−1
m (t) = Z−1

0 (t), (1.2.44)

lim
m→+∞

B(Z−1
m , Am)(t) = B(Z−1

0 , A0)(t) (1.2.45)

and

lim
m→+∞

B(Z−1
m , fm)(t) = B(Z−1

0 , f0)(t) (1.2.46)

hold uniformly on [a, b], where Zm (Zm(a) = In) is a fundamental matrix of the homogeneous system

dx = dBm(t) · x (1.2.47)

for every m ∈ Ñ.

Corollary 1.2.6. Let conditions (1.2.6) and (1.2.7) hold and let there exist a sequence of matrix-
functions Bm ∈ BV([a, b];Rn×n) (m = 0, 1, . . . ) satisfying the Lappo–Danilevskiĭ condition at the point
a such that the conditions

lim sup
m→+∞

( b∨
a

(Am − Sc(Bm)) +

b∨
a

(S1(Bm)) +

b∨
a

(S2(Bm))

)
< +∞ (1.2.48)
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and
det

(
In + (−1)j djB0(t)

)
̸= 0 for t ∈ [a, b] (j = 1, 2) (1.2.49)

hold, and the conditions

lim
m→+∞

(
Sc(Bm(t))− Sc(Bm(a))

)
= Sc(B0)(t)− Sc(B0)(a), (1.2.50)

lim
m→+∞

Sj(Bm)(t) = Sj(B0)(t) (j = 1, 2), (1.2.51)

lim
m→+∞

t∫
a

Z−1
m (τ) dA(Bm, Am)(τ) =

t∫
t0

Z−1
0 (τ) dA(B0, A0)(τ) (1.2.52)

and

lim
m→+∞

t∫
a

Z−1
m (τ) dA(Bm, fm)(τ) =

t∫
t0

Z−1
0 (τ) dA(B0, f0)(τ) (1.2.53)

hold uniformly on [a, b], where A is the operator defined by (0.0.2), and Zm (Zm(a) = In) is a funda-
mental matrix of the homogeneous system (1.2.47) for any sufficiently large m. Then inclusion (1.2.8)
holds.

Remark 1.2.3. In Corollary 1.2.6, due to (1.2.51) and (1.2.49), without loss of generality, we can
assume that condition (1.2.43) holds for every natural m and, therefore, the fundamental matrices
Zm (m = 0, 1, . . . ) exist. Hence conditions (1.2.52) and (1.2.53) of the corollary are correct.

Remark 1.2.4. In Corollaries 1.2.5 and 1.2.6, if we assume that the matrix functions Bm (m =
0, 1, . . . ) are continuous, then conditions (1.2.43) and (1.2.49) are, obviously, valid. Moreover, due to
the integration-by-parts formula and definitions of operators A and B, each of conditions (1.2.45) and
(1.2.52) has the form

lim
m→+∞

t∫
a

Z−1
m (τ) dAm(τ) =

t∫
a

Z−1
0 (τ) dA0(τ),

and each of conditions (1.2.46) and (1.2.53) has the form

lim
m→+∞

t∫
a

Z−1
m (τ) dfm(τ) =

t∫
t0

Z−1
0 (τ) df0(τ).

Remark 1.2.5. If the matrix-function B ∈ BV(I;Rn×n) satisfies the Lappo–Danilevskiĭ condition
at the point s ∈ I and det(In + (−1)j djB(t)) ̸= 0 for t ∈ I, (−1)j(t − s) < 0 (j = 1, 2), then the
fundamental matrix Z (Z(s) = In) of the homogeneous system

dx = dB(t) · x

has the form (see [39,44,71])

Z(t) =



exp
(
Sc(B)(t)− Sc(B)(s)

) ∏
s<τ≤t

(In − d1B(τ))−1
∏

s≤τ<t

(In + d2B(τ)) for t > s,

exp
(
Sc(B)(s)− Sc(B)(t)

) ∏
t<τ≤s

(In − d1B(τ))
∏

t≤τ<s

(In + d2B(τ))−1 for t < s,

In for t = s.

(1.2.54)

In that paper there is given the form of the fundamental matrix of considered system in the general
case, as well, i.e., when the matrix-function B does not satisfy the Lappo–Danilevskiĭ condition. We
could get similar results for the general case, but they would be very laborious.
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In particular, from Corollary 1.2.6 follows the following

Corollary 1.2.7. Let conditions (1.2.6) and (1.2.7) hold and let there exist a sequence of continuous
matrix-functions Bm ∈ BV([a, b];Rn×n) (m = 0, 1, . . . ) satisfying the Lappo–Danilevskiĭ condition at
the point a such that condition (1.2.42) hold, and the conditions

lim
m→+∞

(Bm(t))−Bm(a)) = B0(t)−B0(a),

lim
m→+∞

t∫
a

exp(−Bm(τ) +Bm(a)) dAm(τ) =

t∫
a

exp(−B0(τ) +B0(a)) dA0(τ)

and

lim
m→+∞

t∫
a

exp(−Bm(τ) +Bm(a)) dfm(τ) =

t∫
a

exp(−B0(τ) +B0(a)) df0(τ)

hold uniformly on [a, b]. Then inclusion (1.2.8) holds.

Corollary 1.2.8. Let conditions (1.2.6), (1.2.7) and

lim sup
m→+∞

∑
t∈[a,b]

∥djAm(t)∥ < +∞ (j = 1, 2) (1.2.55)

hold. Let, moreover, the matrix-functions Sc(Am) (m = 0, 1, . . . ) satisfy the Lappo–Danilevskiĭ con-
dition at the point a and the conditions

lim
m→+∞

Sc(Am)(t) = Sc(A0)(t), (1.2.56)

lim
m→+∞

Sj(Am)(t) = Sj(A0)(t) (j = 1, 2), (1.2.57)

lim
m→+∞

t∫
a

exp(−Sc(Am)(τ)) dAm(τ) =

t∫
a

exp(−Sc(A0)(τ)) dA0(τ) (1.2.58)

and

lim
m→+∞

t∫
a

exp(−Sc(Am)(τ)) dfm(τ) =

t∫
a

exp(−Sc(A0)(τ)) df0(τ) (1.2.59)

hold uniformly on [a, b]. Then inclusion (1.2.8) holds.

Corollary 1.2.9. Let conditions (1.2.6), (1.2.7),

lim sup
m→+∞

n∑
i,l=1; i ̸=l

b∨
a

(amil) < +∞

and
1 + (−1)j dja0ii(t) ̸= 0 for t ∈ [a, b] (j = 1, 2; i = 1, . . . , n)

hold, and the conditions

lim
m→+∞

amii(t) = a0ii(t) (i = 1, . . . , n),

lim
m→+∞

t∫
a

z−1
mii(τ) dA(amii, amil)(τ) =

t∫
a

z−1
0ii (τ) dA(a0ii, a0il)(τ) (i ̸= l; i, l = 1, . . . , n)
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and

lim
m→+∞

t∫
a

z−1
mii(τ) dA(amii, fmi)(τ) =

t∫
a

z−1
0ii (τ) dA(a0ii, f0i)(τ) (i = 1, . . . , n)

hold uniformly on [a, b], where A is the operator defined by (0.0.2), and zzii defined according to
(1.2.54) is a solution of the initial problem

dz(t) = z(t) damii(t), z(a) = 1 (i = 1, . . . , n)

for any sufficiently large m. Then inclusion (1.2.8) holds.

Remark 1.2.6. For Corollary 1.2.8, the remark analogous to Remark 1.2.3 is true, i.e.,

1 + (−1)j djamii(t) ̸= 0 for t ∈ [a, b] (j = 1, 2; i = 1, . . . , n)

for every sufficiently large m and, therefore, all conditions of the corollary are correct.

Remark 1.2.7. In theorems and corollaries given above, as well as in the statements below, we may,
without loss of generality, assume that H0(t) ≡ In. In this case, it is evident that

B(H0, Y )(t) = I(H0, Y )(t) ≡ Y (t)− Y (a) for Y ∈ BV([a, b];Rn×n).

Remark 1.2.8. If for some m the matrix-function Am is such that Am(t) = const for t ∈ I0, where
I0 ⊂ [a, b] is an interval, then, due to the proof of the necessity in Theorem 1.2.1, we conclude that
Hm(t) = const for t ∈ I0, as well, since Hm(t) = X−1

m (t), where Xm is the fundamental matrix of the
homogeneous system (1.2.1m0). Therefore, Xm(t) = const for t ∈ I0. So, everywhere in the results
given above we can assume that the matrix-function Hm has the described property.

Remark 1.2.9. The following example shows that if condition (1.2.34) is violated, then the statement
of Corollary 1.2.2 is not true, in general.

Example 1.2.1. Let a = 0, b = 1, n = 1, A0(t) ≡ 0, f0(t) ≡ 0, ℓm(x) = x(0) (m = 0, 1, . . . ),

Am(t) =


m−1 for t ∈

2m2∪
i=1

]t2i−1m, t2im],

0 for t ̸∈
2m2∪
i=1

]t2i−1m, t2im],

where tim = (2m2+1)−1 i (i = 0, . . . , 2m2) for every natural m. Then all conditions of Corollary 1.2.2
are fulfilled, except (1.2.34). It is evident that x0(t) ≡ 1. On the other hand, the initial problem
(1.2.1m), (1.2.2m) has the unique solution xm and, in addition, xm(1) = (1 − 1

m2 )
m2 . Therefore,

condition (1.2.3) is not valid, since

lim
m→+∞

xm(1) = exp(−1) ̸= x0(1).

The examples concerning the importance of some conditions given in the above statements can be
found in [23] (Examples 3.1.1, 3.1.2, 3.1.3).

1.2.2 Auxiliary propositions
Lemma 1.2.1. The following statements are true:
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(a) if X ∈ BV([a, b];Rn×m), Y ∈ BV([a, b];Rm×l) and Z ∈ BV([a, b];Rl×k), then

B(X,B(Y, Z))(t) = B(X Y,Z)(t) for t ∈ [a, b] (1.2.60)

and

B
(
X,

·∫
a

dY (s) · Z(s)
)
(t) =

t∫
a

dB(X,Y )(s) · Z(s) for t ∈ [a, b]; (1.2.61)

(b) if X ∈ BV([a, b];Rn×n), Y ∈ BV([a, b];Rn×n) and Z ∈ BV([a, b];Rn×n), then

I(X, I(Y, Z))(t) = I(X Y,Z)(t) for t ∈ [a, b], (1.2.62)

where the operators B and I are defined by (0.0.3) and (0.0.4), respectively.

Proof. Let us show that (1.2.60) is valid. According to equalities (0.0.10)–(0.0.14), we have

B(X,B(Y, Z))(t) = X(t)B(Y, Z)(t)−
t∫

a

dX(s) · B(Y, Z)(s)

= X(t) ·
(
Y (t)Z(t)− Y (a)Z(a)−

t∫
a

dY (s) · Z(s)
)

−
t∫

a

dX(s) ·
(
Y (s)Z(s)− Y (a)Z(a)−

s∫
a

dY (τ) · Z(τ)
)

= X(t)Y (t)Z(t)−X(a)Y (a)Z(a)−X(t)

t∫
a

dY (s) · Z(s)

−
t∫

a

dX(s) · Y (s)Z(s) +

t∫
a

dX(s) ·
s∫

a

dY (τ) · Z(τ)

= X(t)Y (t)Z(t)−X(a)Y (a)Z(a)−
t∫

a

dX(s) · Y (s)Z(s)

−
t∫

a

X(s) dY (s) · Z(s) +
∑

a<s≤t

d1X(s) · d1Y (s) · Z(s)−
∑

a≤t<s

d2X(s) · d2Y (s) · Z(s)

= X(t)Y (t)Z(t)−X(a)Y (a)Z(a)−
t∫

a

d

( s∫
a

dX(τ) · Y (τ)

+

s∫
a

X(τ) dY (τ)−
∑

a<τ≤s

d1X(τ) · d1Y (τ) +
∑

a≤τ<s

d2X(τ) · d2Y (τ)

)
· Z(s)

= X(t)Y (t)Z(t)−X(a)Y (a)Z(a)−
t∫

a

d(X(s)Y (s)) · Z(s) = B(XY,Z)(t).
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Let us verify (1.2.61). By (0.0.13) and (1.2.60), it can be easily shown that

B
(
X,

·∫
a

dY (s) · Z(s)
)
(t) = B

(
X,Y Z − B(Y, Z)

)
(t) = B(X,Y Z)(t)− B(XY,Z)(t)

=

t∫
a

d(X(s)Y (s)) · Z(s)−
t∫

a

dX(s) · Y (s)Z(s) =

t∫
a

dB(X,Y )(s) · Z(s).

Finally, using (0.0.13), (1.2.60) and (1.2.61), we have

I(X, I(Y, Z))(t) =
t∫

a

d
[
X(τ) + B(X, I(Y, Z))(τ)

]
·X−1(τ)

=

t∫
a

d

(
X(τ) + B

(
X,

·∫
a

d
[
Y (s) + B(Y, Z)(s)

]
· Y −1(s)

)
(τ)

)
·X−1(τ)

=

t∫
a

d

(
X(τ) +

τ∫
a

dB(X,Y + B(Y, Z))(s) · Y −1(s)

)
·X−1(τ)

=

t∫
a

d

(
X(τ) +

τ∫
a

dB(X,Y )(s) · Y −1(s) +

τ∫
a

dB(X,B(Y, Z))(s) · Y −1(s)

)
·X−1(τ)

=

t∫
a

d

(
X(τ)+

τ∫
a

d

(
X(s)Y (s)−

s∫
a

dX(σ) · Y (σ)

)
· Y −1(s)+

τ∫
a

dB(XY,Z)(s) · Y −1(s)

)
·X−1(τ)

=

t∫
a

d

( τ∫
a

d(X(s)Y (s)) · Y −1(s) +

τ∫
a

dB(XY,Z)(s) · Y −1(s)

)
·X−1(τ)

=

t∫
a

d
(
X(τ)Y (τ) + B(XY,Z)(τ)

)
· Y −1(τ)X−1(τ) = I(XY,Z)(t).

Lemma 1.2.2. Let h ∈ BV([a, b];Rn), and H ∈ BV([a, b];Rn×n) be a nonsingular matrix-function.
Then the mapping

x→ y = Hx+ h

establishes a one-to-one correspondence between the solutions x and y of systems (1.1.1) and

dy = dA∗(t) · y + df∗(t), (1.2.63)

where the matrix- and vector-functions A∗ and f∗ are defined, respectively, by

A∗(t) ≡ I(H,A)(t) and f∗(t) ≡ h(t)− h(a) + B(H, f)(t)−
t∫

a

dA∗(s) · hk(s).

Besides,

In + (−1)j djA∗(t) ≡ (H(t) + (−1)j djH(t))(In + (−1)j djA(t))H
−1(t) (j = 1, 2). (1.2.64)

Proof. Let x be a solution of system (1.1.1) and let y(t) ≡ H(t)x(t) + h(t). Due to (1.2.61) and the
definition of a solution, we have

t∫
a

dB(H,A)(s) · x(s) = B(H,x− f)(t) for t ∈ [a, b].
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In view of the above said and (0.0.13), we obtain

t∫
a

dA∗(s) · y(s) + f∗(t)− f∗(a) =

t∫
a

dA∗(s) · (y(s)− h(s)) + B(H, f)(t) + h(t)− h(a)

=

t∫
a

d

( t∫
a

d
[
H(τ) + B(H,A)(τ)

]
·H−1(τ)

)
·H(s)x(s) + B(H, f)(t) + h(t)− h(a)

=

t∫
a

d
[
H(s) + B(H,A)(s)

]
· x(s) + B(H, f)(t) + h(t)− h(a)

=

t∫
a

dH(s) · x(s) + B(H,x− f)(t) + B(H, f)(t) + h(t)− h(a)

=

t∫
a

dH(s) · x(s) + B(H,x)(t) + h(t)− h(a)

= H(t)x(t)−H(a)x(a) + h(t)− h(a) = y(t)− y(a) for t ∈ [a, b],

i.e., y is a solution of system (1.2.63).
Let us prove the converse assertion. It suffices to show that

I(H−1, A∗)(t) = A(t)−A(a) for t ∈ [a, b] (1.2.65)

and

−H−1(t)h(t) +H−1(a)h(a) + I(H−1, f∗)(t)

+

t∫
a

dI(H−1, A∗)(τ) ·H−1(τ)h(τ) = f(t)− f(a) for t ∈ [a, b]. (1.2.66)

Indeed, by (1.2.62), we have

I(H−1, A∗)(t) = I(H−1, I(H,A))(t) = I(I, A)(t)

=

t∫
a

d
[
In + B(In, A)(s)

]
= B(In, A)(t) = A(t)− f(a) for t ∈ [a, b].

Therefore, equality (1.2.65) is proved.
Let us show that (1.2.66) is valid. Let R(t) be the left-hand side of the equality. In view of (1.2.60)

and (1.2.61), it is easy to verify that

B
(
H−1,

·∫
a

dB(H,A)(s) ·H−1(s)h(s)

)
(t) =

t∫
a

dA(s) ·H−1(s)h(s) for t ∈ [a, b]

and

B
(
H−1,

·∫
a

dH(s) ·H−1(s)h(s)

)
(t) = −

t∫
a

dH(s) · h(s) for t ∈ [a, b].

Taking the latter equalities, (0.0.13), (1.2.60), (1.2.61) and (1.2.65) into account, we find that
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R(t) = −H−1(t)h(t) +H−1(a)h(a) + B(H−1, h)(t) + B(H−1,B(H, f))(t)

− B
(
H−1,

·∫
a

dA∗(s) · h(s)
)
(t) +

t∫
a

dA(s) ·H−1(s)h(s)

= B(In, f)(t−
t∫

a

dH−1(s) · h(s)− B
(
H−1,

·∫
a

dI(H,A) · h(s)
)
(t)

+

t∫
a

dA(s) ·H−1(s)h(s) = f(t)− f(a)−
t∫

a

dH−1(s) · h(s)

− B
(
H−1,

·∫
a

dH(s) ·H−1h(s)

)
(t)− B

(
H−1,

·∫
a

dB(H,A)(s) ·H−1(s)h(s)

)
(t)

+

t∫
a

dA(s) ·H−1(s)h(s) = f(t)− f(a) for t ∈ [a, b].

Hence (1.2.66) is valid.
Equalities (1.2.64) follow from the equalities

djA
∗(t) = dj(H(t) + B(H,A)(t)) ·H−1(t) for t ∈ I (j = 1, 2)

and
djB(H,A)(t) = dj(H(t)A(t)) · djH(t) ·A(t) for t ∈ I (j = 1, 2).

Let ε be an arbitrary positive number and g : [a, b] → R be a non-decreasing function. We denote

Dj(a, b, ε; g) =
{
t ∈ [a, b] : djg(t) ≥ ε

}
(j = 1, 2).

Let R(a, b, ε; g) be a set of all subdivisions {α0, τ1, α1, . . . , τm, αm} of [a, b] such that
(a) a = α0 < α1 < · · · < αm = b, α0 ≤ τ1 ≤ α1 ≤ · · · ≤ τm ≤ αm;

(b) if τi ̸∈ D1(a, b, ε; g), then g(τi)− g(αi−1) < ε; if τi ∈ D1(a, b, ε; g), then αi−1 < τi and g(τi−)−
g(αi−1) < ε;

(c) if τi ̸∈D2(a, b, ε; g), then g(αi)−g(τi)<ε; if τi∈D2(a, b, ε; g), then τi<αi and g(αi)−g(τi+)<ε.
Lemma 1.2.3. The set R(a, b, ε; g) is not empty for an arbitrary positive number ε and a non-
decreasing function g : [a, b] → R.

We omit the proof of the lemma because it is analogous to that of Lemma 1.1.1 from [52].
Lemma 1.2.4. Let αm, βm ∈ BV([a, b];R) (m = 0, 1, . . . ) be such that

lim
m→+∞

∥βm − β0∥∞ = 0, (1.2.67)

lim
m→+∞

sup
b∨
a

(αm) < +∞, (1.2.68)

and let the condition
lim

m→+∞
(αm(t)− αm(a)) = α0(t)− α0(a) (1.2.69)

be fulfilled uniformly on [a, b]. Then

lim
m→+∞

t∫
a

βm(τ) dαm(τ) =

t∫
a

β0(τ) dα0(τ)

is fulfilled uniformly on [a, b], as well.
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Proof. Let ε be an arbitrary positive number. By Lemma 1.2.3, the set R(a, b, ε5 ), where g(t) ≡
V (β0)(t), is not empty.

Let {
α0, τ1, α1, . . . , τm, αm

}
∈ R

(
a, b,

ε

5

)
be an arbitrary fixed subdivision. We set

η(t) =



β0(t) for t ∈ {α0, τ1, α1, . . . , τm, αm},
β0(τi−) for t ∈ ]αi−1, τi[ , τi ∈ D1(a, b, ε; g),

β0(τi) for t ∈ ]αi−1, τi[ , τi ̸∈ D1(a, b, ε; g) or for t ∈ ]τi, αi[ , τi ̸∈ D2(a, b, ε; g),

β0(τi+) for t ∈ ]τi, αi[ , τi ∈ D1(a, b, ε; g)

(i = 1, . . . ,m).

It can be easily shown that η ∈ BV([a, b];R) and

|β0(t)− η(t)| < 2ε for t ∈ [a, b]. (1.2.70)

For every natural m and t ∈ [a, b], we assume

γm(t) =

t∫
a

βm(τ) dαk(t)−
t∫

a

β0(τ) dα0(τ)

and

δm(t) =

t∫
a

η(t) d(αm(τ)− α0(τ)).

It follows from (1.2.69) that
lim

m→+∞
∥δm∥∞ = 0. (1.2.71)

On the other hand, by (1.2.69) and (1.2.70), we have

∥γm∥∞ ≤ 4rε+ r∥βm − β0∥∞ + ∥δ∥∞ (m = 1, 2, . . . ).

Hence, in view of (1.2.68) and (1.2.71), we obtain

lim
m→+∞

∥γm∥∞ = 0,

since ε is arbitrary.

Lemma 1.2.5. Let condition (1.2.14) hold and let

lim
m→+∞

Xm(t) = X0(t) (1.2.72)

uniformly on [a, b], where X0 and Xm (k = 1, 2, . . . ) are the fundamental matrices of the homogeneous
systems (1.2.10) and (1.2.1m0) (m = 1, 2, . . . ), respectively. Then

inf
{
|det(X0(t))| : t ∈ [a, b]} > 0, (1.2.73)

inf
{
|det(X−1

0 (t))| : t ∈ [a, b]
}
> 0 (1.2.74)

and condition (1.2.15) holds uniformly on [a, b], as well.

Proof. According to equalities (0.0.14) and the definition of a solution of system (1.2.10), we have

djX0(t) = djA0(t) ·X0(t) for t ∈ [a, b] (j = 1, 2).

From this, by (1.2.14) (m = 0), we find that
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det
(
X0(t−) ·X0(t+)

)
=

[
det(X0(t))

]2 · 2∏
j=1

det
(
In + (−1)j djA0(t)

)
̸= 0 for t ∈ [a, b] (j = 1, 2). (1.2.75)

Let us show that (1.2.73) is valid. Assume the contrary. Then it can be easily shown that there
exists a point t0 ∈ [a, b] such that

det
(
X0(t0−) ·X0(t0+)

)
= 0.

But this equality contradicts (1.2.75). Thus inequality (1.2.73) is proved.
The proof of inequality (1.2.74) is analogous.
In view of (1.2.72) and (1.2.73), there exists a positive number r such that

inf
{
|det(Xm(t))| : t ∈ [a, b]

}
> r > 0

for any sufficiently large m. From this and (1.2.72), we obtain (1.2.15).

Lemma 1.2.6. Let the sequences of the matrix-functions Bm ∈ BV([a, b];Rn×n) (m = 0, 1, . . . ) be
such that conditions

det
(
In + (−1)j djB0(t)

)
̸= 0 for t ∈ [a, b] (j = 1, 2) (1.2.76)

and
lim

m→+∞
sup

{
∥djBm(t)− djB0(t)∥ : t ∈ [a, b]

}
= 0 (j = 1, 2) (1.2.77)

hold. Then there exists a positive number r0 such that

det
(
In + (−1)j djBm(t)

)
̸= 0 for t ∈ [a, b] (j = 1, 2) (1.2.78)

and ∥∥(In + (−1)j djB0(t)
)−1∥∥+

∥∥(In + (−1)j djBm(t)
)−1∥∥ ≤ r0 for t ∈ [a, b] (j = 1, 2) (1.2.79)

for every sufficiently large m.

Proof. Since
b∨
a
B0 < +∞, the series

∑
t∈[a,b]

∥djB0(t)∥ (j = 1, 2) converge. Thus for any j ∈ {1, 2} the

inequality
∥djB0(t)∥ ≥ 1

2

may hold only for some finite number of points tj1, . . . , tj kj
in I. Therefore,

∥djB0(t)∥ <
1

2
for t ∈ [a, b], t ̸= tji (i = 1, . . . , kj). (1.2.80)

First, let us consider the case j = 2.
It follows from (1.2.76), (1.2.77) and (1.2.80) that

det
(
In + d2Bm(t2i)

)
̸= 0 (i = 1, . . . , k2)

and
∥d2Bm(t)∥ < 1

2
for t ∈ [a, b], t ̸= t2i (i = 1, . . . , k2)

for every sufficiently largem. The latter inequalities imply that the matrices In+d2Bm(t) are invertible
for t ∈ [a, b], t ̸= t2i (i = 1, . . . , k2), too. From this, it is evident that condition (1.2.78) is fulfilled
and there exists a positive number r0 for which estimates (1.2.79) hold. Analogously we prove this
estimate for j = 1.
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1.2.3 Proofs of the results
Proof of Theorem 1.2.3. In view of (1.2.17), ℓ∗m : BV∞([a, b];Rn) → Rn is a linear bounded vector-
functional for every sufficiently large m. Moreover, it is not difficult to see that by the mapping

x→ y = Hm x+ hm

is a one-to-one correspondence between solutions of problem (1.2.1m), (1.2.2m) and solutions y of
problem (1.2.1∗m), (1.2.2∗m), where c∗m = cm + ℓ∗m(hm). In fact, according to Lemma 1.2.2, it suffices
to show that equality (1.2.2m) implies equality (1.2.2∗m). This is obvious by the definition of the
functional ℓ∗m.

Let us show that

det
(
In + (−1)j djA

∗
m(t)

)
̸= 0 for t ∈ [a, b] (1.2.5∗m)

for any sufficiently large m.
By (1.2.22),

lim
m→+∞

djA
∗
m(t) = djA

∗
0(t) (j = 1, 2)

uniformly on [a, b]. Therefore, by virtue of Lemma 1.2.6, there exists a positive number r0 such that
condition (1.2.5∗m) holds and∥∥[In + (−1)j djA

∗
m(t)

]−1∥∥ ≤ r0 for t ∈ [a, b] (j = 1, 2) (1.2.81)

for any sufficiently large m (i.e., without loss generality, we can assume that for every natural m).
In view of (1.2.16) and (1.2.5∗m), there exist the fundamental matrices Y0 and Ym (Y0(a) = Ym(a) =

In) of systems
dy = dA∗

0(t) · y

and
dy = dA∗

m(t) · y (m = 1, 2, . . . ).

Moreover, Y −1
0 , Y −1

m ∈ BV([a, b];Rn×n) (m = 1, 2, . . . ).
Let us prove

lim
m→+∞

Ym(t) = Y0(t) uniformly on [a, b]. (1.2.82)

We set
Zm(t) = Ym(t)− Y0(t) for t ∈ [a, b] (m = 1, 2, . . . )

and
Bm(t) = A∗

m(t−) for t ∈ [a, b] (m = 1, 2, . . . ).

Due (0.0.6), we have

t∫
a

d(Bm(τ)−A∗
m(τ)) · Zm(τ) = −d1A∗

m(t) · Zm(t) for t ∈ [a, b] (m = 1, 2, . . . ).

Consequently,

Zm(t) = (In − d1A
∗
m(t))−1

{ t∫
a

d(A∗
m(τ)−A∗(τ)) · Y (τ) +

t∫
a

dBm(τ) · Zm(τ)

}
for t ∈ [a, b] (m = 1, 2, . . . ).

From this and (1.2.81), we get

∥Zm(t)∥ ≤ r0

(
εm +

t∫
a

d∥V (Bm)(τ)∥ · ∥Zm(τ)∥
)

for t ∈ [a, b] (m = 1, 2, . . . ),
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where

εm = sup
{∥∥∥∥

t∫
a

d(A∗
m(τ)−A∗(τ)) · Y (τ)

∥∥∥∥ : t ∈ [a, b]

}
(m = 1, 2, . . . ).

Hence, according to the Gronwall inequality ([73, Theorem I.4.30]),

∥Zm(t)∥ ≤ r0εm exp
(
r0

b∨
a

Bm

)
≤ r0εm exp

(
r0

b∨
a

A∗
m

)
for t ∈ [a, b] (m = 1, 2, . . . ).

By (1.2.21), (1.2.22) and Lemma 1.2.4, this inequality implies (1.2.82).
As we have shown in Subsection 1.1.3, problem (1.2.1∗m), (1.2.2∗m) has the unique solution if and

only if
det(ℓ∗m(Ym)) ̸= 0 (1.2.83)

for every natural m.
Since problem (1.2.1∗), (1.2.2∗) has the unique solution x∗0, we have

det(ℓ∗(Y0)) ̸= 0. (1.2.84)

Besides, by (1.2.18), (1.2.19) and (1.2.82),

lim
m→+∞

ℓ∗m(Ym) = ℓ∗0(Y0). (1.2.85)

Therefore, in view of (1.2.84), there exists a natural number m0 such that condition (1.2.83) is fulfilled
for every m ≥ m0. Thus problem (1.2.1∗m), (1.2.2∗m) has the unique solution ym for m ≥ m0 and

ym(t) = Ym(t)
[
ℓm(Ym)

]−1(
cm − ℓm(Fm(f∗m))

)
+ Fm(f∗m)(t) for t ∈ [a, b], (1.2.86)

where

Fm(f∗m)(t) ≡ f∗m(t)− f∗m(a)− Ym(t)

t∫
a

dY −1
m (τ) · (f∗m(τ)− f∗m(a)).

According to Lemma 1.2.5, we have

lim
m→+∞

Y −1
m (t) = Y −1

0 (t) uniformly on [a, b] (1.2.87)

and
ρ = sup

{
∥Y −1

m (t)∥+ ∥Ym(t)∥ : t ∈ [a, b], m ≥ m0

}
< +∞. (1.2.88)

The equality

Y −1
m (t)− Y −1

m (s) = Y −1
m (s)

s∫
t

dA∗
m(τ) · Ym(τ)Y −1

m (t) (t, s ∈ [a, b])

implies

∥Y −1
m (t)− Y −1

m (s)∥ ≤ ρ3
t∨
s

A∗
m for a ≤ s ≤ t ≤ b (m ≥ m0).

This inequality, together with (1.2.21) and (1.2.88), yields

lim sup
m→+∞

b∨
a

Y −1
m < +∞.

By this, (1.2.23) and (1.2.87), it follows from Lemma 1.2.4 that

lim
m→+∞

t∫
a

dY −1
m (τ) · (f∗m(τ)− f∗m(a)) =

t∫
a

dY −1(τ) · (f∗0 (τ)− f∗0 (a)) uniformly on [a, b]. (1.2.89)
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Using (1.2.18)–(1.2.20), (1.2.23), (1.2.82)–(1.2.85) and (1.2.89), from (1.2.86) we get

lim
m→+∞

ym(t) = z(t) uniformly on [a, b], (1.2.90)

where

z(t) ≡ Y (t)
[
ℓ(Y )

]−1(
c0 − ℓ(F (f∗0 ))

)
+ F (f∗0 )(t),

F (f∗0 )(t) ≡ f∗0 (t)− f∗0 (a)− Y (t)

t∫
a

dY −1(τ) · (f∗0 (τ)− f∗0 (a)).

It is easy to verify that the vector-function z is a solution of problem (1.2.1∗), (1.2.2∗). Therefore,

x∗0(t) = z(t) for t ∈ [a, b].

This and (1.2.90) allow us to conclude that condition (1.2.24) holds uniformly on [a, b].

Proof of Corollary 1.2.1. Verify the conditions of Theorem 1.2.3. Due to (1.2.10) and (1.2.11), con-
ditions (1.2.17) and

lim
m→+∞

∥H−1
m −H−1

0 ∥∞ = 0 (1.2.91)

hold.
Put

hm(t) = −Hm(t)φm(t) for t ∈ [a, b] (m = 1, 2, . . . ).

Then by (1.2.6), (1.2.7), (1.2.25) and (1.2.91), conditions (1.2.18)–(1.2.20), where c∗0 = c0 and ℓ∗0(y) ≡
ℓ0(H

−1
0 y), are satisfied.

Applying Lemma 1.2.3, from (1.2.9), (1.2.11), (1.2.12) and (1.2.91) we find that (1.2.21) holds and
(1.2.22) is fulfilled uniformly on [a, b], where

A∗
0(t) ≡ I(H0, A0)(t).

On the other hand,

f∗m(t) = B(Hm, fm − φm)(t) +

t∫
a

dB(Hm, Am)(τ) · φm(τ) for t ∈ [a, b] (m = 1, 2, . . . ).

Consequently, (1.2.26) implies that the condition (1.2.23), where

f∗0 (t) ≡ B(H0, f0)(t),

is fulfilled uniformly on [a, b].
Taking into account Lemma 1.2.2 and the equalities

ℓ∗0(H0 x0) = ℓ0(x0) = c0,

it is not difficult to see that problem (1.2.1∗), (1.2.2∗) has a unique solution

x∗0(t) = H0(t)x0(t) for t ∈ [a, b].

Moreover, it can be easily shown that inequality (1.2.10) is equivalent to the condition

det
(
H0(t+) ·H0(t−)

)
̸= 0 for t ∈ [a, b].

Thus, by virtue of (1.2.5) and (1.2.64), condition (1.2.16) is fulfilled.
According to Theorem 1.2.3, condition (1.2.24) holds uniformly on [a, b]. Hence it follows from

(1.2.24) and (1.2.91) that condition (1.2.27) is fulfilled uniformly on [a, b].
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Proof of Theorem 1.2.1. The sufficiency follows from Corollary 1.2.1 if we assume φm(t) ≡ 0 (m =
1, 2, . . . ) in it.

Let us show the necessity. Let cm ∈ Rn (m = 0, 1, . . . ) be an arbitrary sequence of constant
vectors satisfying (1.2.4) and let ej = (δij)

n
i=1, where δii = 1 and δij = 0 if i ̸= j (i, j = 1, . . . , n) (the

Kroneker symbol).
In view of (1.2.8), without loss of generality, we may assume that problem (1.2.1m), (1.2.2m) has

a unique solution xm for every natural m.
For any m ∈ {0, 1, . . . } and j ∈ {1, . . . , n}, let us denote

zmj(t) ≡ xm(t)− xmj(t),

where xmj is a unique solution of system (1.2.1m) satisfying the condition

ℓm(x) = cm − ej .

Moreover, let Xm(t) be a matrix-function with columns zm1(t), . . . , zmn(t) (m = 0, 1, . . . ).
It can be easily shown that X0 and Xm (m = 1, 2, . . . ) satisfy, respectively, the homogeneous

systems (1.2.10) and (1.2.1m0) (m = 1, 2, . . . ) and

ℓ(zmj) = ej (m = 0, 1, . . . ) (1.2.92)

for every j ∈ {1, . . . , n}.
If we assume

n∑
j=1

αjzmj(t) ≡ 0

for some m ∈ Ñ and αj ∈ R (j = 1, . . . , n), then, using (1.2.92), we get

n∑
j=1

αjej = 0

and, therefore, α1 = · · · = αn = 0, i.e., X0 and Xm (m = 1, 2, . . . ) are the fundamental matrices,
respectively, of the homogeneous systems (1.2.10) and (1.2.1m0) (m = 1, 2, . . . ).

Owing to (1.2.8), we conclude that

lim
m→+∞

xm(t) = x0(t) and lim
m→+∞

xmj(t) = x0j(t) (j = 1, . . . , n)

uniformly on [a, b], where x0j is a unique solution of system (1.2.1) satisfying the condition ℓ0(x) = c0−
ej . Therefore, condition (1.2.72) holds uniformly on [a, b]. Without loss of generality, we assume that

Xm(a) = In (m = 0, 1, . . . ).

Now, according to Lemma 1.2.5, we find that condition (1.2.11) holds uniformly on [a, b], where

Hm(t) ≡ X−1
m (t) (m = 0, 1, . . . ).

Let us verify that conditions (1.2.9) and (1.2.10) hold, and conditions (1.2.12), (1.2.13) are fulfilled
uniformly on [a, b] for the above-defined matrix-functions Hm (m = 0, 1, . . . ).

Conditions (1.2.9) and (1.2.10) coincide with conditions (1.2.72) and (1.2.73), respectively.
According to Proposition 1.1.2 (see equality (1.1.13)), we have

X−1
m (t) = In − B(X−1

m , Am)(t) for t ∈ I (m = 0, 1, . . . ). (1.2.93)

Therefore,
Hm(t) + B(Hm, Am)(t) = In for t ∈ [a, b] (m = 0, 1, . . . ). (1.2.94)

Thus condition (1.2.9) is evident.
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On the other hand, by (1.2.94) and the equalities Hm(a) = In (m = 0, 1, . . . ), according to
Lemma 1.2.1 and the definition of the solutions of system (1.2.1m), we have

B(Hm, fm)(t) = B
(
Hm, xm −

·∫
a

dAk(s) · xm(s)

)
(t)

= B(Hm, xm)(t)− B
(
Hm,

·∫
a

dAm(s) · xm(s)

)
(t) = B(Hm, xm)(t)−

t∫
a

dB(Hm, Am)(s) · xm(s)

= Hm(t)xm(t)− xm(a)−
t∫

a

dHm(s) · xm(s)−
t∫

a

d(In −Hm(s)) · xm(s)

= Hm(t)xm(t)− xm(a) for t ∈ [a, b] (m = 0, 1, . . . ).

Hence

B(Hm, fm)(t)− B(H0, f0)(t)

= Hm(t)xm(t)−H0(t)x0(t)− (xm(a)− x0(a)) for t ∈ [a, b] (m = 0, 1, . . . ). (1.2.95)

By this, (1.2.11) and (1.2.94), conditions (1.2.12) and (1.2.13) hold uniformly on [a, b].

Proof of Theorem 1.2.2. As it follows from the proof of Theorem 1.2.1, we may assume that Hm(t) ≡
X−1

m (t) (m = 0, 1, . . . ). In this case, Theorem 1.2.1 has the form of Theorem 1.2.2. We only note that
in view of (1.2.15) and (1.2.93), condition (1.2.12) holds uniformly on [a, b].

Proof of Theorem 1.2.4. The theorem is a particular case of the sufficiency part of Theorem 1.2.1,
where Hm(t) ≡ In (m = 0, 1, . . . ).

Proof of Corollary 1.2.2. By (1.2.32), (1.2.33) and (1.2.34) (or (1.2.35)), we have

lim
m→+∞

∑
a≤s<t≤b

(
d1Hm(s) · d1Am(s)− d1H0(s) · d1A0(s)

)
= On×n,

lim
m→+∞

∑
a≤s<t≤b

(
d1Hm(s) · d1fm(s)− d1H0(s) · d1f0(s)

)
= 0n,

lim
m→+∞

∑
a≤s<t≤b

(
d2Hm(s) · d2Am(s)− d2H0(s) · d2A0(s)

)
= On×n,

lim
m→+∞

∑
a≤s<t≤b

(
d2Hm(s) · d2fm(s)− d2H0(s) · d2f0(s)

)
= 0n

uniformly on [a, b]. From this, the integration-by-parts formula, (1.2.30) and (1.2.31), we find that
conditions (1.2.12) and (1.2.13) are fulfilled uniformly on [a, b]. Condition (1.2.13) coincides with
(1.2.26) for φm(t) ≡ 0 (m = 1, 2, . . . ).

Therefore, the corollary follows from Corollary 1.2.1.

Proof of Corollary 1.2.3. Using (1.2.11), (1.2.28) and (1.2.36), we conclude that

djA
∗(t) ≡ On×n (j = 1, 2).

Hence, in view of (1.2.5), we have

det
(
In + (−1)j djA

∗
0(t)

)
̸= 0 for t ∈ [a, b].

On the other hand, from (1.2.11), (1.2.28), (1.2.29), (1.2.36) and (1.2.37) we find that the conditions

lim
m→+∞

B(Hm, Am)(t) = B(In, A∗
0)(t) and lim

m→+∞
B(Hm, fm)(t) = B(In, f∗0 )(t)

hold uniformly on [a, b]. Thus, Corollary 1.2.3 is a direct consequence of the sufficiency part of Theo-
rem 1.2.1.
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Proof of Corollary 1.2.4. By virtue of (1.2.39), we have

lim
m→+∞

Cmj(t) = In, lim
m→+∞

Hmj(t) = In (j = 1, . . . , µ− 1)

uniformly on [a, b], where

Cmj(t) ≡ In − (Amj(t)−Amj(a)) + (Bj(t)−Bj(a)) (j = 1, . . . , µ− 1; m = 1, 2, . . . ).

Thus, without loss of generality, we can assume that the matrix-functions Hmj (j = 1, . . . , µ− 1) and
Cmj (j = 1, . . . , µ− 1) are nonsingular for every natural m. Using now Lemma 1.2.1, we find that

B
(
Cmj ,B(Hmj−1, Am)

)
(t) ≡ B(Hmj , Am)(t),

B
(
Cmj ,B(Hmj−1, fm)

)
(t) ≡ B(Hmj , fm)(t)

and
I
(
Cmj , I(Hmj−1, Am)

)
(t) ≡ I(Hmj , Am)(t) (j = 1, . . . , µ− 1; m = 1, 2, . . . ).

In addition, by conditions (1.2.38)–(1.2.41), according to Lemma 1.2.4 and the definition of the
operator I, we find that conditions (1.2.11)–(1.2.13) hold uniformly on [a, b], where H0(t) ≡ In and
Hm(t) ≡ Hmµ−1(t) (m = 1, 2, . . . ). The corollary follows from Theorem 1.2.1.

Proof of Corollary 1.2.5. Let us show the sufficiency. Let Hm(t) = Z−1
m (t) (m = 0, 1, . . . ) in Theo-

rem 1.2.1. In view of (1.2.44), there exists a positive number r such that

∥Z−1
m (t)∥ ≤ r for t ∈ [a, b] (m = 0, 1, . . . ).

Using this estimate, by (1.1.13), the definition of the operator B and the integration-by-parts formula,
we have∥∥Z−1

m (t) + B(Z−1
m , Am)(t)− Z−1

m (s)− B(Z−1
m , Am)(s)

∥∥
=

∥∥B(Z−1
m , Am −Bm)(t)− B(Z−1

m , Am −Bm)(s)
∥∥

=

∥∥∥∥
t∫

s

Z−1
m (τ) d(Am(τ)−Bm(τ))−

∑
s<τ≤t

d1Z
−1
m (τ) · d1(Am(τ)−Bm(τ))

+
∑

s≤τ<t

d2Z
−1
m (τ) · d2(Am(τ)−Bm(τ))

∥∥∥∥
≤ r

t∨
s

(Am −Bm) + 2r
∑

s<τ≤t

∥d1(Am(τ)−Bm(τ))∥+ 2r
∑

s≤τ<t

∥d2(Am(τ)−Bm(τ))∥

≤ 5r

t∨
s

(Am −Bm) for s < t (k = m, 1, . . . ).

Consequently,
b∨
a

(Hm + B(Hm, Am)) ≤ 5r

b∨
a

(Am −Bm) (m = 0, 1, . . . )

and, due to (1.2.42), estimate (1.2.9) holds. Conditions (1.2.12) and (1.2.13) coincide with (1.2.45)
and (1.2.46), respectively. Hence the sufficiency follows from Theorem 1.2.1.

Let us show the necessity. LetBm(t) = Am(t) (m = 0, 1, . . . ). Then Zm(t) ≡ Xm(t) (m = 0, 1, . . . ),
where X0 and Xm (m = 1, 2, . . . ) are the fundamental matrices of systems (1.1.10) and (1.1.1m0),
respectively. Analogously, just as in the proof of Theorem 1.2.1, conditions (1.2.44) and (1.2.95) are
valid, where Hm(t) ≡ Z−1

m (t) (m = 0, 1, . . . ). In addition, condition (1.2.45) coincides with (1.2.12),
and condition (1.2.46) follows from (1.2.95).



The General BVPs for Linear Systems of Generalized ODEs 53

Proof of Corollary 1.2.6. Let us prove that condition (1.2.44) holds uniformly on [a, b], where Zm

(Zm(a) = In) is the fundamental matrix of system (1.2.47) for every m ∈ Ñ. In view of (1.2.54), we
have

Zm(t) = Zmc(t)Zm1(t)
−1Zm2(t) for t ∈ [a, b] (m = 0, 1, . . . ), (1.2.96)

where

Zmc(t) ≡ exp
(
Sc(B)(t)− Sc(B)(a)

)
, Zm1(t) ≡

∏
a<τ≤t

(In − d1B(τ)),

Zm2(t) ≡
∏

a≤τ<t

(In + d2B(τ)) (m = 0, 1, . . . ).

It is evident that Zm0, Zm1 and Zm2 are the fundamental matrices of systems

dx = dSc(Bm)(t) · x, dx = dS1(Bm)(t) · x and dx = dS2(Bm)(t) · x,

respectively (m = 0, 1, . . . ).
Applying Theorem 1.2.4 to these system for the case ℓm(x) = x(a) (the Cauchy problem) (m =

0, 1 . . . ), we conclude that conditions

lim
m→+∞

Zmc(t) = Z0c(t), lim
m→+∞

Zm1(t) = Z01, lim
m→+∞

Zm2(t) = Z02(t)

hold uniformly on [a, b]. From this and Lemma 1.2.5, we get that condition (1.2.44) holds uniformly
on [a, b].

Let us show that other conditions of Corollary 1.2.4 hold.
We verify condition (1.2.45). Using the integration-by-parts formula, we find that

B(Z−1
m , Am)(t)− B(Z−1

m , Am)(s) =

t∫
s

Z−1
m (τ) dAm(τ)

−
∑

s<τ≤t

d1Z
−1
m (τ) · d1Am(τ) +

∑
s≤τ<t

d2Z
−1
m (τ) · d2Am(τ) for a ≤ s < t ≤ b (m = 0, 1, . . . ).

In addition, by equalities (1.1.14), we have

djZ
−1
m (t) ≡ −Z−1

m (t) djBm(t) ·
(
In + (−1)j djBm(t)

)−1
(j = 1, 2; m = 0, 1, . . . ).

Consequently, due to (1.1.16), we get

B(Z−1
m , Am)(t)− B(Z−1

m , Am)(s) =

t∫
s

Z−1
m (τ) dA(Bm, Am)(τ) (m = 0, 1, . . . )

for a ≤ s < t ≤ b. In the same way, we establish the last equalities for the case a ≤ t < s ≤ b.
Analogously, we check the equalities

B(Z−1
m , fm)(t)− B(Z−1

m , fm)(s) =

t∫
s

Z−1
m (τ) dA(Bm, fm)(τ) for s, t ∈ [a, b] (m = 0, 1, . . . ).

Therefore, equalities (1.2.45) and (1.2.46) coincide with equalities (1.2.52) and (1.2.53), respec-
tively. The corollary follows from Corollary 1.2.5.

Proof of Corollary 1.2.8. The corollary follows from Corollary 1.2.6 if we assume that Bm(t) ≡
Sc(Am)(t) (m = 0, 1, . . . ) in it. In addition, we note that condition (1.2.48) is of the form (1.2.55),
condition (1.2.50) is equivalent to conditions (1.2.56) and (1.2.57), and by (1.2.54), conditions (1.2.52)
and (1.2.53) coincide with (1.2.58) and (1.2.59), respectively.

Proof of Corollary 1.2.9. The corollary follows from Corollary 1.2.6 if we assume that Bm(t) ≡
diag(Am(t)) (m = 0, 1, . . . ) in it.



Chapter 2

Multi-point boundary value
problems for systems of generalized
ordinary differential equations

2.1 General multi-point boundary value problem
In this chapter, we consider a linear system of generalized ordinary differential equations

dx = dA(t) · x+ df(t) for t ∈ [a, b]. (2.1.1)

Below, unless otherwise stated, we assume that

A = (aik)
n
i,k=1 ∈ BV([a, b];Rn×n), f = (fk)

n
k=1 ∈ BV([a, b];Rn).

We investigate the question on the existence of solutions of system (2.1.1) under the following
general multi-point boundary value condition

ν∑
j=1

Ljx(tj) = c0, (2.1.2)

where tj ∈ [a, b] (j = 1, . . . , ν), Lj ∈ Rn×n (j = 1, . . . , ν) are constant matrixes, and ν is a fixed
natural number.

In the section, we realize the results given in Subsections 1.1.1 and 1.1.2 to problem (2.1.1), (2.1.2).
Along with problem (2.1.1), (2.1.2), we consider the corresponding homogeneous problem

dx = dA(t) · x, (2.1.10)
ν∑

j=1

Ljx(tj) = 0. (2.1.20)

Below, we use the definition of the operators given in Subsection 1.1.2.
Theorem 2.1.1. The boundary value problem (2.1.1), (2.1.2) is uniquely solvable if and only if the
corresponding homogeneous problem (2.1.10), (2.1.20) has only the trivial solution, i.e., if and only if

det
( ν∑

j=1

LjY (tj)
)
̸= 0, (2.1.3)

where Y is a fundamental matrix of system (2.1.10). If the latter condition holds, then the solution x
of problem (2.1.1), (2.1.2) admits the representation

x(t) = x0(t) +

b∫
a

dsG(t, s) · f(s) for t ∈ [a, b],

54
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where x0 is a solution of problem (2.1.10), (2.1.2), and G is the Green matrix of problem (2.1.10),
(2.1.20).

In condition (2.1.2), without loss generality, we can assume that a ≤ t1 < t2 < · · · < tν ≤ b. This
condition is a particular case of condition (1.1.4), where the matrix-function L is defined as

L(t) = −
ν∑

j=1

χj (t)Lj for t ∈ [a, b],

where χ
j

is the characteristic function of the interval [a, tj [ (j = 1, . . . , ν).
It is evident that L(b) = On×n. Moreover, it is not difficult to verify that

t∫
a

dL(τ) ·X(τ) =

ν∑
j=1

(1− χj (t))Lj X(tj) for X ∈ BV([a, b];Rn×n) (t ∈ [a, b]).

Hence, in view of (1.1.21), the Green matrix of problem (2.1.10), (2.1.20) has the form

G(t, s) =



−Y (t)

ν∑
j=1

(1− χ
j
(s))ZjY

−1(s) for a ≤ s < t ≤ b,

Y (t)

ν∑
j=1

χ
j
(s)ZjY

−1(s) for a ≤ t < s ≤ b,

On×n for a ≤ t = s ≤ b,

(2.1.4)

where
Zj =

( ν∑
i=1

LiY (ti)
)−1

LjY (tj) (j = 1, . . . , ν).

Proposition 1.1.3 has the following form for the case under consideration.

Proposition 2.1.1. Let the matrix-function A ∈ BV([a, b];Rn×n) be such that condition (1.1.8) hold.
Then the boundary value problem (2.1.1), (2.1.2) is solvable if and only if the condition(

c0 −
ν∑

j=1

LjF (tj)
)⊤
γ = 0 (2.1.5)

holds for every γ ∈ Rn such that ( ν∑
j=1

LjY (tj)
)⊤
γ = 0n,

where

F (t) ≡ Y (t)

t∫
a

Y −1(τ) dA(A, f)(τ).

So, if condition (2.1.3) holds, then only the vector γ = 0n satisfies the homogeneous system
appearing in Proposition 2.1.1 and, therefore, condition (2.1.5) holds evidently. If condition (2.1.3)
is violated, then problem (2.1.1), (2.1.2) is solvable only for c0, that satisfies the conditions of the
proposition.

Remark 2.1.1. Let the matrix-function A satisfy the Lappo–Danilevskiĭ condition at the point a.
Then problem (2.1.1), (2.1.2) is uniquely solvable if and only if

det
( ν∑

j=1

Lj exp(Sc(A)(tj))
∏

a≤τ<tj

(In + d2A(τ))
∏

a<τ≤tj

(In − d1A(τ))
−1

)
̸= 0.
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Theorem 2.1.2. The boundary value problem (2.1.1), (2.1.2) is uniquely solvable if and only if there
exist natural numbers k and m such that the matrix

Mk =

k−1∑
i=0

ν∑
j=1

Lj [A]i(tj)

is nonsingular and the inequality
r(Mk,m) < 1 (2.1.6)

holds, where

Mk,m = Vm(A)(c) +
(m−1∑

i=0

∣∣ [A]i∣∣∞) ν∑
j=1

|M−1
k Lj |Vk(A)(tj),

and the operators [A]i (i = 0, 1, . . . ) and Vi(A) (i = 0, 1, . . . ) are defined, respectively, by (1.1.35l) and
(1.1.37l) for some l ∈ {1, 2}, and c = b+ (a− b)(l − 1).
Theorem 2.1.21. Let there exist natural numbers k and m such that the matrix

Mk =

ν∑
j=1

Lj

( k−1∑
i=0

(A)i(tj)− 1
)

is nonsingular and inequality (2.1.6) holds, where

Mk,m = (V (A))m(c) +
(
In +

m−1∑
i=0

|(A)i|∞
) ν∑

j=1

|M−1
k Lj |(V (A))k(tj),

the operators (A)i (i = 0, 1 . . . ) and (V (A))i (i = 0, 1, . . . ) are defined by (1.1.36l) and (1.1.37l),
respectively for some l ∈ {1, 2}, and c = b + (a − b)(l − 1). Then problem (2.1.1), (2.1.2) is uniquely
solvable.

The following corollary is a special case of Theorem 2.1.21, where k = 1 and m = 1.
Corollary 2.1.1. Let

det
( ν∑

j=1

Lj

)
̸= 0 (2.1.7)

and

r
(
L0

b∨
a

(A)
)
< 1,

where
L0 = In +

∣∣∣∣( ν∑
j=1

Lj

)−1
∣∣∣∣ ν∑
j=1

|Lj |.

Then problem (2.1.1), (2.1.2) is uniquely solvable.
For the system

dx(t) = ε dA(t) · x(t) + df(t) (2.1.8)
with small parameter ε, from Theorem 2.1.2 it follows
Corollary 2.1.2. Let either condition (2.1.7) hold, or there exist a natural number k such that the
conditions

ν∑
j=1

Lj = On×n, det
( ν∑

j=1

Lj(A)i(tj)
)
= 0 (i = 0, . . . , k − 1)

and
det

( ν∑
j=1

Lj(A)k(tj)
)
̸= 0

hold. Then there exists ε0 > 0 such that problem (2.1.8), (2.1.2) is uniquely solvable for every ε ∈ ]0, ε0[ .
The results of this subsection are the particular cases of those given above in the previous section.
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2.2 The Cauchy–Nicoletti type multi-point
boundary value problems

In this section, we consider a linear system of generalized ordinary differential equations

dx = dA(t) · x+ df(t) for t ∈ [a, b]. (2.2.1)

Below we assume that

A = (aik)
n
i,k=1 ∈ BV([a, b];Rn×n), f = (fk)

n
k=1 ∈ BV([a, b];Rn).

We investigate the question on the existence of solutions of system (2.2.1) under the following
boundary value conditions:

(i) the Cauchy–Nicoletti type problem

xi(ti) = ℓi(x1, . . . , xn) + c0i (i = 1, . . . , n), (2.2.2)

where ℓi : BV∞([a, b];Rn) → R (i = 1, . . . , n) are linear bounded functional.

(ii) the Cauchy–Nicoletti problem

xi(ti) = c0i (i = 1, . . . , n), (2.2.3)

where c0i ∈ R, and xi is the i-th component of the vector-function x for every i ∈ {1, . . . , n}.

Along with problems (2.2.1), (2.2.2) and (2.2.1), (2.2.3), we consider the corresponding homoge-
neous system

dx = dA(t) · x (2.2.10)
under the homogeneous boundary value conditions

xi(ti) = ℓi(x1, . . . , xn) (i = 1, . . . , n), (2.2.20)

and
xi(ti) = 0 (i = 1, . . . , n). (2.2.30)

Before we proceed to formulate the results, we introduce the following

Definition 2.2.1. Let t1, . . . , tn ∈ [a, b]. We say that a pair (C, ℓ0) consisting of a matrix-function
C = (cil)

n
i,l=1 ∈ BV([a, b];Rn×n) and a bounded vector-functional ℓ0 = (ℓ0i)

n
i=1 : BV∞([a, b];Rn×n

+ ) →
Rn

+ belongs to the set U(t1, . . . , tn) if:

(i) the matrix-function C is quasi-nondecreasing, i.e., the functions cil (i ̸= l; i, l = 1, . . . , n) are
nondecreasing on [a, b];

(ii) ℓ0 is a positive homogeneous, bounded and nondecreasing vector-functional;

(iii) the system of generalized differential inequalities

sgn(t− ti)dxi(t) ≤
n∑

l=1

xl(t) dcil(t) for t ∈ [a, b], t ̸= ti (i = 1, . . . , n),

(−1)j djxi(ti) ≤
n∑

l=1

xl(ti) djcil(ti) (j = 1, 2; i = 1, . . . , n)

(2.2.4)

has no nontrivial, nonnegative solution satisfying the condition

xi(ti) ≤ ℓ0i(x1, . . . , xn) (i = 1, . . . , n). (2.2.5)

The set U(t1, . . . , tn) was introduced by I. Kiguradze for ordinary differential equations (see [46,47]).



58 Malkhaz Ashordia

2.2.1 Formulation of the results
Theorem 2.2.1. Let the conditions(

sc(aii)(t)−sc(aii)(s)
)

sgn(t−s)≤sc(cii)(t)−sc(cii)(s) for (t−s)(s−ti)>0 (i=1, . . . , n), (2.2.6)∣∣sc(ail)(t)− sc(ail)(s)
∣∣ ≤ sc(cil)(t)− sc(cil)(s) for s < t (i ̸= l; i, l = 1, . . . , n), (2.2.7)

|djaii(t)| ≤ |djcii(t)|, |djail(t)| ≤ djcil(t) (j = 1, 2; i ̸= l; i, l = 1, . . . , n) (2.2.8)

hold on [a, b], and

|ℓi(x1, . . . , xn)| ≤ ℓ0i
(
|x1|, . . . , |xn|

)
for xl ∈ BV([a, b];R) (i, l = 1, . . . , n), (2.2.9)

where a matrix-function C = (cil)
n
i,l=1 ∈ BV([a, b];Rn×n) and a vector-functional ℓ0 = (ℓ0i)

n
i=1 are

such that
(C, ℓ0) ∈ U(t1, . . . , tn). (2.2.10)

Then problem (2.2.1), (2.2.2) has one and only one solution.

Theorem 2.2.2. Let the conditions

(
sc(aii)(t)−sc(aii)(s)

)
sgn(t−s)≤

t∫
s

hii(τ) dsc(αi)(τ) for (t−s)(s−ti)>0 (i=1, . . . , n), (2.2.11)

∣∣sc(ail)(t)− sc(ail)(s)
∣∣ ≤ t∫

s

hil(τ) dsc(αl)(τ) for s < t (i ̸= l; i, l = 1, . . . , n) (2.2.12)

and

|djaii(t)| ≤ |hii(t)| djαl(t), |djail(t)| ≤ hil(t) djαl(t) (j = 1, 2; i ̸= l; i, l = 1, . . . , n) (2.2.13)

hold on [a, b], where αl (l = 1, . . . , n) are the functions nondecreasing on [a, b] and having not more
than a finite number of discontinuity points, hii ∈ Lµ([a, b],R;αi), hil ∈ Lµ([a, b],R+;αl) (i ̸= l;
l = 1, . . . , n), 1 ≤ µ ≤ +∞. Let, moreover,

|ℓi(x1, . . . , xn)| ≤
2∑

m=0

n∑
k=1

lmik∥xk∥ν,sm(αk) for xk ∈ BV([a, b];R) (i, k = 1, . . . , n) (2.2.14)

and
r(H) < 1, (2.2.15)

where lmik ∈ R+ (m = 0, 1, 2; i, k = 1, . . . , n), 1
µ+

2
ν = 1, and the 3n×3n-matrix H = (Hj+1m+1)

2
j,m=0

is defined by

Hj+1m+1 =
(
ξij lmik + λkmij∥hik∥µ,Sm(αi)

)n
i,k=1

(j,m = 0, 1, 2),

ξij =
(
sj(αi)(b)− sj(αi)(a)

) 1
ν (j = 0, 1, 2, ; i = 1, . . . , n);

λk0i0 =


( 4

π2

) 1
ν

ξ2k0 if sc(αi)(t) ≡ sc(αk)(t),

ξk0ξi0 if sc(αi)(t) ̸≡ sc(αk)(t) (i, k = 1, . . . , n);

λkmij = ξkmξij if m2 + j2 > 0, mj = 0 (j,m = 0, 1, 2; i, k = 1, . . . , n),

λkmij =
(1
4
µαkmναkmαij sin−2 π

4nαkm + 2

) 1
ν

(j,m = 1, 2; i, k = 1, . . . , n).

Then problem (2.2.1), (2.2.2) has one and only one solution.



The General BVPs for Linear Systems of Generalized ODEs 59

Remark 2.2.1. The 3n×3n-matrix H appearing in Theorem 2.2.2 can be replaced by the n×n-matrix(
max

{ 2∑
j=0

(
ξij lmik + λkmij∥hik∥µ,Sm(αk)

)
: m = 0, 1, 2

})n

i,k=1

.

Corollary 2.2.1. Let conditions (2.2.11)–(2.2.13) hold on [a, b], where αl (l = 1, . . . , n) are the
functions nondecreasing on [a, b] and having not more than a finite number of discontinuity points,
hii ∈ Lµ([a, b],R;αi), hil ∈ Lµ([a, b],R+;αl) (i ̸= l; i, l = 1, . . . , n), 1 ≤ µ ≤ +∞. Let, moreover,

r(H0) < 1, (2.2.16)

where H0 = ((λkmij∥hik∥µ,sm(αi))
n
i,k=1)

2
m,j=0 is a 3n × 3n-matrix, and λkmij, ξij (j,m = 0, 1, 2;

i, k = 1, . . . , n) and ν are defined as in Theorem 2.2.2. Then problem (2.2.1), (2.2.3) has one and only
one solution.

Remark 2.2.2. The 3n× 3n-matrix H0 appearing in Corollary 2.2.1 can be replaced by the n× n-
matrix (

max
{ 2∑

j=0

λkmij∥hik∥µ,Sm(αk) : m = 0, 1, 2
})n

i,k=1

.

By Remark 2.2.2, Corollary 2.2.1 has the following form for hil(t) ≡ hil = const (i, l = 1, . . . , n)
and µ = +∞.

Corollary 2.2.2. Let the conditions(
sc(aii)(t)− sc(aii)(s)

)
sgn(t− s) ≤ hii

∣∣sc(α)(t)− sc(α)(s)
∣∣ for (t− s)(s− ti) > 0∣∣sc(ail)(t)− sc(ail)(s)

∣∣ ≤ hil
(
sc(α)(t)− sc(α)(s)

)
for s < t (i ̸= l; i, l = 1, . . . , n)

and
|djaii(t)| ≤ hii djα(t), |djail(t)| ≤ hil djα(t) (j = 1, 2; i ̸= l; i, l = 1, . . . , n)

hold on [a, b], where α is a function nondecreasing on [a, b] and having not more than a finite number
of discontinuity points, hii ∈ R, hil ∈ R+ (i ̸= l; i, l = 1, . . . , n). Let, moreover,

ρ0 r(H) < 1, (2.2.17)

where

H = (hik)
n
i,k=1, ρ0 = max

{ 2∑
j=0

λmj : m = 0, 1, 2
}
,

λ00 =
2

π

(
sc(α)(b)− sc(α)(a)

)
,

λ0j = λj0 =
(
sc(α)(b)− sc(α)(a)

) 1
2
(
sj(α)(b)− sj(α)(a)

) 1
2 (j = 1, 2),

λmj =
1

2

(
µαmναmαj

) 1
2 sin−1 π

4nαm+2 + 2
(m, j = 1, 2).

Then problem (2.2.1), (2.2.3) has one and only one solution.

Remark 2.2.3. Condition (2.2.17) is optimal in the sense that it cannot be replaced by the nonstrict
inequality

ρ0r(H) ≤ 1.

The corresponding example is constructed for ordinary differential equations in [47]. For the sake
of completeness, we present here this example.

Consider the problem

dx1
dt

= x2,
dx2
dt

= − π2

4(b− a)2
x1, (2.2.18)
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x1(a) = 0, x2(b) = 0. (2.2.19)

In this case,

n = 2, t1 = a, t2 = b, a11(t) = a22(t) ≡ 0, a12(t) ≡ t, a21(t) ≡ − π

4(b− a)2
t,

and conditions (1.2.31)–(1.2.34) are fulfilled for

h11 = h22 = 0, h12 = 1, h21 =
π2

4(b− a)2
, α(t) ≡ t.

Moreover,
ρ0 =

2(b− a)

π
,

and
λ1 =

π

2(b− a)
and λ2 = − π

2(b− a)

are the eigenvalues of the matrix

H =

 0 1
π2

4(b− a)2
0

 .

Therefore,
ρ0r(H) = 1. (2.2.20)

Thus for problem (2.2.18), (2.2.19) all conditions of Corollary 2.2.2 are fulfilled except for condition
(2.2.17), instead of which equality (2.2.20) is fulfilled. On the other hand, the problem is not uniquely
solvable, since it has a nontrivial solution

x1(t) = sin π(t− a)

2(b− a)
, x2(t) =

π

2(b− a)
cos π(t− a)

2(b− a)

along with the trivial one.

Theorem 2.2.3. Let conditions (2.2.6)–(2.2.8),

1 + (−1)j djcii(t) > 0 (j = 1, 2; i = 1, . . . , n), (2.2.21)
|ℓi(x1, . . . , xn)| ≤ |µi| |xi(τi)| for xl ∈ BV([a, b];R) (i, l = 1, . . . , n) (2.2.22)

and
|µi|γi(τi) < 1 (i = 1, . . . , n) (2.2.23)

hold on [a, b], where the functions cii (i = 1, . . . , n) are non-increasing on [a, b], µi ∈ R, τi ∈ [a, b],
τi ̸= ti (i = 1, . . . , n); λi(t) ≡ γai(t, ti), the function γai(t, ti) is defined according to (1.1.9), and
ai(t) ≡ (cii(t) − cii(ti)) sgn(t − ti) (i = 1, . . . , n). Let, moreover, the functions cil ∈ BV([a, b];R)
(i ̸= l; i, l = 1, . . . , n) be such that

r(M) < 1, (2.2.24)
where M = (µil)

n
i,l=1,

µii = 0, µil = µi(1− µiλi(τi))
−1|fil(τi)− fil(ti)|+ (fil(b)− fil(ti)),

fil(t) ≡
t∨
a

(sc(cil)) +
∑

a<τ≤t

|d1cil(τ)|+
∑

a≤τ<t

|d2cil(τ)| (i ̸= l; i, l = 1, . . . , n).

Then problem (2.2.1), (2.2.2) has one and only one solution.

Remark 2.2.4. In particular, the statement of Theorem 2.2.3 is true for the boundary value condition

x(ti) = µixi(τi) + c0i (i = 1, . . . , n). (2.2.25)
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Theorem 2.2.4. Let conditions (2.2.6)–(2.2.8), (2.2.22) and (2.2.23) hold on [a, b], where µi ≥ 0,
τi ∈ [a, b], τi ̸= ti (i = 1, . . . , n), and let the functions cii (i = 1, . . . , n) be such that the functions
λi(t) ≡ γcii(t, ti) (i = 1, . . . , n), defined according to (1.1.9), are monotone on the intervals [a, ti[ and
]ti, b]. Let, moreover, the functions cil ∈ BV([a, b];R) (i ̸= l; i, l = 1, . . . , n) be nondecreasing on [a, b]
and condition (2.2.24) hold, where M = (µil)

n
i,l=1,

µii = 0, µil = ζil(1 + ξi) + νi
(
1 + |λi(τi)− 1|

)∣∣∣ τi∨
ti

(cil)
∣∣∣, ζil = max

{ ti∨
a

(cil),

b∨
ti

(cil)
}
,

νi = µi(1− µiλi(τi))
−1∥λi∥∞, ηi = sup

{
|λi(t)− 1| : t ∈ [a, b]

}
,

fil(t) ≡
t∨
a

(sc(cil)) +
∑

a<τ≤t

|d1cil(τ)|+
∑

a≤τ<t

|d2cil(τ)| (i ̸= l; i, l = 1, . . . , n).

Then problem (2.2.1), (2.2.25) has one and only one solution.

Below, we give a general theorem on the unsolvability of problem (2.2.1), (2.2.2) in the case where
condition (2.2.10) is violated.

Theorem 2.2.5. Let ℓ0i : BV∞([a, b];Rn
+) → R+ (i = 1, . . . , n) be linear bounded functionals, the

matrix-function C = (cil)
n
i,l=1 ∈ BV([a, b];Rn×n) be such that the functions cil (i ̸= l; i, l = 1, . . . , n)

are nondecreasing on [a, b] and problem (2.2.4), (2.2.5) has a nontrivial nonnegative solution x =
(xi)

n
i=1, i.e., condition (2.2.10) is violated. Let, moreover,

djcii(t) ≥ 0 for t ∈ [a, b] (j = 1, 2; i = 1, . . . , n). (2.2.26)

Then there exist a matrix-function A = (ail)
n
i,l=1 ∈ BV([a, b];Rn×n), linear bounded functionals

ℓi : BV∞([a, b];Rn) → R (i = 1, . . . , n) and numbers c0i ∈ R (i = 1, . . . , n) such that conditions
(2.2.6)–(2.2.9) hold, but problem (2.2.10), (2.2.2) is unsolvable. In addition, if the matrix-function
C = (cil)

n
i,l=1 is such that

det
(
In + (−1)j diag(sgn(t− t1), . . . , sgn(t− tn)) djC(t)

× diag(ε1, . . . , εn)
)
̸= 0 for t ∈ [a, b] (j = 1, 2), (2.2.27)

where εi ∈ [0, 1] (i = 1, . . . , n), then the matrix-function A = (ail)
n
i,l=1 satisfies condition (1.1.8).

Remark 2.2.5. Condition (2.2.27) holds, for example, if either

n∑
l=1

|djcil(t)| < 1 for t ∈ [a, b] (j = 1, 2; i = 1, . . . , n), (2.2.28)

or
djcii(t) ≤ 1 for (−1)j(t− ti) < 0 (j = 1, 2; i = 1, . . . , n) (2.2.29)

and
n∑

l=1, l ̸=i

|djcil(t)| <
∣∣1 + (−1)j sgn(t− ti) djcii(t)

∣∣ for t ∈ [a, b] (j = 1, 2; i = 1, . . . , n)

( n∑
l=1, l ̸=i

|djcli(t)| <
∣∣1 + (−1)j sgn(t− ti) djcii(t)

∣∣ for t ∈ [a, b] (j = 1, 2; i = 1, . . . , n)

)
. (2.2.30)

2.2.2 Auxiliary propositions
We give here the following lemma dealing with the differential inequalities.
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Lemma 2.2.1. Let t1, . . . , tn, B = (bil)
n
i,l=1 ∈ BV([a, b];Rn×n), q = (qi)

n
i=1 ∈ BV([a, b];Rn), C =

(cil)
n
i,l=1 ∈ BV([a, b];Rn×n) be such that the functions cil sgn(t − ti) (i ̸= l; i, l = 1, . . . , n) are

nondecreasing on [a, b] and the conditions(
sc(bii)(t)− sc(bii)(s)

)
sgn(t− ti) ≤ sc(cii)(t)− sc(cii)(s) for (t− s)(s− ti) > 0 (2.2.31)

(i = 1, . . . , n),∣∣sc(bil)(t)− sc(bil)(s)
∣∣ ≤ sc(cil)(t)− sc(cil)(s) for s < t (i ̸= l; i, l = 1, . . . , n) (2.2.32)

and
|djbii(t)| ≤ |djcii(t)|, |djbil(t)| ≤ djcil(t) (j = 1, 2; i ̸= l; i, l = 1, . . . , n) (2.2.33)

hold on [a, b]. Then every solution x = (xi)
n
i=1 of the system

dx = dB(t) · x+ dq(t) for t ∈ [a, b] (2.2.34)

will be a solution of the system of generalized differential inequalities

sgn(t− ti) d|xi(t)| ≤
n∑

l=1

|xl(t)| dcil(t)

+ sgnxi(t) dsc(qi)(t) + djgi(t) for t ∈ [a, b] (i = 1, . . . , n),

(−1)j dj |xi(ti)| ≤
n∑

l=1

|xl(ti)| djcil(ti) + djgi(ti) (j = 1, 2; i = 1, . . . , n),

(2.2.35)

where

gi(t) ≡
2∑

j=1

t∨
a

sj(qi) (i = 1, . . . , n).

Proof. Let i ∈ {1, . . . , n} be fixed. Using (0.0.16) for
t∫
s

sgnxi(τ) dxi(τ) (s < t) and the definition of

the solution of system (2.2.34), it can be easily shown that

|xi(t)| − |xi(s)| =
n∑

l=1

t∫
s

xl(τ) sgnxi(τ) dsc(bil)(τ) +
∑

s<τ≤t

(
|xi(τ)| − |xi(τ−)|

)

+
∑

s≤τ<t

(
|xi(τ+)| − |xi(τ)|

)
+

t∫
s

sgnxi(τ) dsc(qi)(τ) for ti < s < t ≤ b. (2.2.36)

By (2.2.31) and (2.2.32), from the above equality we have

|xi(t)| − |xi(s)| ≤
t∫

s

|xi(τ)| dsc(cii)(τ) +
n∑

l ̸=i; l=1

t∫
s

|xl(τ)| dsc(cil)(τ) +
∑

s<τ≤t

(
|xi(τ)| − |xi(τ−)|

)

+
∑

s≤τ<t

(
|xi(τ+)| − |xi(τ)|

)
+

t∫
s

sgnxi(τ) dsc(qi)(τ) for ti < s < t ≤ b. (2.2.37)

Moreover, it is evident that

t∫
s

|xl(τ)| dsc(cil)(τ) =
t∫

s

|xl(τ)| dcil(τ)

−
∑

s<τ≤t

|xl(τ)| d1cil(τ)−
∑

s≤τ<t

|xl(τ)| d2cil(τ) for ti < s < t ≤ b (l = 1, . . . , n). (2.2.38)
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In addition, due to (2.2.31)–(2.2.33), it is not difficult to verify the inequalities

|xi(τ)| − |xi(τ−)| ≤
∣∣∣ n∑
l=1

xl(τ) d1bil(τ) + d1qi(τ)
∣∣∣

≤
n∑

l=1

|xl(τ)| |d1cil(τ)|+ |d1qi(τ)| for ti < t ≤ b (2.2.39)

and

|xi(τ+)| − |xi(τ)| ≤
∣∣∣ n∑
l=1

xl(τ) d2bil(τ) + d2qi(τ)
∣∣∣

≤
n∑

l=1

|xl(τ)| |d2cil(τ)|+ |d2qi(τ)| for ti ≤ t < b. (2.2.40)

Inserting (2.2.38)–(2.2.40) into (2.2.37) and using (2.2.33), we get

|xi(t)| − |xi(s)| ≤
n∑

l=1

t∫
s

|xl(t)| dcil(t) +
t∫

s

sgnxi(τ) dsc(qi)(τ) + gi(t)− gi(s)

for ti < s < t ≤ b.

Similarly, we show

−
(
|xi(t)| − |xi(s)|

)
≤

n∑
l=1

t∫
s

|xl(t)| dcil(t) +
t∫

s

sgnxi(τ) dsc(qi)(τ) + gi(t)− gi(s)

for a ≤ s < t < ti.

Therefore, the first estimate of (2.2.35) holds. As to the second estimate, it follows from the first
one.

Lemma 2.2.2. Let t1, . . . , tn; bil, qi ∈ BV([a, b];R) (i, l = 1, . . . , n) be such that the functions
bil sgn(t − ti) (i ̸= l; i, l = 1, . . . , n) are nondecreasing on [a, b]. Then every solution x = (xi)

n
i=1

of the system

dxi(t) =

n∑
l=1

xl(t) dbil(t) + dqi(t) for t ∈ [a, b] (i = 1, . . . , n)

will be a solution of the system of generalized differential inequalities

sgn(t− ti) d|xi(t)| ≤
n∑

l=1

|xl(t)| dbil(t) + sgnxi(t) dsc(qi)(t) + dgi(t) for t ∈ [a, b] (i = 1, . . . , n),

(−1)jd|xi(ti)| ≤
n∑

l=1

|xl(ti)| dbil(ti) + sgnxi(ti) dsc(qi)(ti) + dgi(ti) (j = 1, 2; i = 1, . . . , n),

where the functions gi (i = 1, . . . , n) are defined as in Lemma 2.2.1.

Proof. The lemma follows from Lemma 2.2.1 if we assume therein that cil(t) ≡ bil(t) (i, l = 1, . . . , n).
In this case, conditions (2.2.31)–(2.2.33) are fulfilled automatically.

Lemma 2.2.3. Let g ∈ BV([a, b];Rn) and let C ∈ BV([a, b];Rn×n) be such that

1 + (−1)j djC(t) ̸= 0 for t ∈ [a, b]. (2.2.41)

Let, moreover, ξ ∈ BV([a, b];Rn) be a solution of the system

dx = dC(t) · x+ dg(t). (2.2.42)
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Then

Y −1(t)ξ(t)− Y −1(s)ξ(s) = B(Y −1, g)(t)− B(Y −1, g)(s) for a ≤ s < t ≤ b, (2.2.43)

where Y ∈ BV([a, b];Rn×n) is a fundamental matrix of the system

dx = dC(t) · x. (2.2.420)

Proof. By (2.2.41), the fundamental matrix of system (2.2.420) exists.
Let a ≤ s < t ≤ b. Due to (1.1.13), (2.2.42) and the integration-by-parts formula, we have

Y −1(t)ξ(t)− Y −1(s)ξ(s)

=

t∫
s

Y −1(τ) dξ(τ) +

t∫
s

ξ(τ) dY −1(τ)−
∑

s<τ≤t

d1Y
−1(τ) · d1g(τ) +

∑
s≤τ<t

d2Y
−1(τ) · d2g(τ)

=

t∫
s

Y −1(τ)ξ(τ) dC(τ) +

t∫
s

Y −1(τ) dg(τ) +

t∫
s

ξ(τ) dY −1(τ)

−
∑

s<τ≤t

d1Y
−1(τ) ·

(
ξ(τ) d1C(τ) + d1g(τ)

)
+

∑
s≤τ<t

d2Y
−1(τ) ·

(
ξ(τ) d2C(τ) + d2g(τ)

)
and

Y −1(τ) = Y −1(s)−
τ∫

s

Y −1(σ) dC(σ)

+
∑

s<σ≤τ

d1Y
−1(σ) · d1C(σ)−

∑
s≤σ<τ

d2Y
−1(σ) · d2C(σ) for s < τ ≤ t.

By the latter equality,

t∫
s

dY −1(τ) · ξ(τ) = −
t∫

s

Y −1(τ) dC(τ) · ξ(τ)

+
∑

s<τ≤t

d1Y
−1(τ) · d1C(τ) · ξ(τ)−

∑
s≤τ<t

d2Y
−1(τ) · d2C(τ) · ξ(τ) for s < t.

From this, using the integration-by-partes formulae, we conclude that

Y −1(t)ξ(t)− Y −1(s)ξ(s) =

t∫
s

Y −1(τ) dg(τ)

−
∑

s<τ≤t

d1Y
−1(τ) · d1g(τ) +

∑
s≤τ<t

d2Y
−1(τ) · d2g(τ) for a ≤ s < t ≤ b.

So, by definition of the operator B, equality (2.2.43) holds.

We use the following lemma which is a particular case of Theorem 1.1.9 from [23]. For the
completeness, we give some modification of the proof of the lemma.

Lemma 2.2.4. Let t0 ∈ [a, b], C = (cik)
n
i,k=1 ∈ BV([a, b];Rn×n) be such that the conditions

det
(
In + (−1)j djC(t)

)
̸= 0 for (−1)j(t− t0) < 0 (j = 1, 2), (2.2.44)

1 + (−1)j djcii(t) > 0 for (−1)j(t− t0) ≥ 0 (j = 1, 2; i = 1, . . . , n) (2.2.45)
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and (
In + (−1)j djC(t)

)−1
> On×n for (−1)j(t− t0) < 0 (j = 1, 2). (2.2.46)

hold on [a, b]. Let, moreover, for every j ∈ {1, 2}, the functions (−1)j+1cil (i ̸= l; i, l = 1, . . . , n) be
non-decreasing on the set Jj = {t ∈ [a, b] : (−1)j(t− t0) < 0}. Then

U(t, s) ≥ 0 for t ≤ s ≤ t0 or t0 ≤ s ≤ t, (2.2.47)

where U (U(s, s) ≡ In) is the Cauchy matrix of system (2.2.420).

Proof. Let s ∈ [a, b] (s ̸= t0) be fixed and j ∈ {1, 2} be such that s ∈ Jj . Let k ∈ {1, . . . , n} be fixed
and let uk(t, s) = (uik(t, s))

n
i=1 be the k-th column of the matrix U(t, s).

Assume

y(t) = (yi(t))
n
i=1 for t ∈ [a, b],

where yi(t) ≡ γ−1
i (t, s)uik(t, s) (i = 1, . . . , n), γi(t, s) = γi(t) γ

−1
i (s), and γi is a solution of the Cauchy

problem dγ(t) = γ(t) dcii(t), γ(s) = 1; here, in view of (1.1.9) and (2.2.45), γi(t) > 0 for t ∈ [a, b]
(i = 1, . . . , n).

Since U(t, s) = (uil)
n
i,l=1 is the Cauchy matrix of system (2.2.420), we conclude that for every

i ∈ {1, . . . , n}, the function uik is a solution of the equation

dx = dcii(t) · x+ dgi(t),

where

gi(t) ≡
n∑

l ̸=i; l=1

t∫
a

ulk(τ) dcil(τ).

So, according to Lemma 2.2.3 and the integration-by-parts formula, we find that

yi(t)− yi(r) = B(γ−1
i , gi)(t)− B(γ−1

i , gi)(r)

=

t∫
r

γ−1
i (τ, s) dgi(τ)−

∑
r<τ≤t

d1γ
−1
i (τ, s) d1gi(τ) +

∑
r≤τ<t

d2γ
−1
i (τ, s) d2gi(τ)

=

n∑
l ̸=i, l=1

( t∫
r

γ−1
i (τ, s)ulk(τ, s) dsc(cil)(τ)

+
∑

r<τ≤t

γ−1
i (τ−, s)ulk(τ, s) d1cil(τ) +

∑
r≤τ<t

γ−1
i (τ+, s)ulk(τ, s) d2cil(τ)

)

=

n∑
l ̸=i, l=1

( t∫
r

γ−1
i (τ, s)γl(τ, s)(τ)yl(τ) dsc(cil)(τ) +

∑
r<τ≤t

γ−1
i (τ−, s)yl(τ)γl(τ, s) d1cil(τ)

+
∑

r≤τ<t

γ−1
i (τ+, s)yl(τ)γl(τ, s) d2cil(τ)

)
for a ≤ r ≤ t ≤ b (i = 1, . . . , n).

Hence y = (yi)
n
i=1 is a solution of the Cauchy problem

dy = dC∗(t) · y, y(s) = ek,

where ek = (δik)
n
i=1, C∗(t) = (c∗il(t))

n
i,l=1, c∗ii(t) ≡ 0 and

c∗il(t) ≡
t∫

a

γ−1
i (τ, s)γl(τ, s)(τ) dsc(cil)(τ)
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+
∑

a<τ≤t

γ−1
i (τ−, s)γl(τ, s) d1cil(τ) +

∑
a≤τ<t

γ−1
i (τ+, s)γl(τ, s) d2cil(τ) (i ̸= l; i, l = 1, . . . , n).

In view of the conditions of the lemma, the functions (−1)j+1c∗il (i ̸= l; i, l = 1, . . . , n) are non-
decreasing on Jj (j = 1, 2).

Let
Λs(t) = diag(γ1(t, s), . . . , γn(t, s))

and
Q(t) = diag(c11(t), . . . , cnn(t)) for t ∈ [a, b].

Using (1.1.14), we have

In + (−1)j djC
∗(t) = In + (−1)j

(
Λ−1
s (t) + (−1)j djΛ

−1
s (t)

)
(djC(t)− djQ(t))Λs(t)

=
(
Λ−1
s (t) + (−1)j djΛ

−1
s (t)

)((
In + (−1)j djQ(t)

)
Λs(t) + (−1)j

(
djC(t)− djQ(t)

)
Λs(t)

)
for t ∈ [a, b] (j = 1, 2)

and

In + (−1)j djC
∗(t)

=
(
Λ−1
s (t) + (−1)j djΛ

−1
s (t)

)
(In + (−1)j djC(t))Λs(t) for t ∈ [a, b] (j = 1, 2).

Hence, due to (2.2.44) and (2.2.45), we obtain

det
(
In + (−1)j djC

∗(t)
)
̸= 0 for t ∈ [a, b] \ {t0} (j = 1, 2)

and (
In + (−1)j djC

∗(t)
)−1 ≥ On×n for (−1)j(t− t0) < 0 (j = 1, 2), (2.2.48)

since
Λs(t) ≥ On×n for t ∈ [a, b]. (2.2.49)

According to Theorem 1.1.8 from [23],

lim
m→+∞

zm(t) = y(t) uniformly on [a, b], (2.2.50)

where

zm(s) = ek (m = 0, 1, . . . ),

z0(t) =
(
In + (−1)j djC

∗(t)
)−1

ek for (−1)j(t− s) < 0 (j = 1, 2),

zm(t) =
(
In + (−1)j djC

∗(t)
)−1

(
ek +

t∫
s

dC∗(τ) · zm−1(τ)

+(−1)j djC
∗(t) · zm−1(t)

)
for (−1)j(t− s) < 0 (j = 1, 2; m = 1, 2, . . . ). (2.2.51)

From (2.2.48), (2.2.50) and (2.2.51) we get

zm(t) ≥
(
In + (−1)j djC

∗(t)
)−1

ek for (−1)j(t− s) < 0 (j = 1, 2; m = 0, 1, . . . )

and
y(s) ≥ ek, y(t) ≥

(
In + (−1)j djC

∗(t)
)−1

ek for (−1)j(t− s) < 0 (j = 1, 2). (2.2.52)

On the other hand, equalities

y(t) = Λ−1
s (t)uk(t, s) for t ∈ Jj (j = 1, 2)
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and inequalities (2.2.52) imply that

uk(t, s) ≥ Λs(t)
(
In + (−1)j djC

∗(t)
)−1

ek for (−1)j(t− s) < 0, (−1)j(t− t0) < 0 (j = 1, 2).

Since the latter inequalities are fulfilled for every k ∈ {1, . . . , n}, we have

U(t, s) ≥ Λs(t)
(
In + (−1)j djC

∗(t)
)−1 for (−1)j(t− s) < 0 (j = 1, 2). (2.2.53)

By (2.2.48) and (2.2.49), condition (2.2.53) implies (2.2.47).

Remark 2.2.6. In fact, we have proved estimate (2.2.53) which is stronger than (2.2.47). Note also
that the condition

∥djC(t)∥ < 1 for t ∈ [a, b] (j = 1, 2)

guarantees conditions (2.2.44), (2.2.45).

Lemma 2.2.5. Let t0 ∈ [a, b], c0 ∈ Rn, q ∈ BV([a, b];Rn), and a matrix-function C = (cik)
n
i,k=1 ∈

BV([a, b];Rn×n), where cik (i ̸= k; i, k = 1, . . . , n) are nondecreasing functions on [a, b], be such that
the conditions

det(In − djC(t)) ̸= 0 for (−1)j(t− t0) < 0 (j = 1, 2), (2.2.54)
1 + djcii(t) > 0 for (−1)j(t− t0) > 0 (j = 1, 2; i = 1, . . . , n) (2.2.55)

and
(In − djC(t))

−1 > On×n for (−1)j(t− t0) < 0 (j = 1, 2). (2.2.56)

hold on [a, b]. Let, moreover, a vector-function x ∈ BVloc([a, t0[ ;Rn)∩ BVloc(]t0, b];Rn) be a solution
of the system of linear differential inequalities

sgn(t− t0) dx ≤ dC(t) · x+ dq(t) (2.2.57)

on the intervals [a, t0[ and ]t0, b] satisfying the condition

x(t0) + (−1)j djx(t0) ≤ c0 + djC(t0) · c0 + djq(t0) (j = 1, 2). (2.2.58)

Then the estimate
x(t) ≤ y(t) for t ∈ [a, b] \ {t0} (2.2.59)

holds, where y ∈ BV([a, b];Rn) is a solution of the system

sgn(t− t0) dy = dC(t) · y + dq(t) (2.2.60)

on the intervals [a, t0[ and ]t0, b] satisfying the conditions

(−1)j djy(t0) = djC(t0) · y(t0) + djq(t0) (j = 1, 2) (2.2.61)

and
y(t0) = c0. (2.2.62)

Proof. Assume t0 < b and consider the closed interval [t0, b]. Then problem (2.2.60)–(2.2.62) has the
form

dy(t) = dC(t) · y(t) + dq(t), y(t0) = c0.

Let Z (Z(t0) = In) be a fundamental matrix of system (2.2.420). Then, by the variation-of-
constants formula, we have

y(t) = q(t)− q(s) + Z(t)

{
Z−1(s)y(s)−

t∫
s

dZ−1(τ) ·
(
q(τ)− q(s)

)}
for s, t ∈ [t0, b]. (2.2.63)
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Put

g(t) = −x(t) + x(t0) +

t∫
t0

dC(τ) · x(τ) + q(t)− q(t0) for t ∈ [t0, b]. (2.2.64)

Evidently,
dx(t) = dC(t) · x(t) + d(q(t)− g(t)) for t ∈ [t0, b].

Let ε be an arbitrary positive number. Then

x(t) = q(t)− q(t0 + ε)− g(t) + g(t0 + ε) + Z(t)

{
Z−1(t0 + ε)x(t0 + ε)

−
t∫

t0+ε

dZ−1(τ) ·
(
q(τ)− q(t0 + ε)− g(τ) + g(t0 + ε)

)}
for t ∈ [t0 + ε, b].

Hence, by (2.2.63), we get

x(t) = y(t) + Z(t)Z−1(t0 + ε)
(
x(t0 + ε)− y(t0 + ε)

)
+ gε(t) for t ∈ [t0 + ε, b], (2.2.65)

where

gε(t) ≡ −g(t) + g(t0 + ε) + Z(t)

t∫
t0+ε

dZ−1(τ) · (g(τ)− g(t0 + ε)).

Using the integration-by-parts formula, we have

gε(t) = −
t∫

t0+ε

U(t, τ) dsc(g)(τ)

−
∑

t0+ε<τ≤t

U(t, τ−) d1g(τ)−
∑

t0+ε≤τ<t

U(t, τ+) d2g(τ) for t ∈ [t0 + ε, b], (2.2.66)

where U(t, τ) = Z(t)Z−1(τ) is the Cauchy matrix of system (2.2.420).
On the other hand, conditions (2.2.54)–(2.2.56) guarantee conditions (2.2.44)–(2.2.46). Hence,

according to Lemma 2.2.4, estimate (2.2.47) holds, and by (2.2.66),

gε(t) ≤ 0 for t ∈ [t0 + ε, b],

since by (2.2.57) and (2.2.64) the function g is nondecreasing on ]t0, b]. From this and (2.2.65), we
conclude

x(t) ≤ y(t) + U(t, t0 + ε)(x(t0 + ε)− y(t0 + ε)) for t ∈ [t0 + ε, b].

Passing to the limit as ε → 0 in the latter inequality and taking into account (2.2.47) and (2.2.58),
we get

x(t) ≤ y(t) for t ∈ ]t0, b],

since, by (2.2.61) and (2.2.62),

y(t0+) = c0 + d2C(t0) · c0 + d2q(t0).

Analogously, we can show the validity of inequality (2.2.59) for t ∈ [a, t0[ .

Lemma 2.2.5 has the following form for n = 1.
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Lemma 2.2.6. Let t0 ∈ [a, b], α and q ∈ BVloc([a, t0[ ;R) ∩ BVloc(]t0, b];R) be such that

1− djα(t) ̸= 0 for (−1)j(t− t0) < 0 (j = 1, 2),

1 + djα(t) > 0 for t ∈ [a, b] \ {t0} (j = 1, 2).

Let, moreover, x ∈ BVloc([a, t0[ ;R) ∩ BVloc(]t0, b];R) satisfy the linear generalized differential inequ-
ality

sgn(t− t0) dx ≤ xdα(t) + dq(t)

on the intervals [a, t0[ and ]t0, b], and

x(t0+) ≤ y(t0+) and x(t0−) ≤ y(t0−),

where y ∈ BVloc([a, t0[ ;R) ∩ BVloc(]t0, b];R) is a solution of the general differential equality

sgn(t− t0) dy = y dα(t) + dq(t).

Then
x(t) ≤ y(t) for t ∈ [a, t0[∪ ]t0, b].

The following lemma is analogous to the Wirtinger inequality (see [43, 58]) for the discontinuity
case.

Lemma 2.2.7. Let α and β be nondecreasing functions on [a, b], and let α have not more than a
finite number of discontinuity points. Then the estimates

b∫
a

( t∫
t0

v(τ) dsc(α)(τ)

)2

dsc(α)(t) ≤ γ0

b∫
a

v2(t) dsc(α)(t) (2.2.67)

and
b∫

a

( t∫
t0

v(τ) dsm(α)(τ)

)2

dsj(β)(t) ≤ γmj

b∫
a

v2(t) dsm(α)(t) (j,m = 1, 2) (2.2.68)

hold for every v ∈ BV([a, b];R) and t0 ∈ [a, b], where

γ0 =

(
2

π
(sc(α)(b)− sc(a)(a))

)2

, γmj =
1

4
µαmναmβj sin−2 π

4nαm + 2
(j,m = 1, 2).

In addition, these estimates are unimprovable.

Proof. Obviously, it suffices to verify inequalities (2.2.67) and (2.2.68) for t0 = a and t0 = b. Assume
t0 = b. Let us show (2.2.67). Without loss of generality, we may assume that

sc(α)(t) < sc(α)(b) for a ≤ t < b.

Put

u(t) =

t∫
b

v(τ) dsc(α)(τ), α̃(t) =
1

√
γ0

(
sc(α)(t)− sc(α)(b)

)
for t ∈ [a, b].

Let ε be a small positive number. It is easily seen that

b−ε∫
a

(
u(t) ctg α̃(t)−√

γ0 v(t)
)
dsc(α)(t)

= −
b−ε∫
a

u2(t) dsc(α)(t) +
√
γ0

b−ε∫
a

v2(t) dsc(α)(t)−
√
γ0 u

2(b− ε) ctg α̃(b− ε).
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Consequently,

b−ε∫
a

u2(t) dsc(α)(t) ≤
√
γ0

b−ε∫
a

v2(t) dsc(α)(t)−
√
γ0 u

2(b− ε) ctg α̃(b− ε).

Passing in the latter inequality to the limit as ε→ 0, we obtain (2.2.67).
Let us show (2.2.68). We have

b∫
a

( t∫
b

v(τ) dsm(α)(τ)

)2

dsj(β)(t) =
∑

a≤t≤b

( b∫
t

v(τ) dsm(α)(τ)

)2

dsj(β)(t)

=

nαm∑
l=1

(
djβ(tαmk l+m−2) +

∑
tαmk l−1<t<tαmkl

djβ(t)

)
ω2
m(l)

≤ γmj

nαm+1∑
l=1

ω2
m(l) (j,m = 1, 2), (2.2.69)

where

ωm(l) =

nαm∑
k=l

v(tαmk) dsm(tαmk) (l = 1, . . . , nαm), ωm(nαm + 1) = 0 (m = 1, 2).

According to the discrete analogue of the Wirtinger inequality [58], we obtain

nαm+1∑
l=1

ω2
m(l) ≤ 1

4
sin−2 π

4nαm + 2

nαm+1∑
l=1

(
ωm(l)− ωm(l − 1)

)2
≤ 1

4
sin−2 π

4nαm + 2

nαm+1∑
l=1

(
v(tαmk l−1) dsm(tαmk l−1)

)2
≤ 1

4
sin−2 π

4nαm + 2

nαm+1∑
l=1

b∫
a

v2(t) dsm(α)(t) (m = 1, 2),

Using this, from (2.2.69) we deduce (2.2.68). The proof of (2.2.67) and (2.2.68) is similar for t0 = a.
Finally, it should be noted that equality (2.2.67) transforms into the equality for t0 = a and

v(t) = γ−1 cos(γ0(sc(α)(t) − sc(α)(a))). As for inequality (2.2.68), it transforms into the equality
if a = t0 = 0, b = l, α(t) = β(t) = k − 1 for k − 1 ≤ t < k (k = 1, . . . , l), α(l) = β(l) = l,
v(k) = sin πk

2l+1 − sin π(k−1)
2l+1 and v(t) = 0 for t ∈ [0, l] \ {1, . . . ,m}.

2.2.3 On the set U(t1, . . . , tn). The lemmas on the a priory estimates
The following lemmas make more precise the ones given in [18] (see Lemma 6.3).

Lemma 2.2.8. Let conditions (2.2.14), (2.2.15) and

∣∣cil(t)− cil(s)
∣∣ ≤ t∫

s

hil(τ) dαl(τ) for s < t (i, l = 1, . . . , n) (2.2.70)

hold on [a, b], where cil ∈ BV([a, b];R) (i, l = 1, . . . , n), αl (l = 1, . . . , n) are the functions nondecreasing
on [a, b] and having not more than a finite number of discontinuity points; hil ∈ Lµ([a, b],R+;αl)
(i ̸= l), hii ∈ Lµ([a, b],R;αl) (i, l = 1, . . . , n), 1 ≤ µ ≤ +∞; lmik ∈ R+ (m = 0, 1, 2; i, k = 1, . . . , n),
1
µ+

2
ν = 1, and H = (Hj+1,m+1)

2
j,m=0 is the 3n×3n-matrix defined as in Theorem 2.2.2. Then problem
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(2.2.4), (2.2.5) has no nontrivial non-negative solution. In addition, if cil (i ̸= l; i, l = 1, . . . , n) are
the functions nondecreasing on [a, b], then condition (2.2.10) holds for C = (cil)

n
i,l=1 and ℓ0 = (ℓ0i)

n
i=1,

ℓ0i(x1, . . . , xn) =

2∑
m=0

n∑
k=1

lmik∥x∥ν,sm(αk) for x = (xl)
n
l=1 ∈ BV([a, b];Rn) (i = 1, . . . , n).

Proof. Let x = (xi)
n
i=1 be an arbitrary solution of problem (2.2.4), (2.2.5). By (2.2.70) and Hölder’s

inequality, we have

xi(t) ≤
2∑

m=0

n∑
k=1

(
lmik∥x∥ν,sm(αk) + ∥hik∥µ,sm(αk)

∣∣∣∣
t∫

ti

|xk(τ)|
ν
2 dsm(αk)(τ)

∣∣∣∣ 2
ν
)

for t ∈ [a, b] (i = 1, . . . , n). (2.2.71)

This, in view of Minkovski’s inequality, implies

∥x∥ν,sj(αk) ≤
2∑

m=0

n∑
k=1

(
lmik

(
sj(αi)(b)− sj(αi)(a)

) 1
ν ∥x∥ν,sm(αk)

+ ∥hik∥µ,sm(αk)

[ b∫
a

∣∣∣∣
t∫

ti

|xk(τ)|
ν
2 dsm(αk)(τ)

∣∣∣∣2 dsj(αi)(τ)

] 1
ν
)

for t ∈ [a, b] (i = 1, . . . , n). (2.2.72)

On the other hand, by virtue of Hölder’s inequality in the case m2 + j2 + (i− k)2 > 0, j = 0, and
by (2.2.67) and (2.2.68) in the other cases, we have

[ b∫
a

∣∣∣∣
t∫

ti

|xk(τ)|
ν
2 dsm(αk)(τ)

∣∣∣∣2 dsj(αi)(τ)

] 1
ν

≤ λkmij

[ b∫
a

|xk(τ)|2 dsm(αk)(τ)

] 1
ν

(j,m = 1, 2; i, k = 1, . . . , n).

The latter inequality and (2.2.72) yield

∥xi∥ν,sj(αi) ≤
2∑

m=0

n∑
k=1

(
ξij lmik + λkmij∥hik∥ν,sm(αk)

)
∥xk∥ν,sm(αk) (j = 0, 1, 2; i = 1, . . . , n).

Therefore
(I3n −H)r ≤ 03n, (2.2.73)

where r ∈ R3n is the vector with components

ri+nj = ∥xk∥ν,sj(αi) (j = 0, 1, 2; i = 1, . . . , n).

From (2.2.73), we find that r = 03n, since the module of the characteristic value of the matrix H is less
than 1. Using (2.2.71), we can see that xi(t) ≡ 0 (i = 1, . . . , n). Consequently, problem (2.2.4), (2.2.5)
has no nontrivial nonnegative solution.

Lemma 2.2.9. Let conditions (2.2.6)–(2.2.8), (2.2.21) and (2.2.23) hold on [a, b], where the functions
cii (i = 1, . . . , n) are nonincreasing on [a, b], µi ≥ 0, τi ∈ [a, b], τi ̸= ti (i = 1, . . . , n); λi(t) ≡
γai

(t, ti), the function γai
(t, ti) is defined according to (1.1.9), and ai(t) ≡ (cii(t)− cii(ti)) sgn(t− ti)

(i = 1, . . . , n). Let, moreover, the functions cil BV([a, b];R) (i ̸= l; i, l = 1, . . . , n) be such that
condition (2.2.24) hold, where the constant matrix M is defined as in Theorem 2.2.3. Then problem
(2.2.4), (2.2.5), where

ℓ0i(x1, . . . , xn) = µixi(τi) for xl ∈ BV([a, b];R+) (i, l = 1, . . . , n), (2.2.74)

has no nontrivial nonnegative solution.
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Proof. Let (xi)
n
i=1 be an arbitrary nonnegative solution of problem (2.2.4), (2.2.5). Let i ∈ {1, . . . , n}

be fixed. Due to (2.2.4), it is evident that

sgn(t− ti) dxi ≤ xi(t) dcii(t) + dfi(t) for t ∈ [a, b], t ̸= ti,

(−1)j djxi(ti) ≤ xi(ti) djcii(ti) + djfi(ti) (j = 1, 2),

where

fi(t) ≡
n∑

l ̸=i; l=1

t∫
ti

xl(τ) dcil(τ).

So, by (2.2.21), the function xi satisfies the conditions of Lemma 2.2.6, where α(t) ≡ cii(t),
q(t) ≡ fi(t), t0 = ti.

According to the lemma and (2.2.74), the estimate

xi(t) ≤ yi(t) for t ∈ [a, b] (2.2.75)

holds, where yi ∈ BV([a, b];R) is a solution of the system

sgn(t− ti) dy = y dα(t) + dq(t) (2.2.76)

on the intervals [a, ti[ and ]ti, b] satisfying the conditions

(−1)j djy(ti) = y(ti) djα(ti) + djq(ti) (j = 1, 2) (2.2.77)

and
y(ti) = µix(τi). (2.2.78)

Problem (2.2.76)–(2.2.78) is equivalent to the initial problem

dy = y dai(t) + dfi(t), y(ti) = µix(τi) for t ∈ [a, b].

Let us show that

xi(t) ≤ µiλi(t)xi(τi) +

n∑
l ̸=i; l=1

|fil(t)− fil(ti)| ρl for t ∈ [a, b], (2.2.79)

where
ρl = sup

{
|xl(t)| : t ∈ [a, b]

}
(l = 1, . . . , n).

First, consider the case t ∈ ]ti, b]. According to the variation-of-constant and integration-by-parts
formulaes, we have

yi(t) = fi(t) + λi(t)

{
yi(ti)−

t∫
ti

fi(τ) dλ
−1
i (τ)

}
= λi(t)yi(ti)

+ λi(t)

n∑
l ̸=i; l=1

{ t∫
ti

λ−1
i (τ)xl(τ) dcil(τ)−

∑
ti<τ≤t

d1λ
−1
i (τ)xl(τ) d1cil(τ) +

∑
ti≤τ<t

d2λ
−1
i (τ)xl(τ) d2cil(τ)

}
for t ∈ [ti, b]

and, later, by (0.0.12), we can conclude that

xi(t) ≤ λi(t)yi(ti) + λi(t)

n∑
l ̸=i; l=1

{ t∫
ti

λ−1
i (τ)xl(τ) dsc(cil)(τ)

+
∑

ti<τ≤t

λ−1
i (τ−)xl(τ) d1cil(τ) +

∑
ti≤τ<t

λ−1
i (τ+)xl(τ) d2cil(τ)

}
for t ∈ [ti, b]. (2.2.80)
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The function λ−1
i (t) is nondecreasing on ]ti, b], since the function cii is nonincreasing on the same

interval. So, by (2.2.78), from (2.2.80) follows estimate (2.2.79).
Analogously, we verify inequality (2.2.79) for t ∈ [a, ti], as well.
In view of (2.2.79) due to (2.2.23), we find that

xi(τi) ≤ (1− µiλi(τi))
−1

n∑
l ̸=i; l=1

|fil(τi)− fil(ti)| ρl

and, consequently,

ρi ≤
n∑

l ̸=i; 1

µilρl (i = 1, . . . , n).

Thus the constant vector ρ = (ρi)
n
i=1 satisfies the system

(In −M)ρ ≤ 0n.

From this, using (2.2.24), we obtain ρ = 0n. Consequently, xi(t) ≡ 0 (i = 1, . . . , n).

Lemma 2.2.10. Let conditions (2.2.6)–(2.2.8) and (2.2.23) hold on [a, b], where µi ≥ 0, τi ∈ [a, b],
τi ̸= ti (i = 1, . . . , n); and let the functions cii (i = 1, . . . , n) be such that the functions λi(t) ≡ γcii(t, ti)
(i = 1, . . . , n) defined according to (1.1.9) be monotone on the intervals [a, ti] and ]ti, b]. Let, moreover,
the functions cil ∈ BV([a, b];R) (i ̸= l; i, l = 1, . . . , n) be such that condition (2.2.24) hold, where the
constant matrix M is defined as in Theorem 2.2.4. Then problem (2.2.4), (2.2.5), where functionals
ℓ0i (i = 1, . . . , n) are defined by (2.2.74), has no nontrivial nonnegative solution.
Proof. Here we use the designations given in the proof of Lemma 2.2.9. As in that proof we show the
estimate

yi(t) = fi(t) + λi(t)

{
yi(ti)−

t∫
ti

fi(τ) dλ
−1
i (τ)

}
for t ∈ [a, b].

From this, by (2.2.75) and (2.2.78), we obtain

xi(t) ≤ fi(t) + µiλi(t)xi(τi)− λi(t)

t∫
ti

fi(τ) dλ
−1
i (τ) for t ∈ [a, b]. (2.2.81)

Therefore, using (2.2.23), we conclude that

xi(τi) ≤ (1− µiλi(τi))
−1

(
fi(τi)− λi(τi)

τi∫
ti

fi(τ) dλ
−1
i (τ)

)
for t ∈ [a, b].

Substituting the obtained estimate into (2.2.81), we get

xi(t) ≤ fi(t) + µi(1− µiλi(τi))
−1λi(t)

(
fi(τi)− λi(τi)

τi∫
ti

fi(τ) dλ
−1
i (τ)

)
− λi(t)

t∫
ti

fi(τ) dλ
−1
i (τ)

≤
n∑

l ̸=i; l=1

((
1 + |λi(t)− 1|

)∣∣∣ t∨
ti

(cil)
∣∣∣+ νi

(
1 + |λi(τi)− 1|

)∣∣∣ τi∨
ti

(cil)
∣∣∣)ρl

≤
n∑

l ̸=i; l=1

(
ζil(1 + ξi) + νi

(
1 + |λi(τi)− 1|

)∣∣∣ τi∨
ti

(cil)
∣∣∣)ρl for t ∈ [a, b].

So,

ρi ≤
n∑

l ̸=i; 1

µilρl (i = 1, . . . , n).

Later, as in Lemma 2.2.9, we conclude that xi(t) ≡ 0 (i = 1, . . . , n).
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Lemma 2.2.11. Let tk1, . . . , tkn ∈ [a, b] (k = 1, 2), ℓ0ki : BV([a, b];Rn
+) → R+ (k = 1, 2; i = 1, . . . , n)

be linear bounded functionals, and Ckj = (ckjil)
n
i,l=1 ∈ BV([a, b];Rn×n) (k, j = 1, 2) be such that the

system

sgn(t−t1i) dx1i(t)≤
n∑

l=1

x1l(t) dc11il(t)+

n∑
l=1

x2l(t) dc12il(t) for t∈ [a, b], t ̸= t1i (i=1, . . . , n),

(−1)j djx1i(t1i)≤
n∑

l=1

x1l(t1i) djc11il(t1i)+

n∑
l=1

x2l(t1i) djc12il(t1i) (j=1, 2; i=1, . . . , n),

dx2i(t)=

n∑
l=1

x1l(t) dc21il(t)+

n∑
l=1

x2l(t) dc22il(t) for t∈ [a, b] (i=1, . . . , n)

(2.2.82)

has a nontrivial nonnegative solution satisfying the condition

xki(t1i) ≤ l0ki(x11, . . . , x1n, x21, . . . , x2n) (k = 1, 2; i = 1, . . . , n). (2.2.83)

Then there exist a matrix-function A∈BV([a, b];Rn×n), linear bounded functionals ℓi :BV∞([a, b];R2n)
→ R (i = 1, . . . , 2n) and numbers c0i ∈ R (i = 1, . . . , 2n) such that the 2n-system

dx(t) = dÃ(t) · x(t) (2.2.84)

under the 2n-condition (1.1.4) is unsolvable, here ti = t1i (i = 1, . . . , n), tn+i = t2i (i = 1, . . . , n), and

Ã(t) ≡
(
A(t) C12(t)
C21(t) C22(t)

)
. (2.2.85)

Proof. Let x = (xk)
2
k=1, xk = (xki)

n
i=1 (k = 1, 2) be the nonnegative solution of problem (2.2.82),

(2.2.83).
Let αi, qi ∈ BV([a, b];R) (i = 1, . . . , n) be the functions defined by

αi(t) ≡
(
sc(c11 ii)(t)− sc(c11 ii)(s)

)
sgn(t− ti) (i = 1, . . . , n)

and

qi(t) ≡
( n∑

l=1

( t∫
t1i

x1l(τ) dc11 il(τ) +

t∫
t1i

x2l(τ) dc12 il(τ)

)
−

t∫
t1i

x1i(τ) dsc(c11 ii)(τ)

)
(i = 1, . . . , n).

It is evident that the Cauchy problem

dy(t) = y(t) dαi(t) + dqi(t), (2.2.86)
y(t1i) = x1i(t1i) (2.2.87)

has a unique solution y1i for every i ∈ {1, . . . , n}.
Moreover, it is easy to verify that the function z(t) = zi(t),

zi(t) ≡ x1i(t)− y1i(t),

satisfies the conditions of Lemma 2.2.6 and the problem

du(t) = u(t) dαi(t), u(t1i) = 0

has only the trivial solution for every i ∈ {1, . . . , n}.
According to this lemma, we have

x1i(t) ≤ y1i(t) for t ∈ [a, b] (i = 1, . . . , n)
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and, therefore,
x1i(t) = ηi(t)y1i(t) for t ∈ [a, b] (i = 1, . . . , n),

where, by Theorem I.4.25 from [73], ηi : [a, b] → [0, 1] (i = 1, . . . , n) are the functions such that the

integrals
t∫

ti

ηi(τ) dc11 il(τ) (i, l = 1, . . . , n) exist for every t ∈ [a, b].

Let us introduce the notation

aii(t) ≡ αi(t) + sgn(t− t1i)

t∫
t1i

ηi(τ) d
(
c11 ii(τ)− sc(c11 ii)(τ)

)
(i = 1, . . . , n),

ail(t) ≡ sgn(t− t1i)

t∫
t1i

ηl(τ) dc11 il(τ) (i ̸= l, i, l = 1, . . . , n).

(2.2.88)

Due to (2.2.83), (2.2.86) and (2.2.87), the vector-function y = (yi)
2n
i=1, yi(t) = x1i(t) (i = 1, . . . , n),

yn+i(t) = x2i(t) (i = 1, . . . , n), is a nontrivial nonnegative solution of the 2n-problem

dy(t) = dÃ(t) · y(t), (2.2.89)
yi(ti) = δiℓ0i(y1, . . . , y2n) (i = 1, . . . , 2n), (2.2.90)

where δi ∈ [0, 1] (i = 1, . . . , n), δn+i = 1 (i = 1, . . . , n), A(t) = (ail(t))
n
i,l=1,

ℓ0i(y1, . . . , y2n) = l0ki(y1, . . . , y2n)

for (yl)
2n
l=1 ∈ BV([a, b];R2n) (k = 1, 2; i = (k − 1)n+ 1, . . . , kn).

Let ℓi : BV∞([a, b];R2n) → R (i = 1, . . . , 2n) be linear functionals defined by

ℓi(x1, . . . , x2n) = δi
(
ℓ0i

(
[x1]+, . . . , [x2n]+

)
− ℓ0i

(
[x1]−, . . . , [x2n]−

))
for (xl)

2n
l=1 ∈ BV([a, b];R2n) (i = 1, . . . , 2n), (2.2.91)

where
[xi]+(t) =

1

2

(
|xi(t)|+ xi(t)

)
and [xi]−(t) =

1

2

(
|xi(t)| − xi(t)

)
(i = 1, . . . , 2n)

are the positive and negative parts of the function xi, respectively.
By (2.2.88)–(2.2.90), y = (yi)

2n
i=1 is a nontrivial, nonnegative solution of system (2.2.84) under the

boundary condition (2.2.20).
On the other hand, by Remark 1.1.2, there exist numbers c0i ∈ R (i = 1, . . . , 2n) such that problem

(2.2.84), (2.2.2) is unsolvable, where the matrix-function Ã(t) is defined by (2.2.85), (2.2.88), and the
linear functionals ℓi (i = 1, . . . , 2n) are defined by (2.2.91).

2.2.4 Proof of the main results
Proof of Theorem 2.2.1. According to Corollary 1.1.1, to prove the theorem it suffices to verify that
the homogeneous problem (2.2.10), (2.2.20) has only the trivial solution.

Let (xi)
n
i=1 be an arbitrary solution of the problem. We assume

xi(t) = |xi(t)| (i = 1, . . . , n).

Let i ∈ {i = 1, . . . , n} be fixed.
Due to (2.2.36),

|xi(t)| − |xi(s)| =
n∑

l=1

t∫
s

xl(τ) sgnxi(τ) dsc(ail)(τ)

+
∑

s<τ≤t

(
|xi(τ)| − |xi(τ−)|

)
+

∑
s≤τ<t

(
|xi(τ+)| − |xi(τ)|

)
for a ≤ s < t ≤ b.
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From this it follows that

sgn(s− ti)
(
|xi(t)| − |xi(s)|

)
=

n∑
l=1

t∫
s

xl(τ) sgnxi(τ) d
(

sgn(τ − ti) sc(ail)(τ)
)
+

∑
s<τ≤t

sgn(τ − ti)
(
|xi(τ)| − |xi(τ−)|

)
+

∑
s≤τ<t

sgn(τ − ti)
(
|xi(τ+)| − |xi(τ)|

)
for (t− s)(s− ti) > 0.

Then, by (2.2.6)–(2.2.8) and Lemma 2.2.1, we have

sgn(t− ti) dxi(t) ≤
n∑

l=1

xl(t) dcil(t) for t ∈ [a, b], t ̸= ii (i = 1, . . . , n)

and
(−1)j djxi(ti) ≤

n∑
l=1

xl(ti) djcil(ti) (j = 1, 2; i = 1, . . . , n).

In addition, (2.2.9) yields
xi(ti) ≤ ℓ0i(x1, . . . , xn) (i = 1, . . . , n).

Hence (xi)
n
i=1 is a nonnegative solution of problem (2.2.4), (2.2.5). Therefore, by (2.2.10), xi(t) ≡ 0

(i = 1, . . . , n) and
xi(t) ≡ 0 (i = 1, . . . , n).

Proof of Theorem 2.2.2. By Lemma 2.2.8, condition (2.2.10) holds for C = (cil)
n
i,l=1 and ℓ0 = (ℓ0i)

n
i=1,

where

cil(t) =

t∫
a

hil(τ)dαl(τ) for t ∈ [a, b] (i, l = 1, . . . , n)

and

ℓ0i(x1, . . . , xn) =

2∑
m=0

n∑
k=1

lmik∥xk∥ν,sm(αk) for (xl)
n
l=1 ∈ BV([a, b];Rn) (i = 1, . . . , n).

Therefore, the theorem follows from Theorem 2.2.1.

Remark 2.2.1 follows from the fact that Lemma 2.2.8 is likewise true for the n×n-matrix described
in this remark.

Corollary 2.2.1 is a particular case of Theorem 2.2.2, when lmki = 0 (m = 0, 1, 2; i, k = 1, . . . , n).

Proof of Theorem 2.2.3. By Lemma 2.2.9, condition (2.2.10) holds for C = (cil)
n
i,l=1 and ℓ = (ℓ0i)

n
i=1,

where the functionals ℓ0i (i = 1, . . . , n) are defined by (2.2.74). Therefore, the theorem follows from
Theorem 2.2.1.

Proof of Theorem 2.2.4. By Lemma 2.2.10, condition (2.2.10) holds for C = (cil)
n
i,l=1 and ℓ = (ℓ0i)

n
i=1,

where the functionals ℓ0i (i = 1, . . . , n) are defined by (2.2.74). Therefore, the theorem follows from
Theorem 2.2.1.

Proof of Theorem 2.2.5. Note that problem (2.2.4), (2.2.5) is a particular case of problem (2.2.82),
(2.2.83) if we assume in it C11(t) ≡ C(t), C12(t) = C21(t) = C22(t) ≡ On×n and ℓ01i(x1, . . . x2n) ≡
ℓ0i(x1, . . . , xn) (i = 1, . . . , n), ℓ02i(x1, . . . , x2n) ≡ 0 (i = 1, . . . , n).

By Lemma 2.2.11, there exist a matrix-function A = (ail)
n
i,l=1 ∈ BV([a, b];Rn×n) and linear

bounded functionals ℓi (i = 1, . . . , 2n) defined by (2.2.88) and (2.2.91), respectively, and numbers c0i
(i = 1, . . . , 2n) such that the 2n-system (2.2.84) is unsolvable under the 2n-condition (2.2.2) (defined
in Lemma 2.2.11), and Ã(t) is defined by (2.2.85) and (2.2.88). Moreover, it is evident that system
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(2.2.84) is equivalent to system (2.2.10). Therefore, the problem (2.2.10), (2.2.2) is unsolvable for the
matrix-function A and linear functionals ℓi (i = 1, . . . , n).

Due to (2.2.26), (2.2.88) and (2.2.91), it is not difficult to verify that conditions (2.2.6)–(2.2.9) are
fulfilled.

Let now condition (2.2.27) hold. By (2.2.88), we get

djA(t) = diag
(

sgn(t− t1), . . . , sgn(t− tn)
)
djC(t)diag(η1(t), . . . , ηn(t)) for t ∈ [a, b] (j = 1, 2).

Therefore, in view of (2.2.27), condition (1.1.8) holds.

Consider Remark 2.2.5. The first case is evident. Indeed, by (2.2.88),

djail(t) = sgn(t− ti)ηl(t) djcil(t) for t ∈ [a, b] (j = 1, 2; i, l = 1, . . . , n)

and
|djail(t)| ≤ |djcil(t)| for t ∈ [a, b] (j = 1, 2; i, l = 1, . . . , n).

Taking this into account, by (2.2.28), we have

n∑
l=1

|djail(t)| < 1 for t ∈ [a, b] (j = 1, 2; i = 1, . . . , n).

Hence condition (1.1.8) holds.
Let now conditions (2.2.29) and (2.2.30) be valid. Then from (2.2.30) we have

n∑
l=1, l ̸=i

∣∣ sgn(t− tl) · εi djcil(t)
∣∣

≤
∣∣εi + (−1)j sgn(t− ti) · εi djcii(t)

∣∣ for t ∈ [a, b] (j = 1, 2; i = 1, . . . , n). (2.2.92)

Using (2.2.29), we obtain

∣∣εi + (−1)j sgn(t− ti) · εi djcii(t)
∣∣

≤ 1 + (−1)j sgn(t− ti) · εi djcii(t) for t ∈ [a, b] (j = 1, 2; i = 1, . . . , n).

This and (2.2.92) yield

n∑
l=1, l ̸=i

∣∣ sgn(t− tl) · εi djcil(t)
∣∣

< 1 + (−1)j sgn(t− ti) · εi djcii(t) for t ∈ [a, b] (j = 1, 2; i = 1, . . . , n).

Therefore, by Hadamard’s theorem (see [36, p. 382]), condition (1.1.8) holds. Remark 2.2.5 is
proved analogously for the second case of (2.2.30).

2.3 Nonnegativity of solutions of the Cauchy–Nicoletti type
multi-point boundary value problems

In this section, we give some propositions on the existence of nonnegative solutions of problems (2.2.1),
(2.2.2) and (2.2.1), (2.2.3).
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2.3.1 Formulation of the results
Theorem 2.3.1. Let the matrix-function A = (ail)

n
i,l=1 ∈ BV([a, b];Rn×n) be such that the functions

ail(t) sgn(t− ti) (i ̸= l; i, l = 1, . . . , n) are nondecreasing, the conditions

(ail(t)− ail(s)) sgn(t− s) ≤ (cil(t)− cil(s)) for (t− s)(s− ti) > 0 (i, l = 1, . . . , n), (2.3.1)

and
fi(t) sgn(t− ti) are nondecreasing, c0i ≥ 0 (i = 1, . . . , n) (2.3.2)

hold on [a, b], and

0 ≤ ℓi(x1, . . . , xn) ≤ ℓ0i(x1, . . . , xn) for xl ∈ BV([a, b];R+) (i, l = 1, . . . , n), (2.3.3)

where a matrix-function C = (cil)
n
i,l=1 ∈ BV([a, b];Rn×n) and a vector-functional ℓ0 = (ℓ0i)

n
i=1 are

such that
(C, ℓ0) ∈ U(t1, . . . , tn). (2.3.4)

Then problem (2.2.1), (2.2.2) has one and only one solution and it is nonnegative.

From the results of Subsection 2.2.1 we have the following results.

Corollary 2.3.1. Let the matrix-function A = (ail)
n
i,l=1 ∈ BV([a, b];Rn×n) be such that the functions

ail(t) sgn(t− ti) (i ̸= l; i, l = 1, . . . , n) are nondecreasing and conditions (2.3.2) and

(ail(t)− ail(s)) sgn(t− s) ≤
t∫

s

hil(τ) dαi(τ) for (t− s)(s− ti) > 0 (i, l = 1, . . . , n) (2.3.5)

hold on [a, b], where αi (i = 1, . . . , n) are the functions nondecreasing on [a, b] and having not more
than a finite number of discontinuity points, hii ∈ Lµ([a, b],R;αi), hil ∈ Lµ([a, b],R+;αl) (i ̸= l;
l = 1, . . . , n), 1 ≤ µ ≤ +∞. Let, moreover, condition (2.2.15) hold and

0 ≤ ℓi(x1, . . . , xn) ≤
2∑

m=0

n∑
k=1

lmik∥xk∥ν,sm(αk) for xk ∈ BV([a, b];R+) (i, k = 1, . . . , n),

where the constant matrix H is defined as in Theorem 2.2.2. Then problem (2.2.1), (2.2.2) has one
and only one solution and it is nonnegative.

Corollary 2.3.2. Let the matrix-function A = (ail)
n
i,l=1 ∈ BV([a, b];Rn×n) be such that the functions

ail(t) sgn(t − ti) (i ̸= l; i, l = 1, . . . , n) are nondecreasing and conditions (2.3.2) and (2.3.5) hold on
[a, b], where αl (l = 1, . . . , n) are the functions nondecreasing on [a, b] and having not more than a finite
number of discontinuity points, hii ∈ Lµ([a, b],R;αi), hil ∈ Lµ([a, b],R+;αl) (i ̸= l; i, l = 1, . . . , n),
1 ≤ µ ≤ +∞. Let, moreover, condition (2.2.16) hold, where H0 = ((λkmij∥hik∥µ,sm(αi))

n
i,k=1)

2
m,j=0 is

a 3n×3n-matrix, and λkmij, ξij (j,m = 0, 1, 2; i, k = 1, . . . , n) and ν are defined as in Corollary 2.2.1.
Then problem (2.2.1), (2.2.3) has one and only one solution and it is nonnegative.

By Remark 2.2.2, Corollary 2.3.2 has the following form for hil(t) ≡ hil = const (i, l = 1, . . . , n)
and µ = +∞.

Corollary 2.3.3. Let the matrix-function A = (ail)
n
i,l=1 ∈ BV([a, b];Rn×n) be such that the functions

ail(t) sgn(t− ti) (i ̸= l; i, l = 1, . . . , n) are nondecreasing and the conditions (2.3.2) and

(aii)(t)− aii(s)) sgn(t− s) ≤ hii(α(t)− α(s)) for (t− s)(s− ti) > 0 (i = 1, . . . , n)

hold on [a, b], where α is a function nondecreasing on [a, b] and having not more than a finite number
of discontinuity points, hii ∈ R, hil ∈ R+ (i ̸= l; i, l = 1, . . . , n). Let, moreover, condition (2.2.17)
hold, where ρ0 and a constant matrix H = (hik)

n
i,k=1 are defined as in Corollary 2.2.2. Then problem

(2.2.1), (2.2.3) has one and only one solution and it is nonnegative.
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Corollary 2.3.4. Let the matrix-function A = (ail)
n
i,l=1 ∈ BV([a, b];Rn×n) be such that the functions

ail(t) sgn(t − ti) (i ̸= l; i, l = 1, . . . , n) are nondecreasing, the conditions (2.2.21), (2.2.23), (2.3.1),
(2.3.2) and

0 ≤ ℓi(x1, . . . , xn) ≤ µixi(τi) for xl ∈ BV([a, b];R+) (i, l = 1, . . . , n) (2.3.6)
hold on [a, b], where the functions cii (i = 1, . . . , n) are nonincreasing on [a, b], µi ∈ R, τi ∈ [a, b],
τi ̸= ti (i = 1, . . . , n); λi(t) ≡ γai

(t, ti), the function γai
(t, ti) is defined according to (1.1.9), and

ai(t) ≡ (cii(t) − cii(ti)) sgn(t − ti) (i = 1, . . . , n). Let, moreover, the functions cil ∈ BV([a, b];R)
(i ̸= l; i, l = 1, . . . , n) be nondecreasing on [a, b] and condition (2.2.24) hold, where M = (µil)

n
i,l=1 is

the constant matrix defined as in Theorem 2.2.3. Then problem (2.2.1), (2.2.2) has one and only one
solution and it is nonnegative.

Remark 2.3.1. In particular, the statement of Corollary 2.3.4 is true for the boundary value condition
(2.2.25).

Corollary 2.3.5. Let the matrix-function A = (ail)
n
i,l=1 ∈ BV([a, b];Rn×n) be such that the functions

ail(t) sgn(t− ti) (i ̸= l; i, l = 1, . . . , n) are nondecreasing, conditions (2.2.21), (2.2.23), (2.3.1), (2.3.2)
and (2.3.6) hold on [a, b], where µi ∈ R, τi ∈ [a, b], τi ̸= ti (i = 1, . . . , n); and the functions cii
(i = 1, . . . , n) are such that the functions λi(t) ≡ γcii(t, ti) (i = 1, . . . , n), defined according to (1.1.9),
are monotone on the intervals [a, ti[ and ]ti, b]. Let, moreover, the functions cil ∈ BV([a, b];R) (i ̸= l;
i, l = 1, . . . , n) be nondecreasing on [a, b] and condition (2.2.24) hold, where M = (µil)

n
i,l=1 is the

constant matrix defined as in Theorem 2.2.3. Then problem (2.2.1), (2.2.25) has one and only one
solution and it is nonnegative.

Remark 2.3.2. Let problem (2.2.1), (2.2.2) have a unique solution, the functions ail(t) sgn(t − ti)
(i ̸= l; i, l = 1, . . . , n) be nondecreasing, condition (2.3.2) and the inequalities

0 ≤ ℓi(x1, . . . , xn) for xl ∈ BV([a, b];R+) (i, l = 1, . . . , n)

hold. These conditions solely fail to imply that the solutions of the problem, in general, are non-
negative (a corresponding example is given below).

2.3.2 Proof of the results
Proof of Theorem 2.3.1. Due to (2.3.1), conditions (2.2.6)–(2.2.8) hold. Moreover, from (2.3.3) follows
estimate (2.2.9), since ℓ0i (i = 1, . . . , n) are nondecreasing functionals. So, in view of Theorem 2.2.1,
problem (2.2.1), (2.2.2) is uniquely solvable.

Let x = (xi)
n
i=1 be the solution of problem (2.2.1), (2.2.2) and let i ∈ {1, . . . , n} be fixed. Due to

(2.2.36), we have

|xi(t)| − |xi(s)| =
n∑

l=1

t∫
s

xl(τ) sgnxi(τ) dsc(ail)(τ) +
∑

s<τ≤t

(
|xi(τ)| − |xi(τ−)|

)

+
∑

s≤τ<t

(
|xi(τ+)| − |xi(τ)|

)
+

t∫
s

sgnxi(τ) dsc(fi)(τ) for a ≤ s < t ≤ b. (2.3.7)

From the definition of solutions of system (2.2.1), properties of the integral and the equalities

djx(t) ≡ djA(t) · x(t) + djf(t) (j = 1, 2)

result in

xi(t)− xi(s) =

n∑
l=1

t∫
s

xl(τ) dsc(ail)(τ) +
∑

s<τ≤t

(
xi(τ)− xi(τ−)

)
+

∑
s≤τ<t

(
xi(τ+)− xi(τ)

)
+ (fi(t)− fi(s)) for a ≤ s < t ≤ b (j = 1, 2).
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Subtracting the last equality from (2.3.7), we can conclude that

y(t)− yi(s) =

n∑
l=1

t∫
s

(
xl(τ) sgnxi(τ)− xl(τ)

)
dsc(ail)(τ) +

∑
s<τ≤t

(yi(τ)− yi(τ−))

+
∑

s≤τ<t

(yi(τ+)− yi(τ)) +

t∫
s

sgnxi(τ) dsc(fi)(τ)− (fi(t)− fi(s)) for a ≤ s < t ≤ b,

where
yi(t) ≡ |xi(t)| − xi(t).

From this, using conditions of Lemma 2.2.6, just as in the proof of Lemma 2.2.1, we obtain

yi(t)− yi(s) ≤
n∑

l=1

t∫
s

yl(t) dcil(t) for (t− s)(s− ti) > 0. (2.3.8)

In addition, by (2.3.2) and (2.3.3), we have

|xi(ti)| ≤ ℓi(|x1|, . . . , |xn|) + c0i (i = 1, . . . , n),

From this, because ℓi (i = 1, . . . , n) are linear functionals, and (2.3.8), it is clear that

sgn(t− ti)dyi(t) ≤
n∑

l=1

yl(t) dcil(t) for t ∈ [a, b], t ̸= ti (i = 1, . . . , n),

(−1)j djyi(ti) ≤
n∑

l=1

yl(ti) djcil(ti) (j = 1, 2; i = 1, . . . , n);

yi(ti) ≤ ℓ0i(y1, . . . , yn) (i = 1, . . . , n).

So, since yi (i = 1, . . . , n are the nonnegative functions, according to condition (2.3.4), we conclude
that

yi(t) ≡ 0 (i = 1, . . . , n).

Consequently,
|xi(t)| = xi(t) ≥ 0 for t ∈ [a, b] (i = 1, . . . , n).

Corollaries 2.3.1–2.3.5 follow from Theorem 2.3.1 by virtue of Lemmas 2.2.8–2.2.10.
In connection to Remark 2.3.2, for the completeness, we give the corresponding example from [47]

for ordinary differential case.
Consider the problem

dx1
dt

= x2,
dx2
dt

= −µ2x1 − 1; x1(a) = 0, x2(b) = 0, (2.3.9)

where
µ =

7π

3
(b− a)−1.

For this example, the conditions of Remark 2.3.2 are valid for

n = 2, t1 = a, t2 = b; a11(t) ≡ a22(t) ≡ 0, a12(t) ≡ t, a21(t) ≡ −µ2t,

f1(t) ≡ 0, f2(t) ≡ −t; ℓi(x1, x2) ≡ 0 (i = 1, 2)

and problem (2.3.9) has the unique solution

x1(t) = µ−2
(
2 cosµ(b− a)− 1

)
, x1(t) = 2µ−1 sinµ(b− a).

In addition, the values of functions x1 and x2 at the point t0 = b− 3π(2mu)−1 are negative.
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2.4 On a method for constructing solutions of
the Cauchy–Nicoletti type multi-point
boundary value problems

In this section, we give a method for constructing solutions of the system

dx(t) = dA(t) · x(t) + df(t) for t ∈ [a, b] (2.4.1)

satisfying one of the conditions

xi(ti) = ℓi(x1, . . . , xn) + c0i (i = 1, . . . , n), (2.4.2)
xi(ti) = µixi(τi) + c0i (i = 1, . . . , n) (2.4.3)

and
xi(ti) = c0i (i = 1, . . . , n), (2.4.4)

where coi ∈ R, µi ∈ R and τi ∈ [a, b] (i = 1, . . . , n).
As the zero approximation to the solution of problem (2.4.1), (2.4.2), we choose an arbitrary

function (x0i)
n
i=1 ∈ BV(I;Rn). If the (m − 1)-th approximation (xm−1 i)

n
i=1 is constructed, then by

the m-th approximation we take (xmi)
n
i=1, i-th component of which is defined by

xmi(ti) = ℓi(xm−1 1, . . . , xm−1n) + c0i (i = 1, . . . , n), (2.4.5)
xmi(t) = γi(t, ti)xmi(ti) + ωi(xm−1 1, . . . , xm−1n, fi)(t) for t ∈ [a, b] (i = 1, . . . , n), (2.4.6)

where the operators ωi : BV(I;Rn+1) → BV(I;R) (i = 1, . . . , n) are defined as

ωi(y1, . . . , yn+1)(t) = gi(y1, . . . , yn+1)(t)− γi(t, ti)

t∫
ti

gi(y1, . . . , yn+1)(s) dγ
−1
i (s, ti),

gi(y1, . . . , yn+1)(t) =

n∑
l=1

t∫
ti

yl(s) d(ail(s)− δilãi(s)) + yn+1(t)− yn+1(ti)

for t ∈ [a, b] (i = 1, . . . , n);

(2.4.7)

γi(t, ti) = γãi
(t, ti), ãi(t) = sc(aii)(t) for t ∈ [a, b] (i = 1, . . . , n),

and the function γãi
(t, ti) is defined by (1.1.9).

2.4.1 Formulation of the results
Theorem 2.4.1. Let conditions (2.2.6)–(2.2.9) hold on [a, b], where a matrix-function C = (cil)

n
i,l=1 ∈

BV([a, b];Rn×n) and a vector-functional ℓ0 = (ℓ0i)
n
i=1 are such that condition (2.3.4) hold. Then

problem (2.4.1), (2.4.2) has one and only one solution and there exist ρ0 > 0 and δ ∈ ]0, 1[ such that

n∑
i=1

∥xi − xmi∥∞ ≤ ρ0δ
m (m = 1, 2 . . . ), (2.4.8)

where the vector-functions (xmi)
n
i=1 (m = 1, 2, . . . ) are defined by (2.4.5)–(2.4.7).

Remark 2.4.1. The described above process of constructing a solution of problem (2.4.1), (2.4.2) is
stable in the sense given below.

Corollary 2.4.1. Let the conditions of Theorem 2.2.2 hold. Then the statement of Theorem 2.4.1 is
true.
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Corollary 2.4.2. Let the conditions of Theorem 2.2.4 hold. Then problem (2.4.1), (2.4.3) has the
unique solution (xi)

n
i=1 and for an arbitrary function (x0i)

n
i=1 ∈BV([a, b];Rn) estimate (2.4.8) holds,

where

xmi(t) = µiγi(t, ti)xm−1 i(τi) + c0i + ωi(xm−1 1, . . . , xm−1n, fi)(t) for t ∈ [a, b] (i = 1, . . . , n),

the operators ωi : BV([a, b];Rn+1) → BV([a, b];R) (i = 1, . . . , n) are defined by (2.4.7), and ρ0 > 0
and δ ∈ ]0, 1[ are the constants that do not depend on m.

Corollary 2.4.3. Let the conditions of Corollaries 2.2.1 or 2.2.2 hold. Then problem (2.4.1), (2.4.4)
has the unique solution (xi)

n
i=1 and for an arbitrary function (x0i)

n
i=1 ∈ BV([a, b];Rn) estimate (2.4.8)

holds, where

xmi(t) = γi(t, ti)c0i + ωi(xm−1 1, . . . , xm−1n, fi)(t) for t ∈ [a, b] (i = 1, . . . , n),

the operators ωi : BV([a, b];Rn+1) → BV([a, b];R) (i = 1, . . . , n) are defined by (2.4.7), and ρ0 > 0
and δ ∈ ]0, 1[ are the constants that do not depend on m.

2.4.2 Auxiliary propositions
Lemma 2.4.1. Let y, yk ∈ BV([a, b];Rn) (k = 1, 2, . . . ) be vector-functions such that the conditions

lim
k→+∞

yk(t) = y(t) for t ∈ [a, b]

and

∥yk(t)− yk(s)∥ ≤ lk + ∥g(t)− g(s)∥ for a ≤ s < t ≤ b (k = 1, 2, . . . ) (2.4.9)

hold, where lk ≥ 0, lk → 0 as k → +∞, and g : [a, b] → Rn is a nondecreasing vector-function. Then

lim
k→+∞

∥yk − y∥∞ = 0.

Proof. Let ε be an arbitrary positive number, and let R(a, b, ε; g) and Dj(a, b, ε; g) (j = 1, 2) be
the sets defined in Subsection 1.2.2. Due to Lemma 1.2.3, the set R(a, b, ε; g) is not empty. Let
{α0, τ1, α1, . . . , τm, αm} ∈ R(a, b, ε/5; g), and let nε be a natural number such that

li <
ε

5
and ∥yi(τ)− yk(τ)∥ <

ε

5
for τ ∈ {α0, τ1, α1, . . . , τm, αm} (i, k ≥ nε).

Assume that αj−1 < t < τj (j = 1, . . . ,m). Then, in view of (2.4.9), we have

∥yi(t)− yk(t)∥ ≤ ∥yi(t)− yi(τj)∥+ ∥yi(τj)− yk(τj)∥+ ∥yk(τj)− yk(t)∥
≤ li + lk + 2∥g(t)− g(τj)∥+ ∥yi(τj)− yk(τj)∥

<
3ε

5
+ 2∥g(τj)− g(αj−1)∥ < ε for τj ̸∈ D1

(
a, b,

ε

5
; g
)

(i, k ≥ nε)

and

∥yi(t)− yk(t)∥ ≤ ∥yi(t)− yi(αj−1)∥+ ∥yi(αj−1)− yk(αj−1)∥+ ∥yk(αj−1)− yk(t)∥
≤ li + lk + 2∥g(t)− g(αj−1)∥+ ∥yi(αj−1)− yk(αj−1)∥

<
3ε

5
+ 2∥g(τj−)− g(αj−1)∥ < ε for τj ∈ D1

(
a, b,

ε

5
; g
)

(i, k ≥ nε).

The case τj < t < αj (j = 1, . . . ,m) is considered analogously, where we use the set D2(a, b, ε; g).



The General BVPs for Linear Systems of Generalized ODEs 83

Lemma 2.4.2. Let the matrix-function C = (cil)
n
i,l=1 ∈ BV([a, b];Rn×n) and a vector-functional

ℓ0 = (ℓ0i)
n
i=1 be such that conditions (2.3.4) and

1 + djcii(t) > 0 for t ∈ [a, b] (j = 1, 2; i = 1, . . . , n) (2.4.10)

hold. Then there exists a positive number ρ∗ such that every solution of the problem

sgn(t− ti) d|xi(t)| ≤
n∑

l=1

|xl(t)| dcil(t) + dui(t) for t ∈ [a, b] (i = 1, . . . , n),

(−1)j dj |xi(ti)| ≤
n∑

l=1

|xl(ti)| dcil(ti) + djui(ti) (j = 1, 2; i = 1, . . . , n);

(2.4.11)

|xi(ti)| ≤ ℓ0i
(
|x1|, . . . , |xn|

)
+ γ (i = 1, . . . , n) (2.4.12)

admits an estimate
n∑

i=1

∥xi∥∞ ≤ ρ∗
(
γ + ∥u( · )− u(a)∥∞

)
, (2.4.13)

where γ ∈ R+ and u = (ui)
n
i=1 are an arbitrary number and a nondecreasing vector-function, respec-

tively.

Proof. Let x = (xi)
n
i=1 be an arbitrary solution of problem (2.4.11), (2.4.12). In view of (2.4.11), we

conclude that

sgn(t− ti) d|xi(t)| ≤ |xl(t)| dcii(t) +
n∑

l ̸=i; l=1

|xl(t)| dcil(t) + dui(t) for t ∈ [a, b] (i = 1, . . . , n),

(−1)j dj |xi(ti)| ≤ |xl(ti)| dcii(ti) +
n∑

l ̸=i; l=1

|xl(ti)| dcil(ti) + djui(ti) (j = 1, 2; i = 1, . . . , n).

(2.4.14)

According to Lemma 2.2.6, from (2.4.14) it follows that

|xi(t)| ≤ yi(t) for t ∈ [a, b] (i = 1, . . . , n),

where yi, for every i ∈ {1, . . . , n}, is a solution of the Cauchy problem

sgn(t− ti) dyi(t) = yl(t) dcii(t) +

n∑
l ̸=i; l=1

|xl(t)| dcil(t) + dui(t) for t ∈ [a, b],

y(ti) = |xi(ti)|.

(2.4.15)

If along with this we take into account that ℓ0i is a nondecreasing functional and cil and ui (i ̸= l;
i, l = 1, . . . , n) are nondecreasing functions, from (2.4.12) and (2.4.15) we find that

∣∣dyi(t)− yi(t) dαi(t)
∣∣ ≤ n∑

l ̸=i; l=1

yl(t) dcil(t) + dui(t) for t ∈ [a, b] (i = 1, . . . , n),

yi(ti) ≤ ℓ0i(y1, . . . , yn) + γ (i = 1, . . . , n),

(2.4.16)

where
αi(t) ≡ cii(t) sgn(t− ti) (i = 1, . . . , n). (2.4.17)

Thus, for the proof of the lemma, it suffices to prove the existence of a positive number ρ such
that every nonnegative solution of problem (2.4.16) would admit an estimate

n∑
i=1

∥yi∥∞ ≤ ρ∗
(
γ + ∥u( · )− u(a)∥∞

)
.
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Let us say the opposite, i.e., there does not exist such a number ρ. Then for every natural m
there exists a vector-function u0 = (u0im)ni=1 (nondecreasing on [a, b]), γm ∈ R+ and (yim)ni=1 ∈
BV([a, b];Rn) such that

∣∣dyim(t)− yim(t) dαi(t)
∣∣ ≤ n∑

l ̸=i; l=1

ylm(t) dcil(t) + du0im(t) for t ∈ [a, b] (i = 1, . . . , n),

yim(ti) ≤ ℓ0i(y1m, . . . , ynm) + γm (i = 1, . . . , n)

and
n∑

i=1

∥yim∥∞ > m
(
γm + ∥u0m( · )− u0m(a)∥∞

)
.

If we put

yim(t) ≡
( n∑

k=1

∥ykm∥∞
)−1

yim(t) (i = 1, . . . , n)

and
u0im(t) ≡

( n∑
k=1

∥ykm∥∞
)−1

u0im(t) (i = 1, . . . , n),

then, taking into account that ℓ0i is positive homogeneous, we get

∣∣dyim(t)− yim(t) dαi(t)
∣∣ ≤ n∑

l ̸=i; l=1

ylm(t) dcil(t) + du0im(t) for t ∈ [a, b] (i = 1, . . . , n), (2.4.18)

yim(ti) ≤ ℓ0i(y1m, . . . , ynm) +
1

m
(i = 1, . . . , n), (2.4.19)

u0im(b)− u0im(a) ≤ 1

m
(i = 1, . . . , n),

n∑
i=1

∥yim∥∞ = 1 (2.4.20)

and
n∑

i=1

∥yim∥∞ = 1. (2.4.21)

According to (2.4.18), (2.4.20) and (2.4.21), there exists a positive number r such that

b∨
a

yim < r (i = 1, . . . , n; m = 1, 2, . . . ). (2.4.22)

Therefore, due to the Hally choice theorem, without loss of generality, we may assume that

lim
m→+∞

yim(t) = yi(t) < r for t ∈ [a, b] (i = 1, . . . , n),

where yi ∈ BV([a, b];R) (i = 1, . . . , n).
By (2.4.18) and (2.4.22), there exists nondecreasing vector-function g such that condition (2.4.9)

holds for lm = 0 (m = 1, 2, . . . ). Using Lemma 2.4.1, we get

lim
m→+∞

∥yim − yi∥∞ = 0 (i = 1, . . . , n). (2.4.23)

Consequently, by this, (2.4.19) and (2.4.21), we have

yi(ti) ≤ ℓ0i(y1, . . . , yn) (i = 1, . . . , n), (2.4.24)
n∑

i=1

∥yi∥∞ = 1. (2.4.25)
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Let us put

qim(t) ≡ fim(t) + u0im(t)− u0im(a) (i = 1, . . . , n; m = 1, 2, . . . ),

where

fim(t) ≡
n∑

l ̸=i; l=1

t∫
a

ylm(t) dcil(t) (i = 1, . . . , n; m = 1, 2, . . . ).

By virtue of (2.4.18), Lemma 2.2.6 and the variation-of-constants formula (1.1.12), we have

yim(t) ≤ γi(t, ti)yim(ti) +

∣∣∣∣
t∫

ti

γi(t, τ) dA(αi, qim)(τ)

∣∣∣∣ for t ∈ [a, b] (i = 1, . . . , n), (2.4.26)

where γi(t, τ) ≡ γαi
(t, τ) is defined by (1.1.9).

Due to (2.4.20) and (2.4.26), we find that

yim(t) ≤ γi(t, ti)yim(ti) +

∣∣∣∣
t∫

ti

γi(t, τ) dA(αi, fim)(τ)

∣∣∣∣+ ∣∣∣∣
t∫

ti

γi(t, τ) dA(αi, uim)(τ)

∣∣∣∣
≤ γi(t, ti)yim(ti) +

∣∣∣∣ n∑
l ̸=i; l=1

t∫
ti

γi(t, τ)ylm(t) dA(αi, cil)(τ)

∣∣∣∣+ r

m
for t∈ [a, b] (i=1, . . . , n),

where r is some positive number.
If in the last inequality we pass to the limit as m→ +∞, then by (2.4.23) we conclude that

yi(t) ≤ xi(t) for t ∈ [a, b] (i = 1, . . . , n), (2.4.27)

where

xi(t) ≡ γi(t, ti)yi(ti) +

∣∣∣∣ n∑
l ̸=i; l=1

t∫
ti

γi(t, τ)yl(τ) dA(αi, cil)(τ)

∣∣∣∣ (i = 1, . . . , n). (2.4.28)

Put

gi(t) =

∣∣∣∣ n∑
l ̸=i; l=1

t∫
ti

γi(ti, τ)yl(τ) dA(αi, cil)(τ)

∣∣∣∣ for t ∈ [a, b] (i = 1, . . . , n).

Then by (2.4.28) we have

xi(t) ≡ γi(t, ti)(yi(ti) + gi(t)) for t ∈ [a, b] (i = 1, . . . , n). (2.4.29)

Using the equalities

γi(t, s) ≡ γi(t, ti)γi(ti, s), dγi(t, ti) ≡ γi(t, ti) dαi(t)

and
djγi(t, ti) ≡ γi(t, ti) djαi(t) (j = 1, 2; i = 1, . . . , n),
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the general integration-by-parts formulas (0.0.11) and (2.4.17), from (2.4.29) we conclude that

xi(t)− xi(s) =

t∫
s

dxi(τ)

=

t∫
s

(yi(ti)+gi(τ)) dγi(τ, ti)+

t∫
s

γi(τ, ti) dgi(τ)−
∑

s<τ≤t

d1γi(τ, ti) d1gi(τ)+
∑
s≤τt

d2γi(τ, ti) d2gi(τ)

=

t∫
s

xi(τ) dαi(τ)+

n∑
l ̸=i; l=1

t∫
s

yl(τ) dA(αi, cil)(τ)−
n∑

l ̸=i; l=1

∑
s<τ≤t

d1γi(τ, ti) · γi(ti, τ)yl(τ) d1A(αi, cil)(τ)

+

n∑
l ̸=i; l=1

∑
s≤τ<t

d2γi(τ, ti) · γi(ti, τ)yl(τ) d2A(αi, cil)(τ) for a ≤ s < t ≤ b (i = 1, . . . , n).

Hence

xi(t)− xi(s) =

t∫
s

xi(τ) dαi(τ) +

n∑
l ̸=i; l=1

t∫
s

yl(τ) dcil(τ) for s, t ∈ [a, b] (i = 1, . . . , n).

Consequently, owing to (2.4.27), we have

xi(t)− xi(s) ≤
n∑

l=1

t∫
s

xl(τ) dcil(τ) for s, t ∈ [a, b] (i = 1, . . . , n).

By virtue of this, (2.4.24), (2.4.25) and (2.4.27), we obtain

n∑
i=1

∥xi∥∞ ≥ 1

and thus the function (xi)
n
=1 is a nonnegative nontrivial solution of problem (2.2.4), (2.2.5), which

contradicts condition (2.2.10).

Lemma 2.4.3. Let the matrix-function C = (cil)
n
i,l=1 ∈ BV([a, b];Rn×n) and a vector-functional

ℓ0 = (ℓ0i)
n
i=1 be such that conditions (2.2.10) and (2.4.10) hold. Then there exists a number δ ∈ ]0, 1[

such that
(C̃, ℓ̃0) ∈ U(t1, . . . , tn), (2.4.30)

where C̃ = (c̃il)
n
i,l=1, ℓ̃0 = (ℓ̃0i)

n
i=1,

c̃ii(t) ≡ cii(t), c̃il(t) ≡
1

δ
cil(t) (i ̸= l; i, l = 1, . . . , n) (2.4.31)

and
ℓ̃0i(y1, . . . , yn) ≡

1

δ
ℓ0i(y1, . . . , yn) (i = 1, . . . , n). (2.4.32)

Proof. According to Lemma 2.4.2, there exists a positive number ρ∗ such that every solution of problem
(2.4.11), (2.4.12) admits estimate (2.4.13), where γ ∈ R+ and u = (ui)

n
i=1 are an arbitrary number

and a nondecreasing vector-function, respectively.
Let

γ0 =

n∑
l=1

ℓ0l(1, . . . , 1), u0i(t) ≡
n∑

l ̸=i; l=1

(
cil(t)− cil(a)

)
(i = 1, . . . , n),
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δ ∈ ]0, 1[ be a number such that

1− δ

δ
ρ∗

(
γ0 +

n∑
l=1

uil(b)
)
<

1

2
(i = 1, . . . , n) (2.4.33)

and let c̃il and ℓ̃0i (i, l = 1, . . . , n) be, respectively, the functions and the functionals given by (2.4.31)
and (2.4.32).

Consider an arbitrary nonnegative solution x = (xi)
n
i=1 of the problem

sgn(t− ti) dxi(t) ≤
n∑

l=1

xl(t) dc̃il(t) for t ∈ [a, b] (i = 1, . . . , n),

(−1)j djxi(ti) ≤
n∑

l=1

xl(ti) dc̃il(ti) (j = 1, 2; i = 1, . . . , n);

(2.4.34)

xi(ti) ≤ ℓ0i(x1, . . . , xn) (i = 1, . . . , n). (2.4.35)

It is not difficult to verify that (xi)
n
i=1 will be the solution of problem (2.4.11), (2.4.12), where

γ =
1− δ

δ
γ0

n∑
l=1

∥xl∥∞, ui(t) ≡
1− δ

δ
u0i(t)

n∑
l=1

∥xl∥∞ (i = 1, . . . , n).

By the choose of ρ∗, estimate (2.4.13) holds, which, in view of (2.4.33), implies

n∑
l=1

∥xl∥∞ ≤ 1

2

n∑
l=1

∥xl∥∞.

Consequently, xi(t) ≡ 0 (i = 1, . . . , n). So, condition (2.4.30) holds.

Lemma 2.4.4. Let the matrix-function C = (cil)
n
i,l=1 ∈ BV([a, b];Rn×n) and a vector-functional

ℓ0 = (ℓ0i)
n
i=1 be such that conditions (2.2.10) and

1 + (−1)j sgn(t− ti) djcii(t) > 0 for (−1)j(t− ti) < 0 (j = 1, 2; i = 1, . . . , n) (2.4.36)

hold. Then there exist a positive number ρ and δ ∈ ]0, 1[ such that for an arbitrary (y0i)
m
i=1 ∈

BV([a, b];Rn
+) and any sequences of numbers γm ∈ R+ (m = 1, 2, . . . ), the vector-functions (ymi)

m
i=1 ∈

BV([a, b];Rn
+) (m = 1, 2, . . . ) and nondecreasing vector-functions um = (umi)

m
i=1 ∈ BV([a, b];Rn)

(m = 1, 2, . . . ) satisfying the inequalities

sgn(t− ti) dymi(t) ≤ ymi(t) dc̃i(t)

+

n∑
l=1

ym−1 l(t) d
(
cil(t)− δilc̃i(t)

)
+ dumi(t) for t ∈ [a, b] (i = 1, . . . , n),

(−1)j djymi(ti) ≤
n∑

l=1

ym−1 l(ti) djcil(ti) + djumi(ti) (j = 1, 2; i = 1, . . . , n),

(2.4.37)

ymi(ti) ≤ ℓ0i(ym−1 l, . . . , ym−1n) + γm (i = 1, . . . , n) (2.4.38)

for every natural m, the estimates

n∑
i=1

∥ymi∥∞ ≤ ρ

{ m∑
l=1

δm−l
(
γl + ∥ul(b)− ul(a)∥

)
+ δm

n∑
i=1

∥y0i∥∞
}

(m = 1, 2, . . . ) (2.4.39)

hold.
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Proof. By Lemma 2.4.3, there exists a number δ ∈ ]0, 1[ such that the functions c̃il and the functionals
ℓ̃0i (i, l = 1, . . . , n) given, respectively, by (2.4.31) and (2.4.32), satisfy condition (2.4.30).

On BV([a, b];Rn
+), we introduce the operators

ωi(z1, . . . , zn)(t) = γi(t)

{
ℓ̃0i(z1, . . . , zn) +

n∑
l ̸=i; l=1

(∣∣∣∣
t∫

ti

γ−1
i (τ)zl(τ) dc̃il(τ)

+
∑

t∗i<τ≤t∗i

γ−1
i (τ−)zl(τ) d1c̃il(τ) +

∑
t∗i≤τ<t∗i

γ−1
i (τ+)zl(τ) d2c̃il(τ)

)}
(i = 1, . . . , n),

where t∗i = min{ti, t}, t∗i = max{ti, t} (i = 1, . . . , n), and γi(t) is a solution of the problem

dγi(t) = γi(t) dαi(t), γi(ti) = 1.

By (2.4.36), the latter problem has the unique solution which is strongly positive on the whole
[a, b].

Let

z0i(t) ≡ 1 (i = 1, . . . , n), η =

n∑
i=1

∥γi∥∞
(
1 + n∥γ−1

i ∥∞
)

and (zmi)
n
i=1 (m = 1, 2, . . . ) be a sequence of vector-functions defined by

zmi(t) = ωi(zm−11, . . . , zm−1n)(t) + η (i = 1, . . . , n; m = 1, 2, . . . ). (2.4.40)

Clearly, ωi( · ) (i = 1, . . . , n) are nondecreasing operators and, therefore,

1 ≤ zm−1i(t) ≤ zmi(t) for t ∈ [a, b] (i = 1, . . . , n; m = 1, 2, . . . ).

Consequently,

ρm =

n∑
i=1

∥zmi∥∞ (m = 1, 2, . . . )

is a nondecreasing sequence of positive numbers.
Let us show that

ρ = lim
m→∞

ρm <∞. (2.4.41)

Assuming to the contrary that ρm → ∞ as m→ ∞, we put

xmi(t) =
zmi(t)

ρm
, xmi(t) = ωi(xm−1 1, . . . , xm−1n)(t), ηm =

η

ρm
(m = 1, 2, . . . ).

Then

lim
m→∞

ηm = 0, (2.4.42)
n∑

i=1

∥xmi∥∞ = 1 (m = 1, 2, . . . ). (2.4.43)

Taking into account the Hally choice theorem and Lemma 2.4.1, it is not difficult to verify that

lim
m→∞

supxmi(t) = xi(t) uniformly on [a, b] (i = 1, . . . , n), (2.4.44)

where (xi)
n
i=1 is a vector-function from BV([a, b];Rn

+). On the other hand, from (2.4.40) we have

xmi(t) ≤ xmi(t) + ηm for t ∈ [a, b] (i = 1, . . . , n; m = 1, 2, . . . )
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and

xmi(t) ≤ ωi(xm−1 1 + ηm−1, . . . , xm−1n + ηm−1)(t) for t ∈ [a, b] (i = 1, . . . , n; m = 1, 2, . . . ).

By (2.4.42)–(2.4.44) and the latter inequalities, it follows that
n∑

i=1

∥xi∥∞ > 1

and
xi(t) ≤ xi(t) for t ∈ [a, b] (i = 1, . . . , n),

where
xi(t) ≡ ωi(x1, . . . , xn)(t) (i = 1, . . . , n).

Now, for every i ∈ {1, . . . , n}, using the integration-by-parts formula (1.1.12), from definition of
the function ωi we get

sgn(t− ti)(xi(t)− xi(s))−
n∑

l=1

t∫
s

xl(τ) dc̃il(τ) =
1

δ

n∑
l ̸=i; l=1

t∫
s

(xl(τ)− xl(τ)) dcil(τ) ≤ 0

for a ≤ s ≤ t < ti and ti < s ≤ t ≤ b (i = 1, . . . , n),

(−1)j djxi(ti) ≤
n∑

l=1

xl(ti) dj c̃il(ti) (j = 1, 2; i = 1, . . . , n);

xi(ti) = ℓ̃0i(x1, . . . , xn) ≤ ℓ̃0i(x1, . . . , xn) (i = 1, . . . , n).

So, (xi)ni=1 is nonnegative nonzero (due to (2.4.43)) solution of problem (2.4.34), (2.4.35). But this
contradicts condition (2.4.30). The obtained contradiction proves inequality (2.4.41).

Let
(y0i)

n
i=1 ∈ BV([a, b];Rn

+), ζ0 =

n∑
i=1

∥y0i∥∞ > 0,

and γm ∈ R+, (ymi)
n
i=1 ∈ BV([a, b];Rn

+) and um = (umi)
n
i=1 ∈ BV([a, b];Rn) (m = 1, 2, . . . ) be

arbitrary sequences satisfying conditions (2.4.37) and (2.4.38) for every natural m.
Put

ζm =
m∑

k=1

δm−k(γk + ∥uk(b)− uk(a)∥) + δm
n∑

i=1

∥y0i∥∞,

y0i(t) ≡ 1, ymi(t) ≡
ymi(t)

ζm
(i = 1, . . . , n).

Regarding the inequalities

ζm ≥ δζm−1, ζm > γm, γm > ∥um(b)− um(a)∥ (m = 1, 2, . . . ),

from (2.4.37) and (2.4.38) we discover that

sgn(t− ti) dymi(t) ≤ ymi(t) dc̃i(t)

+

n∑
l ̸=i; 1=1

ym−1l(t) dc̃il(t) + dumi(t) for t ∈ [a, b] (i = 1, . . . , n),

(−1)j djymi(ti) ≤
n∑

l=1

ym−11(ti) djcil(ti) + djumi(ti) (j = 1, 2; i = 1, . . . , n),

(2.4.45)

ymi(ti) ≤ ℓ̃0i(ym−1l, . . . , ym−1n) + 1 (i = 1, . . . , n) (2.4.46)
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for every natural m, where umi(t) = umi(t)/ζm.
Let now

q∗mi(t) ≡ qi(ym−1 1, . . . , ym−1n)(t) + |umi(t)− umi(ti)| (i = 1, . . . , n)

and
y∗mi(t) ≡ ymi(t)− q∗mi(t) (i = 1, . . . , n)

for every natural m.
Then, by (2.4.45), (2.4.46) and the equalities

djαi(ti) = (−1)j djcii(ti), djq
∗
im(ti) = (−1)j djumi(ti) (j = 1, 2; i = 1, . . . , n),

we find that

sgn(t− ti) dy
∗
mi(t) ≤ (y∗mi(t) + q∗mi(t)) dcii(t) for t ∈ [a, b] (i = 1, . . . , n),

(−1)j djy
∗
mi(ti) ≤ (y∗mi(ti) + q∗mi(ti)) djcii(ti) (j = 1, 2; i = 1, . . . , n)

and
y∗mi(ti) ≤ c0i (j = 1, 2; i = 1, . . . , n),

where
c0i = ℓ̃0i(ym−1 1, . . . , ym−1n) + 1 (j = 1, 2; i = 1, . . . , n)

for every natural m.
By Lemma 2.2.6, we have

y∗mi(t) ≤ x∗mi(t) for t ∈ [a, b] (i = 1, . . . , n; m = 1, 2, . . . ), (2.4.47)

where x∗mi is a solution of the problem

dx∗mi(t) = (x∗mi(t) + q∗mi(t)) dαi(t), x∗mi(ti) = c0i.

Due to condition (2.4.36), the latter problem has the unique solution x∗mi and by the variation-of-
constant formula (1.1.12), this solution is given by the equality

x∗mi(t) =

t∫
ti

q∗mi(τ) dαi(τ) + γi(t)

{
c0i −

t∫
ti

( τ∫
ti

q∗mi(s) dαi(s)

)
dγ−1

i (τ)

}
for t ∈ [a, b] (i = 1, . . . , n; m = 1, 2, . . . ).

Hence, by the integration-by-parts formula and equalities (0.0.13) and (0.0.14), we conclude that

x∗mi(t) = γi(t)

{
c0i +

t∫
ti

q∗mi(τ)γ
−1
i (τ) dαi(τ)

−
∑

ti<τ≤t

q∗mi(τ) d1αi(τ) d1γ
−1
i (τ) +

∑
ti≤τ<t

q∗mi(τ) d2αi(τ) d2γ
−1
i (τ)

}

= γi(t)

{
c0i+

t∫
ti

q∗mi(τ) d

( τ∫
ti

γ−1
i (s) dαi(s)−

∑
ti<s≤τ

d1αi(s) d1γ
−1
i (s)+

∑
ti≤s<τ

d2αi(s) d2γ
−1
i (s)

)}

= γi(t)

{
c0i+

t∫
ti

q∗mi(τ) d

(
αi(τ)γ

−1
i (τ)−

τ∫
ti

αi(s) dγ
−1
i (s)

)}
for t>ti (i=1, . . . , n; m=1, 2, . . . ).

In addition, by Proposition 1.1.2 (see equality (1.1.13)), we get

γ−1
i (t) = 1− γ−1

i (t)αi(t) +

t∫
ti

αi(s) dγ
−1
i (s) for t ∈ [a, b] (i = 1, . . . , n)
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and, therefore, we obtain

x∗mi(t) = γi(t)

(
c0i −

t∫
ti

q∗mi(τ) dγ
−1
i (τ)

)
for t > ti (i = 1, . . . , n; m = 1, 2, . . . ). (2.4.48)

The inequality (2.4.48) for t < ti can be verified analogously.
By definitions of y∗mi, q∗mi, ωi and ηi, from (2.4.47) and (2.4.48) it follows that

ymi(t) ≤ ωi

(
ym−11, . . . , ym−1n

)
(t) + γi(t)

+ γi(t)

{∣∣∣∣
t∫

ti

γ−1
i (τ) dsc(umi)(τ)

∣∣∣∣+ ∑
t∗i<τ≤t∗i

γ−1
i (τ−) d1umi(τ) +

∑
t∗i≤τ<t∗i

γ−1
i (τ+) d2umi(τ)

}
≤ ωi(ym−11, . . . , ym−1n)(t) + ∥γi∥∞

+ ∥γi∥∞∥γ−1
i ∥∞

(
sc(umi)(b)− sc(umi)(a)

)
+

∑
a<τ≤b

d1umi(τ) +
∑

a≤τ<b

d2umi(τ)

≤ ωi(ym−11, . . . , ym−1n)(t) + ∥γi∥∞
(
1 + ∥γ−1

i ∥∞
(
umi(b)− umi(a)

))
.

So,

ymi(t) ≤ ωi(ym−11, . . . , ym−1n)(t) + η for t ∈ [a, b] (i = 1, . . . , n; m = 1, 2, . . . ).

This, according to (2.4.41), implies

ymi(t) ≤ zmi(t) for t ∈ [a, b] (i = 1, . . . , n; m = 1, 2, . . . )

and
n∑

i=1

∥ymi∥∞ ≤
n∑

i=1

∥zmi∥∞ = ρm ≤ ρ (m = 1, 2, . . . ).

Hence, estimates (2.4.39) are valid. Since ρ does not depend on (y0i)
n
i=1, these estimates will be also

valid if y0i ≡ 0 (i = 1, . . . , n).

2.4.3 Proof of the results
Proof of Theorem 2.4.1. According to Theorem 2.2.1, problem (2.4.1), (2.4.2) has the unique solution
(xi)

n
i=1. On the other hand, due (2.4.6) and (2.4.7), for every i ∈ {1, . . . , n} and every natural m, by

variation-of-constant formula (1.1.12), the function xmi is a solution of the Cauchy problem

dxmi(t) = xmi(t) dãi(t) +

n∑
l=1

xm−1 l(t) d(ail(t)− δilãi(t)) + dfi(t),

xmi(ti) = ℓi(xm−1 1, . . . , xm−1n) + c0i

and, therefore,

d(xi(t)− xmi(t)) = (xi(t)− xmi(t)) dãi(t) +

n∑
l=1

(xl(t)− xm−1,l(t)) d(ail(t)− δilãi(t)), (2.4.49)

xi(ti)− xmi(ti) = ℓi(x1 − xm−1 1, . . . , xn − xm−1n). (2.4.50)

Put
ymi(t) ≡ |xmi(t)− xi(t)| (i = 1, . . . , n; m = 1, 2, . . . ).

Then with regard for (2.2.6)–(2.2.8), from (2.4.49) and (2.4.50), by Lemma 2.2.1, it follows that for
every natural m the functions ymi (i = 1, . . . , n) satisfy the inequalities

sgn(t− ti) dymi(t) ≤ ymi(t) dc̃i(t) +

n∑
l=1

ym−1 l(t) d(cil(t)− δilc̃i(t)) for t ∈ [a, b] (i = 1, . . . , n),
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(−1)j djymi(ti) ≤
n∑

l=1

ym−1 l(ti) djcil(ti)(ti) (j = 1, 2; i = 1, . . . , n),

ymi(ti) ≤ ℓ0i(ym−1 l, . . . , ym−1n) (i = 1, . . . , n).

Thus, by virtue of Lemma 2.4.4, we find that

n∑
i=1

∥ymi∥∞ ≤ ρ δm
n∑

i=1

∥y0i∥∞ (m = 1, 2, . . . ),

where ρ > 0 and δ ∈ ]0, 1[ are the constants independent of m and (y0i)
n
i=1. Hence estimate (2.4.8)

holds, where ρ0 = ρ
n∑

i=1

∥y0i∥∞.

Corollary 2.4.1 immediately follows from Theorems 2.2.2 and 2.4.1.
Corollary 2.4.2 follows from Theorems 2.2.3, 2.4.1 and Remark 2.2.4.
Corollary 2.4.3 follows from Theorem 2.4.1 and Corollaries 2.2.1 or 2.2.2.
Now, consider Remark 2.4.1. Let the conditions of Theorem 2.4.1 be fulfilled. Let γmi ∈ R

and ∆mi ∈ BV([a, b];R) (i = 1, . . . ; m = 1, 2, . . . ) be arbitrary sequences of numbers and functions
satisfying the condition

lim
m→+∞

εm = 0, (2.4.51)

where

εm =

n∑
i=1

(
|ηmi|+

b∨
a

(∆mi)
)
.

Let (x0i)
n
i=1 ∈ BV([a, b];Rn) be arbitrary. Consider the sequence

xmi(ti) = ℓi(xm−1 1, . . . , xm−1n) + c0i + γmi (i = 1, . . . , n),

xmi(t) = γi(t, ti)xmi(ti) + ωi(xm−1 1, . . . , xm−1n, fi +∆mi)(t) for t ∈ [a, b] (i = 1, . . . , n),

where the operators ωi : BV([a, b];Rn+1) → BV([a, b];R) (i = 1, . . . , n) are defined by (2.4.7).
As above, in proving of Theorem 2.4.1, we can conclude that the function xmi is a solution of the

Cauchy problem

dxmi(t) = xmi(t) dãi(t) +

n∑
l=1

xm−1 l(t) d(ail(t)− δilãi(t)) + d(fi(t) + ∆mi(t)),

xmi(ti) = ℓi(xm−1 1, . . . , xm−1n) + c0i + γmi

for every i ∈ {1, . . . , n} and natural m. From this we find that

d(xmi(t)− xmi(t)) = (xmi(t)− xmi(t)) dãi(t)

+

n∑
l=1

(xm−1l(t)− xm−1l(t)) d(ail(t)− δilãi(t)) + d∆mi(t),

xmi(ti)− xmi(ti) = ℓi
(
xm−11 − xm−11, . . . , xm−1n − xm−1n

)
+ ηmi

for every i ∈ {1, . . . , n} and every natural m.
If we put

ymi(t) ≡ |xmi(t)− xi(t)| (i = 1, . . . , n; m = 1, 2, . . . ),
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then, as above, for every natural m, we find that

sgn(t− ti) dymi(t) ≤ ymi(t) d c̃i(t)

+

n∑
l=1

ym−1 l(t) d(cil(t)− δilc̃i(t)) + dumi(t) for t ∈ [a, b] (i = 1, . . . , n),

(−1)j djymi(ti) ≤
n∑

l=1

ym−1 l(ti) djcil(ti) + djumi(ti) (j = 1, 2; i = 1, . . . , n);

ymi(ti) ≤ ℓ0i(ym−1 l, . . . , ym−1n) + γm (i = 1, . . . , n),

where umi(t) ≡
t∨
a
(∆mi) and ηm =

n∑
i=1

|ηmi| (i = 1, . . . , n).

By this and Lemma 2.4.4, there exists a positive number ρ and δ ∈ ]0, 1[ such that
n∑

i=1

∥xmi − xmi∥∞ ≤ ρ

m∑
l=0

εlδ
m−l (m = 1, 2, . . . ),

where ε0 =
n∑

i=1

∥x0i − x0i∥∞. Thus, in view of (2.4.51), we obtain

lim
m→∞

n∑
i=1

∥xi − xmi∥∞ = 0.

Consequently, the sequence (xmi)
n
i=1 (m = 1, 2, . . . ) approximates the solution (xi)

n
i=1, as well.



Chapter 3

Two-point boundary value
problems for systems of generalized
ordinary differential equations

3.1 Statement of the problem. Unique solvability
This section is devoted to the investigation of the problem of existence of solutions of a linear system
of generalized ordinary differential equations

dx = dA(t) · x+ df(t) for t ∈ [a, b] (3.1.1)

satisfying the two-point boundary value condition

L1x(a) + L2x(b) = c0 (3.1.2)

and, in particular, the condition

xi(a) = µixi(b) + c0i (i = 1, . . . , n). (3.1.3)

Below, unless otherwise stated, we assume

A = (aik)
n
i,k=1 ∈ BV([a, b];Rn×n), f = (fk)

n
k=1 ∈ BV([a, b];Rn);

L1, L2 ∈ Rn×n, c0 ∈ Rn, c0i ∈ R, µi ∈ R (i = 1, . . . , n).

Along with problem (3.1.1), (3.1.2), we consider the corresponding homogeneous problem

dx = dA(t) · x, (3.1.10)
L1x(a) + L2x(b) = 0. (3.1.20)

In this section we realize the results given in Chapter 2 to problems (3.1.1), (3.1.2) and (3.1.1),
(3.1.3).

3.1.1 Formulation of the results
Theorem 3.1.1. The boundary value problem (3.1.1), (3.1.2) is uniquely solvable if and only if the
corresponding homogeneous problem (3.1.10), (3.1.20) has only the trivial solution, i.e., if and only if

det
(
L1Y (a) + L2Y (b)

)
̸= 0, (3.1.4)

94
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where Y is a fundamental matrix of system (3.1.10). If the latter condition holds, then the solution x
of problem (3.1.1), (3.1.2) admits the representation

x(t) = x0(t) +

b∫
a

dsG(t, s) · f(s) for t ∈ [a, b],

where x0 is a solution of problem (3.1.10), (3.1.2), and G is the Green matrix of problem (3.1.10),
(3.1.20).

Hence, in view of (2.1.4), the Green matrix of problem (3.1.10), (3.1.20) has the form

G(t, s) =


−Y (t)

(
L1Y (a) + L2Y (b)

)−1
L1Y (a)Y −1(s) for a ≤ s < t ≤ b,

Y (t)
(
L1Y (a) + L2Y (b)

)−1
L2Y (b)Y −1(s) for a ≤ t < s ≤ b,

On×n for a ≤ t = s ≤ b.

Proposition 2.1.1 for the case under consideration has the following form.
Proposition 3.1.1. Let the matrix-function A ∈ BV([a, b];Rn×n) be such that condition (1.1.8) hold.
Then the boundary value problem (3.1.1), (3.1.2) is solvable if and only if the condition

(c0 − L2 F (b))
⊤γ = 0

holds for every γ ∈ Rn such that

(L2 F (b))
⊤γ = 0n,

where

F (t) ≡ Y (t)

t∫
a

Y −1(τ) dA(A, f)(τ).

So, if condition (3.1.4) holds, then only the vector γ = 0n satisfies the homogeneous system
appearing in Proposition 3.1.1 and, therefore, condition (1.1.18) holds evidently. If condition (3.1.4)
is violated, then problem (3.1.1), (3.1.2) is solvable only for c0, which satisfies the conditions of the
proposition.
Remark 3.1.1. Let the matrix-function A satisfy the Lappo–Danilevskiĭ condition at the point a.
Then problem (3.1.1), (3.1.2) is uniquely solvable if and only if

det
(
L1 + L2 exp(Sc(A)(b))

∏
a≤τ<b

(In + d2A(τ))
∏

a<τ≤b

(In − d1A(τ))
−1

)
̸= 0.

Theorem 3.1.2. The boundary value problem (3.1.1), (3.1.2) is uniquely solvable if and only if there
exist natural numbers k and m such that the matrix

Mk = L1 +

k−1∑
i=0

L2[A]i(b)

(
Mk = L2 +

k−1∑
i=0

L1[A]i(a)

)
is nonsingular and the inequality

r(Mk,m) < 1 (3.1.5)
holds, where

Mk,m = Vm(A)(b) +

m−1∑
i=0

∣∣ [A]i∣∣∞|M−1
k L2|Vk(A)(b)

(
Mk,m = Vm(A)(a) +

m−1∑
i=0

∣∣ [A]i∣∣∞|M−1
k L1|Vk(A)(a)

)
,

the operators [A]i (i = 0, 1, . . . ) and Vi(A) (i = 0, 1, . . . ) are defined, respectively, by (1.1.351) and
(1.1.372) (resp. (1.1.352) and (1.1.372)).
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Theorem 3.1.21. Let there exist natural numbers k and m such that the matrix

Mk = −L1 + L2

( k−1∑
i=0

(A)i(b)− 1
) (

Mk = −L2 + L1

( k−1∑
i=0

(A)i(a)− 1
) )

is nonsingular and inequality (3.1.5) holds, where

Mk,m = (V (A))m(b) +
(
In +

m−1∑
i=0

|(A)i|∞
)
|M−1

k L2|(V (A))k(b)

(
Mk,m = (V (A))m(a) +

(
In +

m−1∑
i=0

|(A)i|∞
)
|M−1

k L1|(V (A))k(a)

)
,

the matrix-functions (A)i (i = 0, 1 . . . ) and (V (A))i (i = 0, 1, . . . ) are defined by (1.1.361) (resp.
(1.1.362)). Then problem (3.1.1), (3.1.2) is uniquely solvable.

Corollary 3.1.1. Let
det(L1 + L2) ̸= 0 (3.1.6)

and

r
(
L0

b∨
a

(A))
)
< 1, (3.1.7)

where
L0 = In +

∣∣(L1 + L2)
−1

∣∣ (|L1|+ |L2|
)
.

Then problem (3.1.1), (3.1.2) is uniquely solvable.

For the system
dx(t) = ε dA(t) · x(t) + df(t) (3.1.8)

with a small parameter ε from Theorem 3.1.2 follows

Corollary 3.1.2. Let either condition (3.1.6) hold, or there exist a natural number k such that the
conditions

L1 + L2 = On×n, det
(
L1(A)i(a) + L2(A)i(b)

)
= 0 (i = 0, . . . , k − 1)

and
det

(
L1(A)k(a) + L2(A)k(b)

)
̸= 0

hold. Then there exists ε0 > 0 such that problem (3.1.8), (3.1.4) is uniquely solvable for every ε ∈ ]0, ε0[ .

The results given above are the particular cases of the results given in the previous section.
Let us consider the specific theorems for the case ν = 2 in (2.1.2).

Theorem 3.1.3. Let conditions (3.1.6), (3.1.7) and∣∣(L1 + L2)
−1Li

∣∣ ≤ L0 (i = 1, 2) (3.1.9)

hold, where L0 ∈ Rn×n. Then problem (3.1.1), (3.1.2) is uniquely solvable.

Definition 3.1.1. Let m, r1, . . . , rm and n1, . . . , nm (0 = n0 < n1 < · · · < nm = n) be natural
numbers; A = (αlj)

rj ,m
l,j=1, where αlj (l = 1, . . . , rj ; j = 1, . . . ,m) be nondecreasing on [a, b] functions;

and let P = (Plj)
rj ,m
l,j=1, where Plj = (pljik)

n
i,k=1 (l = 1, . . . , rj ; j = 1, . . . ,m) be such that pljik ∈

L([a, b],R;αlj) (i, k = nj−1 + 1, . . . , nj). Then by Qm(A,P) we denote the set of all matrix-functions
A ∈ BV([a, b];Rn×n) such that

aik(t) ≡ 0 for t ∈ [a, b] (i = nj−1 + 1, . . . , nj ; k = nj + 1, . . . , n; j = 1, . . . ,m) (3.1.10)
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and

bjik(t) =

rj∑
l=1

t∫
a

pljik(τ) dαlj(τ) for t ∈ [a, b] (i ̸= k; i, k = nj−1 + 1, . . . , nj ; j = 1, . . . ,m), (3.1.11)

where

bjik(t)≡aik(t)−
(
1

2

∑
a<τ≤t

nj∑
r=nj−1+1

d1ari(τ) · d1ark(τ)−
∑

a≤τ<t

nj∑
r=nj−1+1

d2ari(τ) · d2ark(τ)
)

(i, k = nj−1 + 1, . . . , nj ; j = 1, . . . ,m).

Theorem 3.1.4. Let there exist σ ∈ {1, 2}, natural m, r1, . . . , rm and n1, . . . , nm (0 = n0 < n1 <
· · · < nm = n) such that A = (aik)

n
i,k=1 ∈ Qm(P,A),

(−1)σ
(
bjii(t)− bjii(s)−

rj∑
l=1

t∫
s

pljii(τ) dαlj(τ)

)
≤ 0 for a ≤ s < t ≤ b (j = 1, . . . ,m), (3.1.12)

and

(−1)σ
( nj∑

i,k=nj−1+1

pljik(t)xixk − hσlj(t)

nj∑
i=nj−1+1

x2i

)
≤ 0

for t ∈ [a, b], (xi)
n
i=1 ∈ Rn (l = 1, . . . , rj ; j = 1, . . . ,m), (3.1.13)

where hσlj ∈ L([a, b],R+;αlj). Let, moreover, L1 ∈ Rn×n be a nonsingular matrix such that the
conditions

(−1)σ
(
L0x ∗ x− lσ (x ∗ x)

)
≤ 0 for x ∈ Rn, (3.1.14)

1 + (−1)ldlβσj(t) > 0 for t ∈ [a, b] (l = 1, 2; j = 1, . . . ,m) (3.1.15)

and
(−1)σ

(
lσγβσj (b, a)− 1

)
< 0 (j = 1, . . . ,m) (3.1.16)

hold, where L0 = (L−1
1 L2)

⊤L−1
1 L2, lσ > 0,

βσj(t) ≡ 2

rj∑
l=1

t∫
a

hσlj(τ) dαlj(τ) (j = 1, . . . ,m),

and the functions γβσj
(t, a) (j = 1, . . . ,m) are defined by (1.1.9). Then problem (3.1.1), (3.1.2) is

uniquely solvable.

If m = 1 and rm = 1, we use designation Q(P, α) instead of Qm(P,A). In this case we have the
following

Definition 3.1.2. Let α be a function nondecreasing on [a, b], and P = (pik)
n
i,k=1, where pik ∈

L([a, b];R+;α) (i, k = 1, . . . , n). Then by Q(P ;α) we denote the set of all matrix-functions A =
(aik)

n
i,k=1 ∈ BV([a, b];Rn×n) such that

bik(t) =

t∫
a

pik(τ) dα(τ) for t ∈ [a, b] (i ̸= k; i, k = 1, . . . , n),

where

bik ≡ aik(t)−
1

2

n∑
l=1

( ∑
a<τ≤t

d1ali(τ) · d1alk(τ)−
∑

a≤τ<t

d2ali(τ) · d2alk(τ)
)

(i, k = 1, . . . , n). (3.1.17)
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In this case Theorem 3.1.4 takes the following form.

Theorem 3.1.41. Let there exist σ ∈ {1, 2} such that A = (aik)
n
i,k=1 ∈ Q(P ;α),

(−1)σ
(
bii(t)− bii(s)−

t∫
s

pii(τ) dα(τ)

)
≤ 0 for a ≤ s < t ≤ b,

(−1)σ
( n∑

i,k=1

pik(t)xixk − hσ(t)

n∑
i=1

x2i

)
≤ 0 for t ∈ [a, b], (xi)

n
i=1 ∈ Rn,

where α is a function nondecreasing on [a, b], pik ∈ L([a, b];R;α) (i, k = 1, . . . , n); hσ ∈ L([a, b];R+;α).
Let, moreover, L1 ∈ Rn×n be a nonsingular matrix such that conditions (3.1.14),

1 + (−1)ldlβσ(t) > 0 for t ∈ [a, b] (l = 1, 2)

and
(−1)σ

(
lσγβσ (b, a)− 1

)
< 0

hold, where L0 = (L−1
1 L2)

⊤ L−1
1 L2, lσ > 0, βσ(t) ≡ 2

t∫
0

hσ(τ) dα(τ), and the function γβσ
(t, a) is

defined by (1.1.9). Then problem (3.1.1), (3.1.2) is uniquely solvable.

Under λ0(H) and λ0(H) we understand, respectively, the minimum and maximum eigenvalues of
the symmetric matrix H ∈ Rn×m.

Corollary 3.1.3. Let A = (aik)
n
i,k=1 ∈ Q(P ;α), P = (pik)

n
i,k=1 and a nonsingular matrix L1 ∈ Rn×n

be such that the conditions

1 + (−1)j2λ0(C(t)) djα(t) > 0 for t ∈ [a, b] (j = 1, 2) and λ0(L0) γβ1(b, a) > 1

or
1 + (−1)j2λ0(C(t)) djα(t) > 0 for t ∈ [a, b] (j = 1, 2) and λ0(L0) γβ2

(b, a) < 1

hold, where α is a function nondecreasing on [a, b], pik ∈ L([a, b];R;α) (i, k = 1, . . . , n), C(t) ≡

P (t) + P⊤(t), L = (L−1
1 L2)

⊤ L−1
1 L2, β1(t) ≡ 2

t∫
0

λ0(C(τ)) dα(τ), β2(t) ≡ 2
t∫
0

λ0(C(τ)) dα(τ), and the

functions γβl
(t, a) (l = 1, 2) are defined by (1.1.9). Then problem (3.1.1), (3.1.2) is uniquely solvable.

We assume that neither the matrix L1, nor L2 is nonsingular.
We consider the case det(L1) ̸= 0. The second case will be considered analogously.
Let L−1

1 = (βil)
n
i,l=1 and (−L−1

1 )L2 = (αil)
n
i,l=1. In this case, the two-point boundary value

problem (3.1.1), (3.1.2) is equivalent to the following Cauchy–Nicoletti type problem:

dx = dA(t) · x+ df(t) for t ∈ [a, b],

xi(ti) = ℓ∗i (x1, . . . , xn) + c∗0i (i = 1, . . . , n),
(3.1.18)

where x = (xi)
n
i=1,

ti = a, ℓ∗i (x1, . . . , xn) ≡
n∑

l=1

αilxl(b), c∗0i =

n∑
l=1

βilc0l (i = 1, . . . , n).

For the case under consideration Definition 2.2.1 takes the following form.

Definition 3.1.3. We say that a pair (C, ℓ0) consisting of a matrix-function C = (cil)
n
i,l=1 ∈

BV([a, b];Rn×n) and a positive homogeneous nondecreasing bounded vector-functional ℓ0 = (ℓ0i)
n
i=1 :
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BV∞([a, b];Rn×n
+ ) → Rn

+ belongs to the set U(a) if the functions cil (i ̸= l; i, l = 1, . . . , n) are
nondecreasing, and the system

dxi(t) ≤
n∑

l=1

xl(t) dcil(t) for t ∈ ]a, b], t ̸= ti (i = 1, . . . , n),

d2xi(a) ≤
n∑

l=1

xl(a) d2cil(a) (i = 1, . . . , n)

has no nontrivial, nonnegative solution satisfying the condition

xi(a) ≤ ℓ0i(x1, . . . , xn) (i = 1, . . . , n).

Remark 3.1.2. In the case where the matrix L1 is nonsingular, we can assume

ℓ0i(x1, . . . , xn) ≡
n∑

k=1

|αil| |xl(b)|.

Similarly, we can construct the functionals ℓ0i(x1, . . . , xn) (i = 1, . . . , n) when the matrix L2 is non-
singular. In the latter case we define the set U(b).

So, we can use the results of Section 2.2. They have the following forms.

Theorem 3.1.5. Let the conditions

sc(aii)(t)− sc(aii)(s) ≤ sc(cii)(t)− sc(cii)(s) for a < s < t ≤ b (i = 1, . . . , n), (3.1.19)∣∣sc(ail)(t)− sc(ail)(s)
∣∣ ≤ sc(cil)(t)− sc(cil)(s) for a ≤ s < t ≤ b (i ̸= l; i, l = 1, . . . , n), (3.1.20)

|djaii(t)| ≤ |djcii(t)|, |djail(t)| ≤ djcil(t) t ∈ [a, b] (j = 1, 2; i ̸= l; i, l = 1, . . . , n) (3.1.21)

and ∣∣∣ n∑
l=1

αilxl(b)
∣∣∣ ≤ ℓ0i

(
|x1|, . . . , |xn|

)
for xl ∈ BV([a, b];R) (i, l = 1, . . . , n)

hold, where a matrix-function C = (cil)
n
i,l=1 ∈ BV([a, b];Rn×n) and a vector-functional ℓ0 = (ℓ0i)

n
i=1

are such that
(C, ℓ0) ∈ U(a).

Then problem (3.1.1), (3.1.2) is uniquely solvable.

Corollary 3.1.4. Let the conditions

sc(aii)(t)− sc(aii)(s) ≤
t∫

s

hii(τ) dsc(αi)(τ) for a < s < t ≤ b (i = 1, . . . , n),

∣∣sc(ail)(t)− sc(ail)(s)
∣∣ ≤ t∫

s

hil(τ) dsc(αl)(τ) for a ≤ s < t ≤ b (i ̸= l; i, l = 1, . . . , n)

and

|djaii(t)| ≤ |hii(t)| djαl(t), |djail(t)| ≤ hil(t) djαl(t) for t ∈ [a, b] (j = 1, 2; i ̸= l; i, l = 1, . . . , n)

hold, where αl (l = 1, . . . , n) are functions nondecreasing on [a, b] and having not more than a finite
number of discontinuity points, hii ∈ Lµ([a, b],R;αi), hil ∈ Lµ([a, b],R+;αl) (i ̸= l; l = 1, . . . , n),
1 ≤ µ ≤ +∞. Let, moreover,∣∣∣ n∑

l=1

αilxl(b)
∣∣∣ ≤ 2∑

m=0

n∑
k=1

lmik∥xk∥ν,sm(αk) for xk ∈ BV([a, b];R) (i, k = 1, . . . , n)
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and
r(H) < 1, (3.1.22)

where lmik ∈ R+ (m = 0, 1, 2; i, k = 1, . . . , n), 1
µ+

2
ν = 1, and the 3n×3n-matrix H = (Hj+1m+1)

2
j,m=0

is defined as in Theorem 2.2.2. Then the statement of Theorem 3.1.5 is true.

Corollary 3.1.5. Let conditions (3.1.19)–(3.1.21),

1 + (−1)j djcii(t) > 0 for t ∈ [a, b] (j = 1, 2; i = 1, . . . , n), (3.1.23)

and
|µi|γi(b) < 1 (i = 1, . . . , n) (3.1.24)

hold, where cii (i = 1, . . . , n) are nonincreasing functions and cil (i ̸= l; i, l = 1, . . . , n) are non-
decreasing functions; λi(t) ≡ γai

(t, a), the function γai
(t, a) is defined according to (1.1.9), and

ai(t) ≡ cii(t)− cii(a) (i = 1, . . . , n). Let, moreover,

r(M) < 1, (3.1.25)

where M = (µil)
n
i,l=1 is the constant matrix defined as in Theorem 2.2.3. Then problem (3.1.1), (3.1.3)

is uniquely solvable.

Remark 3.1.3. The results similar to Theorems 3.1.4 and 3.1.41, Corollary 3.1.3, and so on, are
likewise true for the case where the matrix L2 is nonsingular.

3.1.2 Proof of the results
Proof of Theorem 3.1.3. Sinve the matrix L1 + L2 is nonsingular, the system

dx = dOn×n · x (3.1.26)

has only the trivial solution satisfying the boundary value condition (3.1.20). So, the Green matrix of
problem (3.1.26), (3.1.2) has the form

G(t, s) =


−(L1 + L2)

−1L1 for a ≤ s < t ≤ b,

(L1 + L2)
−1L2 for a ≤ t < s ≤ b,

On×n for a ≤ t = s ≤ b.

Now, taking into account (3.1.7) and (3.1.9), we obtain

b∫
a

|G(t, τ)| dV (A)(τ) ≤M for t ∈ [a, b],

where

M = L0

b∨
a

(A) and r(M) < 1.

These conditions, due to Theorem 1.1.3, guarantee the unique solvability of problem (3.1.1),
(3.1.2).

Proof of Theorem 3.1.4. Due to Theorem 3.1.1, it suffices to show that problem (3.1.10), (3.1.20) has
only the trivial solution. Assume the contrary, i.e., the problem has nontrivial solution x = (xi)

n
i=1.

We put

uj(t) ≡
nj∑

i=nj−1+1

x2i (t).
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Then by the definition of the solution of system (3.1.10), taking into account (3.1.10) and using
(0.0.12), we conclude

u1(t)− u1(s) =

n1∑
i=1

(
2

t∫
s

xi(τ) dxi(τ)−
∑

s<τ≤t

(d1xi(τ))
2 +

∑
s≤τ<t

(
d2xi(τ)

)2)

=

n1∑
i=1

(
2

n1∑
k=1

t∫
s

xi(τ)xk(τ) daik(τ)

+
∑

s<τ≤t

(
x2i (τ)− x2i (τ−)− 2xi(τ) d1xi(τ)

)
+

∑
s≤τ<t

(
x2i (τ+)− x2i (τ)− 2xi(τ) d2xi(τ)

))

= 2

n1∑
i,k=1

( t∫
s

xi(τ)xk(τ) daik(τ)−
∑

s<τ≤t

xi(τ)xk(τ) d1aik(τ)−
∑

s≤τ<t

xi(τ)xk(τ) d2aik(τ)

)

+

2∑
j=1

(
sj(u)(t)− sj(u)(τ)

)
fors a ≤ s ≤ t ≤ b.

Hence

u1(t)− u1(s) = 2

n1∑
i,k=1

t∫
s

xi(τ)xk(τ) dsc(aik)(τ) +

2∑
j=1

(
sj(u)(t)− sj(u)(s)

)
for a ≤ s ≤ t ≤ b.

On the other hand,

2∑
j=1

(
sj(u1)(t)− sj(u1)(s)

)
=

n1∑
i=1

( ∑
s<τ≤t

d1xi(τ)
(
2xi(τ)− d1xi(τ)

)
+

∑
s≤τ<t

d2xi(τ)
(
2xi(τ) + d2xi(τ)

))
= 2

n1∑
i,k=1

( ∑
s<τ≤t

xi(τ)xk(τ)
(
d1aik(τ)−

1

2

n1∑
l=1

d1ali(τ) · d1alk(τ)
)

+
∑

s≤τ<t

xi(τ)xk(τ)
(
d2aik(τ)−

1

2

n1∑
l=1

d2ali(τ) · d2alk(τ)
))

for a ≤ s ≤ t ≤ b.

Thus, due to (3.1.17), we get

u1(t)− u1(s) = 2

n1∑
i=1

t∫
s

x2i (τ) db1ii(τ) + 2

n1∑
i̸=k; i,k=1

t∫
s

xi(τ)xk(τ) db1ik(τ) for a ≤ s ≤ t ≤ b.

Let us consider the case σ1 = 1. Then from the last equalities, taking into account (3.1.11) and
(3.1.12), we find that

u1(t)− u1(s) ≥ 2

r1∑
l=1

n1∑
i=1

t∫
s

pl1ii(τ)x
2
i (τ) dαl1(τ) + 2

n1∑
i ̸=k; i,k=1

t∫
s

xi(τ)xk(τ) db1ik(τ)

= 2

r1∑
l=1

n1∑
i,k=1

t∫
s

pl1ik(τ)xi(τ)xk(τ) dαl1(τ) for a ≤ s ≤ t ≤ b
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and, consequently, due to (3.1.13),

u1(t)− u1(s) ≥ 2

r1∑
l=1

t∫
s

h1l1(τ)

n1∑
i=1

x2i (τ) dαl1(τ) =

t∫
s

u1(τ) dβ11(τ) for a ≤ s ≤ t ≤ b.

From this, it is evident that the function v(t) ≡ u1(t) satisfies the conditions of Lemma 2.2.6,
where t0 = a and α(t) ≡ β11(t), which is nondecreasing. Thus, by the lemma, we have

u1(a)γβ11(t, a) ≤ u1(t) for t ∈ [a, b].

If we observe that by (3.1.15) the function γβ11
is positive, we get

u1(a) ≤ γ−1
β11

(b, a)u1(b).

We show in the same way that

uj(a) ≤ γ−1
β1j

(b, a)uj(b) (j = 1, . . . ,m). (3.1.27)

Let

u(t) =

n∑
j=1

uj(t) for t ∈ [a, b].

It is evident that u(t) ≡ x(t) ∗ x(t). In addition, due (3.1.20), we get

u(a) = L0x(b) ∗ x(b),

and, due to (3.1.14), we find that

l1 (x(b) ∗ x(b)) ≤ L0x(b) ∗ x(b).

Therefore, using (3.1.16), we conclude

u(b) ≤
m∑
j=1

(l1γβ1j
(b, a))−1uj(b). (3.1.28)

From this, in view of (3.1.16), we obtain u(b) = 0. Indeed, in the opposite case, uj(b) ̸= 0 for some
j ∈ {1, . . . ,m}. So, due to (3.1.16), from (3.1.28) we get the contradiction u(b) < u(b).

Thus, x will be a solution of system (3.1.10) satisfying the Cauchy condition x(b) = 0n. But this
Cauchy problem has only the trivial solution. The obtained contradiction proves the theorem. Hence
x(t) ≡ 0n.

Similarly, we establish that x(t) ≡ 0n in the case σ = 2, as well. We only note that we have the
inequalities

uj(a) ≥ γ−1
β2j

(b, a)uj(b) (j = 1, . . . ,m)

instead of (3.1.27).

We use the following lemma from [47, Lemma 1.9].

Lemma 3.1.1. Let H ∈ Rn×n be the symmetric matrix. Then

λ0(H) (x ∗ x) ≤ Hx ∗ x for x ∈ Rn
(
Hx ∗ x ≤ λ0(H) (x ∗ x) for x ∈ Rn

)
.

Proof of Corollary 3.1.3. It is evident that
n∑

i,k=1

pik(t)xixk = P (t)x ∗ x =
1

2
(C(t)x ∗ x) for t ∈ [a, b], x ∈ Rn.



The General BVPs for Linear Systems of Generalized ODEs 103

Due to Lemma 3.1.1,

λ0(C(t)) (x ∗ x) ≤ C(t)x ∗ x for t ∈ [a, b], x ∈ Rn(
C(t)x ∗ x ≤ λ0(C(t)) (x ∗ x) for t ∈ [a, b], x ∈ Rn

)
and

λ0(L0) (x ∗ x) ≤ L0x ∗ x for x ∈ Rn
(
L0x ∗ x ≤ λ0(L0) (x ∗ x) for x ∈ Rn

)
.

So, conditions (3.1.13) and (3.1.14) are fulfilled for h1(t) ≡ 1
2 λ0(C(t)), h2(t) ≡

1
2 λ

0(C(t)) and l1 =
λ0(L0), l2 = λ0(L0), respectively. As to the other conditions of Theorem 3.1.4, they are fulfilled
evidently. Therefore, the corollary follows from the theorem.

Finally, we note that the algebraic properties of problem (3.1.1), (3.1.2) are investigated in [73].

3.2 Nonnegativity of solutions of two-point
boundary value problems

In this section, we consider the question on the existence of nonnegative solutions of problems (3.1.1),
(3.1.2) and (3.1.1), (3.1.3). We assume that the suppositions of the previous section are valid. In
particular, we assume that the matrix L1 is nonsingular, L−1

1 = (βil)
n
i,l=1 and (−L−1

1 )L2 = (αil)
n
i,l=1.

As above, each of these problems can be rewritten in the form (2.2.1), (2.2.2).
We realize the results of Section 2.3 for the considered two-point boundary value problems.

Theorem 3.2.1. Let the matrix-function A = (ail)
n
i,l=1 ∈ BV([a, b];Rn×n) and the matrices L1 and

L2 be such that the functions ail (i ̸= l; i, l = 1, . . . , n) are nondecreasing, and the conditions

ail(t)− ail(s) ≤ cil(t)− cil(s) for a < s < t ≤ b (i, l = 1, . . . , n), (3.2.1)

fi are nondecreasing,
n∑

l=1

αilc0l ≥ 0 (i = 1, . . . , n) (3.2.2)

and
0 ≤

n∑
l=1

αilxl(b) ≤ ℓ0i(x1, . . . , xn) for xl ∈ BV([a, b];R+) (i, l = 1, . . . , n)

hold, where a matrix-function C = (cil)
n
i,l=1 ∈ BV([a, b];Rn×n) and a vector-functional ℓ0 = (ℓ0i)

n
i=1

are such that
(C, ℓ0) ∈ U(a).

Then problem (3.1.1), (3.1.2) has one and only one solution and it is nonnegative.

Corollary 3.2.1. Let the matrix-function A = (ail)
n
i,l=1 ∈ BV([a, b];Rn×n) be such that the functions

ail (i ̸= l; i, l = 1, . . . , n) are nondecreasing and conditions (3.2.2) and

ail(t)− ail(s) ≤
t∫

s

hil(τ) dαi(τ) for a < s < t ≤ b (i, l = 1, . . . , n) (3.2.3)

hold, where αi (i = 1, . . . , n) are functions nondecreasing on [a, b] and having not more than a finite
number of discontinuity points, hii ∈ Lµ([a, b],R;αi), hil ∈ Lµ([a, b],R+;αl) (i ̸= l; l = 1, . . . , n),
1 ≤ µ ≤ +∞. Let, moreover, condition (3.1.22) hold and the matrices L1 and L2 be such that

0 ≤
n∑

l=1

αilxl(b) ≤
2∑

m=0

n∑
k=1

lmik∥xk∥ν,sm(αk) for xk ∈ BV([a, b];R+) (i, k = 1, . . . , n),

where the constant matrix H is defined as in Theorem 2.2.2. Then problem (3.1.1), (3.1.2) has one
and only one solution and it is nonnegative.
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Corollary 3.2.2. Let the matrix-function A = (ail)
n
i,l=1 ∈ BV([a, b];Rn×n) be such that the functions

ail (i ̸= l; i, l = 1, . . . , n) are nondecreasing and conditions (3.2.2) and (3.2.3) hold, where αl (l =
1, . . . , n) are the functions nondecreasing on [a, b] and having not more than a finite number of
discontinuity points, hii ∈ Lµ([a, b],R;αi), hil ∈ Lµ([a, b],R+;αl) (i ̸= l; i, l = 1, . . . , n), 1 ≤ µ ≤ +∞.
Let, moreover,

r(H0) < 1,

where H0 = ((λkmij∥hik∥µ,sm(αi))
n
i,k=1)

2
m,j=0 is a 3n× 3n-matrix, and λkmij, ξij (j,m = 0, 1, 2; i, k =

1, . . . , n) and ν are defined as in Corollary 2.2.1. Then problem (3.1.1), (3.1.2), where L2 = On×n,
has one and only one solution and it is nonnegative.

By Remark 2.2.2, Corollary 3.2.2 has the following form for hil(t) ≡ hil = const (i, l = 1, . . . , n)
and µ = +∞.

Corollary 3.2.3. Let the matrix-function A = (ail)
n
i,l=1 ∈ BV([a, b];Rn×n) and the matrix L1 be such

that the functions ail (i ̸= l; i, l = 1, . . . , n) are nondecreasing and conditions (3.2.2) and

aii(t)− aii(s) ≤ hii(α(t)− α(s)) for a < s < t ≤ b (i = 1, . . . , n)

hold, where α is a function nondecreasing on [a, b] and having not more than a finite number of
discontinuity points, hii ∈ R, hil ∈ R+ (i ̸= l; i, l = 1, . . . , n). Let, moreover,

ρ0 r(H) < 1,

where ρ0 and the constant matrix H = (hik)
n
i,k=1 are defined as in Corollary 2.2.2. Then problem

(3.1.1), (3.1.2), where L2 = On×n, has one and only one solution and it is nonnegative.

Corollary 3.2.4. Let the matrix-function A = (ail)
n
i,l=1 ∈ BV([a, b];Rn×n) and the matrices L1 and

L2 be such that the functions ail (i ̸= l; i, l = 1, . . . , n) are nondecreasing, the conditions (3.1.23),
(3.1.24), (3.2.1), (3.2.2) and

0 ≤
n∑

l=1

αilxl(b) ≤ |µi|xi(τi) for xl ∈ BV([a, b];R+) (i, l = 1, . . . , n)

hold, where the functions cii (i = 1, . . . , n) are nonincreasing, and cil (i ̸= l; i, l = 1, . . . , n) are
nondecreasing; µi ∈ R, τi ∈ [a, b], τi ̸= a (i = 1, . . . , n); λi(t) ≡ γai

(t, a), the function γai
(t, a)

is defined according to (1.1.9), and ai(t) ≡ cii(t) − cii(a) (i = 1, . . . , n). Let, moreover, condition
(3.1.25) hold, where M = (µil)

n
i,l=1 is the constant matrix defined as in Theorem 2.2.3. Then problem

(3.1.1), (3.1.2) has one and only one solution and it is nonnegative.

Remark 3.2.1. In particular, the statement of Corollary 3.2.4 is true for condition (3.1.3).

Corollary 3.2.5. Let the matrix-function A = (ail)
n
i,l=1 ∈ BV([a, b];Rn×n) be such that the functions

ail and fi (i ̸= l; i, l = 1, . . . , n) are nondecreasing, conditions (3.1.23), (3.1.24) and (3.2.1) hold,
where cii (i = 1, . . . , n) are nonincreasing functions, and cil (i ̸= l; i, l = 1, . . . , n) are nondecreasing
ones; µi ∈ R, the functions λi(t) ≡ γcii(t, a) (i = 1, . . . , n) defined according to (1.1.9) are monotone
on the intervals [a, ti[ and ]ti, b] (i = 1, . . . , n). Let, moreover,

c0i ≥ 0 (i = 1, . . . , n)

and condition (3.1.25) hold, where M = (µil)
n
i,l=1 is the constant matrix defined as in Theorem 2.2.4.

Then problem (3.1.1), (3.1.3) has one and only one solution and it is nonnegative.

3.3 On a method for constructing solutions
In this section, we present a method for constructing solutions of problems (3.1.1), (3.1.2) and (3.1.1),
(3.1.3).

We assume that neither the matrix L1, nor L2 is nonsingular.
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We consider the case det(L1) ̸= 0. The second case will be considered analogously.
Let L−1

1 = (βil)
n
i,l=1 and (−L−1

1 )L2 = (αil)
n
i,l=1. In this case, as in Section 3.1, the two-point

boundary value problem (3.1.1), (3.1.2) is equivalent to the Cauchy–Nicoletti type problem (3.1.18),
where

ti = a, ℓ∗i (x1, . . . , xn) ≡
n∑

l=1

αilxl(b), c∗0i =

n∑
l=1

βilc0l (i = 1, . . . , n).

As in Section 3.1, we use the set U(a) and if the matrix L1 is nonsingular, we can assume

ℓ0i(x1, . . . , xn) ≡
n∑

k=1

|αil| |xl(b)|.

Similarly, we can construct the functionals ℓ0i(x1, . . . , xn) (i = 1, . . . , n) when the matrix L2 is
nonsingular. In the latter case, we define the set U(b).

So, we can use the results of Section 3.1.
As the zero approximation to the solution of problem (3.1.1), (3.1.2), we choose an arbitrary

function (x0i)
n
i=1 ∈ BV([a, b];Rn). If the (m − 1)-th approximation (xm−1 i)

n
i=1 is constructed, then

by the m-th approximation we take (xmi)
n
i=1, i-th components of which are defined by

xmi(a) =

n∑
l=1

αilxm−1 l(b) +

n∑
l=1

βilc0l (i = 1, . . . , n), (3.3.1)

xmi(t) = γi(t, a)xmi(a) + ωi(xm−1 1, . . . , xm−1n, fi)(t) for t ∈ [a, b] (i = 1, . . . , n), (3.3.2)
where the operators ωi : BV([a, b];Rn+1) → BV([a, b];R) (i = 1, . . . , n) are defined as

ωi(y1, . . . , yn+1)(t) = gi(y1, . . . , yn+1)(t)− γi(t, a)

t∫
a

gi(y1, . . . , yn+1)(s) dγ
−1
i (s, a)

for t ∈ [a, b] (i = 1, . . . , n);

gi(y1, . . . , yn+1)(t) =

n∑
l=1

t∫
a

yl(s) d(ail(s)− δilãi(s)) + yn+1(t)− yn+1(a)

for t ∈ [a, b] (i = 1, . . . , n);

(3.3.3)

γi(t, a) ≡ γãi
(t, a), ãi(t) ≡ sc(aii)(t) (i = 1, . . . , n),

and the function γãi
(t, a) is defined by (1.1.9).

Theorem 3.3.1. Let the conditions of Theorem 3.1.5 hold. Then problem (3.1.1), (3.1.2) has the
unique solution x = (xi)

n
i=1 and there exist ρ0 > 0 and δ ∈ ]0, 1[ such that

n∑
i=1

∥xi − xmi∥∞ ≤ ρ0δ
m (m = 1, 2 . . . ), (3.3.4)

where the vector-functions (xmi)
n
i=1 (m = 1, 2, . . . ) are defined by (3.3.1), (3.3.2).

Corollary 3.3.1. Let the conditions of Corollary 3.1.4 hold. Then the statement of Theorem 3.3.1
is true.
Corollary 3.3.2. Let the conditions of Corollary 3.1.5 hold. Then problem (3.1.1), (3.1.3) has the
unique solution x = (xi)

n
i=1 and for an arbitrary function (x0i)

n
i=1 ∈ BV([a, b];Rn) estimate (3.3.4)

holds, where
xmi(t) = µiγi(t, a)xm−1 i(b) + c0i + ωi(xm−1 1, . . . , xm−1n, fi)(t) for t ∈ [a, b] (i = 1, . . . , n),

the operators ωi : BV([a, b];Rn+1) → BV([a, b];R) (i = 1, . . . , n) are defined by (3.3.3), and ρ0 > 0
and δ ∈ ]0, 1[ are the constants independent of m.
Remark 3.3.1. The above process of constructing the solutions of problems (3.1.1), (3.1.2) and
(3.1.1), (3.1.3) is stable in the sense given above, in Section 2.4.



Chapter 4

The periodic problem for systems
of generalized ordinary differential
equations

4.1 Statement of the problem. Formulations of the theorems
on the existence and uniqueness of solutions

In this section, we investigate the solvability for the linear generalized system

dx(t) = dA(t) · x(t) + df(t) for t ∈ R (4.1.1)

with the ω > 0-periodic condition

x(t+ ω) = x(t) for t ∈ R, (4.1.2)

where ω is a fixed positive number, A=(aik)
n
i,k=1∈BVω(R;Rn×n) and f=(fi)

n
i=1∈BVω(R;Rn), i.e.,

A(t+ ω) = A(t) + C and f(t+ ω) = f(t) + c for t ∈ R, (4.1.3)

where C ∈ Rn×n and c ∈ Rn are, respectively, some constant matrix and constant vector.
Moreover, we assume that

det
(
In + (−1)j djA(t)

)
̸= 0 for t ∈ R (j = 1, 2). (4.1.4)

We establish a Green type theorem on the solvability of problem (4.1.1), (4.1.2) and represent
a solution of the problem. In addition, we give the effective necessary and sufficient conditions (of
spectral type) for the unique solvability of the problem.

Along with (4.1.1), we consider the corresponding homogeneous system

dx(t) = dA(t) · x(t). (4.1.10)

Moreover, along with condition (4.1.2), we consider the condition

x(0) = x(ω). (4.1.5)

Definition 4.1.1. Let condition (4.1.4) hold and there exist a fundamental matrix Y of problem
(4.1.10), (4.1.5) such that

det(D) ̸= 0, (4.1.6)

where D = Y (ω)− Y (0). A matrix-function G : [0, ω]× [0, ω] → Rn×n is said to be the Green matrix
of problem (4.1.10), (4.1.5) if:

106



The General BVPs for Linear Systems of Generalized ODEs 107

(a) the matrix-function G( · , s) satisfies the matrix equation

dX(t) = dA(t) ·X(t)

on both [0, s[ and ]s, ω] for every s ∈ ]0, ω[ ;

(b) for t ∈ ]a, b[,

G(t, t+)− G(t, t−) = Y (t)D−1
{
Y (ω)Y −1(t)(In + d2A(t))

−1 − Y (0)Y −1(t)(In − d1A(t))
−1

}
;

(c) G(t, · ) ∈ BV([0, ω],Rn×n) for every t ∈ [0, ω];

(d) the equality
ω∫

0

ds(G(ω, s)− G(0, s)) · f(s) = 0n

holds for every f ∈ BV([0, ω],Rn).

The Green matrix of problem (4.1.10), (4.1.5) exists and is unique in the following sense. If G(t, s)
and G1(t, s) are two matrix-functions satisfying conditions (a)–(d) of Definition 4.1.1, then

G(t, s)− G1(t, s) ≡ Y (t)H∗(s),

where H∗ ∈ BV([0, ω],Rn×n) is a matrix-function such that

H∗(s+) = H∗(s−) = C = const for s ∈ [0, ω],

and C ∈ Rn×n is a constant matrix.
In particular,

G(t, s) =


Y (t)D−1Y (0)Y −1(s) for 0 ≤ s < t ≤ ω,

Y (t)D−1Y (ω)Y −1(s) for 0 ≤ t < s ≤ ω,

arbitrary for t = s.

Theorem 4.1.1. System (4.1.1) has a unique ω-periodic solution x if and only if the corresponding
homogeneous system (4.1.10) has only the trivial solution satisfying condition (4.1.5), i.e., when
condition (4.1.6) holds, where Y is a fundamental matrix of system (4.1.10). If the last condition
holds, then the solution x can be written in the form

x(t) =

ω∫
0

dsG(t, s) · f(s) for t ∈ [0, ω], (4.1.7)

where G : [a, b]× [a, b] → Rn×n is the Green matrix of problem (4.1.10), (4.1.5).

Corollary 4.1.1. Let conditions (4.1.3) and (4.1.4) hold, and the matrix-function A satisfy the
Lappo–Danilevskiĭ condition at the point 0. Then system (4.1.1) has a unique ω-periodic solution if
and only if

det
(

exp(Sc(A)(ω))
∏

0≤τ<ω

(In + d2A(τ))
∏

0<τ≤ω

(In − d1A(τ))
−1 − In

)
̸= 0. (4.1.8)

Note that if the matrix-function A satisfies the Lappo–Danilevskiĭ condition at the point 0, then
the matrix-function Y defined by Y (0) = In and

Y (t) = exp(Sc(A)(t))
∏

0≤τ<t

(In + d2A(τ))
∏

0<τ≤t

(In − d1A(τ))
−1 for t ∈ ]0, ω] (4.1.9)

is the fundamental matrix of system (4.1.10).
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Remark 4.1.1. Let system (4.1.10) have a nontrivial ω-periodic solution. Then there exists f ∈
BVω(R,Rn) such that system (4.1.1) has no ω-periodic solution (see Remark 1.1.2).

In general, it is rather difficult to verify condition (4.1.6) directly even in the case if the fundamental
matrix of system (4.1.10) is written explicitly. Therefore, it is important to look for effective conditions
which would guarantee the absence of nontrivial ω-periodic solutions of the homogeneous system
(4.1.10). Below, we will give the results dealing with this question. Analogous results for ordinary
differential equations have been obtained in [47].

Theorem 4.1.2. System (4.1.1) has a unique ω-periodic solution if and only if there exist natural
numbers k and m such that the matrix

Mk = −
k−1∑
i=0

(
[A]i(ω)− [A]i(0)

)
is nonsingular and

r(Mk,m) < 1, (4.1.10)

where

Mk,m = Vm(A)(c) +
(m−1∑

i=0

∣∣ [A]i∣∣∞)
|M−1

k |
(
Vk(A)(ω)− Vk(A)(0)

)
,

the functions [A]i (i = 0, . . . ,m−1) and Vi(A) (i = 0, . . . ,m−1) are defined, respectively, by (1.1.35l)
and (1.1.37l) for some l ∈ {1, 2}, and c = (2− l)ω.

Corollary 4.1.2. System (4.1.1) has a unique ω-periodic solution if and only if there exist natural
numbers k and m such that the matrix

Mk = −
k−1∑
i=0

(
(A)i(ω)− (A)i(0)

)
is nonsingular and inequality (4.1.10) holds, where

Mk,m = (V (A))m(c) +
(
In +

m−1∑
i=0

|(A)i|∞
)
|M−1

k |
(
(V (A))k(ω)− (V (A))k(0)

)
,

the functions (A)i (i = 0, . . . ,m− 1) and (V (A))i (i = 0, . . . ,m− 1) are defined by (1.1.36l) for some
l ∈ {1, 2}, and c = (2− l)ω.

Corollary 4.1.3. Let there exist a natural number j such that

(A)i(0) = (A)i(ω) (i = 1, . . . , j − 1)

and
det

(
(A)j(ω)− (A)j(0)

)
̸= 0,

where the functions (A)i (i = 0, . . . , j) are defined by (1.1.36l) for some l ∈ {1, 2}. Then there exists
ε0 > 0 such that the system

dx(t) = εdA(t) · x(t) + df(t)

has one and only one ω-periodic solution for every ε ∈ ]0, ε0[ .

Theorem 4.1.3. Let a matrix-function A0 ∈ BVω(R;Rn×n) be such that

det
(
In + (−1)j djA0(t)

)
̸= 0 for t ∈ [0, ω] (j = 1, 2)

and the homogeneous system
dx(t) = dA0(t) · x(t) (4.1.11)
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has only the trivial ω-periodic solution. Let, moreover, the matrix-function A ∈ BVω(R;Rn×n) admit
the estimate

ω∫
0

|G0(t, τ)| dV (A−A0)(τ) ≤M for t ∈ [0, ω],

where G0(t, τ) is the Green matrix of problem (4.1.11), (4.1.5), and M ∈ Rn×n
+ is a constant matrix

such that
r(M) < 1.

Then system (4.1.1) has one and only one ω-periodic solution.

Formula (4.1.7) can be written in a simpler form if we introduce the concept of the Green matrix
for problem (4.1.10), (4.1.2).

Definition 4.1.2. A matrix-function Gω : R× R → Rn×n is said to be the Green matrix of problem
(4.1.10), (4.1.2) if:

(a)
Gω(t+ ω, τ + ω) = Gω(t, τ), Gω(t, t+ ω)− Gω(t, t) = In for t, τ ∈ R; (4.1.12)

(b) the matrix-function Gω( · , τ) : R → Rn×n is a fundamental matrix of system (4.1.10) for every
τ ∈ R.

Theorem 4.1.4. Let conditions (4.1.3),

det
(
In ± djA(t)

)
̸= 0 for t ∈ R (j = 1, 2) (4.1.13)

hold and system (4.1.10) have only the trivial ω-periodic solution. Then system (4.1.1) has a unique
ω-periodic solution x and it is written in the form

x(t) =

t+ω∫
t

Gω(t, τ) dA(A,A(−A, f))(τ) for t ∈ R, (4.1.14)

where Gω is the Green matrix of problem (4.1.10), (4.1.2).

For the periodic problem, we give the definition of the set Qωm(A,P) analogous to the set Qm(A,P)
(see Definition 3.1.1).

Definition 4.1.3. Let m, r1, . . . , rm and n1, . . . , nm (0 = n0 < n1 < · · · < nm = n) be natural
numbers; A = (αlj)

rj ,m
l,j=1, where αlj ∈ BVω(R;R) (l = 1, . . . , rj ; j = 1, . . . ,m) be the functions

nondecreasing on [0, ω]; and let P = (Plj)
rj ,m
l,j=1, where Plj = (pljik)

n
i,k=1 (l = 1, . . . , rj ; j = 1, . . . ,m)

be such that pljik ∈ Lω(R;R;αlj) (i, k = nj−1 + 1, . . . , nj). Then by Qωm(A,P) we denote the set of
all matrix-functions A ∈ BVω(R;Rn×en) such that

aik(t) = 0 for t ∈ R (i = nj−1 + 1, . . . , nj ; k = nj + 1, . . . , n; j = 1, . . . ,m),

and

bjik(t) =

rj∑
l=1

t∫
0

pljik(τ) dαlj(τ) for t ∈ R (i ̸= k; i, k = nj−1 + 1, . . . , nj ; j = 1, . . . ,m),

where

bjik(t) ≡ aik(t)−
(
1

2

∑
0<τ≤t

nj∑
r=nj−1+1

d1ari(τ) · d1ark(τ)−
∑

0≤τ<t

nj∑
r=nj−1+1

d2ari(τ) · d2ark(τ)
)

(i, k = nj−1 + 1, . . . , nj ; j = 1, . . . ,m).
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If m = 1 and rm = 1, we use the designation Qω(P, α) instead of Qωm(P,A). In this case, we have
the following

Definition 4.1.4. Let α ∈ BVω(R;R) be a function nondecreasing on [0, ω] and P = (pik)
n
i,k=1, where

pik ∈ Lω(R;R+;α) (i, k = 1, . . . , n). Then by Qω(P ;α) we denote the set of all matrix-functions
A = (aik)

n
i,k=1 ∈ BVω(R;Rn×n) such that

bik(t) =

t∫
0

pik(τ) dα(τ) for t ∈ R (i ̸= k; i, k = 1, . . . , n),

where

bik ≡ aik(t)−
1

2

n∑
l=1

( ∑
a<τ≤t

d1ali(τ) · d1alk(τ)−
∑

a≤τ<t

d2ali(τ) · d2alk(τ)
)

(i, k = 1, . . . , n).

Theorem 4.1.5. Let there exist natural numbers m, r1, . . . , rm and n1, . . . , nm (0 = n0 < n1 <
· · · < nm = n); σj ∈ {−1, 1} (j = 1, . . . ,m); nondecreasing on [0, ω] functions αlj ∈ BVω(R;R)
(l = 1, . . . , rj; j = 1, . . . ,m) and matrix-functions Plj = (pljik)

n
i,k=1 (l = 1, . . . , rj; j = 1, . . . ,m),

pljik ∈ Lω(R;R;αlj) (i, k = nj−1 + 1, . . . , nj), such that A = (aik)
n
i,k=1 ∈ Qωm(P,A),

σj

(
bjii(t)− bjii(s)−

rj∑
l=1

t∫
s

pljii(τ) dαlj(τ)

)
≤ 0 for s < t; s, t ∈ R (j = 1, . . . ,m) (4.1.15)

and

σj

( nj∑
i,k=nj−1+1

pljik(t)xixk − hσj lj(t)

nj∑
i=nj−1+1

x2i

)
≤ 0

for t ∈ R, (xi)
n
i=1 ∈ Rn (l = 1, . . . , rj ; j = 1, . . . ,m), (4.1.16)

where hσj lj ∈ Lω(R;R+;αlj) (j = 1, . . . ,m). Let, moreover,

1 + (−1)ldlβj > 0 for t ∈ [0, ω] (l = 1, 2, ; j = 1, . . . ,m) (4.1.17)

and

γβj (ω − tj , tj) < 1 (j = 1, . . . ,m), (4.1.18)

where tj = 1
2 (1 + σj)ω, the functions γβj

(t, tj) (j = 1, . . . ,m) are defined by (1.1.9), and

βj(t) = 2σj

rj∑
l=1

t∫
0

hσj lj(τ) dαlj(τ) for t ∈ [0, ω] (j = 1, . . . ,m).

Then system (4.1.1) has a unique ω-periodic solution.

Remark 4.1.2. In the above theorem, due to (1.1.9), inequality (4.1.18) is equivalent to

exp(sc(βj)(ω)) > −1

2

(
(1 + σj)

∏
0<τ≤ω

(1− d1βj(τ))
∏

0≤τ<ω

(1 + d1βj(τ))
−1

+ (1− σj)
∏

0<τ≤ω

(1 + d1βj(τ))
−1

∏
0≤τ<ω

(1− d2βj(τ))

)
for t ∈ [0, ω] (j = 1, . . . ,m).
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If m = 1 and rm = 1, then Theorem 4.1.5 has the following form.

Theorem 4.1.51. Let there exist σ ∈ {−1, 1} such that A = (aik)
n
i,k=1 ∈ Qω(P ;α),

σ

(
bii(t)− bii(s)−

t∫
s

pii(τ) dα(τ)

)
≤ 0 for s < t, s, t ∈ R,

σ
( n∑

i,k=1

pik(t)xixk − hσ(t)

n∑
i=1

x2i

)
≤ 0 for t ∈ R, (xi)

n
i=1 ∈ Rn,

where α ∈ BVω(R;R) is a nondecreasing function on [0, ω], pik ∈ Lω(R;R;α) (i, k = 1, . . . , n);
hσ ∈ Lω(R;R+;α). Let, moreover,

1 + (−1)ldlβσ > 0 for t ∈ [0, ω] (l = 1, 2)

and
γβσ (ω − tσ, tσ) < 1,

where

tσ =
1

2
(1 + σ)ω, βσ(t) ≡ 2

t∫
0

hσ(τ) dα(τ),

and the function γβσ (t, tσ) is defined by (1.1.9). Then system (4.1.1) has a unique ω-periodic solution.

Corollary 4.1.4. Let the conditions of Theorem 4.1.5 hold, where hσj lj(t) ≡ λ0(H)(t) and hσj lj(t) ≡
λ0(H)(t) if j ∈ {1, . . . ,m} is such that σj = −1 and σj = 1, respectively, and P ∗(t) ≡ P (t) + P⊤(t).
Then system (4.1.1) has a unique ω-periodic solution.

Definition 4.1.5. Let σi ∈ {−1, 1} (i = 1, . . . , n). We say that a matrix-function C = (cil)
n
i,l=1 ∈

BVω(R;Rn×n) belongs to the set Uσ1,...,σn
ω if it is quasi-nondecreasing on [0, ω],

1 + (−1)jσi djcii(t) > 0 for t ∈ R (j = 1, 2; i = 1, . . . , n) (4.1.19)

and the system

σi dxi(t) ≤
n∑

l=1

xl(t) dcil(t) for t ∈ R (i = 1, . . . , n) (4.1.20)

has no nontrivial, nonnegative ω-periodic solution.

One of the relations between Uσ1,...,σn
ω and U(t1, . . . , tn) (see Subsection 2.2.1) is given below, in

Subsection 4.2.1.

Theorem 4.1.6. Let the conditions

σi
(
sc(aii)(t)− sc(aii)(s)

)
≤ sc(cii)(t)− sc(cii)(s) for (t− s)σi > 0 (i = 1, . . . , n), (4.1.21)∣∣sc(ail)(t)− sc(ail)(s)

∣∣ ≤ sc(cil)(t)− sc(cil)(s) for s < t (i ̸= l; i, l = 1, . . . , n), (4.1.22)
|djaii(t)| ≤ |djcii(t)|, |djail(t)| ≤ djcil(t) (j = 1, 2; i ̸= l; i, l = 1, . . . , n) (4.1.23)

hold on [0, ω], and
C = (cil)

n
i,l=1 ∈ Uσ1,...,σn

ω . (4.1.24)

Then system (4.1.1) has a unique ω-periodic solution.

Corollary 4.1.5. Let conditions (4.1.19), (4.1.21)–(4.1.23) and

σiλ(σicii)(ω) < 1 (i = 1, . . . , n)
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hold on [0, ω], where σi ∈ {−1, 1} (i = 1, . . . , n), a matrix-function C = (cil)
n
i,l=1 ∈ BVω(R;Rn×n) is

quasi-nondecreasing on [0, ω], and the functions λ(σicii)(t) (i = 1, . . . , n) are defined by (1.1.30) for
t ∈ [0, ω]. Let, moreover,

r(S) < 1,

where the matrix S =
(
sil

)n
i,l=1

is defined by

sii = 0, sil = sup
{ 2∑

j=0

ω∫
0

σigj(σicii)(t, τ) dsj(cil)(τ) : t ∈ [0, ω]

}
(i ̸= l; i, l = 1, . . . , n), (4.1.25)

under the operator s0 we understand the operator sc, and gj (j = 0, 1, 2) are the operators defined by
(1.1.31)–(1.1.33), respectively. Then the conclusion of Theorem 4.1.6 is true.

Corollary 4.1.6. Let conditions (4.1.19), (4.1.21)–(4.1.23) hold, where

cil(t) = ηilαi(t) for t ∈ R (i, l = 1, . . . , n), (4.1.26)

σi ∈
{
− 1, 1

}
, ηil ∈ R+ (i ̸= l; i, l = 1, . . . , n), αi (αi(ω) ̸= 0; i = 1, . . . , n) are the functions

nondecreasing on [0, ω]. Let, moreover,

ηii < 0 (i = 1, . . . , n) (4.1.27)

and

r(H) < 1, (4.1.28)

where H = (hil)
n
i,l=1,

hii = 0, hil = −ηil
ηii

(i ̸= l; i, l = 1, . . . , n). (4.1.29)

Then the conclusion of Theorem 4.1.6 is true.

Corollary 4.1.7. Let conditions (4.1.19), (4.1.21)–(4.1.23) hold, where σ1 = σ2 = · · · = σn = σ0,
σ0 ∈ {−1; 1}, and a matrix-function C = (cil)

n
i,l=1 ∈ BVω(R,Rn×n) is quasi-nondecreasing on [0, ω].

Let, moreover, the module of every multiplicator of the system

dy(t) = dCσ0(t) · y(t), (4.1.30)

where Cσ0(t) = σ0C(σ0t+
1−σ0

2 ω), be less than 1. Then the conclusion of Theorem 4.1.6 is true.

4.2 Auxiliary propositions and proof of the results
Lemma 4.2.1. The following statements are valid:

(a) if x is a solution of system (4.1.1), then the vector-function y(t) = x(t+ω) (t ∈ R) is a solution
of system (4.1.1), as well;

(b) problem (4.1.1), (4.1.2) is solvable if and only if system (4.1.1) has, on the closed interval [0, ω],
a solution satisfying the boundary condition (4.1.5). Moreover, the set of restrictions of the solu-
tions of problem (4.1.1), (4.1.2) on [0, ω] coincides with that of solutions of problem (4.1.1), (4.1.5).

Proof. Let x be an arbitrary solution of system (4.1.1). Assume y(t) = x(t + ω) for t ∈ R. Then by
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(4.1.3) we have

y(t) = x(0) +

t+ω∫
0

dA(τ) · x(τ) + f(t+ ω)− f(0)

= x(0) +

ω∫
0

dA(τ) · x(τ) + f(ω)− f(0) +

t+ω∫
ω

dA(τ) · x(τ) + f(t+ ω)− f(ω)

= x(ω) +

t∫
0

dA(τ + ω) · x(τ + ω) + f(t+ ω)− f(ω)

= y(0) +

t∫
0

dA(τ) · y(τ) + f(t)− f(0) for t ∈ R.

Therefore, y is a solution of system (4.1.1), as well. Statement (a) of the lemma is proved.
Let us show statement (b). It is evident that the restrictions of every solution of problem (4.1.1),

(4.1.2) on the interval [0, ω] will be a solution of problem (4.1.1), (4.1.5). Consider now an arbitrary
solution x of problem (4.1.1), (4.1.5). Any continuation of this solution we also denote by x. According
to statement (a), the vector-function y(t) = x(t+ω) is a solution of system (4.1.1), too. On the other
hand, in view of (4.1.5), we have

y(0) = x(ω) = x(0).

This implies that the functions x and y are the solutions of system (4.1.1) under the common initial
value condition. Thus x(t) ≡ y(t). Therefore, x is a solution of problem (4.1.1), 4.1.2.

Lemma 4.2.2. An arbitrary fundamental matrix Y of system (4.1.10) satisfies the identity

Y (t+ ω) = Y (t)M for t ∈ R, (4.2.1)

where M = Y −1(0)Y (ω) is the monodromy matrix of system (4.1.10).

Proof. By Lemma 4.2.1, the columns of the matrix-function Z(t) = Y (t + ω) are the solutions of
system (4.1.10). Therefore, there exists a constant matrix C ∈ R such that

Z(t) = Y (t)C for t ∈ R.

Obviously,
C = Y −1(0)Z(0) = Y −1(0)Y (ω).

Thus equality (4.2.1) holds.

Lemma 4.2.3. Let problem (4.1.10), (4.1.2) have only the trivial solution. Then there exists a unique
Green matrix of the problem having the form

Gω(t, τ) = Y (t)
(
Y −1(ω)Y (0)− In

)−1
Y −1(τ) for t, τ ∈ R, (4.2.2)

where Y is a fundamental matrix of system (4.1.10).

Proof. Let Y be an arbitrary fundamental matrix of system (4.1.10). Then, by Lemma 4.2.1, condition
(4.1.6) holds, since the lemma guarantees the validity of Theorem 4.1.1 (see the proof of Theorem 4.1.1
below). According to Definition 4.1.2, the matrix-function Gω : R × R → Rn×n is a Green matrix if
and only if

Gω(t, τ) = Y (t)C(τ) for t, τ ∈ R,

where the matrix-function C : R → Rn×n is such that equalities (4.1.12) hold, i.e.,

Y (t+ ω)C(τ + ω) = Y (t)C(τ), Y (t)(C(t+ ω)− C(t)) = In for t, τ ∈ R. (4.2.3)
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By equality (4.2.1), equalities (4.2.3) hold if and only if

Y −1(0)Y (ω)C(τ + ω) = C(τ) and C(τ + ω)− C(τ) = Y −1(τ) for τ ∈ R.

Clearly, this implies that(
In − Y −1(0)Y (ω)

)
C(τ) = Y −1(0)Y (ω)Y −1(τ) for τ ∈ R.

Therefore, taking into account condition (4.1.6), we conclude that

C(τ) = (Y −1(ω)Y (0)− In)
−1Y −1(τ) for τ ∈ R.

Putting the obtained value of C(t) in (4.2.3), we obtain equality (4.2.2).

Lemma 4.2.4. If X ∈ BVω(R,Rn×n) and Y ∈ BVω(R,Rn×m), then:

(a)
djX(t+ ω) = djX(t) for t ∈ R (j = 1, 2); (4.2.4)

(b)
A(X,Y ) ∈ BVω(R,Rn×m) i.e., A(X,Y )(t+ ω) = A(X,Y )(t) + C for t ∈ R, (4.2.5)

where C is some constant n× n-matrix.

Proof. Consider equality (4.2.4). Let j = 1. Then, by the definition of the set BVω(R,Rn×m), we
have

d1X(t+ ω) = lim
ε→0, ε>0

(
X(t+ ω)−X(t+ ω − ε)

)
= lim

ε→0, ε>0
(X(t)−X(t− ε)) = d1X(t) for t ∈ R.

Analogously, we show equality (4.2.4) for j = 2.
Let us now show (4.2.5). From the definition of the operator A and equalities (4.2.4), we conclude

that

A(X,Y )(t+ ω) = Y (t+ ω)− Y (0)

+
∑

0<τ≤t+ω

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)−
∑

0≤τ<t+ω

d2X(τ) · (In + d2X(τ))−1 d2Y (τ)

= Y (t+ ω)− Y (0) + C0 +
∑

ω<τ≤t+ω

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)

−
∑

0≤τ<t

d2X(τ + ω) · (In + d2X(τ + ω))−1 d2Y (τ + ω)

= Y (t+ ω)− Y (0) + C0 +
∑

0<τ≤t

d1X(τ + ω) · (In − d1X(τ + ω))−1 d1Y (τ + ω)

−
∑

0≤τ<t

d2X(τ) · (In + d2X(τ + ω))−1 d2Y (τ + ω) = A(X,Y )(t) + C for t ∈ R,

where

C0 =
∑

0<τ≤ω

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)−
∑

0≤τ<ω

d2X(τ) · (In + d2X(τ))−1 d2Y (τ),

and C is some constant matrix.



The General BVPs for Linear Systems of Generalized ODEs 115

4.2.1 On the set Uσ1,...,σn
ω

Lemma 4.2.5. Let condition (4.1.24) hold. Then

cii(ω)− σi
∑

0<τ≤ω

(
ln(1− σi d1cii(τ)) + σi d1cii(τ)

)
+ σi

∑
0≤τ<ω

(
ln(1 + σi d2cii(τ))− σi d1cii(τ)

)
< 0 (i = 1, . . . , n). (4.2.6)

Proof. Suppose the contrary that condition (4.2.6) is violated. Let k ∈ {1, . . . , n} be such that

u(ckk)(ω) ≥ 0, (4.2.7)

where the operator u : BV([0, ω];R) → BV([0, ω];R) is defined by

u(c)(t) ≡ c(t)− σk
∑

0<τ≤t

(
ln(1− σk d1c(τ)) + σk d1c(τ)

)
+ σi

∑
0≤τ<t

(
ln(1 + σk d2c(τ))− σk d2c(τ)

)
.

Let vj : [0, ω] → R (j = 1, 2) be the nondecreasing functions such that

v1(0) = 0 and v1(t)− v2(t) = u(ckk)(t) for t ∈ [0, ω]. (4.2.8)

By (4.2.7), we have

v1(ω)− v2(ω) ≥ 0. (4.2.9)

Consider the functions

ξj(t) = 0 if vj(ω) = 0 and ξj(t) =
v1(t)v2(ω)− v1(ω)v2(t)

gj(ω)
if gj(ω) ̸= 0 for t ∈ [0, ω] (j = 1, 2)

and

cj(t) = ξj(t)−
∑

0<τ≤t

α1j(τ) +
∑

0≤τ<t

α2j(τ) for t ∈ [0, ω] (j = 1, 2),

where
αmj(t) ≡ (−1)m−1 dmξj(t)− σk

(
1− exp((−1)m dmξj(t))

)
(m, j = 1, 2).

Note that by the inequalities

|αmj(t)| ≤M |dmξj(t)| for t ∈ [0, ω] (m, j = 1, 2),

where M is a constant independent of t, we have∣∣∣ ∑
0≤t≤ω

αmj(t)
∣∣∣ < +∞ (m, j = 1, 2).

From (4.1.24) and (4.2.8), we conclude cj(0) = 0 (j = 1, 2). Moreover,

ln(1 + (−1)mσk dmcj(t))− (−1)mσk dmcj(t) = −σkαmj(t) for t ∈ [0, ω] (m, j = 1, 2).

Therefore,

u(cj)(ω) = 0 (j = 1, 2). (4.2.10)

On the other hand, by (4.2.8), (4.2.9) and the definition of cj , we have

sc(cj)(t)− sc(cj)(s) ≤ sc(ckk)(t)− sc(ckk)(s) = 0 for 0 ≤ s ≤ t ≤ ω (j = 1, 2) (4.2.11)
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and
dmcj(t) ≤ dmckk(t) = 0 for t ∈ [0, ω] (m, j = 1, 2). (4.2.12)

Thus
1− σk d1cj(t) > 0 for t ∈ [0, ω] (j = 1, 2)

and, consequently, the Cauchy problem

dy = σky dcj(t), y(0) = 1

has the unique solution γσkcj (t, 0) defined according to (1.1.9). In addition, by virtue of (4.2.10), we
find that yj is the positive and ω-periodic function for every j ∈ {1, 2}. Hence, in view of (4.2.11) and
(4.2.12), the vector-function (yi)

n
i=1, where

yi(t) ≡ 0, yk(t) ≡ γσkcj (t, 0) (i ̸= k; i = 1, . . . , n),

is a nontrivial, nonnegative ω-periodic solution of system (4.1.20) for every j ∈ {1, 2}. But this
contradicts (4.1.24).

Lemma 4.2.6. Condition (4.1.24) holds if and only if the matrix-function C is ω-periodic and

(C, ℓ0) ∈ U(t1, . . . , tn) (4.2.13)

on the closed interval [0, ω], where

ti =
1− σi

2
ω (i = 1, . . . , n) (4.2.14)

ℓ0(x1, . . . , xn) =
(
ℓ0i(x1, . . . , xn)

)n
i=1

, ℓ0i(x1, . . . , xn) ≡ xi(ω − ti) (i = 1, . . . , n). (4.2.15)

Proof. Let (4.1.24) hold. Then, according to Lemma 4.2.5, inequality (4.2.6) is fulfilled. From this
and (4.1.19), the ω-periodic problem

du = σiu dcii(t), u(0) = u(ω) (4.2.16)

has only the trivial solution and

σigj(σicii)(t, τ) ≥ 0 for t, τ ∈ [0, ω] (j = 0, 1, 2; i = 1, . . . , n), (4.2.17)

where gj (j = 0, 1, 2) are the operators defined by (1.1.31)–(1.1.33), and λ(α)(t) ≡ γα(t, 0), α(t) ≡
σicii(t), is defined due to (1.1.9) for i ∈ {1, . . . , n}.

Assume now the contrary that condition (4.2.13) is violated, i.e., the problem

sgn(t− ti) dxi(t) ≤
n∑

l=1

xl(t) dcil(t) for t ∈ [0, ω], t ̸= ti (i = 1, . . . , n),

(−1)j djxi(ti) ≤
n∑

l=1

xl(ti) djcil(ti) (j = 1, 2; i = 1, . . . , n);

(4.2.18)

xi(ti) ≤ xi(ω − ti) (i = 1, . . . , n) (4.2.19)

has a nontrivial nonnegative solution (xi)
n
i=1.

Put

qi(t) ≡ σi(xi(ti)− xi(t)) +

n∑
l=1

t∫
ti

xl(τ) dcil(τ) (i = 1, . . . , n) (4.2.20)

and
αi = xi(ω − ti)− xi(ti) (i = 1, . . . , n). (4.2.21)
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By (4.2.18), the functions qi (i = 1, . . . , n) are nondecreasing on [0, ω] and problem (4.2.18), (4.2.19)
can be rewritten in the form

dxi(t) = σi

n∑
l=1

xl(t) dcil(t)− σi dqi(t) for t ∈ [0, ω] (i = 1, . . . , n),

xi(ti) = xi(ω − ti)− αi (i = 1, . . . , n).

So, according to Theorem 1.1.11, with regard for (4.1.19), (4.2.17), (4.2.20), and (4.2.21), we have

xi(t) = x0i(t)− σi

2∑
j=0

ω∫
0

gj(σicii)(t, τ) dsj(qi)(τ) + yi(t)

≤ xi0(t) + yi(t) for t ∈ [0, ω] (i = 1, . . . , n), (4.2.22)

where

yi(t) ≡ σi

2∑
j=0

n∑
l ̸=i; l=1

ω∫
0

gj(σicii)(t, τ)xl(τ) dsj(cil)(τ)

and x0i is a solution of the problem

duii = σi u(t) dcii(t), u(ti) = u(ω − ti)− αi (i = 1, . . . , n).

On the other hand, it is not difficult to verify that

x0i(t) =
σiαi

1− λ(cii)(ω)
λ(cii)(t) ≤ 0 for t ∈ [0, ω] (i = 1, . . . , n).

Consequently, in view of (4.2.22),

xi(t) ≤ yi(t) for t ∈ [0, ω] (i = 1, . . . , n). (4.2.23)

In addition, by Theorem 1.1.11, it follows from (4.2.23) that

σi(yi(t)− yi(s)) =

t∫
s

yi(τ) dcii(τ) +

n∑
l ̸=i; l=1

t∫
s

xl(τ) dcil(τ)

≤
n∑

l=1

t∫
s

yl(τ) dcil(τ) for 0 ≤ s ≤ t ≤ ω (i = 1, . . . , n)

and
yi(0) = yi(ω) (i = 1, . . . , n).

Therefore, the ω-periodic continuation on R of (yi)ni=1 is a nontrivial nonnegative ω-periodic solution
of system (4.1.20). The obtained contradiction proves that (4.2.13) follows from (4.1.24).

Finally, it is evident that from (4.1.24) follows (4.2.13), since the restriction on [0, ω] of an arbitrary
ω-periodic solution of system (4.1.20) is a solution of problem (4.2.18), (4.2.19), as well.

Lemma 4.2.7. Let σi ∈ {−1, 1} (i = 1, . . . , n), cil ∈ BVω(R,R) (i, l = 1, . . . , n) and the functions cil
(i ̸= l) be nondecreasing on [0, ω]. Let, moreover, conditions (4.1.19) and (4.2.6) hold and the module
of every characteristic value of the matrix S = (sil)

n
i,l=1 be less then 1, where sil (i, l = 1, . . . , n) are

defined by (4.1.25), and gj (j = 0, 1, 2) are the operators defined by (1.1.31)–(1.1.33). Then condition
(4.1.24) holds.
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Proof. Let (yi)
n
i=1 be an arbitrary nonnegative ω-periodic solution of system (4.1.20).

Put

qi(t) =

n∑
l=1

t∫
0

yl(τ) dcil(τ)− σiyi(t) for t ∈ R (i = 1, . . . , n).

Then qi ∈ BVω(R;R) (i = 1, . . . , n) and due to (4.1.20) they are nondecreasing on [0, ω].
It is clear that

dyi(t) = σi

n∑
l=1

yl(t) dcil(t)− σiqi(t) for t ∈ R (i = 1, . . . , n).

Therefore, owing to Theorem 1.1.11, we have

yi(t) = y0i(t) + σi

2∑
j=0

n∑
l ̸=i; l=1

ω∫
0

gj(σicii)(t, τ)yl(t) dsj(cil)(τ)

− σi

2∑
j=0

ω∫
0

gj(σicii)(t, τ) dsj(qi)(τ) for t ∈ [0, ω] (i = 1, . . . , n), (4.2.24)

where y0i is a ω-periodic solution of problem (4.2.16).
On the other hand, by condition (4.1.19), problem (4.2.16) has only the trivial ω-periodic solution.

So, y0i(t) ≡ 0. Besides, estimate (4.2.17) holds. Due to the above-said, from (4.2.24) follows

yi(t) ≤ σi

2∑
j=0

n∑
l ̸=i; l=1

ω∫
0

gj(σicii)(t, τ)yl(t) dsj(cil)(τ)

≤ σi

2∑
j=0

∥yl∥∞

ω∫
0

gj(σicii)(t, τ) dsj(cil)(τ) for t ∈ [0, ω] (i = 1, . . . , n).

Consequently, (
∥yi∥∞

)n
i=1

≤ S
(
∥yi∥∞

)n
i=1

.

Thus we get ∥yi∥∞ = 0 (i = 1, . . . , n), because the module of every characteristic value of the matrix
S is less than 1. So, condition (4.1.24) holds.

Lemma 4.2.8. Let conditions (4.1.19) and (4.1.26) hold, where σi ∈ {−1, 1}, ηii ∈ R, ηil ∈ R+

(l ̸= i; i, l = 1, . . . , n); αi ∈ BVω(R,R) (αi(ω) ̸= 0; i = 1, . . . , n) be nondecreasing on [0, ω]. Then
condition (4.1.24) holds if and only if conditions (4.1.27) and (4.1.28) are fulfilled, where the matrix
H = (ηil)

n
i,l=1 is defined by (4.1.29).

Proof. First, we show the necessity. Let (4.1.24) hold. Then, according to Lemma 4.2.5,

ηiisc(αi)(ω)− σi
∑

0<τ≤ω

ln
(
1− σiηii d1αi(τ)

)
+ σi

∑
0≤τ<ω

ln
(
1 + σiηii d2αi(τ)

)
< 0 (i = 1, . . . , n). (4.2.25)

Let us show (4.1.27). Assume the contrary, i.e., ηkk ≥ 0 for some k ∈ {1, . . . , n}. Then from
(4.2.25) it follows that

σk
∑

0<τ≤ω

ln
(
1− σkηkk d1αk(τ)

)
> σk

∑
0≤τ<ω

ln
(
1 + σkηkk d2αk(τ)

)
, (4.2.26)
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since αkk is nondecreasing on [0, ω] and ηkksc(αk)(ω) ≥ 0. On the other hand, it is easy to show the
inequalities

σk ln
(
1− σkηkk d1αk(τ)

)
≤ 0 and σk ln

(
1 + σkηk d2αk(τ)

)
≥ 0 for t ∈ [0, ω].

But this contradicts (4.2.26). Thus (4.1.27) is proved.
Let us show (4.1.28). Assume the contrary, i.e.,

r0 = r(S) ≥ 1.

By Theorem XIII.3.3 from [36], there exists a nonnegative eigenvector (yi)
n
i=1 corresponding to the

characteristic value r0. It is clear that

0 = ηiiyi +
1

r0

n∑
l ̸=i; l=1

ηilyl ≤
n∑

l=1

ηilyl (i = 1, . . . , n).

Therefore, (yi)
n
i=1 is a nontrivial nonnegative ω-periodic solution of system (4.1.20), since αi (i =

1, . . . , n) are nondecreasing on [0, ω]. But this contradicts (4.1.24). Consequently, the necessity is
proved.

Let us proof the sufficiency. Due to (4.1.27), we have

(−1)jσi ln(1 + (−1)jσiηii djαi(τ)) ≤ 0 for t ∈ [0, ω] (j = 1, 2; i = 1, . . . , n). (4.2.27)

Moreover, by inequality αi(ω) ̸= 0, it is not difficult to see that if sc(αi)(ω) = 0, then there exist
j ∈ {1, 2} and τ ∈ [0, ω] such that the inequality (4.2.27) is strict. Consequently, (4.2.25) holds.

Let now t ∈ [0, ω] and i, l ∈ {1, . . . , } be fixed. Put

λi(t) = exp
(
σiηiisc(αi)(t)

)
λi(t),

λi(t) =
∏

0≤τ<t

(
1 + σiηiid2αi(τ)

) ∏
0<τ≤t

(
1− σiηiid1αi(τ)

)−1

and

Ij(t) = σi

ω∫
0

gj(σiηiiαi)(t, τ) dsj(cil) for t ∈ [0, ω] (j = 0, 1, 2),

where gj (j = 0, 1, 2) are the operators defined by (1.1.31)–(1.1.33).
By virtue of the equalities

djλi
−1(t) =

σiηii djαi(t)

1 + (−1)jσiηii djαi(τ)
λi

−1(t) for t ∈ [0, ω] (j = 0, 1, 2),

we conclude
b∫

a

λ−1
i (t) dsc(αi)(τ) = − 1

σiηii

(
λ−1
i (b)− λ−1

i (a)−
∑

a<τ≤b

λ−1
i (τ)λi(τ) d1λi

−1(τ)

−
∑

a≤τ<b

λ−1
i (τ)λi(τ) d2λi

−1(τ)

)
for 0 ≤ a < b ≤ ω,

I0(t) =
σiηilλi(t)

1− λi(ω)

( t∫
0

λ−1
i (t) dsc(αi)(τ) + λi(ω)

ω∫
t

λ−1
i (t) dsc(αi)(τ)

)
,

I1(t) = − ηilλi(t)

ηii(1− λi(ω))

( ∑
0<τ≤t

λ−1
i (τ)λi(τ) d1λi

−1(τ) + λi(ω)
∑

t<τ≤ω

λ−1
i (τ)λi(τ) d1λi

−1(τ)

)
,

I2(t) = − ηilλi(t)

ηii(1− λi(ω))

( ∑
0≤τ<t

λ−1
i (τ)λi(τ) d2λi

−1(τ) + λi(ω)
∑

t≤τ<ω

λ−1
i (τ)λi(τ) d2λi

−1(τ)

)
for t ∈ [0, ω].
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These equalities imply that

σi

2∑
j=0

ω∫
0

gj(σiηiiαi)(t, τ) dsj(cil) = −ηil
ηii

= sil for t ∈ [0, ω] (i ̸= l; i, l = 1, . . . , n).

Therefore, according to Lemma 4.2.7, condition (4.1.24) holds.

Lemma 4.2.9. Let σ1 = . . . σn = σ0, σ0 ∈ {−1, 1}, a matrix-function C = (cil)
n
i,l=1 ∈ BVω(R,Rn×n)

be quasi-nondecreasing on [0, ω]. Then condition (4.1.24) holds if and only if the module of every
multiplicator of system (4.1.30), where Cσ0(t) ≡ σ0C(σ0t+

1
2 (1− σ0)ω), is less than 1.

Proof. Let t0 = 1−σ0

2 ω and let Y (t, ε), Y(t0, ε) = In, be the fundamental matrix of the system

dy = dC(t, ε) · y, (4.2.28)

where C(t, ε) ≡ εC(t)+(1−ε)diag(c11(t), . . . , cnn(t)), and let r(ε) be the spectral radius of the matrix
Yε(ω) for every ε ∈ [0, 1]. In view of Lemma 2.2.4,

Y(t, ε) ≥ On×n for t ∈ [0, ω]

and r : [0, 1] → ]0,+∞[ is the continuous function.
First, consider the case σ0 = 1. Then t0 = 0 and Cσ0

(t) = C1(t) = C(t) = C(t, 1) for t ∈ [0, ω]. So,
Y (t) ≡ Y (t, 1), where Y , Y (0) = In, is the fundamental matrix of system (4.1.30). In addition, the
monodromy matrix of the system has the form M = Y −1(0)Y (ω) = Y1(ω, 1). Therefore, the condition
imposed on multiplicators means that

r(1) < 1. (4.2.29)

Let us show the sufficiency. Let (4.2.29) hold. Consider an arbitrary nonnegative ω-periodic
solution y = (yi)

n
i=1 of system (4.1.20). By Lemma 2.2.5, we have

y(t) ≤ Y (t, 1)y(0) for t ∈ [0, ω]

and

y(0) ≤ Y (ω, 1)y(0).

By virtue of (4.2.29), it follows from the latter two estimates that y(t) ≡ 0. Therefore, condition
(4.1.24) holds.

Now we show that (4.1.24) implies (4.2.29). Assume the contrary, i.e., (4.1.24) holds, but

r(1) ≥ 1.

According to Lemma 4.2.5. condition (4.2.6) holds and

λi(ω) < 1 (i = 1, . . . , n),

where λi(t) ≡ γcii(t, t0) is defined by (1.1.9), From this

r(0) < 1,

since
Y (ω, 0) = diag

(
λ1(ω), . . . , λn(ω)

)
.

Therefore, there exists ε ∈ ]0, 1[ such that
r(ε) = 1.

Let cε ∈ Rn
+ be an eigenvector corresponding to the characteristic value 1, i.e., Y (ω, ε) cε = cε.

Then the vector-function
y(t) ≡ Y (t, ε)cε
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is a nontrivial nonnegative solution of system (4.2.28). Obviously, it is ω-periodic and satisfies system
(4.1.20), as well, since 0 ≤ ε < 1. But this contradicts (4.1.24).

Finally, we note that if (yi)ni=1 is an arbitrary solution of system (4.1.20), then (zi)
n
i=1, where

zi(t) ≡ yi(ω − t) (i = 1, . . . , n),

is a solution of the system

−σidzi(t) ≤
n∑

l=1

zl(t) d(−cil(ω − t)) for t ∈ R (i = 1, . . . , n)

and, conversely, if (zi)ni=1 is an arbitrary solution of the last system, then the (yi)
n
i=1, where

yi(t) ≡ zi(ω − t) (i = 1, . . . , n),

is a solution of system (4.1.20). In addition, (yi)ni=1 is ω-periodic if and only if (zi)ni=1 has the same
property. So, the case σ0 = −1 is reduced to the case σ0 = −1.

4.2.2 Proof of the results
By Lemma 4.2.1, Theorem 4.1.1 immediately follows from Theorem 1.1.1, and Theorems 4.1.2, 4.1.3
and Corollaries 4.1.1–4.1.3 immediately follow from Theorems 1.1.2–1.1.3 and Corollaries 4.1.1–4.1.3,
respectively, if we assume that the linear functional ℓ appearing there is of the form ℓ(x) ≡ x(0)−x(ω).
Note that condition (4.1.6) has form (4.1.8) when the fundamental matrix of system (4.1.10) is given
by (4.1.9) in Corollary 4.1.1.

Proof of Theorem 4.1.4. By Theorem 1.1.1 and Lemma 4.2.3, problem (4.1.1), (4.1.2) is uniquely sol-
vable, and problem (4.1.10), (4.1.2) has a unique Green matrix Gω. Therefore, for the proof it suffices
to verify that the vector-function given by (4.1.14) is the ω-periodic solution of system (4.1.1).

Assume

φ(t) = A(−A, f)(t) for t ∈ R.

Let us show that the vector-function x defined by (4.1.14) satisfies condition (4.1.2). By Lem-
ma 4.2.4, it is evident that A(A,φ) ∈ BVω(R,Rn) and, therefore,

A(A,φ)(t+ ω) = A(A,φ)(t) + c for t ∈ R, (4.2.30)

where c is some constant n-vector. Taking into account (4.2.30) and (4.1.14), we have

x(t+ ω) =

t+2ω∫
t+ω

Gω(t+ ω, τ) dA(A,φ)(τ) =

t+ω∫
t

Gω(t+ ω, τ + ω) dA(A,φ)(τ + ω) = x(t) for t ∈ R.

Let us verify that the vector-function x satisfies system (4.1.1). By equality (4.2.2),

Gω(t, τ) = Y (t)CωY
−1(τ) for t, τ ∈ R,

where Y is a fundamental matrix of system (4.1.10), and

Cω = (Y −1(ω)Y (0)− In)
−1.
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Thus, using the general integration-by-parts formula, we find that

x(t)− x(s) =

t∫
s

dx(τ) =

t∫
s

d

( τ+ω∫
τ

Gω(τ, η) dA(A,φ)(η)

)

=

t∫
s

d

(
Y (τ)Cω

τ+ω∫
τ

Y −1(η) dA(A,φ)(η)

)
=

t∫
s

dY (τ) · Cω

τ+ω∫
τ

Y −1(η) dA(A,φ)(η)

+

t∫
s

Y (τ)Cω d

( τ+ω∫
τ

Y −1(η) dA(A,φ)(η)

)
−

∑
s<η≤t

d1Y (τ) · Cω d1

( τ+ω∫
τ

Y −1(η) dA(A,φ)(η)

)

+
∑

s≤η<t

d2Y (τ) · Cω d2

( τ+ω∫
τ

Y −1(η) dA(A,φ)(η)

)
for s < t, s, t ∈ R. (4.2.31)

On the other hand, due to (4.2.1),

Y −1(t+ ω)− Y −1(t) ≡ C−1
ω Y −1(t). (4.2.32)

By (4.2.30), we conclude that

τ+ω∫
τ

Y −1(η) dA(A,φ)(η) =

ω∫
τ

Y −1(η) dA(A,φ)(η) +

τ+ω∫
ω

Y −1(η) dA(A,φ)(η)

=

ω∫
τ

Y −1(η) dA(A,φ)(η) +

τ∫
0

Y −1(η + ω) dA(A,φ)(η + ω)

=

ω∫
0

Y −1(η) dA(A,φ)(η) +

τ∫
0

(Y −1(η + ω)− Y −1(η)) dA(A,φ)(η) for τ ∈ R.

From this, taking into account (4.2.32), we get
τ+ω∫
τ

Y −1(η) dA(A,φ)(η) ≡
ω∫

0

Y −1(η) dA(A,φ)(η) + C−1
ω

τ∫
0

Y −1(η) dA(A,φ)(η).

Due to the last equality and the general integration-by-parts formula, taking into account the equalities

dY (t) = dA(t) · Y (t) and djY (t) = djA(t) · Y (t) for t ∈ R (j = 1, 2),

from (4.2.31) it follows that

x(t)− x(s) =

t∫
s

dA(τ) · Y (τ)Cω

τ+ω∫
τ

Y −1(η) dA(A,φ)(η) + F (s, t)

=

t∫
s

dA(τ) · x(τ) + F (s, t) for s < t, s, t ∈ R, (4.2.33)

where

F (s, t) = A(A,φ)(t)−A(A,φ)(s)

−
∑

s<τ≤t

d1A(τ) · d1A(A,φ)(τ) +
∑

s≤τ<t

d2A(τ) · d2A(A,φ)(τ) for s, t ∈ R, s < t.
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Moreover, taking into account condition (4.1.13), according to the definition of the operator A and
the function φ, we conclude that

d1φ(τ) = d1f(τ)−
∑

s<τ≤t

d1A(τ) · (In + d1A(τ))
−1 d1f(τ) for τ ∈ R,

d2φ(τ) = d2f(τ) +
∑

s≤τ<t

d2A(τ) · (In − d2A(τ))
−1 d2f(τ) for τ ∈ R.

Using the last equalities, we can easily show that

F (s, t) = φ(t)− φ(s) +
∑

s<τ≤t

d1A(τ) · (In − d1A(τ))
−1 d1φ(τ)

−
∑

s≤τ<t

d2A(τ) · (In + d2A(τ))
−1 d2φ(τ)−

∑
s<τ≤t

(d1A(τ))
2 · (In − d1A(τ))

−1 d1φ(τ)

−
∑

s≤τ<t

(d2A(τ))
2 · (In + d2A(τ))

−1 d2φ(τ)

= φ(t)− φ(s) +
∑

s<τ≤t

d1A(τ) · d1φ(τ)−
∑

s≤τ<t

d2A(τ) · d2φ(τ) = f(t)− f(s) for s, t ∈ R, s < t.

Consequently, due to (4.2.33), the vector-function x satisfies system (4.1.1).

Proof of Theorem 4.1.5. According to Theorem 4.1.1, for the proof of the theorem it suffices to show
that the homogeneous system (4.1.10) has only the trivial ω-periodic solution. Let x = (xi)

n
i=1 be an

arbitrary solution of the latter problem. Assume

uj(t) =

nj∑
i=nj−1+1

x2i (t) for t ∈ [0, ω] (j = 1, . . . ,m).

As in the proof of Theorem 3.1.4, we find that

σ1(u1(t)− u1(s)) ≥
t∫

s

u1(τ) dβ1(τ) for 0 ≤ s ≤ t ≤ ω

and
u1(t) ≤ u1(t1)γβ1(t, t1) for t ∈ [0, ω]. (4.2.34)

Due to (4.1.5), we have u1(0) = u1(ω). Thus, from (4.2.34) it follows that

u1(ω − t1) ≤ u1(t1) γβ1
(ω − t1, t1) = u1(ω − t1) γβ1

(ω − t1, t1).

Therefore, due to (4.1.18),
u(t1) = u1(0) = u1(ω) = 0,

so, by (4.2.34), we have
u1(t) ≡ 0.

Using this identity and also (4.1.15)–(4.1.18), by induction we prove uj(t) ≡ 0 (j = 2, . . . ,m). Con-
sequently, xi(t) = 0 for t ∈ [0, ω] (i = 1, . . . , n).

Proof of Corollary 4.1.4. It is evident that
n∑

i,k=1

pik(t)xixk ≡ 1

2

n∑
i,k=1

(pik(t) + pki(t))xixk.

From this, by Lemma 3.1.1, we have

λ0(P
∗(t))

n∑
i=1

x2i ≤
n∑

i,k=1

pik(t)xixk ≤ λ0(P ∗(t))

n∑
i=1

x2i for µ(g)-almost all t ∈ [0, ω], (xi)
n
i=1 ∈ Rn.

Therefore, the corollary immediately follows from Theorem 4.1.51.
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Proof of Theorem 4.1.6. By Lemma 4.2.6, condition (4.1.24) holds, where ti (i = 1, . . . , n) and ℓ0 are
given by (4.2.14) and (4.2.15). Assume

ℓi(y1, . . . , yn) = y(ω − ti) (i = 1, . . . , n).

Then condition (4.1.5) has the form

xi(ti) = ℓi(x1, . . . , xn) (i = 1, . . . , n). (4.2.35)

On the other hand, in view of conditions (4.2.14), (4.2.15), (4.1.21)–(4.1.23), the conditions of Theorem
2.2.1 and condition (4.2.13) guarantee the uniquely solvability of problem (4.1.1), (4.2.35). Therefore,
problem (4.1.1), (4.1.5) has the unique solution, as well. Hence, due to Lemma 4.2.1, we conclude that
system (4.1.1) has the unique ω-periodic solution.

Corollaries 4.1.5, 4.1.6 and 4.1.7 follow immediately from Theorem 4.1.6 due to Lemmas 4.2.7, 4.2.8
and 4.2.9, respectively.

4.2.3 Nonnegativity of solutions of ω-periodic problem
In this subsection, we consider the question on the existence of nonnegative ω-periodic solutions of
system (4.1.1). We realize the results of Section 2.3 for ω-periodic problem under consideration.

Theorem 4.2.1. Let the matrix- and vector-functions A = (aik)
n
i,k=1 ∈ BVω(R;Rn×n) and f =

(fi)
n
i=1 ∈ BVω(R;Rn) be such that the functions σiail(t) (i ̸= l; i, l = 1, . . . , n) are nondecreasing on

[0, ω], the conditions

σi(ail(t)− ail(s)) ≤ (cil(t)− cil(s)) for σi(t− s) > 0 (i, l = 1, . . . , n) (4.2.36)

and

σifi(t) are nondecreasing on [0, ω] (i = 1, . . . , n) (4.2.37)

hold on [0, ω], where σi ∈ {−1, 1} (i = 1, . . . , n), and

C = (cil)
n
i,l=1 ∈ Uσ1,...,σn

ω .

Then system (4.1.1) has one and only one ω-periodic solution and it is nonnegative.

Due to Lemmas 4.2.7 and 4.2.8, from Theorem 4.2.1 follows the following

Corollary 4.2.1. Let the matrix- and vector-functions A = (aik)
n
i,k=1 ∈ BVω(R;Rn×n) and f =

(fi)
n
i=1 ∈ BVω(R;Rn) be such that the functions σiail(t) (i ̸= l; i, l = 1, . . . , n) are nondecreasing on

[0, ω], conditions (4.1.19), (4.2.6), (4.2.37) and

σi(ail(t)− ail(s)) ≤
t∫

s

hil(τ) dαi(τ) for σi(t− s) > 0 (i, l = 1, . . . , n)

hold on [0, ω], where αi (i = 1, . . . , n) are functions nondecreasing on [0, ω] and having not more than
a finite number of discontinuity points, hii ∈ Lµ

ω(R,R;αi), hil ∈ Lµ
ω(R,R+;αl) (i ̸= l; l = 1, . . . , n),

1 ≤ µ ≤ +∞. Let, moreover,
r(S) < 1,

where the matrix S =
(
sil

)n
i,l=1

is defined by (4.1.25) and gj (j = 0, 1, 2) are the operators defined by
(1.1.31)–(1.1.33), respectively. Then the conclusion of Theorem 4.2.1 is true.
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Corollary 4.2.2. Let the matrix- and vector-functions A = (aik)
n
i,k=1 ∈ BVω(R;Rn×n) and f =

(fi)
n
i=1 ∈ BVω(R;Rn) be such that the functions σiail(t) (i ̸= l; i, l = 1, . . . , n) are nondecreasing on

[0, ω], conditions (4.1.19), (4.2.6), (4.2.37) and

σi(ail(t)− ail(s)) ≤ ηil(αi(t)− αi(s)) for σi(t− s) > 0 (i, l = 1, . . . , n)

hold on [0, ω], where σi ∈ {−1, 1}, ηil ∈ R+ (i ̸= l; i, l = 1, . . . , n), αi (αi(ω) ̸= 0; i = 1, . . . , n) are
nondecreasing on [0, ω]. Let, moreover,

ηii < 0 (i = 1, . . . , n)

and

r(H) < 1,

where H = (ηil)
n
i,l=1, hii = 0, hil = − ηil

ηii
(i ̸= l; i, l = 1, . . . , n). Then the conclusion of Theorem 4.2.1

is true.

Corollary 4.2.3. Let the matrix- and vector-functions A = (aik)
n
i,k=1 ∈ BVω(R;Rn×n) and f =

(fi)
n
i=1 ∈ BVω(R;Rn) be such that the functions σiail(t) (i ̸= l; i, l = 1, . . . , n) are nondecreasing on

[0, ω], conditions (4.1.19), (4.2.6), (4.2.36) and (4.2.37) hold on [0, ω], where σ1 = σ2 = · · · = σn = σ0,
σ0 ∈ {−1; 1}, a matrix-function C = (cil)

n
i,l=1 ∈ BVω(R,Rn×n) is quasi-nondecreasing on [0, ω]. Let,

moreover, the module of every multiplicator of the system (4.1.30), where Cσ0(t) = σ0C(σ0t+
1−σ0

2 ω)
be less than 1. Then the conclusion of Theorem 4.2.1 is true.

Remark 4.2.1. The fulfilment only of the conditions

σiail(t) are nondecreasing on [0, ω] (i ̸= l; i, l = 1, . . . , n), (4.2.38)

(4.2.37) and the existence of the unique ω-periodic solution of system (4.1.1) does not guarantees the
positiveness of the solution. For the completeness, we give the corresponding example from [47].

Let n = 2, a11(t) = a22(t) ≡ 0, a12(t) = −a21(t) ≡ t, f1(t) ≡ t and f2(t) ≡ 1
2 (cos 2t − 1). Then

conditions (4.2.37) and (4.2.38) hold for σ1 = 1, σ2 = −1. On the other hand, the corresponding
system has the unique solution

x1(t) ≡ −1

2
(1− cos t)2, x2(t) ≡=

1

3
(sin 2t− 2 sin t)

with period π. It is evident that the solution is not nonnegative.

4.2.4 On a method for constructing the periodic solutions
In this subsection, we give a method for constructing the solutions of problems (4.1.1), (4.1.2).

We use the results of Section 2.4.
In case the conditions of Theorem 4.1.6 are fulfilled, for the construction of the ω-periodic solution

of system (4.1.1) we can use the algorithm described in Section 2.4 for the construction of the solution
of the multi-point boundary value problem.

Let
ti =

1− σi
2

ω (i = 1, . . . , n). (4.2.39)

As the zero approximation to the solution of problem (4.1.1), (4.1.2), we choose an arbitrary
function (x0i)

n
i=1 ∈ BVω(R;Rn). If the (m− 1)-th approximation (xm−1 i)

n
i=1 is constructed, then by

the m-th approximation we take (xmi)
n
i=1 ∈ BVω(R;Rn), whose i-th components are defined by

xmi(ti) = xm−1 i(ω − ti),

xmi(t) = γi(t, ti)xm−1i(ω−ti)+ψi(xm−1 1, . . . , xm−1n, fi)(t) for t∈ [0, ω] (i=1, . . . , n),
(4.2.40)
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where the operators ψi : BVω(R,Rn+1) → BVω(R;R) (i = 1, . . . , n) are defined as

ψi(y1, . . . , yn+1)(t) = gi(y1, . . . , yn+1)(t)− γi(t, ti)

t∫
ti

gi(y1, . . . , yn+1)(s) dγ
−1
i (s, ti),

gi(y1, . . . , yn+1)(t) =

n∑
l=1

t∫
ti

yl(s) d(ail(s)− δilãi(s))

+ yn+1(t)− yn+1(ti) for t ∈ [0, ω] (i = 1, . . . , n);

(4.2.41)

γi(t, ti) ≡ γãi
(t, ti), ãi(t) ≡ sc(aii)(t) (i = 1, . . . , n),

and the function γãi
(t, ti) is defined by (1.1.9).

Theorem 4.2.2. Let the conditions of Theorem 4.1.6 hold. Then system (4.1.1) has one and only
one ω-periodic solution x = (xi)

n
i=1 ∈ BVω(R;Rn) and there exist ρ0 > 0 and δ ∈ ]0, 1[ such that

n∑
i=1

|xi(t)− xmi(t)| ≤ ρ0δ
m for t ∈ [0, ω] (m = 1, 2 . . . ), (4.2.42)

where the vector-functions (xmi)
n
i=1 (m = 1, 2, . . . ) are defined by (4.2.40), (4.2.41).

Corollary 4.2.4. Let the conditions from Corollaries 4.1.5–4.1.7 be fulfilled. Then system (4.1.1)
has one and only one ω-periodic solution x = (xi)

n
i=1 ∈ BVω(R;Rn) and estimate (4.2.42) holds,

where ρ0 > 0 and δ ∈ ]0, 1[ are the constants independent of m, and the vector-functions (xmi)
n
i=1

(m = 1, 2, . . . ) are defined by (4.2.40), (4.2.41).
Remark 4.2.2. Using Lemma 4.2.6, we can show that the above process of constructing the ω-
periodic solution of system (4.1.1) is stable in the sense given above (see Remark 2.4.1 and its proof
in Subsection 2.4.3).
Remark 4.2.3. In view of (4.2.40) and (4.2.41), according to the variation-of-constant formula
(1.1.12), the function xim is a solution of the Cauchy problem

dxmi(t) = xmi(t) dãi(t) +

n∑
l=1

xm−1 l(t) d(ail(t)− δilãi(t)) + dfi(t), (4.2.43)

xmi(ti) = xm−1 i(ω − ti) (4.2.44)
for i ∈ {1, . . . , n} and every natural m.

Here, the fact that the points ti (i = 1, . . . , n) are defined by (4.2.39) is of special importance.
If, for example, for every i ∈ {1, . . . , n} and every natural m, we replace condition (4.2.44) by the
condition

xmi(0) = xm−1 i(ω), (4.2.45)
then the process may be nonconvergent. In this connection, consider the example [47]

dxi(t) = xi(ω − ti) dt (i = 1, . . . , n).

It is evident that the conditions of Theorem 4.1.6 are fulfilled for A(t) ≡ diag(t, . . . , t), f(t) ≡ 0n,
σi = −1 (i = 1, . . . , n) and C(t) ≡ diag(t, . . . , t). The system has only the trivial ω-periodic solution.
Due to (4.2.39), ti = ω (i = 1, . . . , n). Let x0i(t) ≡ 1 (i = 1, . . . , n). Then if xmi is the solution of
problem (4.2.43), (4.2.44), we have

xmi(t) = exp(t− ω)xm−1 i(0) = exp(t−mω) for t ∈ [0, ω] (i = 1, . . . , n; m = 1, 2, . . . ),

lim
m→+∞

xmi(t) = 0 uniformly on [0, ω] (i = 1, . . . , n).

If we replace condition (4.2.44) by condition (4.2.45), then
xmi(t) = exp(t)xm−1 i(ω) = exp(t+ (m− 1)ω) for t ∈ [0, ω] (i = 1, . . . , n; m = 1, 2, . . . ),

lim
m→+∞

xmi(t) = +∞ for t ∈ [0, ω] (i = 1, . . . , n).



Chapter 5

Systems of linear impulsive
differential equations

5.1 General linear boundary value problems
5.1.1 Unique solvability
In this chapter, some results of Chapter 1 for the general linear boundary value problem we realize
for the following impulsive differential systems

dx

dt
= P (t)x+ q(t) for a.a. t ∈ I \ T, (5.1.1)

x(τl+)− x(τl−) = G(τl)x(τl) + u(τl) (l = 1, 2, . . . ); (5.1.2)
ℓ(x) = c0, (5.1.3)

where P ∈ L(I;Rn×n), q ∈ L(I;Rn), G ∈ B(T ;Rn×n), u ∈ B(T ;Rn), T = {τ1, τ2, . . . }, τl ∈ I
(l = 1, 2, . . . ), τl ̸= τk if l ̸= k (l, k = 1, 2, . . . ), ℓ : BV∞(I;Rn) → Rn is a linear bounded vector-
functional, and c0 ∈ Rn.

Everywhere we assume that I = [a, b].

Definition 5.1.1. Under a solution of the impulsive differential system (5.1.1), (5.1.2) we understand
a continuous from the left vector-function x ∈ BVACloc(I, T ;Rn) satisfying both the system

x′(t) = P (t)x(t) + q(t) for a.a. t ∈ I \ T

and relation (5.1.2) for every l ∈ {1, 2, . . . }.

Quite a number of issues of the theory of linear systems of differential equations with impulsive
effect have been studied sufficiently well (for survey of the results on impulsive systems see the ref-
erences in Introduction). But the above-mentioned works do not contain the results analogous to
those obtained in [46,47] for ordinary differential equations. Using the theory of generalized ordinary
differential equations, we extend these results to the systems of impulsive differential equations.

We assume that the condition

det(In +G(τl)) ̸= 0 (l = 1, 2, . . . ) (5.1.4)

holds.
To establish the results dealing with the boundary value problems for the impulsive differential

system (5.1.1), (5.1.2), we use the following conception.

Remark 5.1.1. A vector-function x is a solution of the impulsive system (5.1.1), (5.1.2) if and only
if it is a solution of the system

dx = dA(t) · x+ df(t),

127
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where

A(t) ≡
t∫

a

P (τ) dτ +
∑

τl∈[a,t[

G(τl) for t ∈ I,

f(t) ≡
t∫

a

q(τ) dτ +
∑

τl∈[a,t[

u(τl) for t ∈ I.

(5.1.5)

It is evident that these matrix- and vector-functions A and f have the following properties:

d1A(t) = On×n, d1f(t) = 0n for t ∈ I,

d2A(t) = On×n, d2f(t) = 0n for t ∈ I \ T,
d2A(τl) = G(τl), d2f(τl) = u(τl) (l = 1, 2, . . . );

(5.1.6)

Sc(A)(t)− Sc(A)(s) =

t∫
s

P (τ) dτ, sc(f)(t)− sc(f)(s) =

t∫
s

q(τ) dτ for s, t ∈ I \ T,

S1(A)(t) = On×n, s1(f)(t) = 0n for t ∈ I \ T,

S2(A)(t)=S2(A)(s)+
∑

s≤τl<t

G(τl), s2(f)(t)=s2(f)(s)+
∑

s≤τl<t

u(τl) for s, t∈I; s<t

(in particular, they are continuous from the left everywhere).
So, condition (5.1.4) is equivalent to condition (1.1.8). Moreover, due to the conditions imposed on

P , G, q and u, we have A ∈ BV(I;Rn×n) and f ∈ BV(I;Rn). Therefore, system (5.1.1) is a particular
case of system (1.1.1).

We say that the pair (X,Y ) consisting of the matrix-functionsX ∈ L(I;Rn×n) and Y ∈ B(T ;Rn×n)
satisfies the Lappo–Danilevskiĭ condition at the point a if

X(t)

t∫
a

X(τ) dτ =

t∫
a

X(τ) dτ ·X(t),

t∫
a

X(τ) dτ ·
∑

τl∈[a,t[

Y (τl) =
∑

τl∈[a,t[

Y (τl) ·
t∫

a

X(τ) dτ for t ∈ I.

Remark 5.1.2. By Definition 5.1.1, under a solution of the impulsive system (5.1.1), (5.1.2) we
understand the continuous from the left vector-function. If under a solution we understand the
continuous from the right vector-function, then we have to require the condition

det(In −G(τl)) ̸= 0 (l = 1, 2, . . . )

instead of (5.1.4). In this case, the matrix A(t) and vector f(t) will be defined such that

d1A(t) = On×n, d1f(t) = 0n for t ∈ I \ T,
d1A(τl) = G(τl), d1f(τl) = u(τl) (l = 1, 2, . . . ),

d2A(t) = On×n, d2f(t) = 0n for t ∈ I

instead of (5.1.6). In particular, A(t) and f(t) can be defined similarly as in (5.1.5) modifying the
second component. The results corresponding to this case are analogous to the results corresponding
to the first case given in Sections 5.1–5.3 below, if we replace the expressions of type In + G(τl) by
In −G(τl), the intervals [s, t[ by ]s, t], and the right limits by the left ones.

We will need the forms of operators defined by means of (1.1.351), (1.1.352) and (1.1.361), (1.1.362).
First of all, we note that the operators defined by (1.1.351) ((1.1.352)) and (1.1.361) ((1.1.362)) coincide
among themselves if X is a continuous from the left (from the right) matrix-function.
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For every matrix-function X ∈ L(I;Rn×n) and a sequence of constant matrices Yk ∈ Rn×n (k =
0, 1, . . . ) we put [(

X, {Yk}∞k=1

)]
0
(t) = In for a ≤ t ≤ b;[(

X, {Yk}∞k=1

)]
i
(a) = On×n (i = 1, 2, . . . ),

[(
X, {Yk}∞k=1

)]
i+1

(t) =

t∫
a

X(τ) ·
[(
X, {Yk}∞k=1

)]
i
(τ) dτ+

+
∑

τk∈[a,t[

Yk ·
[(
X, {Yk}∞k=1

)]
i
(τk) for a < t ≤ b (i = 1, 2, . . . ).

Note that in this case for the operators Vi (i = 1, 2, . . . ) defined by (1.1.371), we have

Vi(X, {Yk}∞k=1)(t) =
[(
|X|, {|Yk|}∞k=1

)]
i
(t) for a ≤ t ≤ b (i = 1, 2, . . . ).

Using the above-described properties the matrix- and vector-functions A and f corresponding to
the impulsive system (5.1.1), (5.1.2), we obtain the results for the solvability of the impulsive boundary
value problem (5.1.1)–(5.1.3). We do not cite here these results. They can be found in [18].

Our aim is to establish the necessary and sufficient conditions for the convergence of the difference
schemes corresponding to linear impulsive boundary value problems. To this end, below we present
only the results concerning the well-posedness of general linear boundary value problems.

As to the existence of nonnegative solutions of multi-point boundary value problems constructed by
a method of solutions of the latest problem for the impulsive case and other results, they immediately
follow from the case of corresponding results for the generalized ordinary differential equations.

5.1.2 The well-posedness of the general linear boundary value problems
Let x0 be a unique solution of problem (5.1.1)–(5.1.3).

Here, as above, we will assume that I = [a, b].
Along with the impulsive general boundary initial problem (5.1.1)–(5.1.3), consider the sequence

of the problems

dx

dt
= Pm(t)x+ qm(t) for a.a. t ∈ I \ {τl}∞l=1, (5.1.1m)

x(τl+)− x(τl−) = Gm(τl)x(τl) + um(τl) (l = 1, 2, . . . ); (5.1.2m)
ℓm(x) = cm (5.1.3m)

(m = 1, 2, . . . ), where Pm ∈ L(I;Rn×n) (m = 1, 2, . . . ), qm ∈ L(I;Rn) (m = 1, 2, . . . ), Gm ∈
B(T ;Rn×n) (m = 1, 2, . . . ), um ∈ B(T ;Rn), T = {τ1, τ2, . . . }, ℓm : BV∞(I;Rn) → Rn (m = 1, 2, . . . )
are linear bounded vector-functionals, and cm ∈ Rn (m = 1, 2, . . . ).

We assume that Pm = (pmij)
n
i,j=1 (m = 0, 1, . . . ), qm = (qmi)

n
i=1 (m = 0, 1, . . . ); Gm = (gmij)

n
i,j=1

(m = 0, 1, . . . ), um = (umi)
n
i=1 (m = 0, 1, . . . ).

Here, under the matrix- and vector-functions P0, q0, G0, u0 and functional ℓ0 we understand P ,
q, G, u and ℓ, respectively.

We establish the necessary and sufficient and effective sufficient conditions for the boundary value
problem (5.1.1m)–(5.1.3m) to have a unique solution xm for any sufficiently large m and

lim
m→+∞

∥xm − x0∥∞ = 0. (5.1.7)

Remark 5.1.3. If we consider the case where for every natural m, the impulses points depend on m
in the impulsive system (5.1.1m), (5.1.2m), in particular, the linear algebraic system (5.1.2m) has the
form

x(τlm+)− x(τlm−) = Gm(τlm)x(τlm) + um(τlm) (l = 1, 2, . . . ),

where τlm ∈ I (l = 1, 2, . . . ), then the last general case will be reduced to case (5.1.2m) by using the
following concept.
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Let T = T0 ∪ T1 ∪ T2 ∪ . . . , where Tm = {τ1m, τ2m, . . . } (m = 0, 1, . . . ), and τ10 = τl (l = 1, 2, . . . ).
The set T is countable. Therefore, T = {τ∗1 , τ∗2 , . . . }, where τ∗l ∈ I (l = 1, 2, . . . ). For every m ∈ Ñ
and l ∈ N, we set G∗

m(τ∗l ) = G∗
m(τlm) and u∗m(τ∗l ) = u∗m(τlk) if τ∗l ∈ Tm, where lm ∈ N is such that

τ∗l = τlkm, and G∗
m(τ∗l ) = On×n and u∗m(τ∗l ) = 0 if τ∗l ̸∈ Tm. So, the last general case is equivalent to

the impulsive system (5.1.1m), (5.1.2m), where τl = τ∗l (l = 1, 2, . . . ), Gm(τl) = G∗
m(τ∗l ) (l = 1, 2, . . . )

and um(τl) = u∗m(τ∗l ) (l = 1, 2, . . . ).
Below, we assume that T = {τ1, τ2, . . . }.
Along with systems (5.1.1), (5.1.2) and (5.1.1m), (5.1.2m), we consider the corresponding homoge-

neous systems
dx

dt
= P0(t)x for a.a. t ∈ I \ T, (5.1.10)

x(τl+)− x(τl−) = G0(τl)x(τl) (l = 1, 2, . . . ) (5.1.20)

and
dx

dt
= Pm(t)x for a.a. t ∈ I \ T, (5.1.1m0)

x(τl+)− x(τl−) = Gm(τl)x(τl) (l = 1, 2, . . . ) (5.1.2m0)

(m = 1, 2, . . . ).
Definition 5.1.2. We say that the sequence (Pm, qm;Gm, um; ℓm) (m = 1, 2, . . . ) belongs to the set
S(P0, q0;G0, u0; ℓ0) if for every c0 ∈ Rn and a sequence cm ∈ Rn (m = 1, 2, . . . ) satisfying condition

lim
m→+∞

cm = c0,

problem (5.1.1m)–(5.1.3m) has a unique solution xm for any sufficiently large m, and condition (5.1.7)
holds.

As above, the impulsive systems (5.1.1), (5.1.2) and (5.1.1m), (5.1.2m) (m = 1, 2, . . . ) are the
particular cases, respectively, of the general systems (1.2.1) and (1.2.1m) (m = 1, 2, . . . ) if we set

Am(t) =

t∫
a

Pm(τ) dτ +
∑

τl∈[a,t[

Gm(τl) for t ∈ I (m = 0, 1, . . . ),

fm(t) =

t∫
a

qm(τ) dτ +
∑

τl∈[a,t[

um(τl) for t ∈ I (m = 0, 1, . . . ).

(5.1.8)

To realize and formulate the well-posed results of Section 1.2, we use the following forms of the
operators B(X,Y ) and I(X,Y ) (see (0.0.3) and (0.0.4)) for the impulsive case, in particular, when the
matrix-functions X and Y are continuous from the left on I. Using the integration-by-parts formulas
(0.0.10), (0.0.12) and the definition of the Kurzweil integral, we find that

B(X,Y )(t) ≡
t∫

a

X(τ)Y ′(τ) dτ +
∑

τl∈[a,t[

X(τl+) d2Y (τl) (5.1.9)

if X ∈ BV(I;Rn×j) and Y ∈ BVACloc(I, T ;Rj×m), and

I(X,Y )(t) ≡
t∫

a

(
X ′(τ)+X(τ)Y ′(τ)

)
X−1(τ) dτ+

∑
τl∈[a,t[

(
d2X(τl)+X(τl+) d2Y (τl)

)
X−1(τl) (5.1.10)

if X,Y ∈ BVACloc(I, T ;Rn×n), detX(t) ̸= 0. In addition, if

Q(t) ≡
t∫

s

Y (τ) dτ +
∑

τl∈[a,t[

Z(τl),
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where Y ∈ Lloc(I;Rn×m) and Z ∈ Bloc(T ;Rn×m), we set

Bι(X;Y, Z)(t) ≡ B(X,Q)(t) and Iι(X;Y, Z)(t) ≡ I(X,Q)(t).

Consequently,

Bι(X;Y, Z)(t) ≡
t∫

a

X(τ)Y (τ) dτ +
∑

τl∈[a,t[

X(τl+)Z(τl), (5.1.11)

Note that if X(t) ≡ In, then

Bι(In;Y, Z)(t) ≡
t∫

a

Y (τ) dτ +
∑

τl∈[a,t[

Z(τl), Iι(In;Y, Z)(t) ≡
t∫

a

Y (τ) dτ +
∑

τl∈[a,t[

d2Z(τl).

It is clear that, by (5.1.8),

Am(t) ≡ Bι(In;Pm, Gm)(t), fm(t) ≡ Bι(In; qm, um)(t) (m = 0, 1, . . . ).

Theorem 5.1.1. Let the conditions

lim
m→+∞

ℓm(x) = ℓ(x) for x ∈ BV(I;Rn), (5.1.12)

lim sup
m→+∞

|||ℓm||| < +∞ (5.1.13)

hold. Then (
(Pm, qm;Gm, um; ℓm)

)∞
m=1

∈ S(P0, q0;G0, u0; ℓ0) (5.1.14)

if and only if there exists a sequence of matrix-functions Hm ∈ BVACloc(I, T ;Rn×n) (m = 0, 1, . . . )
such that the conditions

lim sup
m→+∞

b∨
a

(
Hm + Bι(Hm;Pm, Gm)

)
< +∞, (5.1.15)

and
inf

{
|det(H0(t))| : t ∈ I

}
> 0, (5.1.16)

hold, and the conditions
lim

m→+∞
Hm(t) = H0(t), (5.1.17)

lim
m→+∞

Bι(Hm;Pm, Gm)(t) = Bι(H0;P0, G0)(t) (5.1.18)

and
lim

m→+∞
Bι(Hm; qm, um)(t) = Bι(H0; q0, u0)(t)

hold uniformly on I.

Note that in Theorem 5.1.1, due to (5.1.9), (5.1.10) and (5.1.11), we have

Bι(Hm; qm, um)(t) ≡
t∫

a

Hm(τ) qm(τ) dτ +
∑

τl∈[a,t[

Hm(τl+)um(τl) (m = 0, 1, . . . ) (5.1.19)

and

Iι(Hm;Pm, Gm)(t) ≡
t∫

a

(
H ′

m(τ) +Hm(τ)Pm(τ)
)
H−1

m (τ) dτ

+
∑

τl∈[a,t[

(
d2Hm(τl) +Hm(τl+)Gm(τl)

)
H−1

m (τl) (m = 0, 1, . . . ). (5.1.20)
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Theorem 5.1.2. Let conditions (5.1.12), (5.1.13) and

det(In +Gm(τl)) ̸= 0 (l = 1, 2, . . . ; m = 0, 1, . . . )

hold. Then inclusion (5.1.14) holds if and only if the conditions

lim
m→+∞

X−1
m (t) = X−1

0 (t)

and

lim
m→+∞

( t∫
a

X−1
m (τ)qm(τ) dτ +

∑
τl∈[a,t[

X−1
m (τl+)um(τl)

)

=

t∫
a

X−1
0 (τ)q0(τ) dτ +

∑
τl∈[a,t[

X−1
0 (τl−)u0(τl)

hold uniformly on I, where Xm is the fundamental matrix of the homogeneous system (5.1.1m0),
(5.1.2m0) for any m ∈ Ñ.
Theorem 5.1.3. Let P ∗

0 ∈ L(I;Rn×n), q∗0 ∈ L(I;Rn), G∗
0 ∈ B(T ;Rn×n), u∗0 ∈ B(T ;Rn), c∗0 ∈ Rn,

and a ℓ∗0 : BV∞(I;Rn×n) → Rn be a linear bounded vector-functional such that

det(In +G∗
0(τl)) ̸= 0 (l = 1, 2, . . . )

and the boundary value problem
dx

dt
= P ∗

0 (t)x+ q∗0(t) for a.a. t ∈ I \ T, (5.1.1∗)

x(τl+)− x(τl−) = G∗
0(τl)x(τl) + u∗0(τl) (l = 1, 2, . . . ); (5.1.2∗)
ℓ∗0(x) = c∗0 (5.1.3∗)

has a unique solution x∗0. Let, moreover, there exist the sequences of matrix- and vector-functions
Hm ∈ BVACloc(I, T ;Rn×n) (m = 1, 2, . . . ) and hm ∈ BVACloc(I, T ;Rn) (m = 1, 2, . . . ) such that

inf
{
|det(Hm(t))| : t ∈ I

}
> 0 for every sufficiently large m,

the conditions

lim
m→+∞

(cm + ℓ∗m(hm)) = c∗0, lim
m→+∞

ℓ∗m(y) = ℓ∗0(y) for y ∈ BV(I;Rn),

lim sup
m→+∞

|||ℓ∗m||| < +∞ and lim sup
m→+∞

b∨
a

Iι(Hm;Pm, Gm) < +∞

hold and the conditions

lim
m→+∞

Iι(Hm;Pm, Gm)(t) =

t∫
a

P ∗
0 (τ) dτ +

∑
τl∈[a,t[

G∗
0(τl),

lim
m→+∞

(
hm(t)− hm(a) + Bι(Hm; qm, um)(t)−

t∫
a

dIι(Hm;Pm, Gm)(s) · hm(s)

)

=

t∫
a

q∗0(τ) dτ +
∑

τl∈[a,t[

u∗0(τl)

hold uniformly on I, where ℓ∗m(y) = ℓm(H−1
m y) (m = 1, 2, . . . ), and the operators Bι and Iι are defined

by (5.1.19) and (5.1.20), respectively. Then problem (5.1.1m)–(5.1.3m) has the unique solution xm for
any sufficiently large m and

lim
m→+∞

∥Hm xm + hm − x∗0∥∞ = 0.
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Remark 5.1.4. In Theorem 5.1.3, the vector-function x∗m(t) ≡ Hm(t)xm(t) + hm(t) is a solution of
the problem

dx

dt
= P ∗

m(t)x+ q∗m(t) for a.a. t ∈ [a, b] \ T,

x(τl+)− x(τl−) = G∗
m(τl)x(τl) + u∗m(τl) (l = 1, 2, . . . );

ℓ∗m(x) = c∗m

for every sufficiently large m, where

P ∗
m(t) ≡

(
H ′

m(t) +Hm(t)Pm(t)
)
H−1

m (t),

G∗
m(τl) =

(
d2Hm(τl) +Hm(τl+)Gm(τl)

)
H−1

m (τl) (m = 0, 1, . . . ; l = 1, 2, . . . );

q∗m(t) ≡ h′m(t) +Hm(t) qm(t)− P ∗
m(t)hm(t) (m = 1, 2, . . . ),

u∗m(τl) = d2hm(τl) +Hm(τl+)um(τl)−G∗
m(τl)hm(τl) (m = 1, 2, . . . ; l = 1, 2, . . . ).

Corollary 5.1.1. Let conditions (5.1.12), (5.1.13), (5.1.15), (5.1.16) and

lim
m→+∞

(cm − φm(a)) = c0

hold, and conditions (5.1.17), (5.1.18) and

lim
m→+∞

(
Bι(Hm; qm − φ′

m, um)(t) +

t∫
a

dIι(Hm;Pm, Gm) · φm(τ)

)
= Bι(H0; q0, u0)(t)

hold uniformly on I, where Hm ∈ BVACloc(I, T ;Rn×n) (m = 0, 1, . . . ), φm ∈ BVACloc(I, T ;Rn)
(m = 1, 2, . . . ), and the operators Bι and Iι are defined by (5.1.19) and (5.1.20), respectively. Then
problem (5.1.1m)–(5.1.3m) has the unique solution xm for any sufficiently large m and

lim
m→+∞

∥xm − φm − x0∥∞ = 0.

Remark 5.1.5. Note that the condition

lim sup
m→+∞

( b∫
a

∥∥H ′
m(t) +Hm(t)Pm(t)

∥∥ dt+ +∞∑
l=1

∥∥d2Hm(τl) +Hm(τl+)Gm(τl)
∥∥) < +∞

guarantees the fulfilment of condition (5.1.15).

Now we give some effective sufficient conditions guaranteeing inclusion (5.1.14).

Theorem 5.1.4. Let conditions (5.1.12), (5.1.13) and

lim sup
m→+∞

( b∫
a

∥Pm(t)∥ dt+
∞∑
l=1

∥Gm(τl)∥
)
< +∞

hold, and the conditions

lim
m→+∞

( t∫
a

Pm(τ) dτ +
∑

τl∈[a,t[

Gm(τl)

)
=

t∫
a

P0(τ) dτ +
∑

τl∈[a,t[

G0(τl)

and

lim
m→+∞

( t∫
a

qm(τ) dτ +
∑

τl∈[a,t[

um(τl)

)
=

t∫
a

q0(τ) dτ +
∑

τl∈[a,t[

u0(τl)

hold uniformly on I. Then inclusion (5.1.14) holds.
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Corollary 5.1.2. Let conditions (5.1.12), (5.1.13), (5.1.15) and (5.1.16) hold, and conditions (5.1.17)

lim
m→+∞

t∫
a

Hm(τ)Pm(τ) dτ =

t∫
a

H0(τ)P0(τ) dτ

and

lim
m→+∞

t∫
a

Hm(τ) qm(τ) dτ =

t∫
a

H0(τ) q0(τ) dτ

hold uniformly on I, and

lim
m→+∞

Gm(τl) = G0(τl) and lim
m→+∞

um(τl) = u0(τl)

hold uniformly on T , where Hm ∈ BVACloc(I, T ;Rn×n) (m = 0, 1, . . . ). Let, moreover, either

lim sup
m→+∞

∞∑
l=1

(
∥Gm(τl)∥+ ∥um(τl)∥

)
< +∞, or lim sup

m→+∞

∞∑
l=1

∥Hm(τl+)−Hm(τl)∥ < +∞.

Then inclusion (5.1.14) holds.

Corollary 5.1.3. Let conditions (5.1.12), (5.1.13), (5.1.15) and (5.1.16) hold, and conditions (5.1.17)

lim
m→+∞

( t∫
a

Hm(τ)Pm(τ) dτ +
∑

τl∈[a,t[

Hm(τl+)Gm(τl)

)
=

t∫
a

P∗(τ) dτ +
∑

τl∈[a,t[

G∗(τl)

and

lim
m→+∞

( t∫
a

Hm(τ)qm(τ) dτ +
∑

τl∈[a,t[

Hm(τl+)um(τl)

)
=

t∫
a

q∗(τ) dτ +
∑

τl∈[a,t[

u∗(τl)

hold uniformly on I, where Hm ∈ BVACloc(I, T ;Rn×n) (m = 1, 2, . . . ), P∗ ∈ L(I;Rn×n), q∗ ∈
L(I;Rn), G∗ ∈ B(T ;Rn×n), u∗ ∈ B(T ;Rn). Let, moreover, the system

dx

dt
= (P0(t)− P∗(t))x+ (q0(t)− q∗(t)) for a.a. t ∈ I \ T,

x(τl+)− x(τl−) = (G0(τl)−G∗(τl))x(τl) + (u0(t)− u∗(τl)) (l = 1, 2, . . . )

have a unique solution satisfying condition (5.1.3). Then(
(Pm, qm;Gm, um; ℓm)

)∞
m=1

∈ S(P0 − P∗, q0 − q∗;G0 −G∗, u0 − u∗; ℓ0).

Corollary 5.1.4. Let conditions (5.1.12), (5.1.13) hold and let there exist a natural number µ and
matrix-functions Bj ∈ BVACloc(I, T ;Rn×n) (j = 0, . . . , µ− 1) such that the conditions

lim sup
m→+∞

b∨
a

(
Hmµ−1 + Bι(Hmµ−1;Pm, Gm)

)
< +∞

holds, and the conditions

lim
m→+∞

Bι(In;Pm, Gm)(t) = B0(t)−B0(a),

lim
m→+∞

(
Hmj−1(t) + Bι(Hmj−1;Pm, Gm)(t)

)
= In +Bj(t)−Bj(a) (j = 1, . . . , µ− 1),

lim
m→+∞

(
Hmµ−1(t) + Bι(Hmµ−1;Pm, Gm)(t)

)
= In +

t∫
t0

P0(τ) dτ +
∑

τl∈[a,t[

G0(τl)
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and

lim
m→+∞

Bι(Hmµ−1; qm, um)(t) =

t∫
a

q0(τ) dτ +
∑

τl∈[a,t[

u0(τl)

hold uniformly on I, where

Hm0(t) ≡ In, Hmj(t) ≡ −
(
Hmj−1(τ)(t) + Bι(Hmj−1;Pm, Gm)(t)−Bj(t) +Bj(a)

)
Hmj−1(t)

(j = 1, . . . , µ− 1; m = 1, 2, . . . ).

Then inclusion (5.1.14) holds.

If µ = 1, then Corollary 5.1.4 coincides with Theorem 5.1.4.
If µ = 2, then Corollary 5.1.4 has the following form.

Corollary 5.1.41. Let conditions (5.1.12), (5.1.13) and (5.1.15) hold, and the conditions

lim
m→+∞

( t∫
a

Pm(τ) dτ +
∑

τl∈[a,t[

Gm(τl)

)
= B(t)−B(a),

lim
m→+∞

( t∫
a

Hm(τ)Pm(τ) dτ +
∑

τl∈[a,t[

(B(τl+)−Gm(τl+))Gm(τl)

)
=

t∫
a

P0(τ) dτ +
∑

τl∈[a,t[

G0(τl)

and

lim
m→+∞

( t∫
a

Hm(τ) qm(τ) dτ +
∑

τl∈[a,t[

(B(τl+)−Gm(τl+))um(τl)

)
=

t∫
t0

q0(τ) dτ +
∑

τl∈[a,t[

u0(τl)

hold uniformly on I, where B ∈ BVACloc(I, T ;Rn×n) and

Hm(t) ≡ In −
t∫

a

Pm(τ) dτ −
∑

τl∈[a,t[

Gm(τl) +B(t)−B(a) (m = 1, 2, . . . ).

Then inclusion (5.1.14) holds.

Corollary 5.1.5. Let conditions (5.1.12) and (5.1.13) hold. Then inclusion (5.1.14) holds if and only
if there exist matrix-functions Qm ∈ L(I;Rn×n) and Wm ∈ B(T ;Rn×n) (m = 0, 1, . . . ) such that

lim sup
m→+∞

( b∫
a

∥Pm(t)−Qm(t)∥ dt+
∞∑
l=1

∥Gm(τl)−Wm(τl)∥
)
< +∞ (5.1.21)

and
det(In +Wm(τl)) ̸= 0 (m = 0, 1, . . . ; l = 1, 2, . . . ), (5.1.22)

and the conditions

lim
m→+∞

Z−1
m (t) = Z−1

0 (t), (5.1.23)

lim
m→+∞

Bι(Z
−1
m ;Pm, Gm)(t) = Bι(Z

−1
0 ;P0, G0)(t) (5.1.24)

and
lim

m→+∞
Bι(Z

−1
m ; qm, um)(t) = Bι(Z

−1
0 ; q0, u0)(t) (5.1.25)
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hold uniformly on I, where Zm (Zm(a) = In) is a fundamental matrix of the homogeneous system

dx

dt
= Qm(t) for a.a. t ∈ I \ T, (5.1.26)

x(τl+)− x(τl−) =Wm(τl)x(τl) (l = 1, 2, . . . ) (5.1.27)

for every m ∈ Ñ.

Corollary 5.1.6. Let conditions (5.1.12) and (5.1.13) hold and let there exist sequences of matrix-
functions Qm ∈ L(I;Rn×n) (m = 0, 1, . . . ) and Wm ∈ B(T ;Rn×n) (m = 0, 1, . . . ) such that the pairs
(Qm,Wm) (m = 1, 2, . . . ) satisfy the Lappo–Danilevskiĭ condition at the point a, conditions (5.1.21)
and

det(In +W0(τl)) ̸= 0 (l = 1, 2, . . . ) (5.1.28)
hold, and the conditions

lim
m→+∞

t∫
a

Qm(τ) dτ =

t∫
a

Q0(τ) dτ, (5.1.29)

lim
m→+∞

∑
τl∈[a,t[

Wm(τl) =
∑

τl∈[a,t[

W0(τl), (5.1.30)

lim
m→+∞

( t∫
a

Z−1
m (τ)Pm(τ) dτ +

∑
τl∈[a,t[

Z−1
m (τl)(In +Wm(τl))

−1Gm(τl)

)

=

t∫
a

Z−1
0 (τ)P0(τ) dτ +

∑
τl∈[a,t[

Z−1
0 (τl)(In +W0(τl))

−1G0(τl) (5.1.31)

and

lim
m→+∞

( t∫
a

Z−1
m (τ)qm(τ) dτ +

∑
τl∈[a,t[

Z−1
m (τl)(In +Wm(τl))

−1um(τl)

)

=

t∫
a

Z−1
0 (τ)q0(τ) dτ +

∑
τl∈[a,t[

Z−1
0 (τl)(In +W0(τl))

−1u0(τl) (5.1.32)

hold uniformly on I, where Zm (Zm(a) = In) is a fundamental matrix of the homogeneous system
(5.1.26), (5.1.27) for any sufficiently large m. Then inclusion (5.1.14) holds.

Remark 5.1.6. In Corollary 5.1.6, due to (5.1.30), it follows from (5.1.28) that condition (5.1.22)
holds for every sufficiently large m and, therefore, conditions (5.1.31) and (5.1.32) of the corollary are
correct.

Remark 5.1.7. In Corollaries 5.1.5 and 5.1.6, if we assume that Wm(τl) = On×n (m = 0, 1, . . . ;
l = 1, 2, . . . ), then conditions (5.1.22) and (5.1.28) are valid, obviously. Moreover, due to the definition
of the operator Bι, each of conditions (5.1.24) and (5.1.31) has the form

lim
m→+∞

( t∫
a

Z−1
m (τ)Pm(τ) dτ +

∑
τl∈[a,t[

Z−1
m (τl)Gm(τl)

)
=

t∫
a

Z−1
0 (τ)P0(τ) dτ +

∑
τl∈[a,t[

Z−1
0 (τl)G0(τl)

and each of conditions (5.1.25) and (5.1.32) has the form

lim
m→+∞

( t∫
a

Z−1
m (τ)qm(τ) dτ +

∑
τl∈[a,t[

Z−1
m (τl)um(τl)

)
=

t∫
a

Z−1
0 (τ)q0(τ) dτ +

∑
τl∈[a,t[

Z−1
0 (τl)u0(τl).
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Remark 5.1.8. If a pair (P,G) satisfies the Lappo–Danilevskiĭ condition at the point s and det(In+
G(τl)) ̸= 0 for τl < s, then, due to (1.2.54), the fundamental matrix Z (Z(s) = In) of the homogeneous
system

dx

dt
= P (t) for a.a. t ∈ I \ T,

x(τl+)− x(τl−) = G(τl)x(τl) (l = 1, 2, . . . )

has the form

Z(t) =



exp
( t∫

s

P (τ) dτ

) ∏
s≤τl<t

(In +G(τl)) for t > s,

exp
( s∫

t

P (τ) dτ

) ∏
t≤τl<s

(In +G(τl))
−1 for t < s,

In for t = s.

(5.1.33)

Corollary 5.1.7. Let conditions (5.1.12), (5.1.13) and

lim sup
m→+∞

∞∑
l=1

∥Gm(τl)∥ < +∞

hold. Let, moreover, the matrix-functions Pm (m = 0, 1, . . . ) satisfy the Lappo–Danilevskiĭ condition
at the point a and the conditions

lim
m→+∞

t∫
a

Pm(τ) dτ =

t∫
a

P0(τ) dτ,

lim
m→+∞

∑
τl∈[a,t[

Gm(τl) =
∑

τl∈[a,t[

G0(τl),

lim
m→+∞

t∫
a

exp
(
−

τ∫
a

Pm(s) ds

)
Pm(τ) dτ =

t∫
a

exp
(
−

τ∫
a

P0(s) ds

)
P0(τ) dτ,

lim
m→+∞

t∫
a

exp
(
−

τ∫
a

Pm(s) ds

)
qm(τ) dτ =

t∫
a

exp
(
−

τ∫
a

P0(s) ds

)
q0(τ) dτ

and

lim
m→+∞

∑
τl∈[a,t[

exp
(
−

τl∫
a

Pm(s) ds

)
um(τl) =

∑
τl∈[a,t[

exp
(
−

τl∫
a

P0(s) ds

)
u0(τl)

hold uniformly on I. Then inclusion (5.1.14) holds.

Corollary 5.1.8. Let Pm = (pmij)
n
i,j=1 ∈ L(I;Rn×n), qm = (qmi)

n
i=1 ∈ L(I;Rn), Gm = (gmij)

n
i,j=1 ∈

B(T ;Rn×n) and um = (gmi)
n
i=1 ∈ B(T ;Rn) (m = 0, 1, . . . ) and let the conditions (5.1.12), (5.1.13),

lim sup
m→+∞

n∑
i,j=1; i ̸=j

( b∫
a

|pmij(t)| dt+
∞∑
l=1

|gmij(τl)|
)
< +∞

and
1 + g0ii(τl) ̸= 0 (i = 1, . . . , n; l = 1, 2, . . . )
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hold. Let, moreover, the conditions

lim
m→+∞

( t∫
a

pmii(τ) dτ +
∑

τl∈[a,t[

gmii(τl)

)
=

t∫
a

p0ii(τ) dτ +
∑

τl∈[a,t[

g0ii(τl) (i = 1, . . . , n),

lim
m→+∞

( t∫
a

z−1
mii(τ)pmij(τ) dτ +

∑
τl∈[a,t[

z−1
mii(τl)(1 + gmii(τl))

−1gmij(τl)

)

=

t∫
a

z−1
0ii (τ)p0ij(τ) dτ +

∑
τl∈[a,t[

z−1
0ii (τl)(1 + g0ii(τl))

−1g0ij(τl) (i ̸= j; i, j = 1, . . . , n)

and

lim
m→+∞

( t∫
a

z−1
mii(τ)qmi(τ) dτ +

∑
τl∈[a,t[

z−1
mii(τl)(1 + gmii(τl))

−1umi(τl)

)

=

t∫
a

z−1
0ii (τ)q0i(τ) dτ +

∑
τl∈[a,t[

z−1
0ii (τl)(1 + g0ii(τl))

−1u0i(τl) (i = 1, . . . , n)

hold uniformly on I, where

zmii(t) ≡ exp
( t∫

a

pmii(τ) dτ

) ∏
a≤τl<t

(In + gmii(τl)) (i = 1, . . . , n)

for any sufficiently large m. Then inclusion (5.1.14) holds.

Remark 5.1.9. For Corollary 5.1.8, the remark analogous to Remark 1.2.3 is true, i.e.,

1 + gmii(τl) ̸= 0 (i = 1, . . . , n; l = 1, 2, . . . )

for every sufficiently large m and, therefore, all conditions of the corollary are correct.

Remark 5.1.10. In Theorem 5.1.1 and Corollaries 5.1.1, 5.1.2, without loss of generality, we can
assume that H0(t) ≡ In.

5.1.3 Nonnegativity of solutions of the Cauchy–Nicoletti type
multi-point boundary value problems

In this subsection, for the impulsive case we realize some propositions on the existence of nonnegative
solutions of multi-point boundary value problems.

We investigate the question on the existence of nonnegative solutions of the impulsive system
(5.1.1), (5.1.2) satisfying the following boundary value conditions:

xi(ti) = ℓi(x1, . . . , xn) + c0i (i = 1, . . . , n), (5.1.34)

or
xi(ti) = c0i (i = 1, . . . , n), (5.1.35)

where ℓi : BV∞(I;Rn) → R (i = 1, . . . , n) are linear bounded functionals; c0i ∈ R, and xi is the i-th
component of the vector-function x for every i ∈ {1, . . . , n}.

We assume that I = [a, b].
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Definition 5.1.3. We say that the triple (Q,H, ℓ0) consisting of matrix-functions Q = (qik)
n
i,k=1 ∈

L(I;Rn×n) and H = (hik)
n
i,k=1 ∈ B(T ;Rn×n) and a positive homogeneous nondecreasing bounded

vector-functional ℓ0 = (ℓ0i)
n
i=1 : BV∞(I;Rn

+) → Rn
+ belongs to the set U(t1, . . . , tn; τ1, τ2, . . . ) if

qik(t) ≥ 0 (i ̸= k; i, k = 1, . . . , n) for a.e. t ∈ I, hik(τl) ≥ 0 (i ̸= k; i, k = 1, . . . , n; l = 1, 2, . . . ), and
the system

x′i(t) sgn(t− ti) ≤
n∑

k=1

qik(t)xk(t) for t ∈ I (i = 1, . . . , n),

xi(τl+)− xi(τl−) ≤
n∑

k=1

hik(τl)xk(τl) (i = 1, . . . , n; l = 1, 2, . . . )

has no nontrivial nonnegative solution satisfying the condition

xi(ti) ≤ ℓ0i(x1, . . . , xn) (i = 1, . . . , n).

Below, we give the general results on the existence of the nonnegative solution of system (5.1.1),
(5.1.2) satisfying conditions (5.1.34), or (5.1.35). The particular cases follow from the corresponding
results of Section 2.3 and the results obtained in [18].

Theorem 5.1.5. Let there exist matrix-functions Q = (qil)
n
i,l=1 ∈ L(I;Rn×n) and H = (hik)

n
i,k=1 ∈

B(T ;Rn×n) and a positive homogeneous nondecreasing bounded vector-functional ℓ0 = (ℓ0i)
n
i=1 :

BV∞(I;Rn
+) → Rn

+ satisfying the condition

(Q,H; ℓ0) ∈ U(t1, . . . , tn; τ1, τ2, . . . )

such that

pii(t) sgn(t− ti) ≤ qii(t), 0 ≤ pik(t) ≤ qik(t) for t ∈ I (i ̸= k; i, k = 1, . . . , n),

gii(τl) sgn(τl − ti) ≤ hii(τl), 0 ≤ gik(τl) ≤ hik(τl) (i ̸= k; i, k = 1, . . . , n; l = 1, 2, . . . ),

qi(t) sgn(t− ti) ≥ 0 for t ∈ I, ui(τl) sgn(τl − ti) ≥ 0 (i = 1, . . . , n; l = 1, 2, . . . ),

c0i ≥ 0 (i = 1, . . . , n)

and
0 ≤ ℓi(x1, . . . , xn) ≤ ℓ0i(x1, . . . , xn), xl ∈ BV(I;R+) (i, l = 1, . . . , n).

Then problem (5.1.1), (5.1.2); (5.1.34) has one and only one solution and it is nonnegative.

The theorem immediately follows from Theorem 2.4.1.

5.1.4 On a method for constructing solutions of the Cauchy–Nicoletti type
multi-point boundary value problems

In this subsection, we present a method for constructing solutions of the impulsive system (5.1.1),
(5.1.2) satisfying one of the conditions (5.1.34), (5.1.35), or

xi(ti) = µixi(ζi) + c0i (i = 1, . . . , n),

where coi ∈ R, µi ∈ R and ζi ∈ I, ζi ̸= τi (i = 1, . . . , n).
We use the designations given in Section 2.4 and realize them for the impulsive system under

consideration.
As the zero approximation to the solution of problem (5.1.1), (5.1.2); (5.1.34), we choose an arbi-

trary function (x0i)
n
i=1 ∈ BV(I;Rn). If the (m− 1)-th approximation (xm−1 i)

n
i=1 is constructed, then

by the m-th approximation we take (xmi)
n
i=1, i-th components of which are defined by

xmi(ti) = ℓi(xm−1 1, . . . , xm−1n) + c0i (i = 1, . . . , n),

xmi(t) = γi(t, ti)xmi(ti) + ωi(xm−1 1, . . . , xm−1n, qi, ui)(t) for t ∈ I (i = 1, . . . , n),
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where the operators ωi : BV(I;Rn+2) → BV(I;R) (i = 1, . . . , n) are defined as

ωi(y1, . . . , yn+2)(t) = gi(y1, . . . , yn+2)(t) +

t∫
ti

pii(s) gi(y1, . . . , yn+2)(s) exp
( t∫

s

pii(τ) dτ

)
ds,

gi(y1, . . . , yn+2)(t) =

n∑
l ̸=i; l=1

t∫
ti

yl(s)pil(s) ds+

t∫
ti

yn+1(s) ds

+
∑

τk∈[a,s[

(
gil(τk) + yn+2(τk)

)∣∣∣t
ti

for t ∈ I (i = 1, . . . , n).

As above, we give general results on the method for constructing solutions of system (5.1.1), (5.1.2)
satisfying condition (5.1.34), or (5.1.35). Particular cases follow from the corresponding results of
Section 2.3 and the results obtained in [18].

Theorem 5.1.6. Let there exist matrix-functions Q = (qil)
n
i,l=1 ∈ L(I;Rn×n) and H = (hik)

n
i,k=1 ∈

B(T ;Rn×n) and a positive homogeneous nondecreasing bounded vector-functional ℓ0 = (ℓ0i)
n
i=1 :

BV∞(I;Rn
+) → Rn

+ satisfying the condition

(Q,H; ℓ0) ∈ U(t1, . . . , tn; τ1, τ2, . . . )

such that

pii(t) sgn(t− ti) ≤ qii(t), |pik(t)| ≤ qik(t) for t ∈ I (i ̸= k; i, k = 1, . . . , n),

gii(τl) sgn(τl − ti) ≤ hii(τl), |gik(τl)| ≤ hik(τl) (i ̸= k; i, k = 1, . . . , n; l = 1, 2, . . . )

and
|ℓi(x1, . . . , xn)| ≤ ℓ0i(x1, . . . , xn) for xl ∈ BV(I;R+) (i, l = 1, . . . , n)

Then problem (5.1.1), (5.1.2); (5.1.34) has one and only one solution and there exist ρ0 > 0 and
δ ∈ ]0, 1[ such that

n∑
i=1

∥xi − xmi∥∞ ≤ ρ0δ
m (m = 1, 2 . . . ),

where the vector-functions (xmi)
n
i=1 (m = 1, 2, . . . ) are defined by (2.4.5), (2.4.6).

5.2 Periodic problem
In this section, we consider the impulsive system

dx

dt
= P (t)x+ q(t) for a.a. t ∈ R \ T, (5.2.1)

x(τl+)− x(τl−) = G(τl)x(τl) + u(τl) (l = 1, 2, . . . ) (5.2.2)

with the ω > 0-periodic condition

x(t+ ω) = x(t) for t ∈ R, (5.2.3)

where P = (pik)
n
i,k=1 ∈ Lloc(R;Rn×n), q = (qk)

n
k=1 ∈ Lloc(R;Rn), G = (gik)

n
i,k=1 ∈ Bloc(T ;Rn×n),

u = (uk)
n
k=1 ∈ Bloc(T ;Rn), T = {τ1, τ2, . . . }, τl ∈ R (l = 1, 2, . . . ), τl ̸= τk if l ̸= k (l, k = 1, 2, . . . ),

and ω is a fixed positive number.
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As we have noted in Section 5.1, a vector-function x is a solution of the impulsive system (5.2.1),
(5.2.2) if and only if it is a solution of the generalized system (1.1.1), where

A(t) =

t∫
0

P (τ) dτ +
∑

τl∈[0,t[

G(τl) for t ∈ R,

f(t) =

t∫
0

q(τ) dτ +
∑

τl∈[0,t[

u(τl) for t ∈ R.

(5.2.4)

Since P , G and q, u are ω-periodic matrix- and vector-functions, from (5.2.4) it follows that

A(t+ ω) ≡ A(t) +A(ω) and f(t+ ω) ≡ f(t) + f(ω).

We assume that
det(In +G(τl)) ̸= 0 (l = 1, 2, . . . ).

We realize only specific results corresponding to the ω-periodic problem, i.e., the above-established
results obtained for generalized differential case.

Along with system (5.2.1), (5.2.2), we consider the corresponding homogeneous system

dx

dt
= P (t)x for a.a. t ∈ R \ T, (5.2.10)

x(τl+)− x(τl−) = G(τl)x(τl) (l = 1, 2, . . . ). (5.2.20)

Moreover, along with condition (5.2.3), we consider the condition

x(0) = x(ω).

Definition 5.2.1. A matrix-function Gω : R× R → Rn×n is said to be the Green matrix of problem
(5.2.10), (5.2.20); (5.2.3) if:

(a)
Gω(t+ ω, τ + ω) = Gω(t, τ), Gω(t, t+ ω)− Gω(t, t) = In for t, τ ∈ R;

(b) the matrix-function Gω( · , τ) : R → Rn×n is a fundamental matrix of system (5.2.10), (5.2.20)
for every τ ∈ R.

To use formulae (4.1.14) it is necessary to consider the expression A(A,A(−A, f)) for the case
under consideration. Using (5.2.4) and the definition of the operator A, we find that

A(−A, f)(t)−A(−A, f)(s) = f(t)− f(s) +
∑

τ∈[s,t[

d2A(τ)(In − d2A(τ))
−1d2f(τ)

=

t∫
s

q(τ) dτ +
∑

τl∈[s,t[

u(τl) +
∑

τl∈[s,t[

G(τl)(In −G(τl))
−1u(τl)

=

t∫
s

q(τ) dτ +
∑

τl∈[s,t[

(In −G(τl))
−1u(τl) for s < t

and

A(A,A(−A, f))(t)−A(A,A(−A, f))(s)

= A(−A, f)(t)−A(−A, f)(s)−
∑

τ∈[s,t[

d2A(τ)(In + d2A(τ))
−1d2A(−A, f)(τ)
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=

t∫
s

q(τ) dτ +
∑

τl∈[s,t[

(In −G(τl))
−1u(τl)−

∑
τl∈[s,t[

G(τl)(In +G(τl))
−1(In −G(τl))

−1u(τl)

=

t∫
s

q(τ) dτ +
∑

τl∈[s,t[

(In +G(τl))
−1(In −G(τl))

−1u(τl) for s < t, s, t ∈ R.

Thus, we have the following

Theorem 5.2.1. Let the condition

det(In ±G(τl)) ̸= 0 (l = 1, 2, . . . )

hold, and system (5.2.10), (5.2.20) have only a trivial ω-periodic solution. Then system (5.2.1), (5.2.2)
also has the unique ω-periodic solution x and it is written in the form

x(t) =

t+ω∫
t

Gω(t, τ)q(τ) dτ +
∑

τl∈[t,t+ω[

(In +G(τl))
−1(In −G(τl))

−1u(τl) for t ∈ R,

where Gω is the Green matrix of problem (5.2.10), (5.2.20); (5.2.3).

Definition 5.2.2. Let σi ∈ {−1, 1} (i = 1, . . . , n). We say that a pair (Q,H) consisting of the
matrix-functions Q = (qik)

n
i,k=1 ∈ Lω(R;Rn×n) and H = (hik)

n
i,k=1 ∈ Bω(T ;Rn×n) belongs to the set

Uσ1,...,σn
ω if qik(t) ≥ 0 for t ∈ [0, ω] and hik(τl) ≥ 0 (i ̸= k; i, k = 1, . . . , n; l = 1, 2, . . . ),

1 + σihii(τl) > 0 (i = 1, . . . , n; l = 1, 2, . . . ) (5.2.5)

and the system of impulsive inequalities

σix
′
i(t) ≤

n∑
k=1

qik(t)xk(t) for t ∈ R (i = 1, . . . , n),

xi(τl+)− xi(τl−) ≤
n∑

k=1

hik(τl)xk(τl) (i = 1, . . . , n; l = 1, 2, . . . )

has no nontrivial, nonnegative ω-periodic solution.

Theorem 5.2.2. Let the conditions

σipii(t) ≤ qii(t), |pik(t)| ≤ qik(t) for t ∈ R (i ̸= l; i, l = 1, . . . , n); (5.2.6)
|gii(τl)| ≤ |hii(τl)|, |gil(τl)| ≤ hil(τl) (j = 1, 2; i ̸= l; i, l = 1, . . . , n) (5.2.7)

hold on [0, ω], and
(Q,H) ∈ Uσ1,...,σn

ω ,

where Q = (qik)
n
i,k=1 and H = (hik)

n
i,k=1. Then system (5.2.1), (5.2.1) has the unique ω-periodic

solution.

Corollary 5.2.1. Let conditions (5.2.5)–(5.2.7) and

σiλi(ω) < 1 (i = 1, . . . , n)

hold, where σi ∈ {−1, 1} (i = 1, . . . , n), qik(t) ≥ 0 for t ∈ [0, ω] and hik(τl) ≥ 0 (i ̸= k; i, k = 1, . . . , n;
l = 1, 2, . . . ), and

λi(t) = exp(σiqii(t))
∏

0≤τl<t

(1 + hii(τl)) for t ∈ [0, ω] (i = 1, . . . , n).
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Let, moreover,
r(S) < 1,

where the matrix S =
(
sil

)n
i,l=1

is defined by

sii = 0, sil = sup
{ ω∫

0

σig0i(t, τ)qik(τ) dτ

+
∑

τl∈[0,ω]

σi(In + σihii(τl))
−1g0i(t, τl)hik(τl) : t ∈ [0, ω]

}
(i ̸= l; i, l = 1, . . . , n),

where g0i(t, τ) ≡ (1 − λi(ω))
−1λi(t)λ

−1
i (τ)ξi(t, τ), and ξi(t, τ) = λi(ω) if t ≤ τ and ξi(t, τ) = 1 if

τ < t. Then the conclusion of Theorem 5.2.2 is true.

Corollary 5.2.2. Let conditions (5.2.5)–(5.2.7) hold, where

pik(t) = ηikα
′
i(t) for a.a. t ∈ R (i, k = 1, . . . , n),

qik(τl) = ηikd2αi(τl) (i, k = 1, . . . , n; l = 1, 2, . . . ),

σi ∈ {−1, 1}, ηil ∈ R+ (i ̸= l; i, l = 1, . . . , n), αi (αi(ω) ̸= 0; i = 1, . . . , n) are nondecreasing on [0, ω]
functions. Let, moreover,

ηii < 0 (i = 1, . . . , n)

and

r(H) < 1,

where H = (hil)
n
i,l=1,

hii = 0, hil = −ηil
ηii

(i ̸= l; i, l = 1, . . . , n).

Then the conclusion of Theorem 5.2.2 is true.

Corollary 5.2.3. Let conditions (5.2.5), (5.2.6), (5.2.7) hold, where σ1 = σ2 = · · · = σn = σ0,
σ0 ∈ {−1; 1}, Q = (qik)

n
i,k=1 ∈ Lω(R;Rn×n) and H = (hik)

n
i,k=1 ∈ Bω(T ;Rn×n) are nondecreasing on

[0, ω] matrix-functions. Let, moreover, the module of every multiplicator of the system

dy

dt
= Qσ0

(t)y for a.a. t ∈ R \ T,

y(τl+)− y(τl−) = Hσ0
(τl)y(τl) (l = 1, 2, . . . ),

where Qσ0
(t) = σ0Q(σ0t +

1−σ0

2 ω) and Hσ0
(τl) = σ0H(σ0τl +

1−σ0

2 ω), be less than 1. Then the
conclusion of Theorem 5.2.2 is true.

5.3 The numerical solvability of the general linear
boundary value problem

5.3.1 Statement of the problem
In this section, we construct the difference schemes for the problem

dx

dt
= P (t)x+ q(t) for a.a. t ∈ I \ T, (5.3.1)

x(τl+)− x(τl−) = G(τl)x(τl) + u(τl) (l = 1, 2, . . . ); (5.3.2)
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ℓ(x) = c0, (5.3.3)

where I = [a, b], P ∈ L(I;Rn×n), q ∈ L(I;Rn), G ∈ B(T ;Rn×n), u ∈ B(T ;Rn), T = {τ1, τ2, . . . },
τl ∈ I (l = 1, 2, . . . ), τl ̸= τk if l ̸= k (l, k = 1, 2, . . . ), ℓ : BV∞(I;Rn) → Rn is a linear bounded
vector-functional and c0 ∈ Rn.

Throughout this section, we will assume that the vector-function x0 : I → Rn is the unique solution
of problem (5.3.1), (5.3.2); (5.3.3).

Along with the problem, we consider the difference scheme

∆y(k−1) =
1

m

(
G1m(k) y(k)+G2m(k − 1) y(k−1)+g1m(k)+g2m(k−1)

)
(k=1, . . . ,m), (5.3.1m)

Lm(y) = γm, (5.3.2m)

where m ∈ N and Gjm and gjm (j = 1, 2) are, respectively, mappings of the set Ñm = {0, . . . ,m} into
Rn×n and Rn, γm ∈ Rn. Furthermore, for a given m ∈ Nm, Lm is a linear bounded functional of the
space of vector-functions from Ñm into Rn and with values in Rn.

In this section, we will present the effective necessary and sufficient (also, the effective sufficient)
conditions for the convergence of the difference scheme (5.3.1m), (5.3.2m) to x0. Moreover, a criterion
is obtained for the stability of the difference scheme (5.3.1m), (5.3.2m).

It should be noted that no necessary and, the more so, no necessary and sufficient conditions were
found in the earlier works.

Finally, we note that just as in [17], the 2-order n× n-difference linear problem can be reduced to
some 1-order 2n×2n-difference linear problem of type (5.3.1m), (5.3.2m) and, therefore, we can obtain
the necessary and sufficient conditions for the convergence of the corresponding 2-order difference
schemes. Analogously, we can consider the 3-order difference problem, and so on.

We assume that Gjm ∈ E(Ñm;Rn×n) (j = 1, 2), gjm ∈ E(Ñm;Rn) and Lm : E(Ñm;Rn) → Rn is a
given linear bounded vector-functional for m ∈ N and j ∈ {1, 2}. In addition, suppose

G1m(0) = G2m(m) = On×n and g1m(0) = g2m(m) = 0n for m ∈ N.

Moreover, we assume that

det(In +G(τl)) ̸= 0 (l = 1, 2, . . . ).

5.3.2 The necessary and sufficient conditions for the convergence
of the difference schemes. Formulation of the results

The proofs of the results of this chapter will be given below, in Subsection 5.3.3. We assume that
I = [a, b].

Definition 5.3.1. We say that a sequence (G1m, G2m, g1m, g2m;Lm) (m = 1, 2, . . . ) belongs to the set
CS(P, q;G, u; ℓ) if for every c0 ∈ Rn and the sequence γm ∈ Rn (m = 1, 2, . . . ) satisfying the condition

lim
m→+∞

γm = c0

the difference problem (5.3.1m), (5.3.2m) has a unique solution ym ∈ E(Ñm;Rn) for any sufficiently
large m and

lim
m→+∞

∥ym − pm(x0)∥Ñm
= 0.

Theorem 5.3.1. Let the conditions

lim
m→+∞

Lm(pm(x)) = ℓ(x) for x ∈ BV(I;Rn), (5.3.4)

lim sup
m→+∞

|||Lm||| < +∞ (5.3.5)
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hold. Then (
(G1m, G2m, g1m, g2m;Lm)

)+∞
m=1

∈ CS(P, q;G, u; ℓ) (5.3.6)
if and only if there exist a matrix-faction H ∈ BVACloc(I, T ;Rn×n) and a sequence of matrix-functions
H1m,H2m ∈ E(Ñm;Rn×n) (m ∈ N) such that the conditions

lim sup
m→+∞

m∑
k=1

(∥∥∥H2m(k)−H1m(k) +
1

m
H1m(k)G1m(k)

∥∥∥
+
∥∥∥H1m(k)−H2m(k − 1) +

1

m
H1m(k)G2m(k − 1)

∥∥∥) < +∞, (5.3.7)

inf
{
|det(H(t))| : t ∈ I

}
> 0, (5.3.8)

lim
m→+∞

max
k∈Ñm

{
∥Hjm(k)−H(τkm)∥

}
= 0 (j = 1, 2) (5.3.9)

hold, and the conditions

lim
m→+∞

1

m

νm(t)∑
k=1

H1m(k)
(
G1m(k) +G2m(k − 1)

)
=

t∫
a

H(τ)P (τ) dτ +
∑

τl∈[a,t[

H(τl+)G(τl), (5.3.10)

lim
m→+∞

1

m

νm(t)∑
k=1

H1m(k)
(
g1m(k) + g2m(k − 1)

)
=

t∫
a

H(τ)q(τ) dτ +
∑

τl∈[a,t[

H(τl+)u(τl) (5.3.11)

hold uniformly on I.

Remark 5.3.1. The limit equalities (5.3.10) and (5.3.11) hold uniformly on I if and only if the
conditions

lim
m→+∞

max
i∈Nm

{∣∣∣∣ 1m
i∑

k=1

1∑
j=0

H1m(k)Gj+1m(k−j)−
τim∫
a

H(τ)P (τ) dτ−
∑

τl∈[a,τi[

H(τl+)G(τl)

∣∣∣∣} = On×n,

lim
m→+∞

max
i∈Nm

{∣∣∣∣ 1m
i∑

k=1

1∑
j=0

H1m(k) gj+1m(k − j)−
τim∫
a

H(τ)q(τ) dτ −
∑

τl∈[a,τi[

H(τl+)u(τl)

∣∣∣∣} = 0n

hold, respectively.

Let X be the fundamental matrix of the system

dx

dt
= P (t)x for a.a. t ∈ I \ T,

x(τl+)− x(τl−) = G(τl)x(τl) (l = 1, 2, . . . )

such that X(a) = In and let Ym for any m ∈ N be the fundamental matrix of the system

∆y(k − 1) =
1

m

(
G1m(k) y(k) +G2m(k − 1) y(k − 1)

)
(k ∈ Nm) (5.3.12)

such that Ym(0) = In.

Theorem 5.3.2. Let conditions (5.3.4), (5.3.5) and

det
(
In + (−1)j

1

m
Gjm(k)

)
̸= 0 (j = 1, 2; k ∈ Nm; m ∈ N) (5.3.13)

hold. Then inclusion (5.3.6) holds if and only if the conditions

lim
m→+∞

max
k∈Ñm

{
∥Y −1

m (k)−X−1(τkm)∥
}
= 0
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and

lim
m→+∞

max
i∈Nm

{∣∣∣∣ 1m
i∑

k=1

1∑
j=0

Y −1
m (k) gj+1m(k − j)

−
τim∫
a

X−1(τ)q(τ) dτ −
∑

τl∈[a,τi[

X−1(τl+)u(τl)

∣∣∣∣} = 0n

hold.
Remark 5.3.2.

(a) If a pair (P,G) satisfied the Lappo–Danilevskiĭ condition at the point s and det(In +G(τl)) ̸= 0
for τl < s, then, due to (1.2.54), the fundamental matrix X (X(s) = In) of the above-given
homogeneous system has form (5.1.33).

(b) By (5.3.13), we conclude

Ym(k) =

1∏
i=k

(
In − 1

m
G1m(i)

)−1(
In +

1

m
G2m(i− 1)

)
(k ∈ Nm) (5.3.14)

for every natural m.

(c) In Theorem 5.3.2, condition (5.3.8) holds automatically, since Ym is the fundamental matrix of
the homogeneous system (5.3.12) for every natural m.

Theorem 5.3.3. Let conditions (5.3.4), (5.3.5) and

lim sup
m→+∞

1

m

m∑
k=1

(
∥G1m(k)∥+ ∥G2m(k − 1)∥

)
< +∞

hold and let the conditions

lim
m→+∞

1

m

νm(t)∑
k=1

(
G1m(k) +G2m(k − 1)

)
=

t∫
a

P (τ) dτ +
∑

τl∈[a,t[

G(τl) (5.3.15)

and

lim
m→+∞

1

m

νm(t)∑
k=1

(
g1m(k) + g2m(k − 1)

)
=

t∫
a

q(τ) dτ +
∑

τl∈[a,t[

q(τl) (5.3.16)

hold uniformly on I. Then inclusion (5.3.6) holds.
Proposition 5.3.1. Let conditions (5.3.4), (5.3.5), (5.3.7)–(5.3.9) and

lim
m→+∞

1

m
max
k∈Ñm

{
∥Gjm(k)∥+ ∥gjm(k)∥

}
= 0 (j = 1, 2) (5.3.17)

hold and let conditions (5.3.10) and (5.3.11) hold uniformly on I, where H ∈ AC(I;Rn×n), H1m, H2m ∈
E(Ñm;Rn×n) (m ∈ N). Let, moreover, either

lim sup
m→+∞

( 1

m

m∑
k=0

(
∥Gjm(k)∥+ ∥gjm(k)∥

))
< +∞ (j = 1, 2),

or

lim sup
m→+∞

m∑
k=0

(
∥H2m(k)−H1m(k)∥+ ∥H1m(k)−H2m(k − 1)∥

)
< +∞.

Then inclusion (5.3.6) holds.
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Theorem 5.3.4. Let conditions (5.3.4), (5.3.5), (5.3.7)–(5.3.9) and (5.3.17) hold and let conditions
(5.3.15), (5.3.16),

lim
m→+∞

1

m

νm(t)∑
k=1

H1m(k)
(
G1m(k) +G2m(k − 1)

)
=

t∫
a

P∗(τ) dτ +
∑

τl∈[a,t[

G∗(τl)

and

lim
m→+∞

1

m

νm(t)∑
k=1

H1m(k)
(
g1m(k) + g2m(k − 1)

)
=

t∫
a

q∗(τ) dτ +
∑

τl∈[a,t[

u∗(τl)

hold uniformly on I, where P∗ ∈ L(I;Rn×n), q∗ ∈ L(I;Rn), G∗ ∈ B(T ;Rn×n), u∗ ∈ B(T ;Rn),
H ∈ AC(I;Rn×n), H1m, H2m ∈ E(Nm;Rn×n) (m ∈ N). Let, moreover, the system

dx

dt
= (P (t)− P ∗(t))x+ q(t)− q∗(t) for a.a. t ∈ I \ T,

x(τl+)− x(τl−) =
(
G(τl)−G∗(τl)

)
x(τl) +

(
u(τl)− u∗(τl)

)
(l = 1, 2, . . . )

have a unique solution satisfying the boundary value condition (5.3.3). Then(
(G1m, G2m, g1m, g2m;Lm)

)+∞
m=1

∈ CS(P − P∗, q − q∗;G−G∗, u− u∗; ℓ).

Corollary 5.3.1. Let conditions (5.3.4) and (5.3.5) hold and let there exist a natural µ and matrix-
functions Bj ∈ E(Ñm;Rn×n), Bj(0) = On×n (j = 0, . . . , µ− 1) such that

lim sup
m→+∞

m∑
k=1

(∥∥∥H2mµ(k)−H1mµ(k) +
1

m
H1mµ(k)G1mµ(k)

∥∥∥
+
∥∥∥H1mµ(k)−H2mµ(k − 1) +

1

m
H1mµ(k)G2mµ(k − 1)

∥∥∥) < +∞,

lim
m→+∞

max
k∈Ñm

{
∥Hlmµ(k)− In∥

}
= 0 (l = 1, 2, . . . ),

and let the conditions

lim
m→+∞

1

m

νm(t)∑
k=1

(
G1mj(k) +G2mj(k − 1)

)
= Bj(νm(t)) (j = 0, . . . , µ− 1),

lim
m→+∞

1

m

νm(t)∑
k=1

(
G1mµ(k) +G2mµ(k − 1)

)
=

t∫
a

P (τ) dτ +
∑

τl∈[a,t[

G(τl),

lim
m→+∞

1

m

νm(t)∑
k=1

(
g1mµ(k) + g2mµ(k − 1)

)
=

t∫
a

q(τ) dτ +
∑

τl∈[a,t[

u(τl)

hold uniformly on I, where

G1m0(k) ≡ G1m(k), G2m0(k) ≡ G2m(k),

G1mj+1(k) ≡ H1mj(k)G1m(k), G2mj+1(k) ≡ H1mj(k + 1)G2m(k),

g1mj+1(k) ≡ H1mj(k)g1m(k), g2mj+1(k) ≡ H2mj(k + 1)g2m(k),

H1m0(k) = H2m0(k) ≡ In,

H1mj+1(k) ≡
( 1

m
H1mj(k)G1m(k) +Q1(H1mj , G1m, G2m)(k) +Bj+1(k)

)
H1mj(k),

H2mj+1(k) ≡
(
Q2(H1mj , G1m, G2m)(k) +Bj+1(k)

)
H2mj(k),
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Ql(H1mj , G1m, G2m)(k) ≡ 2In −Hnmj(k)−
1

m

k∑
i=1

H2mj(i)
(
G1m(i) +G2m(i− 1)

)
(l = 1, 2; j = 0, . . . , µ− 1; m = 1, 2, . . . ).

Then inclusion (5.3.6) holds.

If µ = 1 and Bj0(0) ≡ On×n (j = 1, 2), then Corollary 5.3.1 has the form of Theorem 5.3.3.
If µ = 2, then Corollary 5.3.1 has the following form.

Corollary 5.3.11. Let conditions (5.3.4), (5.3.5) and (5.3.7) hold, and the conditions

lim
m→+∞

1

m

νm(t)∑
k=1

(
G1m(k) +G2m(k − 1)

)
= B(νm(t)),

lim
m→+∞

νm(t)∑
k=1

Hm(k)
(
G1m(k) +G2m(k − 1)

)
=

t∫
a

P0(τ) dτ +
∑

τl∈[a,t[

G0(τl)

and

lim
m→+∞

νm(t)∑
k=1

Hm(k)
(
g1m(k) + g2m(k − 1)

)
=

t∫
t0

q0(τ) dτ +
∑

τl∈[a,t[

u0(τl)

hold uniformly on I, where B ∈ E(Ñm;Rn×n), B(0) = On×n and

Hm(k) ≡ In − 1

m

k−1∑
i=1

(
G1m(i) +G2m(i− 1)

)
+B(k) (m = 1, 2, . . . ).

Then inclusion (5.3.6) holds.

Corollary 5.3.2. Let conditions (5.3.4) and (5.3.5) hold. Then inclusion (5.3.6) holds if and only if
there exist matrix-functions Qm ∈ L(I;Rn×n) (m = 0, 1, . . . ) and Wm ∈ B(T ;Rn×n) (m = 0, 1, . . . )
such that the conditions (5.1.22) and

lim sup
m→+∞

( b∫
a

∥Qm(t)∥ dt+
∞∑
k=1

∥∥∥ 1

m

k−1∑
i=0

(
G1m(i) +G2m(i)

)
−Wm(τk)

∥∥∥) < +∞ (5.3.18)

hold, and the conditions (5.1.23),

lim
m→+∞

1

m

∑
l: τl∈[a,t[

(
Z−1
m (τl−)G1m(l) + Z−1

m (τl−1+)G2m(l − 1)
)

=

t∫
a

Z−1
0 (τ)P0(τ) dτ +

∑
τl∈[a,t[

Z−1
0 (τl+)G0(τl) (5.3.19)

and

lim
m→+∞

1

m

∑
l: τl∈[a,t[

(
Z−1
m (τl−)g1m(l) + Z−1

m (τl−1+)g2m(l − 1)
)

=

t∫
a

Z−1
0 (τ)p0(τ) dτ +

∑
τl∈[a,t[

Z−1
0 (τl+)g0(τl) (5.3.20)
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hold uniformly on I, where Zm (Zm(a) = In) is a fundamental matrix of the homogeneous system

dx

dt
= Qm(t) for a.a. t ∈ I \ T, (5.3.21)

x(τl+)− x(τl−) =Wm(τl)x(τl) (l = 1, 2, . . . ) (5.3.22)

for any sufficiently large m.

Corollary 5.3.3. Let conditions (5.3.4) and (5.3.5) hold and let there exist sequences of matrix-
functions Qm ∈ L(I;Rn×n) (m = 0, 1, . . . ) and Wm ∈ B(T ;Rn×n) (m = 0, 1, . . . ; l = 1, 2, . . . )
such that the pairs (Qm,Wm) (m = 1, 2, . . . ) satisfy the Lappo–Danilevskiĭ condition at the point a,
conditions (5.1.28), (5.3.18) hold, and conditions (5.1.23), (5.1.29), (5.3.19), (5.3.20) hold uniformly
on [a, b], where Zm (Zm(a) = In) is a fundamental matrix of the homogeneous system (5.3.21), (5.3.22)
for any sufficiently large m. Then inclusion (5.3.6) holds.

Corollary 5.3.4. Let Gkm = (gkmij)
n
i,j=1 ∈ E(Ñm;Rn×n) and gkm = (gkmi)

n
i=1 ∈ E(Ñm;Rn) (k =

1, 2; m = 0, 1, . . . ) and let conditions (5.3.4), (5.3.5),

lim sup
m→+∞

1

m

n∑
i,j=1; i ̸=j

( ∞∑
l=1

(
|g1mij(τl)|+ |g2mij(τl)|

))
< +∞

and
1 + g0ii(τl) ̸= 0 (i = 1, . . . , n; l = 1, 2, . . . )

hold. Let, moreover, the conditions

lim
m→+∞

1

m

νm(t)∑
k=0

(g1mii(k) + g2mii(k)) =

t∫
a

p0ii(τ) dτ +
∑

τl∈[a,t[

g0ii(τl) (i = 1, . . . , n),

lim
m→+∞

1

m

( ∑
l: τl∈ ]a,t]

z−1
mii(τl)h1mij(l)−

∑
l: τl∈[a,t[

z−1
mii(τl)h2mij(l)

)

=

t∫
a

z−1
0ii (τ)p0ij(τ) dτ +

∑
τl∈[a,t[

z−1
0ii (τl)(1 + g0ii(τl))

−1g0ij(τl) (i ̸= j; i, j = 1, . . . , n)

and

lim
m→+∞

1

m

( ∑
l: τl∈ ]a,t]

z−1
mii(τl)h1mi(l)−

∑
l: τl∈[a,t[

z−1
mii(τl)h2mi(l)

)

=

t∫
a

z−1
0ii (τ)q0i(τ) dτ +

∑
τl∈[a,t[

z−1
0ii (τl)(1 + g0ii(τl))

−1u0i(τl) (i = 1, . . . , n)

hold uniformly on I, where

hkmij(l) ≡
(
1 + (−1)k

1

m
gkmii(l)

)−1

gkmij(l), hkmi(l) ≡
(
1 + (−1)k

1

m
gkmii(l)

)−1

gkmi(l)

(k = 1, 2; i, j = 1, . . . , n),

zmii(τl) ≡
l−1∏
k=0

(1 + gmii(τk)) (i = 1, . . . , n)

for any sufficiently large m. Then inclusion (5.3.6) holds.

Remark 5.3.3. For Corollary 5.3.4, the remark analogous to Remark 1.2.3, is true, i.e.,

1 + gmii(τl) ̸= 0 (i = 1, . . . , n; l = 1, 2, . . . )

for every sufficiently large m and, therefore, all conditions of the corollary are correct.
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Remark 5.3.4. In Theorems 5.3.1, 5.3.4, Proposition 5.3.1 and Corollary 5.3.1, if condition (5.3.13)
holds, we may assume that Hm(t) ≡ Y −1

m (t), where Ym is the fundamental matrix of the homogeneous
system (5.3.12) defined by (5.3.14) for every natural m. Moreover, condition (5.3.1) and analogous
conditions hold automatically everywhere in the above results, as well.

5.3.3 Auxiliary propositions and proofs of the results
The proofs of the results are based on the following concept. We rewrite problems (5.3.1), (5.3.2);
(5.3.3) and (5.3.1m), (5.3.2m) (m ∈ N) as the linear boundary value problem for the systems of
generalized ordinary differential equations. So, the impulsive system (5.3.1), (5.3.2), as well as the
discrete systems (5.3.1m) (m ∈ N) are, really, the same type equations. Therefore, the convergence
of difference scheme (5.3.1m), (5.3.2m) (m ∈ N) to the solution of problem (5.3.1), (5.3.2); (5.3.3) is
equivalent to the well-possed question for the boundary value problem for the last systems. So, using
the results of Section 1.2, we established the present results.

As above, in Subsection 5.1.1, we rewrite the boundary value problem (5.3.1), (5.3.2); (5.3.3) as
the boundary value problem

dx = dA0(t) · x+ df0(t),

ℓ0(x) = c0,

where A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), ℓ0 : BV∞(I;Rn) → Rn is a linear bounded vector-
functional and c0 ∈ Rn is a constant vector.

Consider now the difference boundary value problem (5.3.1m), (5.3.2m), where m ∈ N.
For every natural m, we define the matrix- and vector-functions Am ∈ BV(I;Rn×n) and fm ∈

BV(I;Rn) and the bounded vector-functional ℓm : BV∞(I;Rn) → Rn, respectively, by the equalities

Am(a) = Am(τ0m) = On×n, Am(τkm) =
1

m

( k∑
i=0

G1m(i) +

k∑
i=1

G2m(i− 1)
)
, (5.3.23)

Am(t) =
1

m

( k−1∑
i=0

G1m(i) +

k∑
i=1

G2m(i− 1)
)

for t ∈ ]τk−1m, τkm[ (k ∈ Nm);

fm(a) = f(τ0m) = 0n, fm(τkm) =
1

m

( k∑
i=0

g1m(i) +

k∑
i=1

g2m(i− 1)
)
, (5.3.24)

fm(t) =
1

m

( k−1∑
i=0

g1m(i) +

k∑
i=1

g2m(i− 1)
)

for t ∈ ]τk−1m, τkm[ (k ∈ Nm);

ℓm(x) = Lm(pm(x)) for x ∈ BV(I;Rn), cm = γm. (5.3.25)

It is not difficult to verify that the defined matrix- and vector-functions have the following prop-
erties:

d1Am(τkm) =
1

m
G1m(k), d2Am(τkm) =

1

m
G2m(k) (k = 1, . . . ,m), (5.3.26)

djAm(t) = On×n for t ∈ I \
{
τ1m, . . . , τkm

}
(j = 1, 2);

d1fm(τkm) =
1

m
g1m(k), d2fm(τkm) =

1

m
g2m(k) (k = 1, . . . ,m), (5.3.27)

djfm(t) = 0n for t ∈ I \ {τ1m, . . . , τkm} (j = 1, 2)

for every m ∈ N.

Lemma 5.3.1. Let m be an arbitrary natural number. Then the vector-function y ∈ E(Ñm;Rn) is
a solution of the difference problem (5.3.1m), (5.3.2m) if and only if the vector-function x = qm(y) ∈
BV(I;Rn) is a solution of the generalized problem

dx = dAm(t) · x+ dfm(t),
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ℓm(x) = cm,

where the matrix- and vector-functions Am ∈ BV(I;Rn×n) and fm ∈ BV(I;Rn) and the bounded
vector-functional ℓm are defined by (5.3.23)–(5.3.25), respectively.

Proof. Let y ∈ E(Ñm;Rn) be a solution of the difference system (5.3.1m) (m ∈ N). Then by (0.0.12),
(0.0.13) and the equality x(τkm) = qm(y)(τkm) = y(k) (k ∈ Ñm), we get

τkm∫
τk−1m

dAm(τ)xm(τ) + f(τkm)− f(τk−1m)

=
1

m
G1m(k)xm(τkm) +

1

m
G2m(k − 1)xm(τk−1m) +

1

m
g1m(k) +

1

m
g2m(k − 1)

=
1

m
G1m(k)y(k) +

1

m
G2m(k − 1)y(k − 1) +

1

m
g1m(k) +

1

m
g2m(k − 1)

= ∆y(k − 1) = xm(τkm)− xm(τk−1m)

and

d1xm(τkm) = xm(τkm)− xm(τkm−) =
1

m
G1m(k)y(k) +

1

m
g1m(k)

= d1Am(τkm) + d1fm(τkm) (k ∈ Nm);

d2xm(τk−1m) = xm(τk−1m+)− xm(τk−1m) = y(k)− y(k − 1)− 1

m
G1m(k)y(k)− 1

m
g1m(k)

=
1

m
G2m(k − 1)y(k − 1) +

1

m
g2m(k − 1) = d2Am(τk−1m) + d2fm(τk−1m)

for every m ∈ N and k ∈ Nm.

Analogously, we show that if the vector-function x ∈ BV(I;Rn) is a solution of the generalized
problem defined above, then the vector-function y(k) = pm(x)(k) (k = 1, . . . ,m) will be a solution of
the difference problem (5.3.1m), (5.3.2m) for every natural m.

So, we show that the convergence of the difference scheme (5.3.1m), (5.3.2m) (m ∈ N) is equivalent
to the well-posed question for the corresponding linear generalized boundary value problem given at
the beginning of the subsection.

Moreover, in view of Definition 1.2.1, the following lemma is true.
Lemma 5.3.2. Inclusion (5.3.6) holds if and only if the inclusion(

(Am, fm; ℓm)
)+∞
m=1

∈ S(A, f ; ℓ)

holds, where the n× n-matrix-functions A, Am, n-vector-functions f , fm and n-vector-functionals ℓ,
ℓm (m = 1, 2, . . . ) are defined as above by (5.3.23)–(5.3.25), respectively.
Remark 5.3.5. In view of (5.3.23) and (5.3.24), we have Am(t) = const and fm(t) = const for
t ∈ ]τk−1m, τkm[ (k = 1, . . . ,m; m = 1, 2, . . . ), i.e., they are the break matrix- and vector-functions.
So, all the solutions of system (5.3.1m) (m = 1, 2, . . . ) have the same property. Such property have also
matrix-functions Hm (m = 1, 2, . . . ) in the results of Section 1.2. So, they are also break functions.
Therefore,

Hm(τk−1m+) = Hm(τkm−) = const (k = 1, . . . ,m; m = 1, 2, . . . ). (5.3.28)
Below we realize some results from Chapter 2. To this end, we use the following

Lemma 5.3.3. Let the matrix-functions Am ∈ BV(I;Rn×n) (m = 1, 2, . . . ) and the vector-functions
fm ∈ BV(I;Rn) (m = 1, 2, . . . ) be defined by (5.3.23) and (5.3.24), respectively, and Qm∈ BV(I;Rn×n)

(m = 1, 2, . . . ). Then there exist discrete matrix-functions Q1m, Q2m ∈ E(Ñm;Rn×n) (m = 1, 2, . . . )
such that Q1m(k) ≡ Q2m(k − 1) and

B(Qm, Am)(t) ≡ 1

m

νm(t)∑
k=1

(
Q1m(k)G1m(k) +Q2m(k − 1)G2m(k − 1)

)
(m = 1, 2, . . . ) (5.3.29)
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and

B(Qm, fm)(t) ≡ 1

m

νm(t)∑
k=1

(
Q1m(k) g1m(k) +Q2m(k − 1) g2m(k − 1)

)
(m = 1, 2, . . . ). (5.3.30)

Proof. By the definition of the operator B(H,A), the integration-by-parts formula and equalities
(0.0.12), we have

B(Qm, Am)(t) =

t∫
a

Qm(τ) dAm(τ)−
∑

a<τ≤t

d1Qm(τ) d1Am(τ) +
∑

0≤τ<t

d2Q(τ) d2Am(τ)

=
∑

a<τkm≤t

Qm(τkm−) d1Am(τkm) +
∑

a≤τkm<t

Qm(τkm+) d2Am(τkm)

=

νm(t)∑
k=1

Qm(τkm−) d1Am(τkm) +

νm(t)−1∑
k=0

Qm(τkm+) d2Am(τkm)

=

νm(t)∑
k=1

(
Qm(τkm−) d1Am(τkm) +Qm(τk−1m+) d2Am(τk−1m)

)
for t ∈ I (m = 1, 2, . . . ). (5.3.31)

Owing to (5.3.26), from (5.3.31) we get presentation (5.3.29), where Q1m(k) ≡ Qm(τkm−) and
Q2m(k) ≡ Qm(τkm+) (m = 1, 2 . . . ). Analogously, using (5.3.27), we obtain presentation (5.3.30).
Due to (5.3.23) and (5.3.24), the lemma is proved.

Proof of Theorem 5.3.1. Let us show the sufficiency.
Let the matrix-functions Hm ∈ BV(I;Rn) (m = 1, 2, . . . ) be defined by the equalities

Hm(t) = H1m(k) for τk−1m < t < τkm, Hm(τkm) = H2m(k) (k = 1, . . . ,m; m = 1, 2, . . . ).

It is evident that Hm (m = 1, 2, . . . ) are the break matrix-functions and they are constant on the
intervals ]τk−1m, τkm[ . Hence equalities (5.3.28) hold and

d1Hm(τkm)=H2m(k)−H1m(k), d2Hm(τkm)=H1m(k + 1)−H2m(k) (k=1, . . . ,m; m=1, 2, . . . ).

By Lemma 5.3.3, Remark 5.3.5 and equalities (5.3.28), we get

B(Hm, Am)(t) ≡ 1

m

νm(t)∑
k=1

H1m(k)
(
G1m(k) +G2m(k − 1)

)
(m = 1, 2, . . . )

and

B(Hm, fm)(t) ≡ 1

m

νm(t)∑
k=1

H1m(k)
(
g1m(k) + g2m(k − 1)

)
(m = 1, 2, . . . ).

On the other hand, condition (1.2.9) is equivalent to condition (5.3.7). So, conditions (5.3.8)–(5.3.11)
guarantee the fulfilment of the condition of Theorem 1.2.1. The sufficiency is proved.

Let us show the necessity. Inclusion (5.3.6) is equivalent to inclusion (1.2.8), where Am and fm
(m = 1, 2, . . . ) are defined as above. Due to Theorem 5.3.1, there exists the sequence Hm ∈ BV(I;Rn)
(m = 1, 2, . . . ) satisfying the conditions given in the theorem. Let

H1m(k) ≡ Hm(τkm−), H2m(k) ≡ Hm(τkm) (m = 1, 2, . . . ).

According to Remark 5.3.5, equality (5.3.28) holds. Using Lemma 5.3.3, we easily show that the defined
discrete matrix-functions H1m and H2m (m = 1, 2, . . . ) satisfy the condition of Theorem 5.3.1.

Due to the above lemmas and remark, we conclude that Theorems 5.3.2 and 5.3.3 are the particular
cases of Theorems 1.2.2 and 1.2.4, respectively. Moreover, Proposition 5.3.1, Theorem 5.3.4 and
Corollary 5.3.1 are the particular cases of Corollaries 1.2.2, 1.2.3 and 1.2.4, respectively, etc.
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5.4 The stability of difference schemes
5.4.1 Statement of the problem and formulation of the results
In this section, we consider the question on the stability of a solutions of the difference linear boundary
value problem

∆y(k − 1) = G1(k) y(k) +G2(k − 1)y(k − 1) + g1(k) + g2(k − 1) (k ∈ Nm0), (5.4.1)

L(y) ≡
m0∑
k=0

H(k)y(k) = γ0, (5.4.2)

where m0 ≥ 2 is a fixed natural number, Gj ∈ E(Ñm0 ;Rn×n) (j = 1, 2), gj ∈ E(Ñm0 ;Rn) (j = 1, 2),
H ∈ E(Ñm0

;Rn), and γ0 ∈ Rn.
Along with problem (5.4.1), (5.4.2), consider the sequence of the problems

∆y(k − 1) = G1m(k)y(k) +G2m(k − 1)y(k − 1) + g1m(k) + g2m(k − 1) (k ∈ Nm0), (5.4.1m)

Lm(y) ≡
m0∑
k=0

Hm(k)y(k) = γm (5.4.2m)

(m ∈ N), where Gjm ∈ E(Nm0
;Rn×n) (j = 1, 2), gjm ∈ E(Nm0

;Rn) (j = 1, 2), Hm ∈ E(Nm0
;Rn),

and γm ∈ Rn for every natural m.
We assume that

G1(0) = G1m(0) = On×n, g1(0) = g1m(0) = 0n (m ∈ N),
G2(m0) = G2m(m0) = On×n, g2(m0) = g2m(m0) = 0n (m ∈ N)

and problem (5.4.1), (5.4.2) has the unique solution y0 ∈ E(Ñm0
;Rn) (the necessary and sufficient

conditions are given, e.g., in [18]).
Besides, we assume that G10(k) ≡ G1(k) and g10(k) ≡ g1(k), if necessary.

Definition 5.4.1. We say that a sequence (G1m, G2m, g1m, g2m;Lm) (m = 1, 2, . . . ) belongs to the
set S(G1, G2, g1, g2;L) if for every γ0 ∈ Rn and the sequence γm ∈ Rn (m = 1, 2, . . . ) satisfying the
condition

lim
m→+∞

γm = γ0

the difference boundary value problem (5.4.1m), (5.4.2m) has a unique solution ym ∈ E(Ñm0 ;Rn) for
any sufficiently large m and

lim
m→+∞

∥ym − y0∥Ñm0
= 0.

Theorem 5.4.1. Let

det
(
In + (−1)jGj(k)

)
̸= 0 for k ∈ Ñm0

(j = 1, 2) (5.4.3)

and
lim

m→+∞
Hm(k) = H(k) for k ∈ Ñm0

. (5.4.4)

Then (
(G1m, G2m, g1m, g2m;Lm)

)+∞
m=1

∈ S(G1, G2, g1, g2;L) (5.4.5)
if and only if

lim
m→+∞

(
G1m(k) +G2m(k − 1)

)
= G1(k) +G2(k − 1) for k ∈ Nm0

,

lim
m→+∞

(
g1m(k) + g2m(k − 1)

)
= g1(k) + g2(k − 1) for k ∈ Nm0 .
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Proposition 5.4.1. Let conditions (5.4.3), (5.4.4),

lim
m→+∞

Gjm(k) = Gj(k) for k ∈ Nm0
(j = 1, 2),

lim
m→+∞

gjm(k) = gj(k) for k ∈ Nm0 (j = 1, 2)

hold. Then inclusion (5.4.5) holds.
Corollary 5.4.1. Let conditions (5.4.3) and (5.4.4) hold and there exist a natural µ and matrix-
functions Bl ∈ E(Ñm0

;Rn×n), Bl(0) = On×n (l = 0, . . . , µ− 1) such that the conditions

lim sup
m→+∞

(∥∥H2mµ(k)−H1mµ(k) +H1mµ(k)G1mµ(i)
∥∥

+
∥∥H1mµ(k)−H2mµ(k − 1) +H1mµ(k)G2mµ(k − 1)

∥∥) < +∞ for k ∈ Nm0 ,

lim
m→+∞

Hjmµ(k) = In for k ∈ Ñm0
(j = 1, 2),

lim
m→+∞

(
G1ml(k) +G2ml(k − 1)

)
= Bl(k) for k ∈ Nm0 (l = 0, . . . µ− 1),

lim
m→+∞

(
G1mµ(k) +G2mµ(k − 1)

)
= G1(k) +G2(k − 1) for k ∈ Nm0

and
lim

m→+∞

(
g1mµ(k) + g2mµ(k − 1)

)
= g1(k) + g2(k − 1) for k ∈ Nm0

hold, where

G1m0(k) ≡ G1m(k), G2m0(k) ≡ G2m(k),

G1ml+1(k) ≡ H1ml(k)G1m(k), G2ml+1(k) ≡ H1ml(k + 1)G2m(k),

g1ml+1(k) ≡ Hml(k)g1m(k), g2ml+1(k) ≡ Hml(k + 1)g2m(k),

H1m0(k) = H2m0(k) ≡ In,

H1ml+1(k) ≡
(
H1ml(k)G1m(k) +Q1(H1ml, G1m, G2m)(k) +Bl+1(k)

)
H1ml(k),

H2ml+1(k) ≡
(
Q2(H1ml, G1m, G2m)(k) +Bl+1(k)

)
H2ml(k),

Qj(H1ml, G1m, G2m)(k) ≡ 2In −Hjml(k)−
k∑

i=1

H1ml(i)
(
G1m(i) +G2m(i− 1)

)
(j = 1, 2; l = 0, . . . , µ− 1; m = 1, 2, . . . ).

Then inclusion (5.4.5) holds.
If µ = 1 and B0(k) ≡ On×n, then Corollary 5.1.1 coincides with the sufficient part of Theorem

5.4.1.
If µ = 2, then Corollary 5.4.1 has the following form.

Corollary 5.4.11. Let conditions (5.4.3), (5.4.4),

lim
m→+∞

(G1m(k) +G2m(k − 1)) = B(k) for k ∈ Nm0 ,

lim
m→+∞

(
Hm(k) (G1m(k) +G2m(k − 1))

)
= G1(k) +G2(k − 1) for k ∈ Nm0

and

lim
m→+∞

(
Hm(k) (g1m(k) + g2m(k − 1))

)
= g1(k) + g2(k − 1) for k ∈ Nm0

hold, where B ∈ E(Ñm0
;Rn×n), B(0) = On×n and

Hm(k) ≡ In −
k−1∑
i=1

(
G1m(i) +G2m(i− 1)

)
+B(k) (m = 1, 2, . . . ).

Then inclusion (5.4.5) holds.
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Corollary 5.4.2. Let conditions (5.4.3) and (5.4.4) hold. Then inclusion (5.4.5) holds if and only
if there exist matrix-functions Wm ∈ E(Ñm0 ;Rn×n), Wm(0) = On×n (m = 0, 1, . . . ) such that the
conditions

det(In +Wm(k)) ̸= 0 (m = 0, 1, . . . ),

lim
m→+∞

Z−1
m (k) = Z−1

0 (k),

lim
m→+∞

(
Z−1
m (k)G1m(k) + Z−1

m (k − 1)G2m(k − 1)
)
= Z−1

0 (k)G1(k) + Z−1
0 (k − 1)G2(k − 1) (5.4.6)

and

lim
m→+∞

(
Z−1
m (k)g1m(k) + Z−1

m (k − 1)g2m(k − 1)
)
= Z−1

0 (k)g1(k) + Z−1
0 (k − 1)g2(k − 1) (5.4.7)

hold for k ∈ Ñm0
, where

Zm(k) ≡
k∏

i=0

(In +Wm(k − i)) (m = 0, 1, . . . ).

Corollary 5.4.3. Let conditions (5.4.3) and (5.4.4) hold and let there exist sequences of matrix-
functions Wm ∈ E(Ñm0

;Rn×n), Wm(0) = On×n (m = 0, 1, . . . ) such that conditions (5.4.6), (5.4.7),

det(In +W0(k)) ̸= 0

and
lim

m→+∞
Wm(k) =W0(k)

hold for k ∈ Ñm0
, where the matrix-functions Zm (m = 0, 1, . . . ) are defined as in Corollary 5.3.2.

Then inclusion (5.4.5) holds.
Corollary 5.4.4. Let Gkm = (gkmij)

n
i,j=1 ∈ B(T ;Rn×n) and gkm = (gkmi)

n
i=1 ∈ B(T ;Rn) (k = 1, 2;

m = 0, 1, . . . ) and let conditions (5.4.3), (5.4.4),

lim sup
m→+∞

n∑
i,j=1; i̸=j

((
|g1mij(k)|+ |g2mij(k)|

))
< +∞ for k ∈ Ñm0

and
1 + g0ii(k) ̸= 0 for k ∈ Nm0 (i = 1, . . . , n)

hold. Let, moreover, the conditions

lim
m→+∞

(
g1mii(k) + g2mii(k)

)
= g1ii(k) + g2ii(k) (i = 1, . . . , n),

lim
m→+∞

(
z−1
mii(k)(h1mij(k)− h2mij(k))

)
= z−1

0ii (k)
(
h10ij(k)− h20ij(k)

)
(i ̸= j; i, j = 1, . . . , n)

and

lim
m→+∞

(
z−1
mii(k)(h1mi(k)− h2mi(k))

)
= z−1

0ii (k)
(
h10i(k)− h20i(k)

)
(i = 1, . . . , n)

hold for k ∈ Ñm0
, where

hlmij(k) ≡
(
1 + (−1)lglmii(k)

)−1
glmij(k), hlmi(k) ≡

(
1 + (−1)lglmii(k)

)−1
glmi(k)

(l = 1, 2; i, j = 1, . . . , n),

and

zmii(k) ≡
k−1∏
l=0

(1 + gmii(l)) (i = 1, . . . , n)

for any sufficiently large m. Then inclusion (5.4.5) holds.
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Remark 5.4.1. In this section, we consider the case where the limit problem (5.4.1), (5.4.2) and
the approximate problems (5.4.1m), (5.4.2m) (m = 1, 2, . . . ) are given on the same (constant) sets
Ñm0 . The method considered below enables one to investigate the same problem for the general case,
i.e., when the approximate problems (5.4.1m), (5.4.2m) are given on different sets Ñm (m = 1, 2, . . . )

differing from Ñm0 .

5.4.2 Proofs of the results
As in the previous section, the proofs of the results are based on the following concept. We rewrite
problems (5.4.1), (5.4.2) and (5.4.1m), (5.4.2m) (m ∈ N) as the linear boundary value problem for the
systems of generalized ordinary differential equations.

We assume that

L0(y) ≡ L(y), Gj0(k) ≡ Gj(k) and gj0(k) ≡ gj(k) (j = 1, 2).

For every m ∈ Ñ, we define the matrix- and vector-functions Am ∈ BV([0,m0];Rn×n) and fm ∈
BV([0,m0];Rn) and the bounded vector-functional ℓm : BV∞([0,m0];Rn) → Rn, respectively, by the
equalities

Am(0) = On×n, Am(k) =

k∑
i=0

G1m(i) +

k∑
i=1

G2m(i− 1),

Am(t) =

k−1∑
i=0

G1m(i) +

k∑
i=1

G2m(i− 1) for t ∈ ]k − 1, k[ (k ∈ Nm0
); (5.4.8)

fm(0) = 0n, fm(k) =

k∑
i=0

g1m(i) +

k∑
i=1

g2m(i− 1),

fm(t) =

k−1∑
i=0

g1m(i) +

k∑
i=1

g2m(i− 1) for t ∈ ]k − 1, k[ (k ∈ Nm0
); (5.4.9)

ℓm(x) = Lm(pm(x)) for x ∈ BV([0,m0];Rn), cm = γm. (5.4.10)

Analogously, as in the pervious section, the following lemmas are true.

Lemma 5.4.1. Let m ∈ Ñ be arbitrary. Then the vector-function y ∈ E(Ñm;Rn) is a solution of the
difference problem (5.4.1m), (5.4.2m) if and only if the vector-function x = qm(y) ∈ BV([0,m0];Rn) is
a solution of the generalized problem

dx = dAm(t) · x+ dfm(t),

ℓm(x) = cm,

where the matrix- and vector-functions Am ∈ BV([0,m0];Rn×n) and fm ∈ BV([0,m0];Rn) and the
vector-functional ℓm are defined by (5.4.8)–(5.4.10), respectively.

Lemma 5.4.2. Inclusion (5.4.5) holds if and only if the inclusion(
(Am, fm; ℓm)

)+∞
m=1

∈ S(A, f ; ℓ)

holds, where the matrix-functions A, Am, vector-functions f , fm and vector-functionals ℓ, ℓm (m =
1, 2, . . . ) are defined as above by (5.4.8)–(5.4.10), respectively.

So, the discrete systems (5.4.1), (5.4.1) and (5.4.1m), (5.4.2m) (m ∈ N) are the particular cases of
the generalized linear boundary value problems.

Therefore, the convergence of solutions of the difference problems (5.4.1m), (5.4.2m) (m ∈ N) to
the solution of problem (5.4.1), (5.4.2) is equivalent to the well-posed question for the boundary value
problem for the latter systems.

Due to the lemmas, we conclude that Theorem 5.4.1, Proposition 5.4.1 and Corollary 5.4.1 are the
particular cases of Theorem 1.2.1, Corollary 1.2.2 and Corollary 1.2.4, respectively, etc.



Chapter 6

The well-posedness and the
numerical solvability of the general
linear boundary value problems for
systems of ordinary differential
equations

In this chapter, we realize the results of Sections 5.1 and 5.3 for the general linear boundary value
problem for the following differential systems of ordinary differential equations.

Below:

(a) in Section 6.1, we give the conditions guaranteeing the approximation of the solution of the
considered problem by solutions of the nearly problems of the same type, i.e., by absolutely
continuous vector-functions;

(b) in Section 6.2, we give the conditions guaranteeing the approximation of the solution of the
considered problem by solutions of the nearly difference problems, i.e., by piecewise constants
vector-functions;

(c) in Section 6.3, we give the conditions guaranteeing the approximation of the solution of the
considered problem by solutions of the nearly impulsive problems, i.e., by piecewise continuous
vector-functions.

6.1 The necessary and sufficient conditions
for the well-posedness

Consider the problem

dx

dt
= P0(t)x+ q0(t) for a.a. t ∈ I, (6.1.1)

ℓ0(x) = c0, (6.1.2)

where I = [a, b], P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), ℓ0 : C(I;Rn) → Rn is a linear vector-functional,
bounded with respect to the norm ∥ · ∥c, and c0 ∈ Rn.

Note that by the Hahn–Banach theorem there exists a linear bounded vector-functional ℓ∗ ∈
BV∞(I;Rn) → Rn such that

ℓ∗(x) = ℓ0(x) for x ∈ C(I,Rn)

157
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and the norm of ℓ∗ on BV∞(I;Rn) equals to the norm of ℓ0 on C(I;Rn), i.e., |||ℓ∗||| = |||ℓ0|||. So we
can assume, without loss of generality, that the vector-functional ℓ0 is given on BV∞(I;Rn).

Along with the boundary initial problem (6.1.1), (6.1.2), consider the sequence of problems

dx

dt
= Pm(t)x+ qm(t) for a.a. t ∈ I, (6.1.1m)

ℓm(x) = cm, (6.1.2m)

where Pm ∈ L(I;Rn×n) (m = 1, 2, . . . ), qm ∈ L(I;Rn) (m = 1, 2, . . . ), ℓm : C(I;Rn×n) → Rn

(m = 1, 2, . . . ) are linear bounded vector-functionals, and cm ∈ Rn (m = 1, 2, . . . ).
We assume that Pm = (pmij)

n
i,j=1 (m = 0, 1, . . . ), qm = (qmi)

n
i=1 (m = 0, 1, . . . ).

In this section, we establish the necessary and sufficient as well as effective sufficient conditions for
the boundary value problem (6.1.1m), (6.1.2m) to have a unique solution xm for any sufficiently large
m and

lim
m→+∞

∥xm − x0∥c = 0. (6.1.3)

Along with systems (6.1.1) and (6.1.1m), we consider the corresponding homogeneous systems

dx

dt
= P0(t)x for a.a. t ∈ I (6.1.10)

and
dx

dt
= Pm(t)x for a.a. t ∈ I, (6.1.1m0)

(m = 1, 2, . . . ).

Definition 6.1.1. We say that the sequence (Pm, qm; ℓm) (m=1, 2, . . . ) belongs to the set S(P0, q0; ℓ0)
if for every c0 ∈ Rn and a sequence cm ∈ Rn (m = 1, 2, . . . ) satisfying condition

lim
m→+∞

cm = c0

problem (6.1.1m), (6.1.2m) has a unique solution xm for any sufficiently large m and condition (6.1.3)
holds.

Systems (6.1.1) and (6.1.1m) (m = 1, 2, . . . ) are particular cases of impulsive systems (5.1.1), (5.1.2)
and (5.1.1m), (5.1.2m) (m = 1, 2, . . . ), respectively, where G(τl) = Gm(τl) ≡ On×n, u(τl) = um(τl) ≡
0n (m = 1, 2, . . . ).

To realize and formulate the well-posed results of Section 5.3, we use the following forms of the
operators B(X,Y ) and I(X,Y ) (see (0.0.3) and (0.0.4)) for the ordinary differential case, in particular,
when the matrix-functions X and Y are continuous on I. Using the integration-by-parts formula
(0.0.10), (0.0.12) and the definition of the Kurzweil integral, we find that

B(X,Y )(t) ≡
t∫

a

X(τ)Y ′(τ) dτ

if X ∈ BV(I;Rn×j) and Y ∈ AC(I;Rj×m), and

I(X,Y )(t) ≡
t∫

a

(
X ′(τ) +X(τ)Y ′(τ)

)
X−1(τ) dτ

if X,Y ∈ AC(I;Rn×n), detX(t) ̸= 0. In addition, if

Q(t) ≡
t∫

s

Y (τ) dτ,
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where Y ∈ L(I;Rn×m), we set

Bι(X;Y,On×n)(t) ≡ B(X,Q)(t) and Iι(X;Y,On×n)(t) ≡ I(X,Q)(t).

Consequently,

Bι(X;Y,On×n)(t) ≡
t∫

a

X(τ)Y (τ) dτ,

Iι(X;Y,On×n)(t) ≡
t∫

a

(
X ′(τ) +X(τ)Y (τ)

)
X−1(τ) dτ.

Thus we obtain the following results.

Theorem 6.1.1. Let the conditions

lim
m→+∞

ℓm(x) = ℓ0(x) for x ∈ C(I;Rn), (6.1.4)

lim sup
m→+∞

|||ℓm||| < +∞ (6.1.5)

hold. Then (
(Pm, qm; ℓm)

)∞
m=1

∈ S(P0, q0; ℓ0) (6.1.6)

if and only if there exists a sequence of matrix-functions Hm ∈ AC(I;Rn×n) (m = 0, 1, . . . ) such that
the conditions

lim sup
m→+∞

b∫
a

∥∥H ′
m(t) +Hm(t)Pm(t)

∥∥ dt < +∞ (6.1.7)

and
inf

{
|det(H0(t))| : t ∈ I

}
> 0, (6.1.8)

hold, and the conditions
lim

m→+∞
Hm(t) = H0(t), (6.1.9)

lim
m→+∞

t∫
a

Hm(t)Pm(t) dt =

t∫
a

H0(t)P0(t) dt (6.1.10)

and

lim
m→+∞

t∫
a

Hm(t)qm(t) dt =

t∫
a

H0(t)q0(t) dt

hold uniformly on I.

Theorem 6.1.2. Let conditions (6.1.4) and (6.1.5) hold. Then inclusion (6.1.6) holds if and only if
the conditions

lim
m→+∞

X−1
m (t) = X−1

0 (t)

and

lim
m→+∞

t∫
a

X−1
m (τ)qm(τ) dτ =

t∫
a

X−1
0 (τ)q0(τ) dτ

hold uniformly on I, where Xm is the fundamental matrix of the homogeneous system (6.1.1m0) for
every m ∈ Ñ.
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Theorem 6.1.3. Let P ∗
0 ∈ L(I;Rn×n), q∗0 ∈ L(I;Rn), c∗0 ∈ Rn, and a ℓ∗0 : C(I;Rn×n) → Rn be a

linear bounded vector-functional such that the boundary value problem

dx

dt
= P ∗

0 (t)x+ q∗0(t) for a.a. t ∈ I, (6.1.1∗)

ℓ∗0(x) = c∗0 (6.1.2∗)

has a unique solution x∗0. Let, moreover, there exist sequences of matrix- and vector-functions Hm ∈
AC(I;Rn×n) (m = 1, 2, . . . ) and hm ∈ AC(I;Rn) (m = 1, 2, . . . ) such that

inf
{
|det(Hm(t))| : t ∈ I

}
> 0 for every sufficiently large m,

the conditions

lim
m→+∞

(cm + ℓ∗m(hm)) = c∗0, lim
m→+∞

ℓ∗m(y) = ℓ∗0(y) for y ∈ C(I;Rn),

lim sup
m→+∞

|||ℓ∗m||| < +∞ and lim sup
m→+∞

b∫
a

∥P ∗
m(t)∥ dt < +∞

hold, and the conditions

lim
m→+∞

t∫
a

P ∗
m(τ) dτ =

t∫
a

P ∗
0 (τ) dτ,

lim
m→+∞

(
hm(t)− hm(a) +

t∫
a

(
Hm(τ)qm(τ)− P ∗

m(τ)hm(τ)
)
dτ

)
=

t∫
a

q∗0(τ) dτ

hold uniformly on I, where P ∗
m(t) ≡ (H ′

m(t)+Hm(t)Pm(t))H−1
m (t) (m = 1, 2, . . . ), ℓ∗m(y) = ℓm(H−1

m y)
(m = 1, 2, . . . ). Then problem (6.1.1m), (6.1.2m) has the unique solution xm for any sufficiently large
m and

lim
m→+∞

∥Hm xm + hm − x∗0∥c = 0.

Remark 6.1.1. In Theorem 6.1.3, the vector-function x∗m(t) ≡ Hm(t)xm(t) + hm(t) is a solution of
the problem

dx

dt
= P ∗

m(t)x+ q∗m(t) for a.a. t ∈ I,

ℓ∗m(x) = c∗m

for every sufficiently large m, where

q∗m(t) ≡ h′m(t) +Hm(t) qm(t)− P ∗
m(t)hm(t) (m = 1, 2, . . . ).

Corollary 6.1.1. Let conditions (6.1.4), (6.1.5), (6.1.7), (6.1.8) and

lim
m→+∞

(cm − φm(a)) = c0

hold, and conditions (6.1.9), (6.1.10) and

lim
m→+∞

t∫
a

(
Hm(τ)(qm(τ)− φ′

m(τ)) + P ∗
m(τ)φm(τ)

)
dτ =

t∫
a

H0(τ)q0(τ) dτ

hold uniformly on I, where Hm ∈ AC(I;Rn×n) (m = 0, 1, . . . ), φm ∈ AC(I;Rn) (m = 1, 2, . . . ). Then
problem (6.1.1m), (5.1.2m) has the unique solution xm for any sufficiently large m and

lim
m→+∞

∥xm − φm − x0∥c = 0.
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Now we give some effective sufficient conditions guaranteeing inclusion (6.1.6).

Theorem 6.1.4. Let conditions (6.1.4), (6.1.5) and

lim sup
m→+∞

b∫
a

∥Pm(t)∥ dt < +∞

hold, and the conditions

lim
m→+∞

t∫
a

Pm(τ) dτ =

t∫
a

P0(τ) dτ (6.1.11)

and

lim
m→+∞

t∫
a

qm(τ) dτ =

t∫
m

q0(τ) dτ

hold uniformly on I. Then inclusion (6.1.6) holds.

Corollary 6.1.2. Let conditions (6.1.4), (6.1.5), (6.1.7) and (6.1.8) hold, and conditions (6.1.9)

lim
m→+∞

t∫
a

Hm(τ)Pm(τ) dτ =

t∫
a

P∗(τ) dτ

and

lim
m→+∞

t∫
a

Hm(τ)qm(τ) dτ =

t∫
a

q∗(τ) dτ

hold uniformly on I, where Hm ∈ AC(I;Rn×n) (m = 1, 2, . . . ), P∗ ∈ L(I;Rn×n), q∗ ∈ L(I;Rn). Let,
moreover, the system

dx

dt
= (P0(t)− P∗(t))x+ (q0(t)− q∗(t) for a.a. t ∈ I

have a unique solution satisfying condition (6.1.2). Then(
(Pm, qm; ℓm)

)∞
m=1

∈ S(P0 − P∗, q0 − q∗; ℓ0).

Corollary 6.1.3. Let conditions (6.1.4), (6.1.5) hold and let there exist a natural number µ and
matrix-functions Bj ∈ AC(I;Rn×n) (j = 0, . . . , µ− 1) such that

lim sup
m→+∞

b∫
a

∥∥H ′
mµ−1(t) +Hmµ−1(t)Pm(t)

∥∥ dt < +∞,

and conditions

lim
m→+∞

t∫
a

Pm(τ) dτ = B0(t)−B0(a),

lim
m→+∞

(
Hmj−1(t) +

t∫
a

Hmj−1(τ)Pm(τ) dτ

)
= In +Bj(t)−Bj(a) (j = 1, . . . , µ− 1),

lim
m→+∞

(
Hmµ−1(t) +

t∫
a

Hmµ−1(τ)Pm(τ) dτ

)
= In +

t∫
t0

P0(τ) dτ,
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lim
m→+∞

t∫
a

Hmµ−1(τ)qm(τ) dτ =

t∫
a

q0(τ) dτ

hold uniformly on I, where

Hm0(t) ≡ In, Hmj(t) ≡ −
(
Hmj−1(τ)(t) +

t∫
a

Hmj−1(τ)Pm(τ) dτ −Bj(t) +Bj(a)

)
Hmj−1(t)

(j = 1, . . . , µ− 1; m = 1, 2, . . . ).

Then inclusion (6.1.6) holds.

If µ = 1, then Corollary 6.1.3 coincides with Theorem 6.1.4.
If µ = 2, then Corollary 6.1.3 has the following form.

Corollary 6.1.31. Let conditions (6.1.4), (6.1.5) and (6.1.7) hold, and the conditions

lim
m→+∞

t∫
a

Pm(τ) dτ = B(t)−B(a),

lim
m→+∞

t∫
a

Hm(τ)Pm(τ) dτ =

t∫
a

P0(τ) dτ

and

lim
m→+∞

t∫
a

Hm(τ) qm(τ) dτ =

t∫
t0

q0(τ) dτ

hold uniformly on I, where B ∈ AC(I;Rn×n) and

Hm(t) ≡ In −
t∫

a

Pm(τ) dτ +B(t)−B(a) (m = 1, 2, . . . ).

Then inclusion (6.1.6) holds.
In Corollary 6.1.31, if we choose

B(t) ≡
t∫

a

P0(τ) dτ,

then the corollary has the following simple form.
Corollary 6.1.32. Let conditions (6.1.4), (6.1.5) and

lim sup
m→+∞

b∫
a

∥(In −Hm(t)) Pm(t)∥ dt < +∞

hold, and the conditions

lim
m→+∞

Bm(t) = On×n,

lim
m→+∞

t∫
a

B′
m(τ)

( τ∫
a

Pm(s) ds

)
dτ = On×n,



The General BVPs for Linear Systems of Generalized ODEs 163

lim
m→+∞

t∫
a

(In −Bm(τ)) qm(τ) dτ =

t∫
a

q0(τ) dτ

hold uniformly on I, where Bm(t) ≡
t∫
a

(Pm(τ) − P0(τ)) dτ (m = 1, 2, . . . ). Then inclusion (6.1.6)

holds.

Remark 6.1.2. In this corollary, the last limit condition holds, in particular, if

lim
m→+∞

t∫
a

qm(τ) dτ =

t∫
a

q0(τ) dτ and lim
m→+∞

t∫
a

B′
m(τ)

( τ∫
a

qm(s) ds

)
dτ = 0n

uniformly on I.

Corollary 6.1.4. Let conditions (6.1.4) and (6.1.5) hold. Then inclusion (6.1.6) holds if and only if
there exist matrix-functions Qm ∈ L(I;Rn×n) (m = 0, 1, . . . ) such that

lim sup
m→+∞

b∫
a

∥Pm(t)−Qm(t)∥ dt < +∞, (6.1.12)

and the conditions

lim
m→+∞

Z−1
m (t) = Z−1

0 (t), (6.1.13)

lim
m→+∞

t∫
a

Z−1
m (τ)Pm(τ) dτ =

t∫
a

Z−1
0 (τ)P0(τ) dτ (6.1.14)

and

lim
m→+∞

t∫
a

Z−1
m (τ) qm(τ) dτ =

t∫
a

Z−1
0 (τ) q0(τ) dτ (6.1.15)

hold uniformly on I, where Zm (Zm(a) = In) is a fundamental matrix of the homogeneous system

dx

dt
= Qm(t) for a.a. t ∈ I (6.1.16)

for every m ∈ Ñ.

Corollary 6.1.5. Let conditions (6.1.4) and (6.1.5) hold and let there exist the sequence of matrix-
functions Qm ∈ L(I;Rn×n) (m = 0, 1, . . . ) such that Qm (m = 1, 2, . . . ) satisfies the Lappo–Danilevskiĭ
condition at the point a, condition (6.1.12) holds, and conditions (6.1.14), (6.1.15) and

lim
m→+∞

t∫
a

Qm(τ) dτ =

t∫
a

Q0(τ) dτ

hold uniformly on I, where Zm (Zm(a) = In) is a fundamental matrix of the homogeneous system
(6.1.16) for every m ∈ Ñ. Then inclusion (6.1.6) holds.

Corollary 6.1.6. Let conditions (6.1.4), (6.1.5) and (6.1.11) hold and let the matrix-functions Pm

(m = 0, 1, . . . ) satisfy the Lappo–Danilevskiĭ condition at the point a and conditions (6.1.11),

lim
m→+∞

t∫
a

exp
(
−

τ∫
a

Pm(s) ds

)
Pm(τ) dτ =

t∫
a

exp
(
−

τ∫
a

P0(s) ds

)
P0(τ) dτ
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and

lim
m→+∞

t∫
a

exp
(
−

τ∫
a

Pm(s) ds

)
qm(τ) dτ =

t∫
a

exp
(
−

τ∫
a

P0(s) ds

)
q0(τ) dτ

hold uniformly on I. Then inclusion (6.1.6) holds.

Corollary 6.1.7. Let Pm = (pmij)
n
i,j=1 ∈ L(I;Rn×n) (m = 0, 1, . . . ), qm = (qmi)

n
i=1 ∈ L(I;Rn)

(m = 0, 1, . . . ), and let conditions (6.1.4), (6.1.5) and

lim sup
m→+∞

n∑
i,j=1; i ̸=j

( b∫
a

|pmij(t)| dt
)
< +∞

hold. Let, moreover, the conditions

lim
m→+∞

t∫
a

pmii(τ) dτ =

t∫
a

p0ii(τ) dτ (i = 1, . . . , n),

lim
m→+∞

t∫
a

exp
(
−

τ∫
a

pmii(s) ds

)
pmij(τ) dτ =

t∫
a

exp
(
−

τ∫
a

p0ii(s) ds

)
p0ij(τ) dτ

(i ̸= j; i, j = 1, . . . , n)

and

lim
m→+∞

t∫
a

exp
(
−

τ∫
a

pmii(s) ds

)
qmi(τ) dτ =

t∫
a

exp
(
−

τ∫
a

p0ii(s) ds

)
q0i(τ) dτ (i = 1, . . . , n)

hold uniformly on I. Then inclusion (6.1.6) holds.

Remark 6.1.3. In Theorem 6.1.1 and Corollary 6.1.1, we can assume, without loss of generality, that
H0(t)≡ In.

Corollary 6.1.32 follows from Corollary 1.2.42. The other results immediately follow from the
corresponding results concerning the impulsive problems.

6.2 The necessary and sufficient conditions
for the convergence of difference schemes

In this section, we construct the difference schemes for our problem.
Throughout the section, we assume that the vector-function x0 : I → Rn is a unique solution of

the problem

dx

dt
= P (t)x+ q(t) for a.a. t ∈ I, (6.2.1)

ℓ(x) = c0, (6.2.2)

where I = [a, b], P ∈ L(I;Rn×n), q ∈ L(I;Rn), ℓ : C(I;Rn) → Rn is a linear bounded vector-
functional, and c0 ∈ Rn.

Along with the problem, we consider the difference scheme

∆y(k−1)=
1

m

(
G1m(k)y(k)+G2m(k−1)y(k − 1)+g1m(k)+g2m(k−1)

)
(k=1, . . . ,m), (6.2.1m)
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Lm(y) = γm, (6.2.2m)

where m ∈ N and Gjm and gjm (j = 1, 2) are, respectively, the mappings of the set Ñm = {1, . . . ,m}
into Rn×n and Rn, γm ∈ Rn. Furthermore, for a given m ∈ Nm, Lm is a linear bounded mapping of
the space of vector-functions from Ñm into Rn with values in Rn.

In this section, we present the effective necessary and sufficient (moreover, the effective sufficient)
conditions for the convergence of the difference schemes (6.2.1m), (6.2.2m) to x0.

The problem analogous to the one under consideration, for the initial problem is investigated
in [23].

We assume that Gjm ∈ E(Ñm;Rn×n) (j = 1, 2), gjm ∈ E(Ñm;Rn) and Lm : E(Ñm;Rn) → Rn is a
given linear bounded vector-functional for m ∈ N and j ∈ {1, 2}; in addition, assume

G1m(0) = G2m(m) = On×n, g1m(0) = g2m(m) = 0n for m ∈ N.

Definition 6.2.1. We say that a sequence (G1m, G2m, g1m, g2m;Lm) (m = 1, 2, . . . ) belongs to the
set CS(P, q; ℓ) if for every c0 ∈ Rn and the sequence γm ∈ Rn (m = 1, 2, . . . ) satisfying the condition

lim
m→+∞

γm = c0

the difference problem (6.2.1m), (6.2.2m) has a unique solution ym ∈ E(Ñm;Rn) for any sufficiently
large m and

lim
m→+∞

∥ym − pm(x0)∥Ñm
= 0.

Theorem 6.2.1. Let the conditions

lim
m→+∞

Lm(pm(x)) = ℓ(x) for x ∈ BV(I;Rn), (6.2.3)

lim sup
m→+∞

|||Lm||| < +∞ (6.2.4)

hold. Then (
(G1m, G2m, g1m, g2m;Lm)

)+∞
m=1

∈ CS(P, q; ℓ) (6.2.5)

if and only if there exist a matrix-faction H ∈ AC(I;Rn×n) and a sequence of matrix-functions
H1m,H2m ∈ E(Ñm;Rn×n) (m ∈ N) such that the conditions

lim sup
m→+∞

m∑
k=1

(∥∥∥H2m(k)−H1m(k) +
1

m
H1m(k)G1m(k)

∥∥∥
+
∥∥∥H1m(k)−H2m(k − 1) +

1

m
H1m(k)G2m(k − 1)

∥∥∥) < +∞, (6.2.6)

inf
{
|det(H(t))| : t ∈ I

}
> 0, (6.2.7)

lim
m→+∞

max
k∈Ñm

{
∥Hjm(k)−H(τkm)∥

}
= 0 (j = 1, 2) (6.2.8)

hold, and the conditions

lim
m→+∞

1

m

νm(t)∑
k=1

H1m(k)
(
G1m(k) +G2m(k − 1)

)
=

t∫
a

H(τ)P (τ) dτ), (6.2.9)

lim
m→+∞

1

m

νm(t)∑
k=1

H1m(k)
(
g1m(k) + g2m(k − 1)

)
=

t∫
a

H(τ)q(τ) dτ) (6.2.10)

hold uniformly on I.
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Remark 6.2.1. The limit equalities (6.2.9) and (6.2.10) are fulfilled uniformly on I if and only if the
conditions

lim
m→+∞

max
i∈Nm

{∣∣∣∣ 1m
i∑

k=1

1∑
j=0

H1m(k)Gj+1m(k − j)−
τim∫
a

H(τ)P (τ) dτ)

∣∣∣∣} = On×n,

lim
m→+∞

max
i∈Nm

{∣∣∣∣ 1m
i∑

k=1

1∑
j=0

H1m(k) gj+1m(k − j)−
τim∫
a

H(τ)q(τ) dτ

∣∣∣∣} = 0n

hold, respectively.

Let X be the fundamental matrix of the system

dx

dt
= P (t)x

such that X(a) = In and, for any m ∈ N, let Ym be the fundamental matrix of the system

∆y(k − 1) =
1

m

(
G1m(k) y(k) +G2m(k − 1) y(k − 1)

)
(k ∈ Nm) (6.2.11)

such that Ym(0) = In.

Theorem 6.2.2. Let conditions (6.2.3), (6.2.4) and

det
(
In + (−1)j

1

m
Gjm(k)

)
̸= 0 (j = 1, 2; k ∈ Nm; m ∈ N) (6.2.12)

hold. Then inclusion (6.2.5) holds if and only if the conditions

lim
m→+∞

max
k∈Ñm

{∥∥Y −1
m (k)−X−1(τkm)

∥∥} = 0

and

lim
m→+∞

max
i∈Nm

{∣∣∣∣ 1m
i∑

k=1

1∑
j=0

Y −1
m (k) gj+1m(k − j)−

τim∫
a

X−1(τ)q(τ) dτ

∣∣∣∣} = 0n (6.2.13)

hold.

Remark 6.2.2.

(a) If P satisfies the Lappo–Danilevskiĭ condition at the point s, then the fundamental matrix X
(X(s) = In) of the given above homogeneous system has the form

X(t) = exp
( t∫

s

P (τ) dτ

)
.

(b) By (6.2.12), we conclude that

Ym(k) =

1∏
i=k

(
In − 1

m
G1m(i)

)−1(
In +

1

m
G2m(i− 1)

)
(k ∈ Nm) (6.2.14)

for every natural m.
(c) In Theorem 6.2.2, condition (6.2.6) holds automatically, since Ym is the fundamental matrix of

the homogeneous system (6.2.11) for every natural m.
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Now we present a method of constructing discrete real matrix- and vector-functions, respectively,
Gjm and gjm (j = 1, 2; m ∈ N) for which the conditions of Theorem 6.2.2 hold.

Toward this end, we use the inductive method. Let Em : Ñm → Rn×n and ξm : Ñm → Rn (m ∈ N)
be discrete matrix-and vector-functions, respectively, such that

lim
m→+∞

∥Em∥Ñm
= 0 and lim

m→+∞
m∥ξm∥Ñm

= 0.

Let
Plm = X(τlm) + Em(l) for l ∈ Ñm and m ∈ N.

Let m be an arbitrary natural number and let G1m(1) and G2m(0) be such that

Ym(1) = P1m.

According to (6.2.14), we get(
In − 1

m
G1m(1)

)−1(
In +

1

m
G2m(0)

)
= P1m.

Therefore, G1m(1) and G2m(0) will be arbitrary matrices such that

G1m(1) = m
(
In − P−1

1m

)
−G2m(0)P−1

1m .

Thus the matrices G1m(k), G2m(k − 1) and Ym(k) (k = 1, . . . , l − 1) are constructed. To construct
G1m(l) and G2m(l − 1), we use the equalities

Ym(l) = Plm

and
Ym(l) =

(
In − 1

m
G1m(l)

)−1(
In +

1

m
G2m(l − 1)

)
Ym(l − 1).

As above, we obtain the relation

G1m(l) = m
(
In − Pl−1mP

−1
lm

)
−G2m(l − 1)Pl−1m P−1

lm .

So, G1m(l) and G2m(l − 1) will be arbitrary matrices satisfying the latter equality.
Construct the discrete vector-functions g1m and g2m (m ∈ N). As g1m(l) and g2m(l− 1) we choose

arbitrary vectors satisfying the equalities
1

m
Y −1
m (l)

(
g1m(1) + g2m(l − 1)

)
= qlm (l ∈ Nm),

where

qlm = ξm(l) +

τlm∫
a

X−1(τ)q(τ) dτ (l ∈ Nm)

for every natural m. Therefore, we have

g1m(l) + g2m(l − 1) = mYm(l)qlm (l ∈ Nm, m ∈ N)

for the definition of the vector-functions g1m and g2m (m ∈ N).
It is evident that the constructed vector-functions satisfy condition (6.2.13).
Realization of above-constructed discrete matrix- and vector-functions are illustrated by the fol-

lowing

Example 6.2.1. Let X(t) ≡ exp
( t∫
a

P (τ) dτ
)

be the fundamental matrix of the homogeneous system

corresponding to system (6.2.1) and let Em ≡ On×n and ξm ≡ 0n for m ∈ N. Then

Plm = exp
( τlm∫

a

P (τ) dτ

)
for l ∈ Ñm and m ∈ N.
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If we choose

G2m(l − 1) = PlmP
−1
l−1m = exp

( τlm∫
τl−1m

P (τ) dτ

)
for l ∈ Nm, m ∈ N,

then

G1m(l) = (m− 1)In −m exp
(
−

τlm∫
τl−1m

P (τ) dτ

)
for l ∈ Nm, m ∈ N.

For the definition of the discrete vector-functions g1m and g2m, we have the relations

g1m(l) + g2m(l − 1) = m

τlm∫
a

U(τlm, τ)q(τ) dτ for l ∈ Nm, m ∈ N,

where U(t, τ) is the Cauchy matrix of system (6.2.1).
In particular, we can take

g1m(l) = αm

τlm∫
a

U(τlm, τ)q(τ) dτ, g2m(l − 1) = (1− α)m

τlm∫
a

U(τlm, τ)q(τ) dτ l ∈ Nm, m ∈ N,

where α is some number.
Moreover, we can choose these discrete vector-functions in connection with the Cauchy formula

for system (6.2.1).

Theorem 6.2.3. Let conditions (6.2.3), (6.2.4) and

lim sup
m→+∞

m∑
k=1

( 1

m

(
∥G1m(k)∥+ ∥G2m(k − 1)∥

))
< +∞

hold, and let the conditions

lim
m→+∞

1

m

νm(t)∑
k=1

(
G1m(k) +G2m(k − 1)

)
=

t∫
a

P (τ) dτ (6.2.15)

and

lim
m→+∞

1

m

νm(t)∑
k=1

(
g1m(k) + g2m(k − 1)

)
=

t∫
a

q(τ) dτ (6.2.16)

hold uniformly on I. Then inclusion (6.2.5) holds.

Proposition 6.2.1. Let conditions (6.2.3), (6.2.4), (6.2.6)–(6.2.8) and

lim
m→+∞

1

m
max
k∈Ñm

{
∥Gjm(k)∥+ ∥gjm(k)∥

}
= 0 (j = 1, 2) (6.2.17)

hold and let conditions (6.2.9) and (6.2.10) hold uniformly on I, where H ∈ AC(I;Rn×n), H1m,H2m ∈
E(Ñm;Rn×n) (m ∈ N). Let, moreover, either

lim sup
m→+∞

( 1

m

m∑
k=0

(
∥Gjm(k)∥+ ∥gjm(k)∥

))
< +∞ (j = 1, 2),
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or

lim sup
m→+∞

m∑
k=0

(
∥H2m(k)−H1m(k)∥+ ∥H1m(k)−H2m(k − 1)∥

)
< +∞.

Then inclusion (6.2.5) holds.

Theorem 6.2.4. Let conditions (6.2.3), (6.2.4), (6.2.6)–(6.2.8) and (6.2.17) hold and let conditions
(6.2.15), (6.2.16),

lim
m→+∞

1

m

νm(t)∑
k=1

H1m(k)
(
G1m(k) +G2m(k − 1)

)
=

t∫
a

P∗(τ) dτ

and

lim
m→+∞

1

m

νm(t)∑
k=1

H1m(k)
(
g1m(k) + g2m(k − 1)

)
=

t∫
a

q∗(τ) dτ

hold uniformly on I, where P∗ ∈ L(I;Rn×n), q∗ ∈ L(I;Rn), H ∈ AC(I;Rn×n), H1m,H2m ∈
E(Nm;Rn×n) (m ∈ N). Let, moreover, the system

dx

dt
= (P (t)− P ∗(t))x+ q(t)− q∗(t) for a.a. t ∈ I

have a unique solution satisfying the boundary value condition (6.2.2). Then(
(G1m, G2m, g1m, g2m;Lm)

)+∞
m=1

∈ CS(P − P∗, q − q∗; ℓ).

Corollary 6.2.1. Let conditions (6.2.3) and (6.2.4) hold and let there exist a natural µ and matrix-
functions Bjl ∈ E(Ñm;Rn×n), Bjl(a) = On×n (j = 1, 2; l = 0, . . . , µ− 1) such that

lim sup
m→+∞

m∑
k=1

(∥∥∥H2mµ(k)−H1mµ(k) +
1

m
H1mµ(k)G1mµ(k)

∥∥∥
+
∥∥∥H1mµ(k)−H2mµ(k − 1) +

1

m
H1mµ(k)G2mµ(k − 1)

∥∥∥) < +∞,

lim
m→+∞

max
k∈Ñm

{
∥Hjmµ(k)− In∥

}
= 0 (j = 1, 2),

and let the conditions

lim
m→+∞

1

m

νm(t)∑
k=1

(
G1mµ(k) +G2mµ(k − 1)

)
=

t∫
a

P (τ) dτ,

lim
m→+∞

1

m

νm(t)∑
k=1

(
g1mµ(k) + g2mµ(k − 1)

)
=

t∫
a

q(τ) dτ

hold uniformly on I, where

G1m0(k) ≡ G1m(k), G2m0(k) ≡ G2m(k),

G1ml+1(k) ≡ H1ml(k)G1m(k), G2ml+1(k) ≡ H1ml(k + 1)G2m(k),

g1ml+1(k) ≡ Hml(k)g1m(k), g2ml+1(k) ≡ Hml(k + 1)g2m(k),

H1m0(k) = H2m0(k) ≡ In,
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H1ml+1(k) ≡
(

1

m
H1ml(k)G1m(k) +Q1(H1ml, G1m, G2m)(k) +B1 l+1(k)

)
H1ml(k),

H2ml+1(k) ≡
(
Q2(H1ml, G1m, G2m)(k) +B2 l+1(k)

)
H2ml(k),

Qj(H1ml, G1m, G2m)(k) ≡ 2In −Hjml(k)−
1

m

k∑
i=1

H1ml(i)
(
G1m(i) +G2m(i− 1)

)
(j = 1, 2; l = 0, . . . , µ− 1; m = 1, 2, . . . ).

Then inclusion (6.2.5) holds.

If µ = 1 and Bj0(t) ≡ On×n (j = 1, 2), then Corollary 1.2.1 has the form of Theorem 6.2.3.
If µ = 2, then Corollary 6.2.1 has the following form.

Corollary 6.2.11. Let conditions (6.2.3), (6.2.4) and (6.2.6) hold, and the conditions

lim
m→+∞

1

m

νm(t)∑
k=1

(
G1m(k) +G2m(k − 1)

)
= B(νm(t)),

lim
m→+∞

νm(t)∑
k=1

Hm(k)
(
G1m(k) +G2m(k − 1)

)
=

t∫
a

P0(τ) dτ

and

lim
m→+∞

νm(t)∑
k=1

Hm(k)
(
g1m(k) + g2m(k − 1)

)
=

t∫
t0

q0(τ) dτ

hold uniformly on I, where B ∈ E(Ñm;Rn×n), B(0) = On×n and

Hm(k) ≡ In − 1

m

k−1∑
i=1

(
G1m(i) +G2m(i− 1)

)
+B(k) (m = 1, 2, . . . ).

Then inclusion (6.2.5) holds.

Corollary 6.2.2. Let conditions (6.2.3) and (6.2.4) hold. Then inclusion (6.2.5) holds if and only if
there exist matrix-functions Qm ∈ L(I;Rn×n) (m = 0, 1, . . . ) and Wm ∈ B(T ;Rn×n) (m = 0, 1, . . . )
such that

lim sup
m→+∞

( b∫
a

∥Qm(t)∥ dt+
∞∑
k=1

∥∥∥ 1

m

k−1∑
i=0

(
G1m(i) +G2m(i)

)
−Wm(τk)

∥∥∥) < +∞, (6.2.18)

det(In +Wm(τl)) ̸= 0 (m = 1, 2, . . . ; l = 1, 2, . . . ), (6.2.19)

and the conditions (6.1.13),

lim
m→+∞

1

m

∑
l: τl∈[a,t[

(
Z−1
m (τl−)G1m(l) + Z−1

m (τl−1+)G2m(l − 1)
)
=

t∫
a

Z−1
0 (τ)P0(τ) dτ (6.2.20)

and

lim
m→+∞

1

m

∑
l: τl∈[a,t[

(
Z−1
m (τl−)g1m(l) + Z−1

m (τl−1+)g2m(l − 1)
)
=

t∫
a

Z−1
0 (τ)P0(τ) dτ (6.2.21)
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hold uniformly on I, where Zm (Zm(a) = In) is a fundamental matrix of the homogeneous system
dx

dt
= Qm(t) for a.a. t ∈ I \ T, (6.2.22)

x(τl+)− x(τl−) =Wm(τl)x(τl) (l = 1, 2, . . . ) (6.2.23)

for every m ∈ Ñ.
Corollary 6.2.3. Let conditions (6.2.3) and (6.2.4) hold and let there exist sequences of matrix-
functions Qm ∈ L(I;Rn×n) (m = 0, 1, . . . ) and Wm ∈ B(T ;Rn×n) (m = 0, 1, . . . ; l = 1, 2, . . . )
such that the pairs (Qm,Wm) (m = 1, 2, . . . ) satisfy the Lappo–Danilevskiĭ condition at the point a,
conditions (6.2.18) and

det(In +W0(τl)) ̸= 0 (l = 1, 2, . . . )

hold, and conditions (6.2.20), (6.2.21),

lim
m→+∞

t∫
a

Qm(τ) dτ =

t∫
a

Q0(τ) dτ and lim
m→+∞

∑
τl∈[a,t[

Wm(τl) =
∑

τl∈[a,t[

W0(τl)

hold uniformly on I, where Zm (Zm(a) = In) is a fundamental matrix of the homogeneous system
(6.2.22), (6.2.23) for any sufficiently large m. Then inclusion (6.2.5) holds.
Corollary 6.2.4. Let Gkm = (gkmij)

n
i,j=1 ∈ B(T ;Rn×n) (k = 1, 2; m = 0, 1, . . . ) and gkm =

(gkmi)
n
i=1 ∈ B(T ;Rn) (k = 1, 2; m = 0, 1, . . . ) and let conditions (6.2.3), (6.2.4) and

lim sup
m→+∞

1

m

n∑
i,j=1; i ̸=j

( ∞∑
l=1

(
|g1mij(τl)|+ |g2mij(τl)|

))
< +∞

hold. Let, moreover, the conditions

lim
m→+∞

1

m

νm(t)∑
k=0

(g1mii(k) + g2mii(k)) =

t∫
a

p0ii(τ) dτ (i = 1, . . . , n),

lim
m→+∞

1

m

( ∑
l: τl∈ ]a,t]

z−1
mii(τl)h1mij(l)−

∑
l: τl∈[a,t[

z−1
mii(τl)h2mij(l)

)
=

t∫
a

z−1
0ii (τ)p0ij(τ) dτ

(i ̸= j; i, j = 1, . . . , n)

and

lim
m→+∞

1

m

( ∑
l: τl∈ ]a,t]

z−1
mii(τl)h1mi(l)−

∑
l: τl∈[a,t[

z−1
mii(τl)h2mi(l)

)
=

t∫
a

z−1
0ii (τ)q0i(τ) dτ (i = 1, . . . , n)

hold uniformly on I, where

hkmij(l) ≡
(
1 + (−1)k

1

m
gkmii(l)

)−1

gkmij(l), hkmi(l) ≡
(
1 + (−1)k

1

m
gkmii(l)

)−1

gkmi(l)

(k = 1, 2; i, j = 1, . . . , n),

and

zmii(τl) ≡
l−1∏
k=0

(1 + gmii(τk)) (i = 1, . . . , n)

for any sufficiently large m. Then inclusion (6.2.5) holds.
Remark 6.2.3. In Theorems 6.2.1, 6.2.4, Proposition 6.2.1 and Corollary 6.2.1, if condition (6.2.12)
holds, we can assume that Hm(t) ≡ Y −1

m (t), where Ym is the fundamental matrix of the homogeneous
system (6.2.11) defined by (6.2.14) for every natural m. Moreover, condition (6.2.6) and analogous
conditions hold automatically everywhere in the above results, as well.
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6.3 The necessary and sufficient conditions
for the convergence of discontinuous vector-functions

Let x0 be a unique solution of the problem

dx

dt
= P0(t)x+ q0(t) for a.a. t ∈ I, (6.3.1)

ℓ0(x) = c0 (6.3.2)

where I = [a, b], P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), ℓ0 : BV∞(I;Rn) → Rn be a linear bounded
vector-functionals, and c0 ∈ Rn.

Along with the problem, consider the impulsive boundary initial problems

dx

dt
= Pm(t)x+ qm(t) for a.a. t ∈ I \ {τl}∞l=1,

x(τl+)− x(τl−) = Gm(τl)x(τl) + um(τl) (l = 1, 2, . . . );
(6.3.1m)

ℓm(x) = cm (6.3.2m)

(m = 1, 2, . . . ), where Pm ∈ L(I;Rn×n) (m = 1, 2, . . . ), qm ∈ L(I;Rn) (m = 1, 2, . . . ), Gm ∈
B(T ;Rn×n) (m = 1, 2, . . . ), um ∈ B(T ;Rn), T = {τ1, τ2, . . . }, ℓm : BV∞(I;Rn) → Rn (m = 1, 2, . . . )
are linear bounded vector-functionals, and cm ∈ Rn (m = 1, 2, . . . ).

We assume that Pm = (pmij)
n
i,j=1 (m = 0, 1, . . . ), qm = (qmi)

n
i=1 (m = 0, 1, . . . ); Gm = (gmij)

n
i,j=1

(m = 1, 2, . . . ), um = (umi)
n
i=1 (m = 1, 2, . . . ).

In this section, we establish the necessary and sufficient and effective sufficient conditions for the
boundary value problem (6.3.1m), (6.3.2m) to have a unique solution xm for any sufficiently large m
and

lim
m→+∞

∥xm − x0∥∞ = 0. (6.3.3)

Along with systems (6.3.1) and (6.3.1m), we consider the corresponding homogeneous systems

dx

dt
= P0(t)x for a.a. t ∈ I \ T (6.3.10)

and
dx

dt
= Pm(t)x for a.a. t ∈ I \ {τl}∞l=1,

x(τl+)− x(τl−) = Gm(τl)x(τl) (l = 1, 2, . . . )
(6.3.1m0)

(m = 1, 2, . . . ).

Definition 6.3.1. We say that the sequence (Pm, qm;Gm, um; ℓm) (m = 1, 2, . . . ) belongs to the set
S(P0, q0; ℓ0) if for every c0 ∈ Rn and a sequence cm ∈ Rn (m = 1, 2, . . . ) satisfying the condition

lim
m→+∞

cm = c0

problem (6.3.1m), (6.3.2m) has a unique solution xm for any sufficiently large m and (6.3.3) holds.

As in Subsection 5.1.2, we use the following forms of the operators B(X,Y ) and I(X,Y ):

Bι(X;Y, Z)(t) ≡
t∫

a

X(τ)Y (τ) dτ +
∑

τl∈[a,t[

X(τl+)Z(τl),

Iι(X;Y, Z)(t) ≡
t∫

a

(
X ′(τ)+X(τ)Y (τ)

)
X−1(τ) dτ+

∑
τl∈[a,t[

(
d2X(τl)+X(τl+) d2Z(τl)

)
X−1(τl)

for the corresponding X ∈ BV(I;Rn×j), Y ∈ BVACloc(I, T ;Rj×m) and Z ∈ Bloc(T ;Rn×m).
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Theorem 6.3.1. Let the conditions

lim
m→+∞

ℓm(x) = ℓ0(x) for x ∈ BV(I;Rn), (6.3.4)

lim sup
m→+∞

|||ℓm||| < +∞ (6.3.5)

hold. Then (
(Pm, qm;Gm, um; ℓm)

)∞
m=1

∈ S(P0, q0; ℓ0) (6.3.6)

if and only if there exists a sequence of matrix-functions Hm ∈ BVACloc(I, T ;Rn×n) (m = 0, 1, . . . )
such that the condition

lim sup
m→+∞

b∨
a

(
Hm + Bι(Hm;Pm, Gm)

)
< +∞ (6.3.7)

holds, and the conditions

lim
m→+∞

Hm(t) = In, (6.3.8)

lim
m→+∞

Bι(Hm;Pm, Gm)(t) =

t∫
a

P0(τ) dτ (6.3.9)

and

lim
m→+∞

Bι(Hm; qm, um)(t) =

t∫
a

q0(τ) dτ

hold uniformly on I.

Theorem 6.3.2. Let conditions (6.3.4), (6.3.5) and

det(In +Gm(τl)) ̸= 0 (l = 1, 2, . . . ; m = 1, 2, . . . )

hold. Then inclusion (6.3.6) holds if and only if the conditions

lim
m→+∞

X−1
m (t) = X−1

0 (t)

and

lim
m→+∞

( t∫
a

X−1
m (τ)qm(τ) dτ +

∑
τl∈[a,t[

X−1
m (τl+)um(τl)

)
=

t∫
a

X−1
0 (τ)q0(τ) dτ(τl)

hold uniformly on I, where Xm is the fundamental matrix of system (6.3.1m0) for every m ∈ Ñ.

Theorem 6.3.3. Let P ∗
0 ∈ L(I;Rn×n), q∗0 ∈ L(I;Rn), c∗0 ∈ Rn, and a ℓ∗0 : BV∞(I;Rn×n) → Rn be a

linear bounded vector-functional such that the boundary value problem

dx

dt
= P ∗

0 (t)x+ q∗0(t) for a.a. t ∈ I,

ℓ∗0(x) = c∗0

has a unique solution x∗0. Let, moreover, there exist sequences of matrix- and vector-functions Hm ∈
BVACloc(I, T ;Rn×n) (m = 1, 2, . . . ) and hm ∈ BVACloc(I, T ;Rn) (m = 1, 2, . . . ) such that

inf
{
|det(Hm(t))| : t ∈ I

}
> 0 for every sufficiently large m,
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the conditions

lim
m→+∞

(cm + ℓ∗m(hm)) = c∗0, lim
m→+∞

ℓ∗m(y) = ℓ∗0(y) for y ∈ BV(I;Rn),

lim sup
m→+∞

|||ℓ∗m||| < +∞ and lim sup
m→+∞

b∨
a

(Iι(Hm;Pm, Gm) < +∞

hold, and the conditions

lim
m→+∞

Iι(Hm;Pm, Gm)(t) =

t∫
a

P ∗
0 (τ) dτ,

lim
m→+∞

(
hm(t)− hm(a) + Bι(Hm; qm, um)(t)−

t∫
a

dIι(Hm;Pm, Gm)(s) · hm(s)

)
=

t∫
a

q∗0(τ) dτ

hold uniformly on I, where ℓ∗m(y) = ℓm(H−1
m y) (m = 1, 2, . . . ). Then problem (6.3.1m), (6.3.2m) has

the unique solution xm for any sufficiently large m and

lim
m→+∞

∥Hm xm + hm − x∗0∥∞ = 0.

Remark 6.3.1. In Theorem 6.3.3, the vector-function x∗m(t) ≡ Hm(t)xm(t) + hm(t) is a solution of
the problem

dx

dt
= P ∗

m(t)x+ q∗m(t) for a.a. t ∈ [a, b] \ T,

x(τl+)− x(τl−) = G∗
m(τl)x(τl) + u∗m(τl) (l = 1, 2, . . . );

ℓ∗m(x) = c∗m

for every sufficiently large m, where

P ∗
m(t) ≡

(
H ′

m(t) +Hm(t)Pm(t)
)
H−1

m (t),

G∗
m(τl) =

(
d2Hm(τl) +Hm(τl+)Gm(τl)

)
H−1

m (τl) (m = 1, 2, . . . ; l = 1, 2, . . . );

q∗m(t) ≡ h′m(t) +Hm(t) qm(t)− P ∗
m(t)hm(t) (m = 1, 2, . . . ),

u∗m(τl) = d2hm(τl) +Hm(τl+)um(τl)−G∗
m(τl)hm(τl) (m = 1, 2, . . . ; l = 1, 2, . . . ).

Corollary 6.3.1. Let conditions (6.3.4), (6.3.5), (6.3.7) and

lim
m→+∞

(cm − φm(a)) = c0

hold, and conditions (6.3.8), (6.3.9) and

lim
m→+∞

(
Bι(Hm; qm − φ′

m, um)(t) +

t∫
a

dIι(Hm;Pm, Gm) · φm(τ)

)
=

t∫
a

q0(τ) dτ

hold uniformly on I, where Hm ∈ BVACloc(I, T ;Rn×n) (m = 0, 1, . . . ), φm ∈ BVACloc(I, T ;Rn)
(m = 1, 2, . . . ). Then problem (6.3.1m), (6.3.2m) has the unique solution xm for any sufficiently large
m and

lim
m→+∞

∥xm − φm − x0∥∞ = 0.

Remark 6.3.2. Note that the condition

lim sup
m→+∞

( b∫
a

∥∥H ′
m(t) +Hm(t)Pm(t)

∥∥ dt+ +∞∑
l=1

∥∥Hm(τl+)−Hm(τl) +Hm(τl+)Gm(τl)
∥∥) < +∞

guarantees the fulfilment of condition (6.3.7).
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Now we give some effective sufficient conditions guaranteeing inclusion (6.3.6).
Theorem 6.3.4. Let conditions (6.3.4), (6.3.5) and

lim sup
m→+∞

( b∫
a

∥Pm(t)∥ dt+
∞∑
l=1

∥Gm(τl)∥
)
< +∞

hold, and the conditions

lim
m→+∞

( t∫
a

Pm(τ) dτ +
∑

τl∈[a,t[

Gm(τl)

)
=

t∫
a

P0(τ) dτ

and

lim
m→+∞

( t∫
a

qm(τ) dτ +
∑

τl∈[a,t[

um(τl)

)
=

t∫
m

q0(τ) dτ

hold uniformly on I. Then inclusion (6.3.6) holds.
Corollary 6.3.2. Let conditions (6.3.4), (6.3.5) and (6.3.7) hold, and conditions (6.3.8)

lim
m→+∞

t∫
a

Hm(τ)Pm(τ) dτ =

t∫
a

P0(τ) dτ

and

lim
m→+∞

t∫
a

Hm(τ) qm(τ) dτ =

t∫
a

q0(τ) dτ

hold uniformly on I, and

lim
m→+∞

Gm(τl) = On×n, lim
m→+∞

um(τl) = 0n

hold uniformly on T, where Hm ∈ BVACloc(I, T ;Rn×n) (m = 0, 1, . . . ). Let, moreover, either

lim sup
m→+∞

∞∑
l=1

(
∥Gm(τl)∥+ ∥um(τl)∥

)
< +∞, or lim sup

m→+∞

∞∑
l=1

∥Hm(τl+)−Hm(τl)∥ < +∞.

Then inclusion (6.3.6) holds.
Corollary 6.3.3. Let conditions (6.3.4), (6.3.5) and (6.3.7) hold, and conditions (6.3.8),

lim
m→+∞

( t∫
a

Hm(τ)Pm(τ) dτ +
∑

τl∈[a,t[

Hm(τl+)Gk(τl)

)
=

t∫
a

P∗(τ) dτ,

lim
m→+∞

( t∫
a

Hm(τ)qm(τ) dτ +
∑

τl∈[a,t[

Hm(τl+)um(τl)

)
=

t∫
a

q∗(τ) dτ

hold uniformly on I, where Hm ∈ BVACloc(I, T ;Rn×n) (m = 1, 2, . . . ), P∗ ∈ L(I;Rn×n), q∗ ∈
L(I;Rn), G∗ ∈ B(T ;Rn×n), u∗ ∈ B(T ;Rn). Let, moreover, the system

dx

dt
= (P0(t)− P∗(t))x+ (q0(t)− q∗(t)) for a.a. t ∈ I

have a unique solution satisfying condition (6.3.2). Then(
(Pm, qm;Gm, um; ℓm)

)∞
m=1

∈ S(P0 − P∗, q0 − q∗; ℓ0).
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Corollary 6.3.4. Let conditions (6.3.4), (6.3.5) hold and let there exist a natural number µ and
matrix-functions Bj ∈ BVACloc(I, T ;Rn×n) (j = 0, . . . , µ− 1) such that

lim sup
m→+∞

b∨
a

(
Hmµ−1 + Bι(Hmµ−1;Pm, Gm)

)
< +∞

holds, and the conditions

lim
m→+∞

Bι(In;Pm, Gm)(t) = B0(t)−B0(a),

lim
m→+∞

(
Hmj−1(t) + Bι(Hmj−1;Pm, Gm)(t)

)
= In +Bj(t)−Bj(a) (j = 1, . . . , µ− 1),

lim
m→+∞

(
Hmµ−1(t) + Bι(Hmµ−1;Pm, Gm)(t)

)
= In +

t∫
t0

P0(τ) dτ,

lim
m→+∞

Bι(Hmµ−1; qm, um)(t) =

t∫
a

q0(τ) dτ

hold uniformly on I, where

Hm0(t) ≡ In, Hmj(t) ≡ −
(
Hmj−1(τ)(t) + Bι(Hmj−1;Pm, Gm)(t)−Bj(t) +Bj(a)

)
Hmj−1(t)

(j = 1, . . . , µ− 1; m = 1, 2, . . . ).

Then inclusion (6.3.6) holds.

If µ = 1, then Corollary 6.3.4 coincides with Theorem 6.3.4.
If µ = 2, then Corollary 6.3.4 has the following form.

Corollary 6.3.41. Let conditions (6.3.4), (6.3.5) and (6.3.7) hold, and the conditions

lim
m→+∞

( t∫
a

Pm(τ) dτ +
∑

τl∈[a,t[

Gm(τl)

)
= B(t)−B(a),

lim
m→+∞

( t∫
a

Hm(τ)Pm(τ) dτ +
∑

τl∈[a,t[

Hm(τl+)Gm(τl)

)
=

t∫
a

P0(τ) dτ,

lim
m→+∞

( t∫
a

Hm(τ) qm(τ) dτ +
∑

τl∈[a,t[

Hm(τl+)um(τl)

)
=

t∫
t0

q0(τ) dτ

hold uniformly on I, where B ∈ BVACloc(I, T ;Rn×n) and

Hm(t) ≡ In −
t∫

a

Pm(τ) dτ −
∑

τl∈[a,t[

Gm(τl) +B(t)−B(a) (m = 1, 2, . . . ).

Then inclusion (6.3.6) holds.

Corollary 6.3.5. Let conditions (6.3.4) and (6.3.5) hold. Then inclusion (6.3.6) holds if and only if
there exist matrix-functions Qm ∈ L(I;Rn×n) (m = 1, 2, . . . ) and Wm ∈ B(T ;Rn×n) (m = 1, 2, . . . )
such that the conditions (6.2.19) and

lim sup
m→+∞

( b∫
a

∥Pm(t)−Qm(t)∥ dt+
∞∑
l=1

∥Gm(τl)−Wm(τl)∥
)
< +∞ (6.3.10)
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hold, and the conditions (6.1.13),

lim
m→+∞

Bι(Z
−1
m ;Pm, Gm)(t) =

t∫
a

Z−1
0 (τ)P0(τ) dτ, (6.3.11)

lim
m→+∞

Bι(Z
−1
m ; qm, um)(t) =

t∫
a

Z−1
0 (τ)q0(τ) dτ (6.3.12)

hold uniformly on I, where Zm (Zm(a) = In) is a fundamental matrix of the homogeneous system
(6.2.22), (6.2.23) for any m ∈ Ñ.
Corollary 6.3.6. Let conditions (6.3.4) and (6.3.5) hold and let there exist sequences of matrix-
functions Qm ∈ L(I;Rn×n) (m = 1, 2, . . . ) and Wm ∈ B(T ;Rn×n) (m = 1, 2, . . . ) such that the pairs
(Qm,Wm) (m = 1, 2, . . . ) satisfy the Lappo–Danilevskiĭ condition at the point a, condition (6.3.10)
holds and the conditions

lim
m→+∞

t∫
a

Qm(τ) dτ =

t∫
a

Q0(τ) dτ,

lim
m→+∞

∑
τl∈[a,t[

Wm(τl) = On×n, (6.3.13)

lim
m→+∞

( t∫
a

Z−1
m (τ)Pm(τ) dτ+

∑
τl∈[a,t[

Z−1
m (τl)(In+Wm(τl))

−1Gm(τl)

)
=

t∫
a

Z−1
0 (τ)P0(τ) dτ, (6.3.14)

lim
m→+∞

( t∫
a

Z−1
m (τ)qm(τ) dτ +

∑
τl∈[a,t[

Z−1
m (τl)(In +Wm(τl))

−1um(τl)

)
=

t∫
a

Z−1
0 (τ)q0(τ) dτ (6.3.15)

hold uniformly on I, where Zm (Zm(a) = In) is a fundamental matrix of the homogeneous system
(6.2.22), (6.2.23) for any sufficiently large m. Then inclusion (6.3.6) holds.
Remark 6.3.3. In Corollary 6.3.6, due to (6.3.13), condition (6.2.19) holds for every sufficiently large
m and, therefore, conditions (6.3.14) and (6.3.15) of the corollary are correct.
Remark 6.3.4. In Corollaries 6.3.5 and 6.3.6, if we assume that Wm(τl) = On×n (m = 1, 2, . . . ;
l = 1, 2, . . . ), then condition (6.2.19) holds. Moreover, due to the definition of the operator Bι, each
of conditions (6.3.11) and (6.3.14) has the form

lim
m→+∞

( t∫
a

Z−1
m (τ)Pm(τ) dτ +

∑
τl∈[a,t[

Z−1
m (τl)Gm(τl)

)
=

t∫
a

Z−1
0 (τ)P0(τ) dτ

and each of conditions (6.3.12) and (6.3.15) has the form

lim
m→+∞

( t∫
a

Z−1
m (τ)qm(τ) dτ +

∑
τl∈[a,t[

Z−1
m (τl)um(τl)

)
=

t∫
a

Z−1
0 (τ)q0(τ) dτ.

Corollary 6.3.7. Let conditions (6.3.4), (6.3.5) and

lim sup
m→+∞

∞∑
l=1

∥Gm(τl)∥ < +∞

hold. Let, moreover, the matrix-functions Pm (m = 0, 1, . . . ) satisfy the Lappo–Danilevskiĭ condition
at the point a and the conditions

lim
m→+∞

t∫
a

Pm(τ) dτ =

t∫
a

P0(τ) dτ,
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lim
m→+∞

∑
τl∈[a,t[

Gm(τl) = On×n,

lim
m→+∞

t∫
a

exp
(
−

τ∫
a

Pm(s) ds

)
Pm(τ) dτ =

t∫
a

exp
(
−

τ∫
a

P0(s) ds

)
P0(τ) dτ,

lim
m→+∞

t∫
a

exp
(
−

τ∫
a

Pm(s) ds

)
qm(τ) dτ =

t∫
a

exp
(
−

τ∫
a

P0(s) ds

)
q0(τ) dτ,

lim
m→+∞

∑
τl∈[a,t[

exp
(
−

τl∫
a

Pm(s) ds

)
um(τl) = 0n

hold uniformly on I. Then inclusion (6.3.6) holds.

Corollary 6.3.8. Let Pm = (pmij)
n
i,j=1 ∈ L(I;Rn×n), qm = (qmi)

n
i=1 ∈ L(I;Rn), Gm = (gmij)

n
i,j=1 ∈

B(T ;Rn×n) and um = (gmi)
n
i=1 ∈ B(T ;Rn) (m = 1, 2, . . . ) and let conditions (6.3.4), (6.3.5) and

lim sup
m→+∞

n∑
i,j=1; i ̸=j

( b∫
a

|pmij(t)| dt+
∞∑
l=1

|gmij(τl)|
)
< +∞

hold. Let, moreover, the conditions

lim
m→+∞

( t∫
a

pmii(τ) dτ +
∑

τl∈[a,t[

gmii(τl)

)
=

t∫
a

p0ii(τ) dτ (i = 1, . . . , n),

lim
m→+∞

( t∫
a

z−1
mii(τ)pmij(τ) dτ +

∑
τl∈[a,t[

z−1
mii(τl)(1 + gmii(τl))

−1gmij(τl)

)

=

t∫
a

z−1
0ii (τ)p0ij(τ) dτ (i ̸= j; i, j = 1, . . . , n),

lim
m→+∞

( t∫
a

z−1
mii(τ)qmi(τ) dτ +

∑
τl∈[a,t[

z−1
mii(τl)(1 + gmii(τl))

−1umi(τl)

)
=

t∫
a

z−1
0ii (τ)q0i(τ) dτ

(i = 1, . . . , n)

hold uniformly on I, where

zmii(t) ≡ exp
( t∫

a

pmii(τ) dτ

) ∏
s≤τl<t

(1 + gmii(τl)), i ∈ {1, . . . , n}

for any sufficiently large m. Then inclusion (6.3.6) holds.

Remark 6.3.5. For Corollary 6.3.8, the remark analogous to Remark 1.2.3 is true, i.e.,

1 + gmii(τl) ̸= 0 (i = 1, . . . , n; l = 1, 2, . . . )

for every sufficiently large m and, therefore, all conditions of the corollary are correct.
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