Memoirs on Differential Equations and Mathematical Physics

 Volume 72, 2017, 27-35Eugene Bravyi

BOUNDARY VALUE PROBLEMS FOR FAMILIES OF FUNCTIONAL DIFFERENTIAL EQUATIONS

Abstract. We consider boundary value problems for all equations from a family of linear functional differential equations. The necessary and sufficient conditions for the unique solvability and existence of non-negative (non-positive) solutions are obtained.*

2010 Mathematics Subject Classification. 34K10.

Key words and phrases. Boundary value problems, functional differential equations, solvability conditions, positive solutions.

[^0]
1 Introduction

In the recent years, the boundary value problems for functional differential equations have been investigated in many works (for example, $[1,6-12]$). We offer new conditions for a unique solvability of boundary value problems and the existence of solutions with a given sign. It turns out, these conditions are sharp in some family of equations.

Here we use the following notation: $\mathbf{A C}{ }^{n-1}[0,1]$ is the space of functions $x:[0,1] \rightarrow \mathbb{R}$ for which there exist absolutely continuous derivatives of order less than $n ; \mathbf{C}[0,1]$ is the space of continuous functions $x:[0 ; 1] \rightarrow \mathbb{R}$ with the norm $\|x\|_{\mathbf{C}}=\max _{t \in[0,1]}|x(t)| ; \mathbf{L}[0,1]$ is the space of integrable functions $z:[0 ; 1] \rightarrow \mathbb{R}$ with the norm $\|z\|_{\mathbf{L}}=\int_{0}^{1}|z(s)| d s$.

We consider general boundary value problems for linear functional differential equations

$$
\left\{\begin{array}{l}
x^{(n)}(t)=(T x)(t)+f(t), \quad t \in[0,1] \tag{1.1}\\
\ell_{i} x=\alpha_{i}, \quad i=1, \ldots, n
\end{array}\right.
$$

where $T: \mathbf{C}[0,1] \rightarrow \mathbf{L}[0,1]$ is a linear bounded operator; $f \in \mathbf{L}[0,1] ; \ell_{i}: \mathbf{A C}^{n-1}[0,1] \rightarrow \mathbb{R}, i=$ $1, \ldots, n$, are linear bounded functionals with the representation

$$
\ell_{i} x=\sum_{j=0}^{n-1} a_{i j} x^{(j)}(0)+\int_{0}^{1} \varphi_{i}(s) x^{(n)}(s) d s, \quad i=1, \ldots, n
$$

$\varphi_{i}:[0,1] \rightarrow \mathbb{R}, i=1, \ldots, n$, are measurable bounded functions, $a_{i j} \in \mathbb{R}, i, j=1, \ldots, n ; \alpha_{i} \in \mathbb{R}$, $i=1, \ldots, n$. A solution of (1.1) is a function from the space $\mathbf{A C}{ }^{n-1}[0,1]$ which satisfies for almost all $t \in[0,1]$ the functional differential equation from problem (1.1) and the boundary value conditions from (1.1).

Such problem (1.1) has the Fredholm property (see, for example, [2]), therefore problem (1.1) is uniquely solvable if and only if the homogeneous boundary value problem

$$
\left\{\begin{array}{l}
x^{(n)}(t)=(T x)(t), \quad t \in[0,1] \tag{1.2}\\
\ell_{i} x=0, \quad i=1, \ldots, n
\end{array}\right.
$$

has only the trivial solution.
We will use the notation $\ell \equiv\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right\}, \alpha \equiv\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$.
An operator $T: \mathbf{C}[0,1] \rightarrow \mathbf{L}[0,1]$ is called positive if for every non-negative function $x \in \mathbf{C}[0,1]$ the inequality $(T x)(t) \geq 0$ holds for a.a. $t \in[0,1]$.

Here we suppose that $p^{+}, p^{-} \in \mathbf{L}[0,1]$ are the given non-negative functions.
Definition 1.1. Denote by $\mathbb{S}\left(p^{+}, p^{-}\right)$the family of all operators $T: \mathbf{C}[0,1] \rightarrow \mathbf{L}[0,1]$ such that

$$
T=T^{+}-T^{-}
$$

where $T^{+}, T^{-}: \mathbf{C}[0,1] \rightarrow \mathbf{L}[0,1]$ are linear positive operators satisfying the conditions

$$
T^{+} \mathbf{1}=p^{+}, \quad T^{-} \mathbf{1}=p^{-}
$$

Definition 1.2. We say that the pair $\left(p^{+}, p^{-}\right)$belongs to the set $\mathbb{A}_{n, \ell}$ if problem (1.1) is uniquely solvable for every operator $T \in \mathbb{S}\left(p^{+}, p^{-}\right)$.

Definition 1.3. We say that the pair $\left(p^{+}, p^{-}\right)$belongs to the set $\mathbb{B}_{n, \ell}^{+}(\alpha, f)$ if $\left(p^{+}, p^{-}\right) \in \mathbb{A}_{n, \ell}$ and a unique solution of problem (1.1) is non-negative for every operator $T \in \mathbb{S}\left(p^{+}, p^{-}\right)$.

Definition 1.4. We say that the pair $\left(p^{+}, p^{-}\right)$belongs to the set $\mathbb{B}_{n, \ell}^{-}(\alpha, f)$ if $\left(p^{+}, p^{-}\right) \in \mathbb{A}_{n, \ell}$ and a unique solution of problem (1.1) is non-positive for every operator $T \in \mathbb{S}\left(p^{+}, p^{-}\right)$.

In this paper, we give an effective description of the sets $\mathbb{A}_{n, \ell}, \mathbb{B}_{n, \ell}^{+}(\alpha, f), \mathbb{B}_{n, \ell}^{-}(\alpha, f)$ under the following condition. We suppose that the boundary value problem

$$
\left\{\begin{array}{l}
x^{(n)}(t)=f(t), \quad t \in[0,1] \tag{1.3}\\
\ell_{i} x=\alpha_{i}, \quad i=1, \ldots, n,
\end{array}\right.
$$

is uniquely solvable. Then its solution w has a representation

$$
w(t) \equiv \sum_{i=1}^{n} \alpha_{i} x_{i}(t)+(G f)(t), \quad t \in[0,1]
$$

where the functions $x_{1}, x_{2}, \ldots, x_{n}$ form a fundamental system of solutions to the equation $x^{(n)}=\mathbf{0}$; $G: \mathbf{L}[0,1] \rightarrow \mathbf{A} \mathbf{C}^{n-1}[0,1]$ is the Green operator defined by the equality

$$
(G f)(t)=\int_{0}^{1} G(t, s) f(s) d s, \quad t \in[0,1]
$$

$G(t, s)$ is the Green function of problem (1.3). Note, that the Green function $G(t, s)$ has a representation

$$
G(t, s)=C(t, s)+\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i}(t) \varphi_{j}(s), \quad t, s \in[0,1]
$$

where

$$
C(t, s)= \begin{cases}\frac{(t-s)^{n-1}}{(n-1)!}, & 0 \leq s \leq t \leq 1 \\ 0, & 0 \leq t<s \leq 1\end{cases}
$$

$c_{i j} \in \mathbb{R}, i, j \in\{1,2, \ldots, n\}$.

2 The unique solvability for all equations with operators from the family $\mathbb{S}\left(p^{+}, p^{-}\right)$

Denote

$$
\begin{gathered}
p(t) \equiv p^{+}(t)-p^{-}(t), \quad v(t) \equiv 1-(G p)(t), \quad t \in[0,1] \\
g_{t_{2}, t_{1}, v}(s) \equiv G\left(t_{2}, s\right) v\left(t_{1}\right)-G\left(t_{1}, s\right) v\left(t_{2}\right), \quad s \in[0,1], \quad 0 \leq t_{1} \leq t_{2} \leq 1 \\
{[a]^{+} \equiv \frac{|a|+a}{2}, \quad[a]^{-} \equiv \frac{|a|-a}{2} \text { for any } a \in \mathbb{R}}
\end{gathered}
$$

Theorem 2.1. The pair $\left(p^{+}, p^{-}\right)$belongs to the set $\mathbb{A}_{n, \ell}$ if and only if one of the following conditions holds:
(1) $v(t)>0$ for all $t \in[0,1]$ and

$$
\int_{0}^{1}\left(p^{+}(s)\left[g_{t_{2}, t_{1}, v}(s)\right]^{-}+p^{-}(s)\left[g_{t_{2}, t_{1}, v}(s)\right]^{+}\right) d s<v\left(t_{2}\right) \text { for all } 0 \leq t_{1} \leq t_{2} \leq 1
$$

(2) $v(t)<0$ for all $t \in[0,1]$ and

$$
\int_{0}^{1}\left(p^{+}(s)\left[g_{t_{2}, t_{1}, v}(s)\right]^{+}+p^{-}(s)\left[g_{t_{2}, t_{1}, v}(s)\right]^{-}\right) d s<-v\left(t_{2}\right) \text { for all } 0 \leq t_{1} \leq t_{2} \leq 1
$$

For proving Theorem 2.1, we need the following lemma (see $[3,4]$).
Lemma 2.1. Boundary value problem (1.2) has only the trivial solution for every operators $T \in$ $\mathbb{S}\left(p^{+}, p^{-}\right)$if and only if the boundary value problem

$$
\left\{\begin{array}{l}
x^{(n)}(t)=p_{1}(t) x\left(t_{1}\right)+p_{2}(t) x\left(t_{2}\right), \quad t \in[0,1] \tag{2.1}\\
\ell_{i} x=0, \quad i=1, \ldots, n
\end{array}\right.
$$

has only the trivial solution for every functions p_{1}, p_{2} and points t_{1}, t_{2} such that

$$
\begin{align*}
& p_{1}, p_{2} \in \mathbf{L}[0,1] \tag{2.2}\\
& p_{1}+p_{2}=p^{+}-p^{-} \tag{2.3}\\
&-p^{-}(t) \leq p_{i}(t) \leq p^{+}(t), \quad t \in[0,1], \quad i=1,2 \tag{2.4}\\
& 0 \leq t_{1} \leq t_{2} \leq 1 \tag{2.5}
\end{align*}
$$

Proof of Theorem 2.1. Boundary value problem (2.1) is equivalent to the equation

$$
x(t)=\left(G p_{1}\right)(t) x\left(t_{1}\right)+\left(G p_{2}\right)(t) x\left(t_{2}\right), \quad t \in[0,1]
$$

This equation has only the trivial solution if and only if the algebraic system

$$
x\left(t_{1}\right)=\left(G p_{1}\right)\left(t_{1}\right) x\left(t_{1}\right)+\left(G p_{2}\right)\left(t_{1}\right) x\left(t_{2}\right), \quad x\left(t_{2}\right)=\left(G p_{1}\right)\left(t_{2}\right) x\left(t_{1}\right)+\left(G p_{2}\right)\left(t_{2}\right) x\left(t_{2}\right)
$$

with respect to $x\left(t_{1}\right), x\left(t_{2}\right)$ has only the trivial solution, that is, when

$$
\begin{align*}
\Delta\left(t_{1}, t_{2}, p_{1}, p_{2}\right) \equiv\left|\begin{array}{cc}
1-\left(G p_{1}\right)\left(t_{1}\right) & -\left(G p_{2}\right)\left(t_{1}\right) \\
-\left(G p_{1}\right)\left(t_{2}\right) & 1-\left(G p_{2}\right)\left(t_{2}\right)
\end{array}\right| \\
\quad=\left|\begin{array}{cc}
1-\left(G p_{1}\right)\left(t_{1}\right) & v\left(t_{1}\right) \\
-\left(G p_{1}\right)\left(t_{2}\right) & v\left(t_{2}\right)
\end{array}\right|=v\left(t_{2}\right)+\int_{0}^{1} p_{1}(s) g_{t_{2}, t_{1}, v}(s) d s \neq 0 \tag{2.6}
\end{align*}
$$

We use Lemma 2.1. From the form of the set of admissible function $p_{i}(2.4)$, it follows that $\Delta\left(t_{1}, t_{2}, p_{1}, p_{2}\right)$ does not equal to zero for every $t_{i}, p_{i}, i=1,2$, if and only if the conditions of Theorem 2.1 are fulfilled. It guarantees the unique solvability of all problems (2.1) under the conditions (2.2)-(2.5).

3 Examples

Consider the Cauchy problem

$$
\left\{\begin{array}{l}
\dot{x}(t)=(T x)(t)+f(t), \quad t \in[0,1] \\
x(0)=\alpha_{1}
\end{array}\right.
$$

As an immediate result from Theorem 2.1, we have
Corollary 3.1. The pair $\left(p^{+}, p^{-}\right)$belongs to the set $\mathbb{A}_{1,\{x(0)\}}$ if and only if the inequality

$$
1+\int_{0}^{t_{1}} p^{-}(s) d s\left(1-\int_{t_{1}}^{t_{2}} p^{-}(s) d s\right)-\int_{0}^{t_{2}} p^{+}(s) d s+\int_{0}^{t_{1}} p^{+}(s) d s \int_{t_{1}}^{t_{2}} p^{+}(s) d s>0
$$

holds for all $0 \leq t_{1} \leq t_{2} \leq 1$.
Now we can easily get the following known assertion.

Corollary 3.2 ([5]).

$$
\begin{aligned}
& \left(p^{+}, \mathbf{0}\right) \in \mathbb{A}_{1,\{x(0)\}} \text { if and only if } \int_{0}^{1} p^{+}(s) d s<1 \\
& \left(\mathbf{0}, p^{-}\right) \in \mathbb{A}_{1,\{x(0)\}} \text { if and only if } \int_{0}^{1} p^{-}(s) d s<3 .
\end{aligned}
$$

Set $p^{+}(t) \equiv \mathcal{T}^{+} t, p^{-}(t) \equiv \mathcal{T}^{-} t, t \in[0,1]$, where $\mathcal{T}^{+} \geq 0, \mathcal{T}^{-} \geq 0$.
Corollary 3.3. The pair $\left(p^{+}, p^{-}\right)$belongs to the set $\mathbb{A}_{1,\{x(0)\}}$ if and only if

$$
0 \leq \mathcal{T}^{+}<2, \quad 0 \leq \mathcal{T}^{-}<1+\sqrt{5}
$$

or

$$
\begin{gathered}
0 \leq \mathcal{T}^{+}<2, \quad \mathcal{T}^{-}>1+\sqrt{5} \\
\left(\mathcal{T}^{-}\right)^{2}\left(6-\mathcal{T}^{-}\right)\left(\mathcal{T}^{-}+2\right)-\left(\mathcal{T}^{+}\right)^{2}\left(4-\mathcal{T}^{+}\right)^{2}+2 \mathcal{T}^{+} \mathcal{T}^{-}\left(\mathcal{T}^{+} \mathcal{T}^{-}-2 \mathcal{T}^{+}-4 \mathcal{T}^{-}\right)>0
\end{gathered}
$$

Consider the Cauchy problem for the second order functional differential equation

$$
\left\{\begin{array}{l}
\ddot{x}(t)=(T x)(t)+f(t), \quad t \in[0,1] \\
x(a)=\alpha_{1}, \quad \dot{x}(a)=\alpha_{2}
\end{array}\right.
$$

From Theorem 2.1, we have

Corollary 3.4.

$\left(\mathbf{0}, \mathcal{T}^{-}\right) \in \mathbb{A}_{2,\{x(0), \dot{x}(0)\}}$ if and only if $\mathcal{T}^{-}<16 ;$
$\left(\mathbf{0}, p^{-}\right) \in \mathbb{A}_{2,\{x(0), \dot{x}(0)\}}$ if $p^{-}(t) \leq 16$ for all $t \in[0,1], p^{-} \not \equiv 16$.
Consider the Dirichlet boundary value problem

$$
\left\{\begin{array}{l}
\ddot{x}(t)=(T x)(t)+f(t), \quad t \in[0,1] \\
x(0)=\alpha_{1}, \quad x(1)=\alpha_{2}
\end{array}\right.
$$

Corollary 3.5.

$\left(\mathcal{T}^{+}, \mathbf{0}\right) \in \mathbb{A}_{2,\{x(0), x(1)\}}$ if and only if $\mathcal{T}^{+}<32 ;$
$\left(p^{+}, \mathbf{0}\right) \in \mathbb{A}_{2,\{x(0), x(1)\}}$ if $p^{+}(t) \leq 32$ for all $t \in[0,1], p^{+} \not \equiv 32$.

4 Non-negative (non-positive) solutions for all equations with operators from the family $\mathbb{S}\left(p^{+}, p^{-}\right)$

Suppose $\alpha_{i} \in \mathbb{R}, i=1, \ldots, n, f \in \mathbf{L}$ and

$$
\sum_{i=1}^{n}\left|\alpha_{i}\right|+\int_{0}^{1}|f(s)| d s>0
$$

For every $0 \leq t_{1} \leq t_{2} \leq 1$, define

$$
g_{t_{2}, t_{1}, w}(s) \equiv G\left(t_{2}, s\right) w\left(t_{1}\right)-G\left(t_{1}, s\right) w\left(t_{2}\right), \quad s \in[0,1]
$$

$$
\begin{aligned}
& R_{1}\left(t_{1}, t_{2}\right) \equiv w\left(t_{1}\right)+\int_{0}^{1}\left(p^{+}(s)\left[g_{t_{2}, t_{1}, w}(s)\right]^{-}+p^{-}(s)\left[g_{t_{2}, t_{1}, w}(s)\right]^{+}\right) d s \\
& R_{2}\left(t_{1}, t_{2}\right) \equiv w\left(t_{2}\right)+\int_{0}^{1}\left(p^{+}(s)\left[g_{t_{2}, t_{1}, w}(s)\right]^{+}+p^{-}(s)\left[g_{t_{2}, t_{1}, w}(s)\right]^{-}\right) d s, \\
& R_{3}\left(t_{1}, t_{2}\right) \equiv w\left(t_{1}\right)-\int_{0}^{1}\left(p^{+}(s)\left[g_{t_{2}, t_{1}, w}(s)\right]^{+}+p^{-}(s)\left[g_{t_{2}, t_{1}, w}(s)\right]^{-}\right) d s, \\
& R_{4}\left(t_{1}, t_{2}\right) \equiv w\left(t_{2}\right)-\int_{0}^{1}\left(p^{+}(s)\left[g_{t_{2}, t_{1}, w}(s)\right]^{-}+p^{-}(s)\left[g_{t_{2}, t_{1}, w}(s)\right]^{+}\right) d s
\end{aligned}
$$

Theorem 4.1. Suppose $\left(p^{+}, p^{-}\right) \in \mathbb{A}_{n, \ell}$.
The pair $\left(p^{+}, p^{-}\right)$belongs to the set $\mathbb{B}_{n, \ell}^{+}(\alpha, f)$ if and only if one of the following conditions holds:
(1) $v(t)>0, w(t) \geq 0$ for all $t \in[0,1]$ and $R_{3}\left(t_{1}, t_{2}\right) \geq 0, R_{4}\left(t_{1}, t_{2}\right) \geq 0$ for all $0 \leq t_{1} \leq t_{2} \leq 1$;
(2) $v(t)<0, w(t) \leq 0$ for all $t \in[0,1]$ and $R_{1}\left(t_{1}, t_{2}\right) \leq 0, R_{2}\left(t_{1}, t_{2}\right) \leq 0$ for all $0 \leq t_{1} \leq t_{2} \leq 1$.

The pair $\left(p^{+}, p^{-}\right)$belongs to the set $\mathbb{B}_{n, \ell}^{-}(\alpha, f)$ if and only if one of the following conditions holds:
(1) $v(t)<0, w(t) \geq 0$ for all $t \in[0,1]$ and $R_{3}\left(t_{1}, t_{2}\right) \geq 0, R_{4}\left(t_{1}, t_{2}\right) \geq 0$ for all $0 \leq t_{1} \leq t_{2} \leq 1$;
(2) $v(t)>0, w(t) \leq 0$ for all $t \in[0,1]$ and $R_{1}\left(t_{1}, t_{2}\right) \leq 0, R_{2}\left(t_{1}, t_{2}\right) \leq 0$ for all $0 \leq t_{1} \leq t_{2} \leq 1$.

Lemma 4.1. Let $\left(p^{+}, p^{-}\right) \in \mathbb{A}_{n, \ell}$. Then the set of all solutions of problems (1.1) for all operators $T \in \mathbb{S}\left(p^{+}, p^{-}\right)$coincides with the set of solutions of the boundary value problem

$$
\left\{\begin{array}{l}
x^{(n)}(t)=p_{1}(t) x\left(t_{1}\right)+p_{2}(t) x\left(t_{2}\right)+f(t), \quad t \in[0,1] \tag{4.1}\\
\ell_{i} x=\alpha_{i}, \quad i=1, \ldots, n
\end{array}\right.
$$

for all functions p_{1}, p_{2} and points t_{1}, t_{2} satisfying conditions (2.2)-(2.5).
Proof. Let y be a solution of problem (4.1) for some functions p_{1}, p_{2} and for some points t_{1}, t_{2} satisfying conditions (2.2)-(2.5). Then y is a solution of problem (1.1), where $T=T^{+}-T^{-}$and the positive operators T^{+}, T^{-}are defined by the equalities

$$
\begin{array}{ll}
\left(T^{+} x\right)(t)=p^{+}(t) \zeta(t) x\left(t_{1}\right)+p^{+}(t)(1-\zeta(t)) x\left(t_{2}\right), & t \in[0,1] \\
\left(T^{-} x\right)(t)=p^{-}(t)(1-\zeta(t)) x\left(t_{1}\right)+p^{-}(t) \zeta(t) x\left(t_{2}\right), & t \in[0,1]
\end{array}
$$

$\zeta:[0,1] \rightarrow[0,1]$ is a measurable function such that

$$
p_{1}(t)=p^{+}(t) \zeta(t)-p^{-}(t)(1-\zeta(t)), \quad t \in[0,1]
$$

Therefore, $T \in \mathbb{S}\left(p^{+}, p^{-}\right)$.
Conversely, let y be a solution of problem (1.1) with $T \in \mathbb{S}\left(p^{+}, p^{-}\right)$. Let

$$
\min _{t \in[0,1]} y(t)=y\left(t_{1}\right), \quad \max _{t \in[0,1]} y(t)=y\left(t_{2}\right) .
$$

Then for positive operators T^{+}, T^{-}such that $T^{+} \mathbf{1}=p^{+}, T^{-} \mathbf{1}=p^{-}$the following inequalities hold:

$$
\begin{aligned}
& p^{+}(t) y\left(t_{1}\right) \leq\left(T^{+} y\right)(t) \leq p^{+}(t) y\left(t_{2}\right), \quad t \in[0,1], \\
& p^{-}(t) y\left(t_{1}\right) \leq\left(T^{-} y\right)(t) \leq p^{-}(t) y\left(t_{2}\right), \quad t \in[0,1] .
\end{aligned}
$$

Therefore, there exist measurable functions $\zeta, \xi:[0,1] \rightarrow[0,1]$ such that

$$
\left(T^{+} y\right)(t)=p^{+}(t)(1-\zeta(t)) y\left(t_{1}\right)+p^{+}(t) \zeta(t) y\left(t_{2}\right), \quad t \in[0,1]
$$

$$
\left(T^{-} y\right)(t)=p^{-}(t)(1-\xi(t)) y\left(t_{1}\right)+p^{-}(t) \xi(t) y\left(t_{2}\right), \quad t \in[0,1]
$$

So, the function y satisfies problem (4.1) for the functions

$$
\begin{aligned}
& p_{1}(t)=\left(T^{+} \mathbf{1}\right)(t)(1-\zeta(t))-\left(T^{-} \mathbf{1}\right)(t)(1-\xi(t)), \quad t \in[0,1] \\
& p_{2}(t)=\left(T^{+} \mathbf{1}\right)(t) \zeta(t)-\left(T^{-} \mathbf{1}\right)(t) \xi(t), \quad t \in[0,1]
\end{aligned}
$$

It is clear that equality (2.3) and inequalities (2.4) hold. If $t_{1}>t_{2}$, then by renumbering p_{1}, p_{2}, t_{1}, t_{2}, condition (2.5) will be valid.

Proof of Theorem 4.1. Find when solutions of (1.1) retain their sign for all $T \in \mathbb{S}\left(p^{+}, p^{-}\right)$. Use Lemma 4.1. The maximal and minimal values $x_{1} \equiv x\left(t_{1}\right), x_{2} \equiv x\left(t_{2}\right)$ of a unique solution of problem (1.1) satisfy the system

$$
\left\{\begin{array}{l}
x_{1}=w\left(t_{1}\right)+\left(G p_{1}\right)\left(t_{1}\right) x_{1}+\left(G p_{2}\right)\left(t_{1}\right) x_{2} \tag{4.2}\\
x_{2}=w\left(t_{2}\right)+\left(G p_{1}\right)\left(t_{2}\right) x_{1}+\left(G p_{2}\right)\left(t_{2}\right) x_{2}
\end{array}\right.
$$

for some $p_{1}, p_{2} \in \mathbf{L}[0,1]$ such that conditions (2.3), (2.4) are fulfilled.
Note that $w \not \equiv \mathbf{0}$.
From (4.2), we obtain

$$
x_{1}=\frac{\Delta_{1}\left(t_{1}, t_{2}, p_{1}, p_{2}\right)}{\Delta\left(t_{1}, t_{2}, p_{1}, p_{2}\right)}, \quad x_{2}=\frac{\Delta_{2}\left(t_{1}, t_{2}, p_{1}, p_{2}\right)}{\Delta\left(t_{1}, t_{2}, p_{1}, p_{2}\right)}
$$

where the functional $\Delta\left(t_{1}, t_{2}, p_{1}, p_{2}\right)$ is defined by equality (2.6) and retains its sign (the conditions of Theorem 2.1 are fulfilled, therefore $\left.\operatorname{sgn}\left(\Delta\left(t_{1}, t_{2}, p_{1}, p_{2}\right)\right)=\operatorname{sgn}(1-G p)\right)$; the functionals $\Delta_{1}\left(t_{1}, t_{2}, p_{1}, p_{2}\right)$ and $\Delta_{2}\left(t_{1}, t_{2}, p_{1}, p_{2}\right)$ are defined by the equalities

$$
\begin{align*}
& \Delta_{1}\left(t_{1}, t_{2}, p_{1}, p_{2}\right) \equiv\left|\begin{array}{cc}
w\left(t_{1}\right) & -\left(G p_{2}\right)\left(t_{1}\right) \\
w\left(t_{2}\right) & 1-\left(G p_{2}\right)\left(t_{2}\right)
\end{array}\right|=w\left(t_{1}\right)-\int_{0}^{1} p_{2}(s) g_{t_{2}, t_{1}, w}(s) d s \tag{4.3}\\
& \Delta_{2}\left(t_{1}, t_{2}, p_{1}, p_{2}\right) \equiv\left|\begin{array}{cc}
1-\left(G p_{1}\right)\left(t_{1}\right) & w\left(t_{1}\right) \\
-\left(G p_{1}\right)\left(t_{2}\right) & w\left(t_{2}\right)
\end{array}\right|=w\left(t_{2}\right)+\int_{0}^{1} p_{1}(s) g_{t_{2}, t_{1}, w}(s) d s .
\end{align*}
$$

Find the maximum and the minimum of $\Delta_{1}\left(t_{1}, t_{2}, p_{1}, p_{2}\right), \Delta_{2}\left(t_{1}, t_{2}, p_{1}, p_{2}\right)$ with respect to p_{1}, p_{2} at the fixed rest arguments. From representations (4.3) we have

$$
\begin{array}{ll}
R_{1}\left(t_{1}, t_{2}\right)=\max _{-p^{-} \leq p_{2} \leq p^{+}} \Delta_{1}\left(t_{1}, t_{2}, p_{1}, p_{2}\right), & R_{2}\left(t_{1}, t_{2}\right)=\max _{-p^{-} \leq p_{1} \leq p^{+}} \Delta_{2}\left(t_{1}, t_{2}, p_{1}, p_{2}\right) \\
R_{3}\left(t_{1}, t_{2}\right)=\min _{-p^{-} \leq p_{2} \leq p^{+}} \Delta_{1}\left(t_{1}, t_{2}, p_{1}, p_{2}\right), & R_{4}\left(t_{1}, t_{2}\right)=\min _{-p^{-} \leq p_{1} \leq p^{+}} \Delta_{2}\left(t_{1}, t_{2}, p_{1}, p_{2}\right)
\end{array}
$$

that proves the theorem.

5 Example

As an illustrative example, consider the Dirichlet problem

$$
\left\{\begin{array}{l}
\ddot{x}(t)=(T x)(t)+1, \quad t \in[0,1] \tag{5.1}\\
x(0)=0, \quad x(1)=0
\end{array}\right.
$$

From Theorem 4.1 we immediately obtain a sharp condition for the existence of non-positive solutions of (5.1).

Corollary 5.1. If $p^{+}(t) \leq 11+5 \sqrt{5}$ for all $t \in[0,1]$, then $\left(p^{+}, \mathbf{0}\right) \in \mathbb{B}_{2,\{x(0), x(1)\}}^{-}((0,0), \mathbf{1})$. The constant $11+5 \sqrt{5}$ is sharp.

Acknowledgements

The work was performed as a part of the State Task of the Ministry of Education and Science of the Russian Federation (project 1.5336.2017/8.9).

The author thanks the anonymous reviewer for useful remarks.

References

[1] A. M. Bica, M. Curila and S. Curila, Two-point boundary value problems associated to functional differential equations of even order solved by iterated splines. Appl. Numer. Math. 110 (2016), 128-147.
[2] E. Bravyi, A note on the Fredholm property of boundary value problems for linear functional differential equations. Mem. Differential Equations Math. Phys. 20 (2000), 133-135.
[3] E. I. Bravyi, Solvability of boundary value problems for linear functional differential equations. (Russian) R\&C Dynamics, Izhevsk, Russia, 2011.
[4] E. I. Bravyi, On the best constants in the solvability conditions for the periodic boundary value problem for higher-order functional differential equations. (Russian) Differ. Uravn. 48 (2012), no. 6, 773-780; translation in Differ. Equ. 48 (2012), no. 6, 779-786.
[5] E. Bravyi, R. Hakl and A. Lomtatidze, Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. Czechoslovak Math. J. 52(127) (2002), no. 3, 513-530.
[6] A. Calamai and G. Infante, Nontrivial solutions of boundary value problems for second-order functional differential equations. Ann. Mat. Pura Appl. (4) 195 (2016), no. 3, 741-756.
[7] A. Domoshnitsky, R. Hakl and B. Půža, Multi-point boundary value problems for linear functional-differential equations. Georgian Math. J. 24 (2017), no. 2, 193-206.
[8] P. Drygaś, Functional-differential equations in a class of analytic functions and its application to elastic composites. Complex Var. Elliptic Equ. 61 (2016), no. 8, 1145-1156.
[9] I. Kiguradze and Z. Sokhadze, On nonlinear boundary value problems for higher order functional differential equations. Georgian Math. J. 23 (2016), no. 4, 537-550.
[10] S. Mukhigulashvili, The nonlocal boundary value problems for strongly singular higher-order nonlinear functional-differential equations. Ital. J. Pure Appl. Math. No. 35 (2015), 23-50.
[11] N. Partsvania, On some nonlinear boundary value problems on a finite and an infinite intervals for systems of functional differential equations. Mem. Differ. Equ. Math. Phys. 67 (2016), 137-140.
[12] A. L. Skubachevskiǐ, Boundary value problems for elliptic functional-differential equations and their applications. (Russian) Uspekhi Mat. Nauk 71 (2016), no. 5(431), 3-112; translation in Russian Math. Surveys 71 (2016), no. 5, 801-906.
(Received 06.10.2017)

Author's address:

Perm National Research Polytechnic University, 29 Komsomolsky pr., Perm 614990, Russia.
E-mail: bravyi@perm.ru

[^0]: *Reported on Conference "Differential Equation and Applications", September 4-7, 2017, Brno

