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ON A RESOLVENT APPROACH IN A MIXED PROBLEM
FOR THE WAVE EQUATION ON A GRAPH



Abstract. We study a mixed problem for the wave equation with integrable potential on the simplest
geometric graph consisting of two ring edges that touch at a point. We use a new resolvent approach
in the Fourier method. We do not use refined asymptotic formulas for the eigenvalues and any
information on the eigenfunctions.∗
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ÒÄÆÉÖÌÄ. ÔÀËÙÉÓ ÂÀÍÔÏËÄÁÉÓÀÈÅÉÓ ÉÍÔÄÂÒÄÁÀÃÉ ÐÏÔÄÍÝÉÀËÉÈ ÛÄÓßÀÅËÉËÉÀ ÛÄÒÄÖËÉ
ÀÌÏÝÀÍÀ ÖÌÀÒÔÉÅÄÓ ÂÒÀ×ÆÄ, ÒÏÌÄËÉÝ ÛÄÃÂÄÁÀ ÄÒÈ ßÄÒÔÉËÛÉ ÌáÄÁÉ ÒÂÏËÉÓ ÏÒÉ ÊÉÃÄÓÂÀÍ.
ÂÀÌÏÚÄÍÄÁÖËÉÀ ÀáÀËÉ ÒÄÆÏËÅÄÍÔÖÒÉ ÌÉÃÂÏÌÀ ×ÖÒÉÄÓ ÌÄÈÏÃÛÉ. ÀÌÀÓÈÀÍ ÀÒ ÀÒÉÓ ÂÀÌÏÚÄÍÄ-
ÁÖËÉ ÃÀÆÖÓÔÄÁÖËÉ ÀÓÉÌÐÔÏÔÖÒÉ ×ÏÒÌÖËÄÁÉ ÓÀÊÖÈÒÉÅÉ ÌÍÉÛÅÍÄËÏÁÄÁÉÓÈÅÉÓ ÃÀ ÒÀÉÌÄ
ÉÍ×ÏÒÌÀÝÉÀ ÓÀÊÖÈÒÉÅÉ ×ÖÍØÝÉÄÁÉÓ ÌÉÌÀÒÈ.
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We consider the simplest geometric graph consisting of two ring edges that touch at a point (at
the node of the graph). Parametrizing each edge by the interval [0, 1], we study the following mixed
problem for the wave equation on this graph:

∂2uj(x, t)

∂t2
=
∂2uj(x, t)

∂x2
− qj(x)uj(x, t), x ∈ [0, 1], t ∈ (−∞,+∞) (j = 1, 2), (1)

u1(0, t) = u1(1, t) = u2(0, t) = u2(1, t), (2)
u′1x(0, t)− u′1x(1, t) + u′2x(0, t)− u′2x(1, t) = 0, (3)

u1(x, 0) = φ1(x), u2(x, 0) = φ2(x), u′1t(x, 0) = u′2t(x, 0) = 0. (4)

Conditions (2), (3) are generated by the structure of the graph.
In this problem the application of the Fourier method causes difficulties associated with the fact

that the eigenvalues of the corresponding spectral problem might be multiple. These difficulties can
be coped with by applying the resolvent approach [1]. Note that we do not use refined asymptotic
formulas for the eigenvalues and any information on the eigenfunctions. Besides, we use Krylov’s
idea [2, Chapter VI] concerning the convergence acceleration of Fourier-like series.

The following result was obtained in [3]:

Theorem 1. If qj(x) ∈ C[0, 1] are complex-valued, φj(x) ∈ C2[0, 1] and are complex-valued, φ1(0) =
φ1(1) = φ2(0) = φ2(1), φ′

1(0)− φ′
1(1) + φ′

2(0)− φ′
2(1) = 0, φ′′

1(0) = φ′′
1(1) = φ′′

2(0) = φ′′
2(1), then the

formal solution by Fourier method is a classical solution of problem (1)–(4).

Now, we assume that qj(x) ∈ L[0, 1] are complex-valued. Then a classical solution is defined as
a function u(x, t) such that u(x, t) and its first derivatives with respect to x and t are absolutely
continuous, and satisfies the boundary and initial conditions (2)–(4) and the differential equation (1)
almost everywhere. Here we use the scheme of analysis given in [4–6].

We assume that the vector functions φ(x) and φ′(x) are absolutely continuous and such that satisfy
the following conditions:

φ1(0) = φ1(1) = φ2(0) = φ2(1), φ′
1(0)− φ′

1(1) + φ′
2(0)− φ′

2(1) = 0, Lφ ∈ L2
2[0, 1]. (5)

Everywhere, by L2
2[0, 1] we denote the space of vector functions f(x) = (f1(x), f2(x))

T such that
fk(x) ∈ L2[0, 1] (k = 1, 2), T denotes the transpose.

1 The transformation of a formal solution
The Fourier method is related to the spectral problem Ly = λy for the operator

Ly =
(
−y′′1(x)− q1(x)y1(x),−y′′2 (x)− q2(x)y2(x)

)T
, y = y(x) = (y1(x), y2(x))

T

with the boundary conditions

y1(0) = y1(1) = y2(0) = y2(1), y′1(0)− y′1(1) + y′2(0)− y′2(1) = 0.

By Rλ = (L − λE)−1, R0
λ = (L0 − λE)−1 are denoted the resolvents of the operators L and L0,

where L0 is L with qj(x) ≡ 0 (E is the identity operator, and λ is the spectral parameter). In the
sequel the notation corresponding to L0 is marked with a zero index.

The formal solution u(x, t) = (u1(x, t), u2(x, t))
T of problem (1)–(4) produced by the Fourier

method can be represented as

u(x, t) = − 1

2πi

( ∫
|λ|=r

+
∑
n≥n0

∫
γn

)
(Rλφ)(x) cos ρt dλ,

where r > 0 is fixed and such that all the eigenvalues λn, with n < n0, belong to the disk |λ| < r, and
there are no eigenvalues of L on the contour |λ| = r; γn are the contours of sufficiently small radius
in λ-plane such that all the eigenvalues of operators L and L0 with n ≥ n0 are only inside γn.

Proceeding as in [1], we obtain the following result.
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Theorem 2. The formal solution can be represented as

u(x, t) = u0(x, t) + u1(x, t),

where

u0(x, t) = − 1

2πi

( ∫
|λ|=r

+
∑
n≥n0

∫
γn

)
R0

λg

λ− µ0
cos ρt dλ,

u1(x, t) = − 1

2πi

( ∫
|λ|=r

+
∑
n≥n0

∫
γn

)
1

λ− µ0

[
Rλg −R0

λg
]

cos ρt dλ,

g = (L− µ0E)φ, µ0 is not an eigenvalue of L or L0, |µ0| > r, and µ0 lies outside γn for n ≥ n0.

2 Spectral problem and resolvent
Let λ = ρ2, where Re ρ ≥ 0. Denote by {yj1(x), yj2(x)} (j = 1, 2), the fundamental systems of
solutions of the equations

y′′j (x)− qj(x)yj(x) + ρ2yj(x) = 0, (j = 1, 2)

with initial conditions

yj1(0) = 1, y′j1(0) = 0,

yj2(0) = 0, y′j2(0) = 1.

Then yij(x) are entire functions of ρ and λ. If qj(x) ≡ 0, then

y0j1(x) = cos ρx, (y0j1(x))
′ = −ρ sin ρx,

y0j2(x) =
sin ρx
ρ

, (y0j2(x))
′ = cos ρx.

From [7] it follows that all ρ for which λ = ρ2 are the eigenvalues of the operator L belong to the
semi-infinite strip S = {ρ|Re ρ ≥ 0, | Im ρ| ≤ h}, where h > 0 is sufficiently large.

Just as in [6, Lemma 7] we obtain

Lemma 1. If | Im ρ| ≤ h, then

yj1(x, ρ) = cos ρx+
1

2ρ
sin ρx

x∫
0

qj(τ) dτ

+
1

4ρ

x∫
0

[
qj

(x− τ

2

)
+ qj

(x+ τ

2

)]
sin ρτ dτ +O(ρ−2),

yj2(x, ρ) =
sin ρx
ρ

+
1

2ρ2
cos ρx

x∫
0

qj(τ) dτ

+
1

4ρ2

x∫
0

[
qj

(x− τ

2

)
+ qj

(x+ τ

2

)]
cos ρτ dτ +O(ρ−3),

where the O(. . . ) estimates are uniform with respect to x ∈ [0, 1].

The eigenvalues of operator L are the zeros of the determinant

∆(ρ) =

∣∣∣∣∣∣∣∣
1− y11(1) −y12(1) 0 0

1 0 −1 0
0 0 1− y21(1) −y22(1)

−y′11(1) 1− y′12(1) −y′21(1) 1− y′22(1)

∣∣∣∣∣∣∣∣
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The eigenvalues of L0 (the zeros of ∆0(ρ)) are λ0n = (ρ0n)
2, where ρ0n = nπ (n = 0, 1, 2, . . . ). If n is

even, then eigenvalues are multiple. The eigenvalues λn of the operator L asymptotically approach
λ0n for large n.

Theorem 3. For the resolvent Rλ = (R1λ, R2λ)
T , the formula

Rjλf(x) = (Mjρfj)(x) + Ωjλ(x, f), f = (f1, f2)
T

(j = 1, 2) (6)

holds, where

(Mjρfj)(x) =

x∫
0

Mj(x, ξ, ρ)fj(ξ) dξ, Mj(x, ξ, ρ) =

∣∣∣∣yj1(ξ) yj2(ξ)
yj1(x) yj2(x)

∣∣∣∣ ,
Ωjλ(x, f) = vj1(x)(f1, y11) + vj2(x)(f1, y12) + vj3(x)(f2, y21) + vj4(x)(f2, y22) (j = 1, 2), (7)

v11(x) =

2∑
k=1

y1k(x)

∆(ρ)

[
∆1k(ρ)y12(1) + ∆4k(ρ)y

′
12(1)

]
,

v12(x) =

2∑
k=1

y1k(x)

∆(ρ)

[
−∆1k(ρ)y11(1)−∆4k(ρ)y

′
11(1)

]
,

v13(x) =

2∑
k=1

y1k(x)

∆(ρ)

[
∆3k(ρ)y22(1) + ∆4k(ρ)y

′
22(1)

]
,

v14(x) =

2∑
k=1

y1k(x)

∆(ρ)

[
−∆3k(ρ)y21(1)−∆4k(ρ)y

′
21(1)

]
,

∆k,s(ρ) are algebraic adjuncts of ∆(ρ), and v2j(x) are obtained by replacing ∆k1, ∆k2 by ∆k3, ∆k4,

and y11(x), y12(x) by y21(x), y22(x); (f, g) =
1∫
0

f(x)g(x) dx.

Proof. For y = (y1, y2)
T = Rλf , we have

y′′j (x)− qj(x)yj(x) + ρ2yj(x) = fj(x), j = 1, 2,

whence
yk(x) = ck1yk1(x) + ck2yk2(x) + (Mkρfk)(x), k = 1, 2.

From the boundary conditions for operator L follows (6), where

Ω1λ(x, f) =
y11(x)

∆(ρ)

4∑
k=1

dj∆k,1(ρ) +
y12(x)

∆(ρ)

4∑
k=1

dj∆k,2(ρ),

Ω2λ(x, f) =
y21(x)

∆(ρ)

4∑
k=1

dj∆k,3(ρ) +
y22(x)

∆(ρ)

4∑
k=1

dj∆k,4(ρ),

d1 = (M1ρf1)
∣∣∣
x=1

, d2 = 0, d3 = (M2ρf2)
∣∣∣
x=1

,

d4 =

1∫
0

d

dx
M1(x, ξ, ρ)

∣∣∣
x=1

f1(ξ) dξ +

1∫
0

d

dx
M2(x, ξ, ρ)

∣∣∣
x=1

f2(ξ) dξ.

Calculating the coefficients dk in an explicit form, we get (7).

Define γ̃n = {ρ | |ρ− πn| = δ}, where δ > 0 is sufficiently small, n ≥ n0, and n0 is chosen so that
all λn with n ≥ n0 lie inside γ̃n. Let γn be the image of γ̃n in the λ-plane (λ = ρ2).
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Lemma 2. If ρ ∈ γ̃n, then

v
(j)
k1 (x, ρ) = v0k1

(j)
(x, ρ) +O(ρj−2) (j = 0, 1),

v
(j)
k2 (x, ρ) = v0k2

(j)
(x, ρ) +O(ρj−1) (j = 0, 1),

v′′k1(x, ρ)− q1(x)vk1(x, ρ)− v0k1
′′
(x, ρ) = O(1),

v′′k2(x, ρ)− q2(x)vk2(x, ρ)− v0k2
′′
(x, ρ) = O(ρ)

(k = 1, 2), where the derivatives are taken with respect to x and the O(. . . ) estimates are uniform with
respect to x ∈ [0, 1] (in the last two relations O(. . . ) stands for ∥O(ω)∥∞ ≤ c|ω|).

Proof. Since v′′j (x, ρ)− q(x)vj(x, ρ) = −ρ2vj(x, ρ), this lemma follows from Lemma 2 in [4].

Just as in [6], we can prove the following assertions.

Lemma 3. By p(x) denote the functions
1∫
x

m(ξ)q((ξ−x)/2) dξ or
1∫
x

m(ξ)q((ξ+x)/2) dξ, where m(ξ)

is g1(ξ) or g2(ξ) (g = (g1, g2)
T = (L− µ0E)φ), and q(x) is q1(x) or q2(x). Then

∥p∥L2 ≤ 2∥m∥L2 · ∥q∥L1 ,

where ∥ · ∥Ls
is the norm on Ls[0, 1].

Lemma 4. Let ψ(x) denote the function cosx or sinx. Let m(x) ∈ L2[0, 1] and m(x, µ) = m(x)ψ(µx),
for µ ∈ γ0, and βn(µ) = (m(x, µ), ψ(πnx)). Further, by β̃n(µ) we denote the sum of all |βn(µ)|, where
m(x) is one of the functions gj(x), gj(x)

x∫
0

qs(ξ) dξ, p(x) (p(x) is one of the functions from Lemma 3).

Then
n2∑

n=n1

1

n
β̃n(µ) ≤ c

√√√√ n2∑
n=n1

1

n2
∥g∥2,

where c > 0 is a constant independent of n1, n2, and µ ∈ γ0, and by ∥g∥2 is denoted the norm of
vector function g(x) = (g1(x), g2(x))

T on L2
2[0, 1].

Lemma 5. If g(x) = (g1(x), g2(x))
T ∈ L2

2[0, 1], ρ ∈ γ̃n, and ρ = πn+ µ, then

(gs, yj1) = O(β̃n(µ)) +O(ρ−1β̃n(µ)) +O(ρ−2∥g∥2),

(gs, yj1 − y0j1) = O(ρ−1β̃n(µ)) +O(ρ−2∥g∥2),

(gs, yj2) = O(ρ−1β̃n(µ)) +O(ρ−2β̃n(µ)) +O(ρ−3∥g∥2),

(gs, yj2 − y0j2) = O(ρ−2β̃n(µ)) +O(ρ−3∥g∥2),

where j = 1, 2, s = 1, 2.

From Lemmas 2–5 follows

Lemma 6. If ρ = πn+ µ, µ ∈ γ̃0, Ωλ(x, g) = (Ω1λ(x, g),Ω2λ(x, g))
T , then

dj

dxj
(Ωλ(x, g)) = O(ρj−1β̃n(µ)) +O(ρj−2∥g∥2) (j = 0, 1),

dj

dxj
(
Ωλ(x, g)− Ω0

λ(x, g)
)
= O(ρj−2β̃n(µ)) +O(ρj−3∥g∥2) (j = 0, 1).
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3 Investigation of the function u0(x, t)

Since (Mjρgj)(x), (M0
jρgj)(x) are entire functions, it follows that

u0(x, t) = − 1

2πi

( ∫
|λ|=r

+
∑
n≥n0

∫
γn

)
Ω0

λ(x, g)

λ− µ0
cos ρt dλ.

From [3, Lemmas 3, 4] we have
Lemma 7. It is true that

u0(x, t) =
1

2
(F (x+ t) + F (x− t)),

where
F (x) = − 1

2πi

( ∫
|λ|=r

+
∑
n≥n0

∫
γn

)
1

λ− µ0
Ω0

λ(x, g) dλ.

Lemma 8. For F (x) = (F1(x), F2(x))
T , the relations

F1(−x) =
1

2

[
F1(1− x) + F2(1− x)− F1(x) + F2(x)

]
,

F2(−x) =
1

2

[
F1(1− x) + F2(1− x) + F1(x)− F2(x)

]
,

F1(1 + x) =
1

2

[
F1(x)− F1(1− x) + F2(x) + F2(1− x)

]
,

F2(1 + x) =
1

2

[
F1(x) + F1(1− x) + F2(x)− F2(1− x)

]
hold, and F (x) = φ̃(x) = R0

µ0
g for x ∈ [0, 1].

Therefore, as in [6], we get
Lemma 9. The vector functions F (x), F ′(x) are absolutely continuous, F ′′(x) ∈ L2

2[−A,A] for all
A > 0, and F (x) = F (x+ 2).
Theorem 4. The function u0(x, t) is a classical solution of the reference problem obtained from
(1)–(4) by setting qj(x) ≡ 0 with initial conditions (4), where φ(x) is replaced by φ̃(x) = R0

µ0
g, and

equation (1) is satisfied almost everywhere.

4 Investigation of the function u1(x, t)

For u1(x, t) we have

u1(x, t) = − 1

2πi

( ∫
|λ|=r

+
∑
n≥n0

∫
γn

)
1

λ− µ0
[Ωλ(x, g)− Ω0

λ(x, g)] cos ρtdλ.

By the methods in [6], we obtain the following assertions.
Lemma 10. The series u1(x, t) and the series obtained by differentiating u1(x, t) term by term
with respect to x once and with respect to t twice is convergent absolutely and uniformly in QT =
[0, 1]× [−T, T ], where T > 0 is any fixed number.
Lemma 11. The function u′1,x(x, t) is absolutely continuous with respect to x, and the relation

u′′1,x2(x, t) = Q(x)u1(x, t) + d(x, t)

holds for almost all x and t in the rectangle QT . Here Q(x) = diag(q1(x), q2(x)),

d(x, t) = − 1

2πi

( ∫
|λ|=r

+
∑
n≥n0

∫
γn

)
λ

λ− µ0
[Ωλ(x, g)− Ω0

λ(x, g)] cos ρtdλ,

and the series d(x, t) is convergent absolutely and uniformly in QT .
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Using Theorem 4 and Lemmas 10 and 11, we obtain

Theorem 5. If qj(x) ∈ L[0, 1], the vector functions φ(x) and φ′(x) are absolutely continuous and
such that they satisfy the conditions (5), then the sum u(x, t) of the formal solution has the following
properties: the function u(x, t) is continuously differentiable with respect to x and t; the function
u′x(x, t) (respectively, u′t(x, t)) is absolutely continuous with respect to x (respectively, with respect to
t); and the function u(x, t) satisfies equation (1) almost everywhere and conditions (2)–(4); i.e., u(x, t)
is a classical solution of problem (1)–(4) with (1) satisfied almost everywhere.
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