Memoirs on Differential Equations and Mathematical Physics

Volume 72, 2017, 27–35

Eugene Bravyi

BOUNDARY VALUE PROBLEMS FOR FAMILIES OF FUNCTIONAL DIFFERENTIAL EQUATIONS

Abstract. We consider boundary value problems for all equations from a family of linear functional differential equations. The necessary and sufficient conditions for the unique solvability and existence of non-negative (non-positive) solutions are obtained.*

2010 Mathematics Subject Classification. 34K10.

Key words and phrases. Boundary value problems, functional differential equations, solvability conditions, positive solutions.

რეზიუმე. წრფივი ფუნქციონალურ-დიფერენციალური განტოლებებისთვის განხილულია სასაზღვრო ამოცანები. დადგენილია ამოცანების ცალსახა ამოხსნადობის და არაუარყოფითი (არადადებითი) ამონახსნის არსებობის აუცილებელი და საკმარისი პირობები.

^{*}Reported on Conference "Differential Equation and Applications", September 4-7, 2017, Brno

1 Introduction

In the recent years, the boundary value problems for functional differential equations have been investigated in many works (for example, [1, 6-12]). We offer new conditions for a unique solvability of boundary value problems and the existence of solutions with a given sign. It turns out, these conditions are sharp in some family of equations.

Here we use the following notation: $\mathbf{AC}^{n-1}[0,1]$ is the space of functions $x:[0,1] \to \mathbb{R}$ for which there exist absolutely continuous derivatives of order less than n; $\mathbf{C}[0,1]$ is the space of continuous functions $x:[0;1] \to \mathbb{R}$ with the norm $||x||_{\mathbf{C}} = \max_{t \in [0,1]} |x(t)|$; $\mathbf{L}[0,1]$ is the space of integrable functions

 $z: [0;1] \to \mathbb{R}$ with the norm $||z||_{\mathbf{L}} = \int_{0}^{1} |z(s)| ds.$

We consider general boundary value problems for linear functional differential equations

$$\begin{cases} x^{(n)}(t) = (Tx)(t) + f(t), & t \in [0, 1], \\ \ell_i x = \alpha_i, & i = 1, \dots, n, \end{cases}$$
(1.1)

where $T : \mathbf{C}[0,1] \to \mathbf{L}[0,1]$ is a linear bounded operator; $f \in \mathbf{L}[0,1]$; $\ell_i : \mathbf{AC}^{n-1}[0,1] \to \mathbb{R}$, $i = 1, \ldots, n$, are linear bounded functionals with the representation

$$\ell_i x = \sum_{j=0}^{n-1} a_{ij} x^{(j)}(0) + \int_0^1 \varphi_i(s) x^{(n)}(s) \, ds, \ i = 1, \dots, n,$$

 $\varphi_i : [0,1] \to \mathbb{R}, i = 1, ..., n$, are measurable bounded functions, $a_{ij} \in \mathbb{R}, i, j = 1, ..., n$; $\alpha_i \in \mathbb{R}, i = 1, ..., n$. A solution of (1.1) is a function from the space $\mathbf{AC}^{n-1}[0,1]$ which satisfies for almost all $t \in [0,1]$ the functional differential equation from problem (1.1) and the boundary value conditions from (1.1).

Such problem (1.1) has the Fredholm property (see, for example, [2]), therefore problem (1.1) is uniquely solvable if and only if the homogeneous boundary value problem

$$\begin{cases} x^{(n)}(t) = (Tx)(t), & t \in [0, 1], \\ \ell_i x = 0, & i = 1, \dots, n, \end{cases}$$
(1.2)

has only the trivial solution.

We will use the notation $\ell \equiv \{\ell_1, \ell_2, \dots, \ell_n\}, \alpha \equiv \{\alpha_1, \alpha_2, \dots, \alpha_n\}.$

An operator $T : \mathbf{C}[0,1] \to \mathbf{L}[0,1]$ is called positive if for every non-negative function $x \in \mathbf{C}[0,1]$ the inequality $(Tx)(t) \ge 0$ holds for a.a. $t \in [0,1]$.

Here we suppose that $p^+, p^- \in \mathbf{L}[0, 1]$ are the given non-negative functions.

Definition 1.1. Denote by $S(p^+, p^-)$ the family of all operators $T : \mathbf{C}[0, 1] \to \mathbf{L}[0, 1]$ such that

$$T = T^+ - T^-,$$

where T^+ , T^- : $\mathbf{C}[0,1] \to \mathbf{L}[0,1]$ are linear positive operators satisfying the conditions

$$T^+\mathbf{1} = p^+, \quad T^-\mathbf{1} = p^-.$$

Definition 1.2. We say that the pair (p^+, p^-) belongs to the set $\mathbb{A}_{n,\ell}$ if problem (1.1) is uniquely solvable for every operator $T \in \mathbb{S}(p^+, p^-)$.

Definition 1.3. We say that the pair (p^+, p^-) belongs to the set $\mathbb{B}_{n,\ell}^+(\alpha, f)$ if $(p^+, p^-) \in \mathbb{A}_{n,\ell}$ and a unique solution of problem (1.1) is non-negative for every operator $T \in \mathbb{S}(p^+, p^-)$.

Definition 1.4. We say that the pair (p^+, p^-) belongs to the set $\mathbb{B}^-_{n,\ell}(\alpha, f)$ if $(p^+, p^-) \in \mathbb{A}_{n,\ell}$ and a unique solution of problem (1.1) is non-positive for every operator $T \in \mathbb{S}(p^+, p^-)$.

In this paper, we give an effective description of the sets $\mathbb{A}_{n,\ell}$, $\mathbb{B}_{n,\ell}^+(\alpha, f)$, $\mathbb{B}_{n,\ell}^-(\alpha, f)$ under the following condition. We suppose that the boundary value problem

$$\begin{cases} x^{(n)}(t) = f(t), & t \in [0, 1], \\ \ell_i x = \alpha_i, & i = 1, \dots, n, \end{cases}$$
(1.3)

is uniquely solvable. Then its solution w has a representation

$$w(t) \equiv \sum_{i=1}^{n} \alpha_i x_i(t) + (Gf)(t), \ t \in [0, 1],$$

where the functions x_1, x_2, \ldots, x_n form a fundamental system of solutions to the equation $x^{(n)} = \mathbf{0}$; $G: \mathbf{L}[0,1] \to \mathbf{AC}^{n-1}[0,1]$ is the Green operator defined by the equality

$$(Gf)(t) = \int_{0}^{1} G(t,s)f(s) \, ds, \ t \in [0,1];$$

G(t,s) is the Green function of problem (1.3). Note, that the Green function G(t,s) has a representation

$$G(t,s) = C(t,s) + \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_i(t) \varphi_j(s), \ t,s \in [0,1],$$

where

$$C(t,s) = \begin{cases} \frac{(t-s)^{n-1}}{(n-1)!}, & 0 \le s \le t \le 1, \\ 0, & 0 \le t < s \le 1, \end{cases}$$

 $c_{ij} \in \mathbb{R}, i, j \in \{1, 2, \dots, n\}.$

2 The unique solvability for all equations with operators from the family $\mathbb{S}(p^+,p^-)$

Denote

$$p(t) \equiv p^{+}(t) - p^{-}(t), \quad v(t) \equiv 1 - (Gp)(t), \quad t \in [0, 1],$$

$$g_{t_2, t_1, v}(s) \equiv G(t_2, s)v(t_1) - G(t_1, s)v(t_2), \quad s \in [0, 1], \quad 0 \le t_1 \le t_2 \le 1,$$

$$[a]^{+} \equiv \frac{|a| + a}{2}, \quad [a]^{-} \equiv \frac{|a| - a}{2} \text{ for any } a \in \mathbb{R}.$$

Theorem 2.1. The pair (p^+, p^-) belongs to the set $\mathbb{A}_{n,\ell}$ if and only if one of the following conditions holds:

(1) v(t) > 0 for all $t \in [0, 1]$ and

$$\int_{0}^{1} \left(p^{+}(s)[g_{t_{2},t_{1},v}(s)]^{-} + p^{-}(s)[g_{t_{2},t_{1},v}(s)]^{+} \right) ds < v(t_{2}) \text{ for all } 0 \le t_{1} \le t_{2} \le 1;$$

(2) v(t) < 0 for all $t \in [0, 1]$ and

$$\int_{0}^{1} \left(p^{+}(s)[g_{t_{2},t_{1},v}(s)]^{+} + p^{-}(s)[g_{t_{2},t_{1},v}(s)]^{-} \right) ds < -v(t_{2}) \text{ for all } 0 \le t_{1} \le t_{2} \le 1.$$

For proving Theorem 2.1, we need the following lemma (see [3, 4]).

Lemma 2.1. Boundary value problem (1.2) has only the trivial solution for every operators $T \in S(p^+, p^-)$ if and only if the boundary value problem

$$\begin{cases} x^{(n)}(t) = p_1(t)x(t_1) + p_2(t)x(t_2), & t \in [0,1], \\ \ell_i x = 0, & i = 1, \dots, n, \end{cases}$$
(2.1)

has only the trivial solution for every functions p_1 , p_2 and points t_1 , t_2 such that

$$p_1, p_2 \in \mathbf{L}[0, 1],$$
 (2.2)

$$p_1 + p_2 = p^+ - p^-, \tag{2.3}$$

$$-p^{-}(t) \le p_{i}(t) \le p^{+}(t), \ t \in [0,1], \ i = 1,2,$$

$$(2.4)$$

$$0 \le t_1 \le t_2 \le 1. \tag{2.5}$$

Proof of Theorem 2.1. Boundary value problem (2.1) is equivalent to the equation

$$x(t) = (Gp_1)(t)x(t_1) + (Gp_2)(t)x(t_2), \ t \in [0,1].$$

This equation has only the trivial solution if and only if the algebraic system

$$x(t_1) = (Gp_1)(t_1)x(t_1) + (Gp_2)(t_1)x(t_2), \quad x(t_2) = (Gp_1)(t_2)x(t_1) + (Gp_2)(t_2)x(t_2)$$

with respect to $x(t_1)$, $x(t_2)$ has only the trivial solution, that is, when

$$\Delta(t_1, t_2, p_1, p_2) \equiv \begin{vmatrix} 1 - (Gp_1)(t_1) & -(Gp_2)(t_1) \\ -(Gp_1)(t_2) & 1 - (Gp_2)(t_2) \end{vmatrix}$$
$$= \begin{vmatrix} 1 - (Gp_1)(t_1) & v(t_1) \\ -(Gp_1)(t_2) & v(t_2) \end{vmatrix} = v(t_2) + \int_0^1 p_1(s)g_{t_2, t_1, v}(s) \, ds \neq 0, \tag{2.6}$$

We use Lemma 2.1. From the form of the set of admissible function p_i (2.4), it follows that $\Delta(t_1, t_2, p_1, p_2)$ does not equal to zero for every t_i , p_i , i = 1, 2, if and only if the conditions of Theorem 2.1 are fulfilled. It guarantees the unique solvability of all problems (2.1) under the conditions (2.2)–(2.5).

3 Examples

Consider the Cauchy problem

$$\begin{cases} \dot{x}(t) = (Tx)(t) + f(t), & t \in [0, 1], \\ x(0) = \alpha_1. \end{cases}$$

As an immediate result from Theorem 2.1, we have

Corollary 3.1. The pair (p^+, p^-) belongs to the set $\mathbb{A}_{1,\{x(0)\}}$ if and only if the inequality

$$1 + \int_{0}^{t_{1}} p^{-}(s) \, ds \left(1 - \int_{t_{1}}^{t_{2}} p^{-}(s) \, ds\right) - \int_{0}^{t_{2}} p^{+}(s) \, ds + \int_{0}^{t_{1}} p^{+}(s) \, ds \int_{t_{1}}^{t_{2}} p^{+}(s) \, ds > 0$$

holds for all $0 \le t_1 \le t_2 \le 1$.

Now we can easily get the following known assertion.

Corollary 3.2 ([5]).

$$(p^+, \mathbf{0}) \in \mathbb{A}_{1,\{x(0)\}}$$
 if and only if $\int_0^1 p^+(s) \, ds < 1;$
 $(\mathbf{0}, p^-) \in \mathbb{A}_{1,\{x(0)\}}$ if and only if $\int_0^1 p^-(s) \, ds < 3.$

Set $p^+(t) \equiv \mathcal{T}^+t$, $p^-(t) \equiv \mathcal{T}^-t$, $t \in [0, 1]$, where $\mathcal{T}^+ \ge 0$, $\mathcal{T}^- \ge 0$.

Corollary 3.3. The pair (p^+, p^-) belongs to the set $\mathbb{A}_{1,\{x(0)\}}$ if and only if

$$0 \le \mathcal{T}^+ < 2, \ 0 \le \mathcal{T}^- < 1 + \sqrt{5}$$

or

$$0 \le \mathcal{T}^+ < 2, \ \mathcal{T}^- > 1 + \sqrt{5},$$
$$(\mathcal{T}^-)^2 (6 - \mathcal{T}^-)(\mathcal{T}^- + 2) - (\mathcal{T}^+)^2 (4 - \mathcal{T}^+)^2 + 2\mathcal{T}^+ \mathcal{T}^- (\mathcal{T}^+ \mathcal{T}^- - 2\mathcal{T}^+ - 4\mathcal{T}^-) > 0.$$

Consider the Cauchy problem for the second order functional differential equation

$$\begin{cases} \ddot{x}(t) = (Tx)(t) + f(t), & t \in [0, 1], \\ x(a) = \alpha_1, & \dot{x}(a) = \alpha_2, \end{cases}$$

From Theorem 2.1, we have

Corollary 3.4.

$$(\mathbf{0}, \mathcal{T}^{-}) \in \mathbb{A}_{2,\{x(0),\dot{x}(0)\}}$$
 if and only if $\mathcal{T}^{-} < 16$;
 $(\mathbf{0}, p^{-}) \in \mathbb{A}_{2,\{x(0),\dot{x}(0)\}}$ if $p^{-}(t) \leq 16$ for all $t \in [0, 1], p^{-} \neq 16$.

Consider the Dirichlet boundary value problem

$$\begin{cases} \ddot{x}(t) = (Tx)(t) + f(t), & t \in [0, 1], \\ x(0) = \alpha_1, & x(1) = \alpha_2, \end{cases}$$

Corollary 3.5.

 $(\mathcal{T}^+, \mathbf{0}) \in \mathbb{A}_{2,\{x(0),x(1)\}}$ if and only if $\mathcal{T}^+ < 32$;

 $(p^+, \mathbf{0}) \in \mathbb{A}_{2,\{x(0), x(1)\}}$ if $p^+(t) \le 32$ for all $t \in [0, 1], p^+ \ne 32$.

4 Non-negative (non-positive) solutions for all equations with operators from the family $\mathbb{S}(p^+, p^-)$

Suppose $\alpha_i \in \mathbb{R}, i = 1, \dots, n, f \in \mathbf{L}$ and

$$\sum_{i=1}^{n} |\alpha_i| + \int_{0}^{1} |f(s)| \, ds > 0.$$

For every $0 \le t_1 \le t_2 \le 1$, define

$$g_{t_2,t_1,w}(s) \equiv G(t_2,s)w(t_1) - G(t_1,s)w(t_2), \ s \in [0,1],$$

$$R_{1}(t_{1}, t_{2}) \equiv w(t_{1}) + \int_{0}^{1} \left(p^{+}(s)[g_{t_{2}, t_{1}, w}(s)]^{-} + p^{-}(s)[g_{t_{2}, t_{1}, w}(s)]^{+} \right) ds,$$

$$R_{2}(t_{1}, t_{2}) \equiv w(t_{2}) + \int_{0}^{1} \left(p^{+}(s)[g_{t_{2}, t_{1}, w}(s)]^{+} + p^{-}(s)[g_{t_{2}, t_{1}, w}(s)]^{-} \right) ds,$$

$$R_{3}(t_{1}, t_{2}) \equiv w(t_{1}) - \int_{0}^{1} \left(p^{+}(s)[g_{t_{2}, t_{1}, w}(s)]^{+} + p^{-}(s)[g_{t_{2}, t_{1}, w}(s)]^{-} \right) ds,$$

$$R_{4}(t_{1}, t_{2}) \equiv w(t_{2}) - \int_{0}^{1} \left(p^{+}(s)[g_{t_{2}, t_{1}, w}(s)]^{-} + p^{-}(s)[g_{t_{2}, t_{1}, w}(s)]^{-} \right) ds.$$

Theorem 4.1. Suppose $(p^+, p^-) \in \mathbb{A}_{n,\ell}$.

The pair (p^+, p^-) belongs to the set $\mathbb{B}_{n,\ell}^+(\alpha, f)$ if and only if one of the following conditions holds:

- $(1) \ v(t) > 0, \ w(t) \ge 0 \ for \ all \ t \in [0,1] \ and \ R_3(t_1,t_2) \ge 0, \ R_4(t_1,t_2) \ge 0 \ for \ all \ 0 \le t_1 \le t_2 \le 1;$
- (2) v(t) < 0, $w(t) \le 0$ for all $t \in [0,1]$ and $R_1(t_1, t_2) \le 0$, $R_2(t_1, t_2) \le 0$ for all $0 \le t_1 \le t_2 \le 1$.

The pair (p^+, p^-) belongs to the set $\mathbb{B}_{n,\ell}^-(\alpha, f)$ if and only if one of the following conditions holds:

- (1) v(t) < 0, $w(t) \ge 0$ for all $t \in [0,1]$ and $R_3(t_1, t_2) \ge 0$, $R_4(t_1, t_2) \ge 0$ for all $0 \le t_1 \le t_2 \le 1$;
- (2) v(t) > 0, $w(t) \le 0$ for all $t \in [0,1]$ and $R_1(t_1, t_2) \le 0$, $R_2(t_1, t_2) \le 0$ for all $0 \le t_1 \le t_2 \le 1$.

Lemma 4.1. Let $(p^+, p^-) \in \mathbb{A}_{n,\ell}$. Then the set of all solutions of problems (1.1) for all operators $T \in \mathbb{S}(p^+, p^-)$ coincides with the set of solutions of the boundary value problem

$$\begin{cases} x^{(n)}(t) = p_1(t)x(t_1) + p_2(t)x(t_2) + f(t), & t \in [0,1], \\ \ell_i x = \alpha_i, & i = 1, \dots, n, \end{cases}$$
(4.1)

for all functions p_1 , p_2 and points t_1 , t_2 satisfying conditions (2.2)–(2.5).

Proof. Let y be a solution of problem (4.1) for some functions p_1 , p_2 and for some points t_1 , t_2 satisfying conditions (2.2)–(2.5). Then y is a solution of problem (1.1), where $T = T^+ - T^-$ and the positive operators T^+ , T^- are defined by the equalities

$$(T^{+}x)(t) = p^{+}(t)\zeta(t)x(t_{1}) + p^{+}(t)(1-\zeta(t))x(t_{2}), \quad t \in [0,1],$$

$$(T^{-}x)(t) = p^{-}(t)(1-\zeta(t))x(t_{1}) + p^{-}(t)\zeta(t)x(t_{2}), \quad t \in [0,1],$$

 $\zeta: [0,1] \to [0,1]$ is a measurable function such that

$$p_1(t) = p^+(t)\zeta(t) - p^-(t)(1-\zeta(t)), \ t \in [0,1].$$

Therefore, $T \in \mathbb{S}(p^+, p^-)$.

Conversely, let y be a solution of problem (1.1) with $T \in \mathbb{S}(p^+, p^-)$. Let

$$\min_{t \in [0,1]} y(t) = y(t_1), \quad \max_{t \in [0,1]} y(t) = y(t_2).$$

Then for positive operators T^+ , T^- such that $T^+\mathbf{1} = p^+$, $T^-\mathbf{1} = p^-$ the following inequalities hold:

$$p^{+}(t)y(t_{1}) \leq (T^{+}y)(t) \leq p^{+}(t)y(t_{2}), \ t \in [0,1],$$

$$p^{-}(t)y(t_{1}) \leq (T^{-}y)(t) \leq p^{-}(t)y(t_{2}), \ t \in [0,1].$$

Therefore, there exist measurable functions $\zeta, \xi : [0,1] \to [0,1]$ such that

$$(T^+y)(t) = p^+(t)(1-\zeta(t))y(t_1) + p^+(t)\zeta(t)y(t_2), \ t \in [0,1],$$

$$(T^{-}y)(t) = p^{-}(t)(1-\xi(t))y(t_1) + p^{-}(t)\xi(t)y(t_2), \ t \in [0,1].$$

So, the function y satisfies problem (4.1) for the functions

$$p_1(t) = (T^+ \mathbf{1})(t)(1 - \zeta(t)) - (T^- \mathbf{1})(t)(1 - \xi(t)), \quad t \in [0, 1],$$

$$p_2(t) = (T^+ \mathbf{1})(t)\zeta(t) - (T^- \mathbf{1})(t)\xi(t), \quad t \in [0, 1].$$

It is clear that equality (2.3) and inequalities (2.4) hold. If $t_1 > t_2$, then by renumbering p_1 , p_2 , t_1 , t_2 , condition (2.5) will be valid.

Proof of Theorem 4.1. Find when solutions of (1.1) retain their sign for all $T \in S(p^+, p^-)$. Use Lemma 4.1. The maximal and minimal values $x_1 \equiv x(t_1), x_2 \equiv x(t_2)$ of a unique solution of problem (1.1) satisfy the system

$$\begin{cases} x_1 = w(t_1) + (Gp_1)(t_1)x_1 + (Gp_2)(t_1)x_2, \\ x_2 = w(t_2) + (Gp_1)(t_2)x_1 + (Gp_2)(t_2)x_2 \end{cases}$$
(4.2)

for some $p_1, p_2 \in \mathbf{L}[0, 1]$ such that conditions (2.3), (2.4) are fulfilled.

Note that $w \not\equiv \mathbf{0}$.

From (4.2), we obtain

$$x_1 = \frac{\Delta_1(t_1, t_2, p_1, p_2)}{\Delta(t_1, t_2, p_1, p_2)}, \quad x_2 = \frac{\Delta_2(t_1, t_2, p_1, p_2)}{\Delta(t_1, t_2, p_1, p_2)},$$

where the functional $\Delta(t_1, t_2, p_1, p_2)$ is defined by equality (2.6) and retains its sign (the conditions of Theorem 2.1 are fulfilled, therefore $\operatorname{sgn}(\Delta(t_1, t_2, p_1, p_2)) = \operatorname{sgn}(1 - Gp)$); the functionals $\Delta_1(t_1, t_2, p_1, p_2)$ and $\Delta_2(t_1, t_2, p_1, p_2)$ are defined by the equalities

$$\Delta_{1}(t_{1}, t_{2}, p_{1}, p_{2}) \equiv \begin{vmatrix} w(t_{1}) & -(Gp_{2})(t_{1}) \\ w(t_{2}) & 1 - (Gp_{2})(t_{2}) \end{vmatrix} = w(t_{1}) - \int_{0}^{1} p_{2}(s)g_{t_{2},t_{1},w}(s) \, ds,$$

$$\Delta_{2}(t_{1}, t_{2}, p_{1}, p_{2}) \equiv \begin{vmatrix} 1 - (Gp_{1})(t_{1}) & w(t_{1}) \\ -(Gp_{1})(t_{2}) & w(t_{2}) \end{vmatrix} = w(t_{2}) + \int_{0}^{1} p_{1}(s)g_{t_{2},t_{1},w}(s) \, ds.$$
(4.3)

Find the maximum and the minimum of $\Delta_1(t_1, t_2, p_1, p_2)$, $\Delta_2(t_1, t_2, p_1, p_2)$ with respect to p_1, p_2 at the fixed rest arguments. From representations (4.3) we have

$$R_{1}(t_{1}, t_{2}) = \max_{-p^{-} \le p_{2} \le p^{+}} \Delta_{1}(t_{1}, t_{2}, p_{1}, p_{2}), \quad R_{2}(t_{1}, t_{2}) = \max_{-p^{-} \le p_{1} \le p^{+}} \Delta_{2}(t_{1}, t_{2}, p_{1}, p_{2}),$$

$$R_{3}(t_{1}, t_{2}) = \min_{-p^{-} \le p_{2} \le p^{+}} \Delta_{1}(t_{1}, t_{2}, p_{1}, p_{2}), \quad R_{4}(t_{1}, t_{2}) = \min_{-p^{-} \le p_{1} \le p^{+}} \Delta_{2}(t_{1}, t_{2}, p_{1}, p_{2}),$$

that proves the theorem.

5 Example

As an illustrative example, consider the Dirichlet problem

$$\begin{cases} \ddot{x}(t) = (Tx)(t) + 1, & t \in [0, 1], \\ x(0) = 0, & x(1) = 0. \end{cases}$$
(5.1)

From Theorem 4.1 we immediately obtain a sharp condition for the existence of non-positive solutions of (5.1).

Corollary 5.1. If $p^+(t) \le 11 + 5\sqrt{5}$ for all $t \in [0,1]$, then $(p^+, \mathbf{0}) \in \mathbb{B}^-_{2,\{x(0),x(1)\}}((0,0), \mathbf{1})$. The constant $11 + 5\sqrt{5}$ is sharp.

Acknowledgements

The work was performed as a part of the State Task of the Ministry of Education and Science of the Russian Federation (project 1.5336.2017/8.9).

The author thanks the anonymous reviewer for useful remarks.

References

- A. M. Bica, M. Curila and S. Curila, Two-point boundary value problems associated to functional differential equations of even order solved by iterated splines. *Appl. Numer. Math.* **110** (2016), 128–147.
- [2] E. Bravyi, A note on the Fredholm property of boundary value problems for linear functional differential equations. *Mem. Differential Equations Math. Phys.* 20 (2000), 133–135.
- [3] E. I. Bravyi, Solvability of boundary value problems for linear functional differential equations. (Russian) R&C Dynamics, Izhevsk, Russia, 2011.
- [4] E. I. Bravyi, On the best constants in the solvability conditions for the periodic boundary value problem for higher-order functional differential equations. (Russian) *Differ. Uravn.* 48 (2012), no. 6, 773-780; translation in *Differ. Equ.* 48 (2012), no. 6, 779–786.
- [5] E. Bravyi, R. Hakl and A. Lomtatidze, Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. *Czechoslovak Math. J.* 52(127) (2002), no. 3, 513–530.
- [6] A. Calamai and G. Infante, Nontrivial solutions of boundary value problems for second-order functional differential equations. Ann. Mat. Pura Appl. (4) 195 (2016), no. 3, 741–756.
- [7] A. Domoshnitsky, R. Hakl and B. Půža, Multi-point boundary value problems for linear functional-differential equations. *Georgian Math. J.* 24 (2017), no. 2, 193–206.
- [8] P. Drygaś, Functional-differential equations in a class of analytic functions and its application to elastic composites. *Complex Var. Elliptic Equ.* 61 (2016), no. 8, 1145–1156.
- [9] I. Kiguradze and Z. Sokhadze, On nonlinear boundary value problems for higher order functional differential equations. *Georgian Math. J.* 23 (2016), no. 4, 537–550.
- [10] S. Mukhigulashvili, The nonlocal boundary value problems for strongly singular higher-order nonlinear functional-differential equations. *Ital. J. Pure Appl. Math.* No. 35 (2015), 23–50.
- [11] N. Partsvania, On some nonlinear boundary value problems on a finite and an infinite intervals for systems of functional differential equations. *Mem. Differ. Equ. Math. Phys.* 67 (2016), 137–140.
- [12] A. L. Skubachevskiĭ, Boundary value problems for elliptic functional-differential equations and their applications. (Russian) Uspekhi Mat. Nauk 71 (2016), no. 5(431), 3–112; translation in Russian Math. Surveys 71 (2016), no. 5, 801–906.

(Received 06.10.2017)

Author's address:

Perm National Research Polytechnic University, 29 Komsomolsky pr., Perm 614990, Russia. *E-mail:* bravyi@perm.ru