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Abstract. We prove the validity of regularizing properties of a double layer potential associated to
the fundamental solution of a nonhomogeneous second order elliptic differential operator with constant
coefficients in Schauder spaces by exploiting an explicit formula for the tangential derivatives of the
double layer potential itself. We also introduce ad hoc norms for kernels of integral operators in order
to prove continuity results of integral operators upon variation of the kernel, which we apply to the
layer potentials.
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1 Introduction

In this paper, we consider the double layer potential associated to the fundamental solution of a second
order differential operator with constant coefficients. Throughout the paper, we assume that

n e N\{0,1},

where N denotes a set of natural numbers including 0. Let o €]0,1[, m € N\ {0}. Let  be a bounded
open subset of R™ of the class C"™*. Let v = (v;);=1,...» denote the external unit normal to 9. Let
N3 denote the number of multi-indices v € N with |y| < 2. For each

a=(ay)y<2 € C, (1.1)
we set
a® = (a)1j=1,m, Y =(0))j=1,..0, a=aq,
with a;; = 2_1ael+ej for j #1, aj; = ac,1e;, and aj = ac,, where {¢; : j =1,...,n} is the canonical

basis of R”. We note that the matrix a(® is symmetric. Then we assume that a € CN? satisfies the
following ellipticity assumption

T { ;2 a”@} >0, (1.2)

and we consider the case in which
a; €ER Vij=1,...,n. (1.3)

Introduce the operators

Pla, DJu = Z Oz, (102, u) + Zal&mu + au,

1j=1 1=1
n n

Bov = E Eﬂyl@xjv—g vav,
lj=1 =1

for all u,v € C%(Q), a fundamental solution S, of P[a, D], and the double layer potential

w09, 50 )@) = [ WwBE, (Sule ~ ) do,
o0

n

= */u(y) > aumly) %(I —y)doy, — /u(y) > v aSa(z —y)do, Yz eR", (14)
89 Li=1 / 59 =1

where the density (or the moment) p is a function from 0 to C. Here the subscript y of Wy means
that we take y as a variable of the differential operator ﬂy The role of the double layer potential in
the solution of boundary value problems for the operator P[a, D] is well known (cf. e.g., Giinter [14],
Kupradze, Gegelia, Basheleishvili and Burchuladze [20], Mikhlin [23]).

The analysis of the continuity and compactness properties of the integral operator associated to
the double layer potential is a classical topic. In particular, it has long been known that if u is of the
class C™, then the restriction of the double layer potential to the sets

Qt=Q, QO =R"\cQ

can be extended to a function of C™*(c1 Q") and to a function of C/=*(cl2™), respectively (cf., e.g.,
Miranda [24], Wiegner [36], Dalla Riva [3], Dalla Riva, Morais and Musolino [5]).
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In case n = 3 and Q is of the class C1'® and S, is the fundamental solution of the Laplace operator,
it has long been known that w[0€,a, Sa, -]jsq is a linear and compact operator in C1*(09Q) and is
linear and continuous from C°(9Q) to C%*(9Q) (cf. Schauder [30], [31], Miranda [24].)

In case n = 3, m > 1 and  is of the class C™"! and if Pla, D] is the Laplace operator, Giinter [14,
Ch. II, § 21, Thm. 3] has proved that w[0€2,a, Sa, -]jsq is bounded from Cm=1e(90) to C™(H0)
for o/ €]a, 1] and, accordingly, is compact in C"™*(99).

Fabes, Jodeit and Riviere [12] have proved that if 2 is of the class C* and if Pla, D] is the Laplace
operator, then w[0Q,a, Sa, -|jsq is compact in LP(9€2) for p €]1,+o0[. Later, Hofmann, M. Mitrea
and Taylor [16] have proved the same compactness result under more general conditions on 9.

In case n = 2 and Q is of the class C?®, and if P[a, D] is the Laplace operator, Schippers [32] has
proved that w[0€2, a, Sa, - ]j9q is continuous from C°(9Q) to C1*(99).

In case n = 3 and Q is of the class C?, and if P[a, D] is the Helmholtz operator, Colton and Kress [2]
have developed works of Giinter [14] and Mikhlin [23] and proved that the operator w[0€2,a, Sa, - ]ja0
is bounded from C%(92) to C1(d€) and, accordingly, is compact in C*<(9).

Wiegner [36] has proved that if v € N™ has odd length and  is of the class C™%, then the
operator with kernel (x — y)Y|z — y|~ ™D~ is continuous from C™~1*(9Q) to C™1(clQ) (and
a corresponding result holds for the exterior of Q).

In case n = 3, m > 2 and Q is of the class C"™ %, and if Pla, D] is the Helmholtz operator,
Kirsch [18] has proved that the operator w[0€2,a, Sa, - |90 is bounded from C™~1*(9Q) to C™(992)
and, accordingly, is compact in C™*(99).

von Wahl [35] has considered the case of Sobolev spaces and proved that if Q is of the class C*° and
Sa is the fundamental solution of the Laplace operator, then the double layer improves the regularity
of one unit on the boundary.

Later on, Heinemann [15] has developed the ideas of von Wahl in the frame of Schauder spaces
and proved that if Q is of the class C™*® and S, is the fundamental solution of the Laplace operator,
then the double layer improves the regularity of one unit on the boundary, i.e., w[0Q,a, Sa, - |j90 is
linear and continuous from C™%(9Q) to C™+1.2(9).

Maz’ya and Shaposhnikova [22] have proved that w[0€2,a, Sa, -]jsq is continuous in fractional
Sobolev spaces under sharp regularity assumptions on the boundary and if Pla, D] is the Laplace
operator.

Mitrea [26] has proved that the double layer of second order equations and systems is compact in
C%8(9Q) for B €]0,a] and bounded in C%(9€) under the assumption that € is of the class C**.
Then by exploiting a formula for the tangential derivatives such results have been extended to the
compactness and boundedness results in C*#(9Q) and C1*(99), respectively.

Mitrea, Mitrea and Verdera [28] have proved that if ¢ is a homogeneous polynomial of odd order,
then the operator with kernel g(x — y)|z — y|~(»~1~dee(@) maps C%*(9NQ) to CH*(cl ).

In this paper, of special interest are the regularizing properties of the operator w[0€2,a, Sa, -]ja0
in Schauder spaces under the assumption that 2 is of the class C"®. We prove our statements by
exploiting tangential derivatives and an inductive argument to reduce the problem to the case of
the action of w[0), a, Sa, - ]jaq on C%(09) instead of flattening the boundary with parametrization
functions as done by the other authors. We mention that the idea of exploiting an inductive argument
together with the formula for the tangential gradient in order to prove the continuity and compactness
properties of the double layer potential has been used by Kirsch [18, Thm. 3.2] in case n = 3, Pla, D]
equals the Helmholtz operator and S, is the fundamental solution satisfying the radiation condition.
The tangential derivatives of f € C1(92) are defined by the equality

of _ of
My fl=v,=— — v, =—— o0
wlfl=m oz, v ox; on
for all I,r € {1,...,n}. Here f denotes an extension of f to an open neighbourhood of 0f2, and one

can easily verify that M;,.[f] is independent of the specific choice of the extension fof f. Then we
prove an explicit formula for

M, [w[09, a, Sa, ]| (x) — w[09,a, Sa, My, [1]] (x) Va0 (1.5)



Regularizing Properties of the Double Layer Potential of Second Order Elliptic Differential Operators 73

for all u € C1(9Q) and I,r € {1,...,n} (see formula (9.1)).

We note that Giinter [14, Ch. II, § 10, (42)] presents the formula for the partial derivatives of
the double layer with respect to the variables in R™ in case n = 3 and P[a, D] equals the Laplace
operator (see (7.1) for the case of the Laplace operator). A similar formula can be found in Kupradze,
Gegelia, Basheleishvili and Burchuladze [20, Ch. V, § 6, (6.11)] for the elastic double layer potential
in case n = 3. Schwab and Wendland [33] have proved that the difference in (1.5) can be written
in terms of pseudodifferential operators of order —1. Dindos and Mitrea have proved a number of
properties of the double layer potential. In particular, [7, Prop. 3.2] proves the existence of integral
operators such that the gradient of the double layer potential corresponding to the Stokes system can
be written as a sum of such integral operators applied to the gradient of the moment of the double
layer. Duduchava, Mitrea, and Mitrea [11] analyze various properties of the tangential deriatives.
Duduchava [10] investigates partial differential equations on hypersurfaces and the Bessel potential
operators. In particular, [10, point B of the proof of Lem. 2.1] analyzes the commutator properties both
of the Bessel potential operator and of a tangential derivative. Hofmann, Mitrea and Taylor [16, (6.2.6)]
prove a general formula for the tangential derivatives of the double layer potential corresponding to
the second order elliptic homogeneous equations and systems in explicit terms.

Formula (9.1), we have computed here, extends the formula of [21] for the Laplace operator, which
has been computed with arguments akin to those of Giinter [14, Ch. II, § 10, (42)], and a formula of [8]
for the Helmholtz operator, and can be considered as a variant of the formula of Hofmann, Mitrea
and Taylor [16, (6.2.6)] for the second order nonhomogeneous elliptic differential operator Pla, D).

Formula (9.1) involves auxiliary operators, which we analyze in Section 8. We have based our
analysis of the auxiliary operators involved in formula (9.1) on the introduction of boundary norms
for weakly singular kernels and on the result of the joint continuity of weakly singular integrals both
on the kernel of the integral and on the functional variable of the corresponding integral operator (see
Section 6). For fixed choices of the kernel and for some choices of the parameters, such lemmas are
known (cf. e.g., Kirsch and Hettlich [19, Thm. 3.17, p. 121]). The authors believe that the methods
of Section 6 may be applied to simplify also the exposition of other classical proofs of properties of
layer potentials.

By exploiting formula (9.1), we can prove that w[02,a, Sa, -]jaq induces a linear and continuous
operator from C™(99) to the generalized Schauder space C™“=(9Q) of functions with m-th order
derivatives which satisfy a generalized w,-Ho6lder condition with

wa(r) ~r%Inr| as r — 0,

and that w[0Q, a, Sa, -]jso induces a linear and continuous operator from C™?(9€2) to C™*(0%) for
all 8 €]0,a]. In particular, the double layer potential has a regularizing effect on the boundary if Q
is of the class C™. As a consequence of our result, w[0Q,a, Sa, - |jso induces a compact operator
from C™(9N) to itself, and from C™«=(-)(9Q) to itself, and from C™*(9N) to itself when Q is of the
class C™“,

2 Notation

We denote the norm on a normed space X by || - ||x. Let X and ) be normed spaces. We endow
the space X x Y with the norm defined by ||(z,y)|lxxy = ||lzllx + |lyl|y for all (z,y) € X x Y, while
we use the Euclidean norm for R™. For standard definitions of Calculus in normed spaces, we refer to
Deimling [6]. If A is a matrix with real or complex entries, then A denotes the transpose matrix of
A. The set M, (R) denotes the set of n x n matrices with real entries. Let D C R™. Then clD denotes
the closure of D, and dD denotes the boundary of D, and diam(D) denotes the diameter of D. The
symbol | - | denotes the Euclidean modulus in R™ or in C. For all R €]0,4+o00[, z € R"™, x; denotes the
j-th coordinate of x, and B,,(x, R) denotes the ball {y € R" : |z — y| < R}. Let Q be an open subset
of R™. The space of m times continuously differentiable complex-valued functions on €2 is denoted by
C™ (£, C) or, more simply, by C™(Q). Let s € N\ {0}, f € (C™(£2))*. Then Df denotes the Jacobian

matrix of f. Let n = (N1,...,mn) € N* || =m + -+ + n,. Then D"f denotes 88#. The

z]t...0zn"
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subspace of C™(2) of those functions f whose derivatives D" f of order |n| < m can be extended with
continuity to cl€ is denoted by C™(clQ).
The subspace of C™(cl Q) whose derivatives up to order m are bounded is denoted by Cy"(cl Q).

Then Cj"(cl ) endowed with the norm || fllc;n1 o) = > sup|D"f| is a Banach space.
In|<m cl 2

Now, let w be a function of ]0, +o00[ to itself such that

w is increasing and lim w(r) =0, (2.1)

r—0t

w(at)

sup < 400,
(a,t)€[1,+o0[x]0, ool A(t)
and
sup w H(r)r < co. (2.2)
re0,1]

If f is a function from a subset D of R™ to C, we set

[f(x) = f(y)]

) :m,ye]]]),x#y}.

|f : Dlu.y Esup{
If |f @ Dy < oo, we say that the function f is w(-)-Holder continuous. Sometimes we simply
write |fl,(.) instead of |f : D[,c.y. If w(r) =7 and |f : D[,.) < oo, then we say that f is Lipschitz
continuous and we set Lip(f) = |f : D[y(.). The subspace of C°(D) whose functions are w(-)-
Holder continuous is denoted by C%«(*)(ID), and the subspace of C°(D) whose functions are Lipschitz
continuous is denoted by Lip(D).
Let Q be an open subset of R™. The subspace of C™(cl §2) whose functions have m-th order
derivatives that are w(-)-Hélder continuous is denoted by C™(*)(cl Q). We set

(e Q) = ™) (e Q) N CP(cl Q).
The space C;n’w( ' )(CIQ), equipped with its usual norm

”f”C;"’“’(')(cl Q) = ”f”Cg"’(cl Q) + Z |an : Q‘w() )

[nl=m

is well-known to be a Banach space.

Obviously, C;n’w(')(cl Q) = ™) (cl Q) if Q is bounded (in this case, we shall always drop the
subscript b). The subspace of C™ (cl Q) of those functions f such that fici onE, (0,r)) € ™) (el (N
B, (0, R))) for all R €]0,+oc[ is denoted by CI-“{ ) (cl Q). Clearly, C"“'(cl Q) = C™«()(cl Q) if
2 is bounded.

Of particular importance is the case in which w(-) is the function r¢ for some fixed « €]0,1]. In
this case, we simply write |- : c1Q|, instead of |- : c1Q[pa, C™(cl Q) instead of C™"" (cl ), and
C;"(cl Q) instead of C;W’TQ (cl ©2). We observe that property (2.2) implies that

Cml e Q) € (e Q).

For the definition of a bounded open Lipschitz subset of R", we refer, e.g., to Nedas [29, §1.3]. Let
m € N\ {0}. We say that a bounded open subset £ of R™ is of the class C"™® if for every P € 0
there exist an open neighborhood W of P in R", and a diffeomorphism ¢ € C™*(clB,,R") of
B, = {x € R" : |z|] < 1} onto W such that ¥(0) = P, y({z € B, : =z, = 0}) = WnNoQ,
Y{z € B, : z, <0}) =WNAQ (¢ is said to be a parametrization of 90 around P). Now, let
Q be bounded and of class C"™“. By the compactness of 92 and by definition of a set of the class
C™*, there exist Pp,..,P, € 09, and parametrizations {¢;};=1,...,, with ¢; € C™%(clB,,,R") such

that U ¢¥s({z €B,, : x, =0}) =90. Let h € {1,...,m}. Let w be as in (2.1), (2.2). Let
=1

1=

sup W (r)r® < oo. (2.3)
re]0,1]
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We denote by C™“()(99) the linear space of functions f of 92 to C such that f o ¢;(-,0) €
Ch()(clB,_,) foralli =1,...,r, and we set

Ifllonwcr ooy = sup [If o 9i(+,0)llonwcam, 1) V€ el )(09).

1= , ey T

It is well known that by choosing a different finite family of parametrizations as {t; };=1,._,, we would
obtain an equivalent norm. In case w(-) is the function r, we have the spaces C"%(992).

It is known that (C™<()(9Q), | - lcnwc)(a0)) is complete. Moreover, condition (2.3) implies that
the restriction operator is linear and continuous from C™~()(c1Q) to C*+(*)(99Q).

We denote by do the area element of a manifold imbedded in R™ and retain the standard notation
for the Lebesgue spaces.

Remark 2.1. Let m € N\ {0}, a €]0,1[. Let £ be a bounded open subset of R™ of the class C™.

Let w be as in (2.1), (2.2). If h € {1,...,m}, h < m, then m —1 > 1 and Q is of the class
C™=bL1 and condition (2.2) implies the validity of condition (2.3) with « replaced by 1. Thus we can
consider the space C™“(*)(9Q) even if we do not assume condition (2.3). If instead of h we take m,
the definition we gave requires (2.3).

Remark 2.2. Let w be as in (2.1), D be a subset of R™ and let f be a bounded function from D to
C, a €]0,+00[. Then

wp @ 1)

z,y€D, |[z—y|>a LU(|.’IJ - y|)

2
< su .
S o) S £l
Thus the difficulty of estimating the Holder quotient w of a bounded function f lies entirely

in case 0 < |z —y| < a. Then we have the following well known extension result. For a proof, we refer
to Troianiello [34, Thm. 1.3, Lem. 1.5].

Lemma 2.1. Let m € N\ {0}, a €]0,1[, j € {0,...,m}, Q be a bounded open subset of R™ of
the class C™®, and let R €]0,4o00[ be such that c1Q} C B, (0,R). Then there exists a linear and
continuous extension operator ‘~’ of CH*(9Q) to CH*(c1B,(0, R)), which takes u € CH*(99Q) to
a map i € CP*(clB,(0,R)) such that Bjaa = p and the support of p is compact and contained in
B, (0, R). The same statement holds by replacing C™< by C™ and C’* by C7.

Let © be a bounded open subset of R of the class C'. The tangential gradient Dyq f of f € C1(92)
is defined as

Dyof = Df— (v- Df)u on 01,

where fis an extension of f of the class C! in an open neighborhood of 052, and we have

of
oz,

— (v Df ZM“” v; on Of)
1=1

forall r € {1,...,n}. Ifais as in (1.1), (1.2), then we also set

_ o Dfa(z)y
Daf = (Da,rf)rzl,‘..,n = Df - m v on 0f).

Since
n

ra E AlpVh
_9f Dfa®y Z
a?"f ax — ta (Q)V Vp = er,« W on 0f2 (24)

for all r € {1,...,n}, Daf is independent of the specific choice of the extension fof f. We also need
the following well known consequence of the Divergence Theorem.
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Lemma 2.2. Let Q be a bounded open subset of R™ of the class C. If , 1 € C1(9R), then

/Mlj[SOWdUZ */SDMlj[T/J] do
89

o0
foralll,je{l,...,n}.

Next, we introduce the following auxiliary Lemmas, whose proof is based on the definition of the
norm in a Schauder space.

Lemma 2.3. Let m € N\ {0}, a €]0,1]. Let w be as in (2.1), (2.2), (2.3), and let Q be a bounded
open connected subset of R™ of the class C™“. Then the following statements hold:

(i) A function f € C*(99Q) belongs to C™<()(9Q) if and only if M;,.[f] € C™ 1<) (9Q) for all
L,re{l,...,n}.

(i) The norm || - |[¢m.w()(aq) s equivalent to the norm on () (09) defined by

Ifleowy + Y 1Ml flll crracrony ¥ F € CT)(09).
lir=1

We have the following (see also Remark 2.1)

Lemma 2.4. Let m € N\ {0}, a €]0,1]. Let Q be a bounded open connected subset of R™ of class
C™* and let h € {1,...,m}. Then the following statements hold:

(i) Let h < m and w be as in (2.1), (2.2). Then M,; is linear and continuous from C"+()(9Q)
to Ch=1wC)(9Q) for all 1,5 € {1,...,n}. If we further assume that w satisfies condition (2.3),
then the same statement holds also for h = m.

(i) Let h < m, w be as in (2.1), (2.2), and let a be as in (1.1), (1.2). Then the function from
Che()(99Q) to CP=1w0) (90, R™), which takes f to Daf is linear and continuous. If we further
assume that w satisfies condition (2.3), then the same statement holds also for h = m.

(i) Let h < m and w be as in (2.1), (2.2). Then the space C"*()(ON) is continuously imbedded
into C"=L1(0R). If we further assume that w satisfies condition (2.3), then the same statement
holds also for h = m.

(iv) Let h < m. Let a1, ¢ be as in (2.1), (2.2), and let the condition sup 5 ' (r)iy(r) < oo hold.
relo,1]

Then CM¥1()(99Q) is continuously imbedded into C™¥2()(0Q). If we further assume that 1,
satisfies condition (2.3) for j € {1,2}, then the same statement holds also for h = m.

(v) Leth < m. Letiy, 1o, 13 be asin (2.1), (2.2), and let the conditions sup sup ;(r)3*(r) < oo
j=1,2r€]0,1]

hold. Then the pointwise product is bilinear and continuous from C™¥1(:)(9Q) x Ch¥2()(9Q)
to CM¥s0)(9Q). If we further assume that 1; satisfies condition (2.3) for j € {1,2,3}, then the
same statement holds also for h = m.

Lemma 2.5. Let Q be a bounded open Lipschitz subset of R™. Let 1, a, 13 be as in (2.1), (2.2),

and let the conditions sup sup w.j(r)wgl(r) < oo hold. Then the pointwise product is bilinear and
j=1,2r€]0,1]

continuous from C*¥1()(9Q) x CO¥2()(9Q) to CO¥3(+)(9Q).

3 Preliminary inequalities

We first introduce the following elementary lemma on matrices.



Regularizing Properties of the Double Layer Potential of Second Order Elliptic Differential Operators 77

Lemma 3.1. Let A € M,(R) be invertible. Let |A| = sup |Az|. Then the following statements hold:

|z|=1
(i) If 7o = max{|A|,|AL|}, then
3w < |Az| < malz| Yo e R™.
(i) If r €]0,400[, then
A" 2|7 < |A|"|z|T" Yo e R™\ {0}.
Proof. Statement (i) is well known. We now consider statement (ii). Let € R™\ {0}. Then we have
x| = [AAT2) < A]AT 2]
Hence, |[A~1z| > |A|7}|z| and the statement follows. O

Then we introduce the following elementary lemma, which collects either the known inequalities
or the variants of the known inequalities, which we will need in the sequel.

Lemma 3.2. Let v € R and A € M, (R) be invertible. The following statements hold:
(i)
1 / " /
517" =yl < 2" —yl < 202" —yl,

1
52 |Az" — Ay| < |[Ax” — Ay| < 273 |A2’ — Ay,
A

forall ',z e R", o' £ 2", y € R"\ B, (', 2]z' — 2"]).
(i)
o —y[r < 2PN~y o =y < 2D’ — gy,
Az’ — Ay[" < 2r3) A" — Ay[7, A2 — Ay[ < (2r3)1|A2" — Ay[7,
forall ',z e R™, o/ £ 2", y € R"\ B, (', 2]2' — 2"]).

(i)

|l2/ =y — " —y["| < @ = 1)’ —y|" Vy e R™\B, (2, 22" —2"]),
forall ', x" e R, o # 2.
(iv) There exist m., m~(A) €]0,+o00[ such that
/

[|2" = y|" = |2” =y < myla’ — 2] =y,

[[Az" — Ay|" — [Az” — Ay["]| < my(A)[Az’ — Az"||Az" — Ay}

forall ', 2" e R™, o/ £ 2", y € R"\ B, (', 2]2' — 2"]).

|In]2’ — gl — Inja” — yl| < 20’ — 2" |2’ — 4|1 Vy € R"\Bu(e/, 20’ — o)),
forall ', 2" e R"™, ' # 2.
Proof. The first two inequalities of statement (i) follow by the triangular inequality. Further, we have
A2’ — Ayl < male! — y| < ma2la” — o] < 273[Aa” — Ay,

and thus the first of the second two inequalities of statement (i) holds true. The second of the second
two inequalities of statement (i) can be proved by interchanging the roles of 2’ and z”.
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It now suffices to prove only the second inequalities in statements (ii), (iv). Indeed, the first
inequalities follow by the second ones and by the equality 74 = 1 when A is the identity matrix.

The first of the second inequalities in (ii) for v > 0 follows by raising the inequality |Az’ — Ay| <
(272)|Az"" — Ay| of statement (i) to the power . For v < 0 the same inequality follows by raising the
inequality |Az” — Ay| < (273)|Az’ — Ay| of statement (i) to the power v. The second of the second
inequalities of (ii) can be proved by interchanging the roles of 2’ and z”.

Statement (iii) follows by a direct application of (ii). To prove (iv) and (v), we follow Cialdea [1, § 8].
First consider (iv) and assume that |Az’ — Ay| < |Az” — Ay|. By the Lagrange Theorem, there exists
¢ € [|Az" — Ay|, |Az" — Ay|] such that

1Az — Ay|” — [Az” — Ay[| < [y]¢77 Az’ — Ay| — [Az” — Ay]|.
If v > 1, then the inequality ¢ < |Az” — Ay| and (i) imply
O <A = Ayt < (270) A — Ay
If v < 1, then the inequalities ¢ > |Az’ — Ay| and 754 > 1 imply
¢TSI Ayt < 7R AY - Ay
Then we have
A2 — Ay|” — [Az” — Ay[| < [4|(273) " ][A2" — Ay| — [A2” — Ag|[|A2’ — Ayt (3.0)

which implies the validity of (iv). Similarly, in case |Az’ — Ay| > |Az” — Ay, we can prove that (3.1)
holds with 2’ and 2" interchanged. Thus (i) implies the validity of (iv).

We now consider statement (v) and assume that |2/ — y| < |2” — y|. By the Lagrange Theorem,
there exists ¢ € [|z' —yl,|z” — y|] such that

[Infa’ =yl —In 2" —y|| < M2’ =yl = |2" —y|| < o' — "] (3-2)
By the above assumption, (7! < |2/ — y|~!, and thus statement (v) follows. Similarly, if |2/ — y| >
|#" — y|, we can prove that (3.2) holds with 2’ and z” interchanged and (i) implies that (7! <
|#” — y|~t < 2|2’ — y|~t, which yields the validity of (v). O
Lemma 3.3. Let G be a nonempty bounded subset of R™. Then the following statements hold:
(i) Let F € Lip(8B,, x [0,diam (G)]) with
: |F(0",r") = F(0",r")] .
Lip(F) = { =0 =] 2 (0,0, (07,0 € OB, x [0,diam (G)], (0',r") # (0",r") 5.
Then
’F(fylf vl) f(x“ylf’z®‘<Lpuw@+dmm«nﬂfx” (33)
— | —y|) - Fl——=,]2" — <Li .
] el ]

Vy e G\B, (', 2]z —z"])
for all 2’ 2" € G, 2’ # 2". In particular, if f € C1(0B,, x R,C), then

x’—y x//_y
gl ) = (e = )

2" —y|
|J)/ —l‘”| :

My —sup{‘f<
2" €@, ' #£3", ye G\B,(z,2]" — z”|)} < 0.
(i) Let W be an open neighbourhood of cl(G — G). Let f € C*(W,C). Then

Mﬁc Esup{‘f(x'fy) — fl@" =y’ =" 22" €G, 2l £,y € G} < o0.

Here G — G ={y1 —y2: y1,y2 € G}.
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Proof. First we consider statement (i). The Lipschitz continuity of F implies that the left-hand side
of (3.3) is less or equal to

T

7 —y "_y

L- F ’ _ ‘ /_ _ /I_
(P [ 5= = Ll = vl = e
1 1 ’+
" =yl o’ —yll |
” 9 r
e -} < Tl o {20

1
< Lip<F>{|x” 4 Al == =yl 1o x"|}

|a" — 2| |a" — x
=" =yl —y| [z —yl

< Lip<F>{|x" 4

and thus inequality (3.3) holds true.

Since dB,, x R is a manifold of the class C*° imbedded into R™*1, there exists F' € C1(R"*1)
which extends f. Since 9B, x [0, diam (G)] is a compact subset of R"*! F is Lipschitz continuous on
0B, x [0,diam (G)], and the second part of statement (i) follows by inequality (3.3).

We now consider statement (ii). Since f € C*(W,C), f is Lipschitz continuous on the compact set
cl (G — G), and statement (ii) follows. O

We have the following well-known statement.

Lemma 3.4. Let a €]0,1] and 2 be a bounded open connected subset of R"™ of the class C1'*. Then
there exists cq,o > 0 such that

v(y) - (z —y)| < cqalz —y|'™™ Va,yedQ.

Next, we introduce a list of classical inequalities which can be verified by exploiting the local
parametrizations of 9.

Lemma 3.5. Let Q be a bounded open Lipschitz subset of R™. Then the following statements hold:
(i) Let y €] —oo,n—1[. Then

/ dO'y

c = sup — < +00.

Q,y v

€0 |(E - y‘
oN

(i) Let vy €] —oo,n—1[. Then

do
/A / 1—(n—1
Co = sup |2’ — 2|~ (r= D+ ,797 < +00.
z! a0, x' Fx’ |.’L‘ - y‘
By, (z/,3|x’ —x''|)NOQ

(iii) Lety €n—1,400[. Then

do
o= sup |2/ — 2| (= e 5
z!,x!" €0, x' #x’ |ZIJ - y|
OB, (z/,2|z' —a|)
is finite.
(iv)
. —1 dO’
el = sup |In |2’ — 2" 7 < +00.
x/, 2" €8, 0< |z’ —x'|<1/e |£L’ _y‘

OQ\B,, (z’,2|z’—z''|)
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4 Preliminaries on the fundamental solution

First we introduce a formula for the fundamental solution of P[a, D]. For this, we follow a formulation
of Dalla Riva [3, Thm. 5.2, 5.3] and Dalla Riva, Morais and Musolino [5, Thm. 3.1, 3.2] (see also
John [17], Miranda [24] for homogeneous operators, and Mitrea and Mitrea [27, p. 203]).

Theorem 4.1. Let a be as in (1.1), (1.2). Let Sa be a fundamental solution of Pla, D]. Then there
exist a real analytic function Ag from 0B, to C, a real analytic function A; from 0B, x R to C,
by € C, a real analytic function By from R™ to C, B1(0) =0, and a real analytic function C from R™
to C such that

Sale) = ol Ao () + 1ol Ay (.1l ) + bolnfa] + By (2)In |o] + C(a) (4.1)

xT
|| |’

for all x € R™\ {0}, and both by and By equal zero if n is odd. Moreover,

T

|x\2’"A0< >+627nboln|x\

]

is a fundamental solution for the principal part Y Oy /(ai;0-;) of Pla,D]. Here 3, denotes the
1j=1
Kronecker symbol. Namely,

don=114dfn=2, 62, =0 if n>2.

Corollary 4.1. Let a be as in (1.1), (1.2). Let S, be a fundamental solution of Pla, D). Then the
following statements hold:
(i) If n > 3, then there exists one and only one fundamental solution of the principal part
n

> 0z, (a0s,) of Pla, D] which is positively homogeneous of degree 2 —n in R™ \ {0}.
1j=1

(i) If n = 2, then there exists one and only one fundamental solution S(x) of the principal part

Xn: Oz (a150;) of Pla, D] such that

Lj=1

Bo = lim o)

z—0 In |.’L‘|

eC, / Sdo=0,
OB,
and S(x) — Boln|z| is positively homogeneous of degree 0 in R™ \ {0}.

Proof. We retain the notation of Theorem 4.1. We first consider statement (i). By Theorem 4.1,
the function |x|2’”A0(ﬁ) is a fundamental solution of the principal part of P[a, D] and is, clearly,

positively homogeneous of degree 2 —n. Now assume that u is a fundamental solution of the principal
part of Pla, D] and u is positively homogeneous of degree 2 — n in R™ \ {0}. Then the difference

w(z) = |x|2’”A0(|z—|) —u(z)

defines an entire real analytic function in R™ and is positively homogeneous of degree 2—n in R™\ {0}.
In particular,
N 2w(A) = w(z) V(A x) €]0,+oo] x(R™\ {0}),

and, accordingly,
A=DHBI DAy (A\r) = DPw(z) V(A z) €]0, 400 x(R™\ {0})

for all 3 € N*. Then by letting A tend to 0%, we obtain D’w(0) = 0 for all 3 € N*. Since w is real
analytic, we deduce that w is equal to 0 in R™ and thus statement (i) holds.



Regularizing Properties of the Double Layer Potential of Second Order Elliptic Differential Operators 81

Now assume that n = 2. By Theorem 4.1, the function
S()A(x) 1/Ad+b1||
x) = — ) - = o njz
0 2] o 0 0
OB,

is a fundamental solution of the principal part of Pla, D] and satisfies the conditions of statement (ii).
Suppose that u is another fundamental solution. Then the difference

T 1
w(z) = A0<m) ~ 5 / Agdo + b In |x| — u(x)
OB,

defines an entire real analytic function in R™ and we have

Ao(l‘%‘) 27r f AO dO’

0= hmM— lim OB + by — hmM
z—=0In ||  =—0 In || =0 In |z|
and, accordingly,
bo = lim @ =peC.
z—0 In |z|

Then our assumption implies that the real analytic function
u(z) — Boln |z| = u(x) — by In ||

is positively homogeneous of degree 0 in R™ \ {0}. Hence, there exists a function g from 0B,, to C
such that

u(z) —boln|z| = go(%) Ve eR"\ {0}.

In particular, gq is real analytic and

w(z) = A0<|§—‘> - % / Apdo + boln |x| — (go(%> =+ bo 1n|x\)

OB,
(1) / odo = 90(37)-

Moreover, w must be positively homogeneous of degree 0 in R™ \ {0}. Since w is continuous at 0, w
must be constant in the whole R™. Since

/wdo: /Sda—/udazo,

GBH BBn a]Bn
such a constant must equal 0 and thus

AO<£) 217r /AodU—go(m) for all x € R™\ {0}.

|z|
Hence,
1
u(z) = A0(|x| —%/Aoda—i—bolnm
OB,

and statement (ii) follows. O
We can introduce the following

Definition 4.1. Let a be as in (1.1), (1.2). We define the normalized fundamental solution of the
principal part of Pla, D], to be the only fundamental solution of Corollary 4.1.
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By Theorem 4.1 and Corollary 4.1, the normalized fundamental solution of the principal part of

Pla, D] equals
o (1)
]
if n > 3, and
T 1
Ao(m> - / Ag do + by In |z
OB,

if n = 2, where Ap and by are as in Theorem 4.1. We now see that if the principal coefficients of
Pla, D] are real, then the normalized fundamental solution of the principal part of P[a, D] has a very
specific form. To do so, we introduce the fundamental solution S,, of the Laplace operator. Namely,
we set

i1n|:1:\ Ve eR"\ {0}, if n=2,
Sn(x) = %n 1 2-n R™ 0 i 9
m‘l’| T € \{ }, irn>2,

where s,, denotes the (n — 1)-dimensional measure of 9B,,. Then we have the following elementary
statement, which can be verified by the chain rule and by Corollary 4.1 (cf. e.g., Dalla Riva [4]).

Lemma 4.1. Let a be as in (1.1), (1.2), (1.3). Then there exists an invertible matriz T € M,(R)
such that
a® =1T! (4.2)

and the function
1

S, () = ——= S, (T '2) VxecR"\{0},
det a(®
coincides with the normalized fundamental solution of the principal part of Pla,D] if n > 3, and
coincides with the normalized fundamental solution of the principal part of Pla, D] up to an additive
constant if n = 2.

Theorem 4.1, Corollary 4.1 and Lemma 4.1 imply the validity of the following

Corollary 4.2. Leta be as in (1.1), (1.2), (1.3), T € M, (R) be as in (4.2) and let S, be a fundamental
solution of Pla, D].

Then there exist a real analytic function Ay from OB, x R to C, a real analytic function By from
R™ to C, B1(0) =0, and a real analytic function C from R™ to C such that

1 -1 3—n T
Sal) = < Sul(T12) 4 |2 Al(m,|x|)+(Bl(x)+b0(1—527n))ln|x\+C’(x), (4.3)

for all x € R™\ {0}, and both by and By equal zero if n is odd. Moreover,

1
Vdet a(?

is a fundamental solution for the principal part of Pla, D].

Sp (T )

Next we prove the following technical statement.

Lemma 4.2. Let a be as in (1.1), (1.2), Sa be a fundamental solution of Pla, D] and let G be a
nonempty bounded subset of R™.

(i) Lety € [0,1]. Then

CO,SE,,G,n—l—'y = sup |x‘n717'y|sa(x)| < +00. (44)
0<|z|<diam (G)

If n > 2, then (4.4) holds also for v =1.
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(ii)

o~ _ 2" — y|" ! / "
Co,s.,¢ = sup T =] ’Sa(:v —y) = Sa(z” — y)| :

2" € Ga' £a”, y € G\ By, 2z’ x"')} <o

Proof. Statement (i) is an immediate consequence of formula (4.1). Now prove statement (ii). For
this, we resort to formula (4.1) and set

A(0,7) = Ag(0) +rA1(0,r) ¥ (0,7) € OB, x R,
B(z) =by+ Bi(z) VzeR".

Then Lemmas 3.2 and 3.3 imply

|Sa(z’ —y) — Sa(2” —y)| < |2/ —y[*"

' —y " —y
A(ETE ) - a(E )
" =y 2" —y|
r —y —-n —n
, I/_ I_ _ /l_ /_ /_ _ //_
Al |2" =y~ — 2" —y[>7"| + | In |2’ =y |B(2' —y) — B(z" — )|

+|B(@" = y)| | In|z’ —y| = In|z"” —y|| + |C(a’ —y) — C(=" —y)|

- R U
<l =y Mae S s Ay,
|2’ —y| OB, x [0,diam (G)] |z" — yl
N 2
+ | In |2/ —yHMB,Gm’ -2 + sup |B|2|y| —i—Mcgix — "

Since A is continuous on the compact set B,, x [0,diam (G)], and B and C are continuous on the
compact set cl (G — G), there exists ¢ > 0 such that

‘Sa(a:' —y) — Sa(z” — y)’ <clz' - :v”|{\$c’ —yl' "+ +In|z’ —y| + 1}

1

2" —y]
S c|x’ —.’E”| |.’E/ _y|1—n{1 + |$/ _y|n—2 + ‘.’EI _y|n—11n|x/ _y‘ + |{L'/ _y|n—1}7

and thus statement (ii) holds. O

Lemma 4.3. Let a be as in (1.1), (1.2), (1.3), T € M,(R) be as in (4.2). Let Sa be a fundamental
solution of Pla, D], By, C be as in Corollary 4.2, and let G be a nonempty bounded subset of R™.
Then the following statements hold:

(i) There exists a real analytic function As from OB, x R to C™ such that

1
DSa(z) = ——— [T 'z| 2t (aP) !
) = e T )

+ix|2—"A2(| . |2l) + DBi(z) |z + DC(z) Vo e R"\{0}. (45)

(if)
Cl.s..c = sup ||~ DSq(z)| < 400
0<|z|<diam (G)

(iii)
Cls..c = sup { '~ y',,| |DSa(z’ —y) — DSa(2” — y)| :

oo € Cal £, y e G\ Bu(', 2 — x"”} <00
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Proof. By formula (4.3) and by the chain rule, we have

1 xt T
DSa(z) = ——— T '2| 2 (@) '+ B=n)|z]> " — A (—, |z
() = — s [0l (@) 7 3= e s ()
0Ay [ x at
3—n DA i I — —1 -2 1 — -
ol Dt (ol ol = @ afal el 4 5 ()
t
+ DBy(z)In |z + (Bi(2) + bo(1 — 62.)) — + DC(x) (4.6)

R

for all x € R™\ {0}, where by A; we have still denote any real analytic extension of the function A4;
of Corollary 4.2 to an open neighbourhood of dB,, x R in R"*! and where z ® = denotes the matrix
(x125)1,j=1,...n- Next, we consider the term B;(z)/|z|. By the Fundamental Theorem of Calculus, we
have

||

Bl(@:/DBl(témedt Vo e R\ {0}. (4.7)

Thus, if we set

1
B(0,7) = /DBl(ter)Hdt ¥(0,r) €R" x R,
0

the function 8 will be real analytic and will satisfy the equality

Bi(z) _ 502 e R
S _5(‘x|,| ) VaeR™\{0}. (4.8)
Define
t 0A t
As(0,r)=(3—n)0"A1(0,7)+ DAL(0,r)[I — 0 0] + W(@,r)@ r

+ B(0,7)r" 20 + 30y (1 — dam) V(0,r) € 0B, xR.

By the real analyticity of A; and (3, and by the equality r"~30by(1 — d2,,) = 0 if n = 2, the function
Ay is real analytic. Hence, equalities (4.6) and (4.8) imply the validity of statement (i).
Next, we turn to the proof of statement (ii). By Lemma 3.1(ii) and by the Schwartz inequality, we
have
T2 [o (@) 1] < Jo] '] |(a@) Y.

Hence, formula (4.5) implies that

. 1 (-
2" | DSa(2)] < = 171" (@) 7]

spVdet al

+{lea(55 1) + (el alel) DB @) + ol DCo) |

for all z € R™\ {0}. Then the continuity of Az on the compact set 0B, x [0,diam(G)] and the
continuity of DB; and DC on the compact set c1B,, (0, diam (G)) imply the validity of statement (ii).

We now turn to statement (iii). Let 2/,2” € G, 2’ # 2", y € G\ B, (2,2]2' — 2”|). By statement
(i), we have

|DSa(z’ —y) — DSa(a” —y)|

<

1 ‘ -1/, 7
< —F|IT" (2" —y
spVdet a2 | ( )
/ —
|3;'/ _ y|2—nA2( z

7@ = )" (@) = T @ =) T - y)t(a@))‘l‘

"

_ r -y
o =l = =P A (1 )

+ |33H

r-y
|2/ — yl

+ ’ In |z’ —y|DBy(z' —y) —In|z" — y|DBy (2" — y)‘ + ’DC(m' —y) — DC(2" — y)| . (4.9)
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We first estimate the first summand in the right-hand side of inequality (4.9). By the triangular
inequality, we have

T~ (2" —y)| 7" (@ =) (@) = T " —y)| (@ y)t(a(”)‘l‘

< Jo =yl [@) | T @ - )= T - gl

+ 2’ =2 (@) T @ =) (4.10)
Thus Lemmas 3.1(ii), 3.2(ii),(iv) with v = —n, A = T~! imply that
G ) e A € ) B R e | A e e A
< mon(TH|TH T ! — ool =y (4.11)
T (" =) AT —yI™", |2 =y < 272" =y 7"

Next, we estimate the second summand in the right-hand side of inequality (4.9). By Lemmas 3.2(iv)
and 3.3(i), the second summand is less or equal to
/

" —
A2 (7297 |J)” _ y|>‘
—

Hl‘l _ y‘2—n _ |l‘” _ y|2—n’ |x//

"

' —y " —y
Az(ma " — y|) - A2(m7 |z — y|)‘

n
Smale’—a ey s Aol -y (M 6 )l a7 (412)
OB, x[0,diam(G)]

=+ |33/ _ y|2—n

j=1

Further, we estimate the third summand in the right-hand side of inequality (4.9). By Lemmas 3.2(v)
and 3.3(ii), the third summand is less or equal to

|In|z’ —y| —In|z"” —y|| [IDB1 (2" — y)| + |In |2’ — y|| |DB1(2' — y) — DBy (2" — y)|

n
< 2|m/ 7.’£H| |x/ 7y|*1 sup |DB1‘ + (ZM& G)|$/ ,x/l‘ |1n|x/ 7y|‘
G-G =1 Owj?

< |z’ —2"|]2" - y"{?x' — gyt sup. |DB| + (ZM%G) 2" —y|*|In|z’ — yH} . (4.13)
- =

Finally, Lemma 3.3(ii) implies that

IDC(' —y) - DC@" = y)] < (Y Mge o)l — 2"
=1

<l —a"|la =yl (Do Mge o) swp -yt (414)
= 927/ (2 y)EGXG
Thus inequalities (4.9)—(4.14) imply the validity of statement (iii). O

5 Preliminary inequalities on the boundary operator

Let us turn to estimate the kernel By, | (Sa(z —y)) of the double layer potential of (1.4). We will

do it under assumption (1.3). For this, we introduce some basic inequalities for Bf, , (Sa(z —y)) by
means of the following

Lemma 5.1. Let a be as in (1.1), (1.2), (1.3), T € M, (R) be as in (4.2) and let S, be a fundamental
solution of Pla, D].

Let a €]0,1] and Q be a bounded open subset of R™ of the class C1:*. Then the following statements
hold:
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(i) If a €]0,1], then
b, = sup {x B y|n—1—a|Bg‘Ly(Sa(ac - y))| D x,y €00, x # y} < +o0. (5.1)
If n > 2, then (5.1) holds also for a = 1.
(i)
[ — M|B* (S('— ))7‘3* (S(”f ))|
0.0 =80\ T o [Ba,y(Sale’ —y .y (Salz” —y))| :

2" €0, & £ yed\B,(a, 22 — a:”)} < +00.

Proof. By Lemma 4.3(i), we have

By, (Sa(z —y)) = — DSa(z — y)a®v(y) — v (y)a) Sa(z — y)

1
= Tz —y)| (. —y)v
e T ) ) )
o =y Ao (S Jz = yl)a®u(y) — DBy (@ — y)aPu(y) |z — |
|z —yl
— DC(z — y)aPu(y) — v'(y)aMSa(z —y) Y,y €0Q, z#y. (5.2)

By Lemmas 3.1(ii), 3.4, 4.2(i), and by the equality in (5.2), we have

—n+l+at+n—1—a
yl

|z —y|" 77| Bg,, (Salz —y))| < ca,alT|"|z -

spVdet a2

r—y n—l—«
oy )|l et e =yl DBy )

o =y a® | | As

+lz —y[" 7@ [DC(z — y)| + [aV|Cos50,00,n-1-a

for all x,y € 99, x # y. If either « €]0, 1] or & €]0,1] and n > 2, then the right-hand side is bounded
for z,y € 09, x # y. Hence, we conclude that statement (i) holds true.

Next, we consider statement (ii).

| By (Sa(a’ =) = Bg , (Sa(z” — y))]
T =y @ =) vy) — 1T @ =)@ - ) ()|
B spVdet a2

1

' —y z" —y
+ |a(2)| ’A2(|x,_ya |z — y|> - A2(m7 |z — y\)

2" —y
A2(|$N — y| ) |x// - y|>
+1a?|| DB (2" —y) = DB (2" —y)| | In|a’ —y[|+]a®| [DB1 (" —y)| | In |2/ —y|—In 2" —y]|

+1a®||DC(a’ —y) — DO — )| +1aD|[Sala’ ) Sa(a” —1)]  (5.3)

|2’ =y

+ a®)|

Hx/ o y|27n o |£L’H o y|27n|

for all 2/, 2" € O, o’ £ 2", y € N\ B, (2,2]|2" — 2”]). Denote by J; the first term in the right-hand
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side of (5.3). By Lemmas 3.1(ii), 3.2(ii),(iv) with v = —n, A = T~!, and by Lemma 3.4, we have
1
spVdet a2
AT @ =) =T @ =)@ =) ) |[HIT @ =) @ =) )|}
1
S -
spVdet a(2)
% {m,n(T*1)||T*1x’ T T — T71y|7n71| 2’ — y["eq.q

J1

IN

+ 2T’ — "o — 2w ()|} (5.4)
for all ', 2" € 9Q, o' # ", y € 00\ B, (2/,2|z" — 2”|). Note that
(2" = 2")'v(y)| < [(@" —2") (v(y) — v(a")] + | = 2") v(a")|
<’ —a”|plale’ = yI* + cqale’ — 2T <o = 2" |2" — y|*([V]a + co.a)
and, accordingly,
B T T ey g
1S Sn\/m n Yy z Yy CQ,a
+ 2T’ — y| "0’ — y|* (Ve + caa) | (5:5)
for all 2/, 2" € 9Q, o’ # 2", y € 0N\ B, (2, 2|2 — z”|). Next, we denote by J the sum of the terms

different from J; in the right-hand side of (5.3). Then Lemma 3.2(iv),(v) and Lemmas 3.3, 4.2(ii)
imply that

n ! 1
r —X _ —
T2 < 1@ (30 My 00) Ty a®] s gk’ [~y
=1 |2’ —y| OB, x[0,diam (8)]
n / "
. x' — 2|
1013 Moz oo )’ = o [Infa’ ~ yi] +[a®| sup_ |DBy 2!
o jZ:; By 200 | [[1n] I+ |8Q—8Q| | 2" —y|
+ Mela' — 2| + & la®| 2" — 2" (5.6)
r — X a T E—— :
C 0,554,002 ‘Jfl — y|n_1

for all o', 2" € 09, o’ # 2", y € 00\ B, (2, 2]z’ — 2”|). By inequalities (5.3), (5.5), (5.6), we conclude
that statement (i) holds. O

6 Boundary norms for kernels

For each subset A of R™, we find it convenient to set
Ar={(z,y) e AxA: z=y}.

We now introduce a class of functions on (9Q)? \ Apq which may carry a singularity as the variable
tends to a point of the diagonal, just as in the case of the kernels of integral operators corresponding
to layer potentials defined on the boundary of an open subset €2 of R™.

Definition 6.1. Let G be a nonempty bounded subset of R™. Let v1, 72, 73 € R. We denote by
K1 7275 (G) the set of continuous functions K from (G x G) \ Ag to C such that

1K,y oy e =00 {2 =y K (@,9)] 2y € G, @ 4y}

x — |2
+ sup {M |K(2',y) — K(2",y)|: 2/,2" € G, 2’ #2", y € G\ B,(2/,2|2' — x”)} < +00.
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One can easily verify that (Ky, 1,4, (G), || - llc,, 4, ., (c)) is a Banach space.
Remark 6.1. Let a be as in (1.1), (1.2) and S, be a fundamental solution of P[a, D].

(i) Let G be a nonempty bounded subset of R™. Then Lemma 4.2 implies that Sa(z — y) €
Kn-1—~n-1,1(G) for all v € [0,1] and the same membership holds also for v =1 if n > 2. If we
further assume that a satisfies (1.3), then Lemma 4.3 implies that %Sa(m —y) € Kno1.01(G)

forall j € {1,...,n}.

(i) Let a satisfy (1.3), a €]0,1[ and let Q be a bounded open subset of R™ of the class C1**. Then
Lemma 5.1 implies that B, | (Sa(z —v)) € Knc1—an—a,1(0).

For each 0 €]0, 1], we define the function wy( ) from |0, +o00[ to itself by setting

911 0
wo(r) = {r [Inr|, r€]0,r],

rf|lnrgl, r €]lre, +oof,

where

e 1 if 0 =1.

Obviously, wg( ) is concave and satisfies (2.1), (2.2), and (2.3) with o = 6. We also note that if D is
a subset of R™, then the continuous imbedding

infe-1/0 et} 4
7nez{mln{e ,e? 9} if 6€]0,1[,

Gy () € 6 (D)

holds for all § €]0,0[. We now consider the properties of an integral operator with a kernel in the
class K., 4,45 (09).

Proposition 6.1. Let Q2 be a bounded open Lipschitz subset of R™. Lety; €] —oo,n—1[, 72, 73 € R.
Then the following statements hold:

(D) If (K, 1) € Kqy ya,ys (0) X L®(09), then the function K(z, - )u(-) is integrable in 02 for all
x € 09, and the function u[0Q, K, u] from 0Q to C defined by

u[0Q, K, u( /K (z,y)uly)doy, Vo e (6.1)

is continuous. Moreover, the bilinear map from K, ~, ~, (0Q) x L>=(99Q) to C°(98), which takes
(K, p) to ul0Q, K, p], is continuous.

(i) Ifnen—2n—1[, 2 €n—1,+o0[, 13 €]0,1], (n — 1) — v + 73 €]0,1], then the bilinear
map from Ko, 5 (0) x L®(9Q) to the space CO™MI=1)=71,(n=1)=2+%}(9Q) which takes
(K, ) to [0, K, p], is continuous.

(i) If 1 € In—2,n—1[, 72 =n-— 1, v3 €]0,1], then the bilinear map from ICy, ~, -, (02) x L™(02)
to the space COmax{r"==m wvs (N} AN, which takes (K, ) to u[oSY, K, u] is continuous.

Proof. By definition of the norm in Iy, 4, ,(0€2), we have

K (2, y)u()| < 1Kk, ., 0 00 l1tll 2o 002 Py Y (2,y) € (0% \ Dag -
Then the function K(z, - )u(-) is integrable in 99 for all x € 91, and the Vitali Convergence The-
orem implies that [0, K, u] is continuous on 9 (cf., e.g., Folland [13, (2.33), pp. 60, 180].) By

Lemma 3.5(i), we also have

‘/ny y) doy,

SNK ks, g g @) 11l Lo (00200 4, - (6.2)
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Hence, statement (i) follows. Next, we turn to estimate the Holder coefficient of u[0€2, K, ] under
the assumptions of statements (ii) and (iii). Let z/,2” € 99Q, ' # z’’. By Remark 2.2, there is
no loss of generality in assuming that 0 < |2’ — 2| < r,,. Then the inclusion B, (z',2|z" — z"|) C
B, (x”,3|x’ — 2”'|) and the triangular inequality imply that

uf69, K, 1)(a’) — uldQ, K, (x| < ||l e (om) / K (2!, )| do
By (z/,2|z' —z''|)NOQ
s [ Rl [ K@) K6 day}- (6.3)
B (z/,3|z’ —2'|)NOQ OQ\B,, (z’, 2|z’ —z''|)

From Lemma 3.5(ii) it follows that

|K (2, y)| doy + / (K (2", y)| do,
B, (z/,2|2' —a"|)NOQ By, (z”,3]x’ —z"'[)NOQ
doy doy
< Kl’cwlywzﬁg(aﬂ){ =y " |2 —y|m }
B, (z,2|z'—z'|)NOQ B, (z",3|2’ =z [)NOQ
<K, 1y g (002600, |27 — 2|07 (6.4)

Moreover, we have

/ " |l’/ — x”PS
|K (2, y) — K(z",y)| doy < ||K|lx., ., .00 Wd% (6.5)
IQ\B,, (z’, 2|z’ —z'']) OQ\B,, (z’ 2|z’ —z''|)
both in case 72 €]n — 1,4+00[ and 72 = n — 1 and for all v3 €]0, 1].
Under the assumptions of statement (ii), Lemma 3.5(iii) yields
|2 — 2" —1)—+
T g Yoy S el a0 T (6.6)
OO\B,, (2, 2|z’ —z''|)
Instead, under the assumptions of statement (iii), Lemma 3.5(iv) implies that
‘xl — CC//|73 v | ) " / "
OQ\B,, (z’,2|z’ —x'"|)
Inequalities (6.2)—(6.7) imply the validity of statements (ii), (iii). O

Note that Proposition 6.1(ii) for n =3, 91 =2 —a, 2 =3 — «, 73 = 1 and for fixed K is known
(see Kirsch and Hettlich [19, § 3.1.3, Thm. 3.17 (a)]). Next, we introduce two technical lemmas, which
we need to define an auxiliary integral operator.

Lemma 6.1. Let Q be a bounded open Lipschitz subset of R™, o, 8 €]0,1] and v2 € R, v3 €]0,1].
If vo — B > n — 1, we further require that v3 + (n — 1) — (72 — 8) > 0.
Then there exists ¢ > 0 such that the function u[0Q, K, p] defined by (6.1) satisfies the inequality

[ul0Q, K, p)(a") — u[dQ, K, p](z")| < el Kllici_ry—any o 02 |1llcos poyw(lz” — 2"])
+ lllco ooy |09, K, 1](2") — u[0Q, K, 1](z")| Va',2" € 0 (6.8)
Jor all (K, 1) € K(n—1)—a,,~5 (092) x C®P(09Q), where

Tmin{aJr,@;’YS} ’Lf Yo — ﬂ <n— 17
w(r) = maX{Ta+6,w73(T)} if v—B=n—1, Vr €]0,4o0|.
rmin{a+57’73+("_1)_(72—ﬁ)}_ Zf Yo — ﬁ >n— 1’
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Proof. By Remark 2.2 and Proposition 6.1(i), it suffices to consider the case 0 < |2’ — 2”| < r.,. By
the triangular inequality, we have

|u[0, K, ) (2) — u[09, K, ) (2")|

\ / K@, )] (uly) - w(e')) do

+Iu(x’)‘ [5G - K6 ] da|. 69
oN

By exploiting the inclusion B, (2/,2|z’ — z”|) C B,(z”, 3|z’ — 2”|), the triangular inequality, Lem-
mas 3.2(i), 3.5(ii), and the inequality

ly—a'|’ <l|y—2"|° + 2" — 2”7,

we have

/ (K, y) — K=" 9)] (u(y) — (') do,

oN
< / K y)| |y — 2'|P doy ||l oo 00
By (2,22’ —z'' |)NOQ
+ / K (2", )l ly — '[P dory |l oo cony
B, (z',3|z’ —z'' |)NOQY
+ / |K(xl7y) _K(x/lay)‘ |y—xl"8d0'y||/1,||co,ﬁ(39)

OO\B,, (z/,2|z' —z''|)
doy
|y _ x/‘(n—l)—(a-&-ﬁ)
B, (z/,2|z' —z''|)NOQY
‘1:/ _ z//|ﬁ

< ||K||’C<n71>fa,72,73(8Q)||M||cow6(asz)

+ |y _ w//|(n—1)—oz dO'y
By, (z",3|x’—z'|)NOQ
n doy
|y — x/'|("*1)*(a+ﬁ)
B, (2 ,3|z’ —z''|)NOQ

o — 2"’ —y|”
|2’ — y|2 Y

+
OO\B,, (2, 2|z’ —z''|)
SNE k1) o ms (@) L1l 005 (002)
//|OL

x{2c§a,(n_1>_<a+m|x'—x”|a+ﬂ+x el o1yl —

do
e D 6.10
T N = (6.10)
OQ\B,, (a’, 2|z’ —z''|)

At this point we distinguish three cases. If 9 — 8 < n — 1, then by Lemma 3.5(i)

day doy
PR } laf —yp? < o

OQ\B,, (z/,2|x’ —z'"|)

and thus inequalities (6.9) and (6.10) imply that there exists ¢ > 0 such that inequality (6.8) holds
with w(r) = poir{etfst If 45 — 8 =n — 1, then by Lemma 3.5(iv)

doy "

W < CQ ’ In
OO\B,, (z’,2|x’—z''|)
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and thus inequalities (6.9) and (6.10) imply that there exists ¢ > 0 such that inequality (6.8) holds
with w(r) = max{r**# w., (r)}. If v9 — 8 > n — 1, then by Lemma 3.5(iii)

dgy o ‘x/ o
|$/ _ y|72_5 = "Qy2—-p
OQ\B,, (', 2|z’ —z''|)

| D= =8)

and thus inequalities (6.9) and (6.10) imply that there exists ¢ > 0 such that inequality (6.8) holds
with w(r) = prin{etBastn=1=(r2-A} 0

We also point out the validity of the following ‘folklore’ Lemma.

Lemma 6.2. Let Q be a bounded open Lipschitz subset of R™, v4 €] —oo,n — 1], G be a subset of
R". Let K € C°((G x 02) \ Apq) be such that

fn= s o=yl K ()] < +oo.
(z,y)€(GXx0Q)\Aso

Let p € L™ (09). Then the function K(x, - )u(-) is integrable in Q for all x € G and the function
ub[0Q, K, 1] from G to C defined by

[8QK,u /Ka:y y)do, Yz eG

is continuous. If sup [ |m y\“ < 00, then uf[08), K, ] satisfies the inequality
zeGHN

’u (09, K, p](z)] < sup/| Ky |l L0y Vo eq. (6.11)

|’Yl

Proof. The integrability of K (z, - )u(-) follows from the inequality

Ky, HMHLw(aQ)

K (2, y)u(y)| < rvEL S o9
Since sup [ |$ yl“ < 00, inequality (6.11) follows and the Vitali Convergence Theorem implies that
z€G o0
uf[09Q, K, 1] is continuous on G (cf., e.g., Folland [13, (2.33) pp. 60, 180]). O

We now introduce an auxiliary integral operator and deduce some properties which we will need
in the sequel by applying Proposition 6.1 and Lemma 6.1.

Lemma 6.3. Let 0 €]0,1] and Q be a bounded open Lipschitz subset of R™. Then the following
statements hold:

(i) Let Z € CO((c1Q x 9Q) \ Agq) satisfy the inequality

kn—1lZ] = sup lz —y|" " Z (2, y)| < +oo. (6.12)
(x,y)E(lexBQ)\AGQ

Let (f,pu) € C%9(clQ) x L>®(0Q) and H'[Z, f] be the function from (c1Q x Q) \ Agq to C
defined by

HYZ, fl(z,y) = (f(x) — fFW)Z(xz,y) V(2,y) € (1Q x 9Q) \ Mg .

If v € clQ, then the function H®[Z, f](z, -) is Lebesgue integrable in OS2 and the function
Q*1Z, f, 1] from clQ to C defined by

Q*Z, f, 1 /HﬂZf (z,y)p(y)do, Vel
o

s continuous.
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(i) The map H from K,—1,1(00) x C%%(9Q) to Ky—1-.n-10(0Q), which takes (Z,g) to the
function from (02)? \ Agq to C defined by

H(Z, g)(z,y) = (9(z) — 9(W)) Z(z,y) ¥ (z,y) € (09)*\ Aoq,
is bilinear and continuous.
(ii) The map Q from Kpn_1,.1(09) x C%?(9Q) x L>(Q) to CO«()(d), which takes (Z,g,u) to
the function from 992 to C defined by

QlZ, g, pl(x /HZg z,y)u(y)doy Ve df,

is trilinear and continuous.

(iv) Let a €]0,1[, B8 €]0,1]. Then there ezists q €0, 4o0[ such that

Q[Z. 9, u)(z") = Q[Z, g, 1)(z")| < all Zllic,, ... co0 19l o o0y 1ell 0.5 () 2" — 2|
+ lulleooey |Q1Z, 9, 1](2") — Q[Z,9,1](2")| Va',2" € 99
for all (Z, g, 1) € Kp—1.n1(09) x C%2(99) x C%8(99Q).
Proof. By assumption (6.12) and by the Holder continuity of f, we have
|/l
o=y

for all (z,y) € (c1Q x IN) \ Agq. Thus Lemma 6.2 implies the validity of statement (i).
By the Holder continuity of g, we have

|Hﬁ[Z,f](1'7y)| < anl[Z]

g
H(Z olw)] < s 12y ¥ @9 € O\ Do (613

Now, let o/, 2" € 9Q, 2’ # 2", y € 90\ B, (2, 2|2’ — 2”|). Then we have

|H[Z, g)(«',y) — H[Z, g)(=",y)| < lg(@") — g()||Z(",y) — Z(",y)| + |g(z") — g(z")| | Z(2", )]
a2 } . (6.14)

2 —yl°la’ —a"] | v
|2 —y[" | —y|* !

smwwwmwmmmﬂm{

Since |2’ — 2| < |2' — yl|, we have |2/ — 2”[*7% < |2’ — y|'*~?. Moreover, Lemma 3.2(i) implies that
|2 —y| > 1|2’ — y| and thus the term in braces in the right-hand side of (6.14) is less or equal to

|:17/7y| |:L'/7:17"|0 2”71|I/7x”|9 . ‘I/7I”|9

<14y T 6.15
RTINS  E o)

Thus inequalities (6.13)—(6.15) imply that
|H[Z, 9]”;(”7179,”71’8(69) <2"Zlk,_1 r @)l gllcoo a0 - (6.16)
Hence statement (ii) holds true. We now turn to prove (iii). By Proposition 6.1(iii) with v; =
n—1—60,v%9=n—1,~3 =0, the map u[aQ , -] is continuous from K,,_1_g n_1,0(9Q) x L>(0N) to
COmax{r"= D7D (M} (90)) = COwel (am Then statement (ii) implies that w[0Q, H[-, -], -] is

continuous from K, 1 ,.1(9) x C%?(9Q) x L=(9N) to C*<*()(99Q). Since
w00, H(Z, g], 1 /HZg z,y)pu(y)doy, Ve df, (6.17)
statement (iii) holds true. Since C°#1(99) is continuously imbedded into C%72(9€2) whenever 0 <

B2 < 1 <1, we can assume that a4+ S < 1. Then by equality (6.17), by Lemma 6.1 with v =n —1,
v3 = a and by statement (ii) with § = a, statement (iv) holds true. O
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7 Preliminaries on layer potentials

Let a be as in (1.1), (1.2), S, be a fundamental solution of Pla, D] and let © be a bounded open
Lipschitz subset of R™. If p € L°°(99), Lemma 4.2(i) ensures the convergence of the integral

v[09, Sa, /S z—y)uy)do, VYzeR",

which defines the single layer potential relative to u, S,. We collect in the following statement some
known properties of the single layer potential which we will exploit in the sequel (cf. Miranda [24],
Wiegner [36], Dalla Riva [3], Dalla Riva, Morais and Musolino [5] and the references therein).

Theorem 7.1. Let a be as in (1.1), (1.2), S, be a fundamental solution of Pla,D], o €]0,1],
m € N\ {0} and let Q be a bounded open subset of R™ of the class C™. Then the following
statements hold:

(i) If p € C™=1(09), then the function v* [0, Sa, u] = v[0R, Sa, pt]|aq belongs to C™(c1Q) and
the function v=[0S), Sa, ] = V[0, Sa, p]jc - belongs to C\)% (c1Q2™). Moreover, the map which
takes pu to the function vT[0Q, Sa, p] is continuous from C™=12(9Q) to C™*(c1Q) and the map
from the space C™~1*(8Q) to C™*(clB, (0, R) \ Q) which takes p to v™ [0, Sa, pjc1B, (0, R\
is continuous for all R €]0,+oo[ such that c1Q2 C B, (0, R).

(i) Letl e {1,...,n}. If p € C%*(09Q), then we have the following jump relation

9 -

50100 Sa (@) = F o m(2) /azls yu(y)do, Vacof,
l

2v(z)ta@v(z)

where the integral in the right-hand side exists in the sense of the principal value.

We now introduce the following refinement of a classical result for the homogeneous second order
elliptic operators (cf. Miranda [25]).

Theorem 7.2. Let a be as in (1.1), (1.2), Sa be a fundamental solution of Pla, D], 2 be a bounded
open Lipschitz subset of R™ and let v €]0,1[. Then the operator v[0S2, Sa, -]jaq from L>°(08) to
CO7(02) which takes p to v[0K, Sa, 1ljaq is continuous.

If, in addition, we assume that n > 2, then v[0Q, Sa, -|jsq is continuous from L>(0Q) to
Co1()(9Q).

Proof. By Lemma 4.2, we have Sa(2 —y) € K(—1)—y,n-1,1(09Q), and also Sa(z —y) € Ky—2n—1,1(99)
if we assume that n > 2. Since

v[@Q, Saa ,U']\BQ = u[@Q, Sa<l' - y)a p,] )

Proposition 6.1(iii) implies that v[0€, Sa, -] is continuous from L>(9Q) to COmax{r"w1(M}(9Q) =
C%7(99), and also that v[0€, Sa, -] is continuous from L (9Q) to COmaxirwi(m}(9Q) = CO«1()(90)
if we assume that n > 2. O

Next, we turn to the double layer potential and introduce the following technical result (cf. Mi-
randa [24], Wiegner [36], Dalla Riva [3], Dalla Riva, Morais and Musolino [5] and the references
therein).

Theorem 7.3. Let a be as in (1.1), (1.2), S, be a fundamental solution of Pla,D], o €]0,1[,
m € N\ {0} and let Q be a bounded open subset of R™ of the class C™. Then the following
statements hold:

(i) If p € C%*(9Q), then the restriction w[0,a, Sa, pu]jq can be extended uniquely to a continuous
function wt [0S, a, Sa, p] from cl to C, and w[0Q,a, Sa, p]jo- can be extended uniquely to a
continuous function w [0, a, Sa, p] from c1Q~ to C, and we have the following jump relation

w09, a, Sa, p](z) = :I:% pw(x) + w0, a, Sa, pl(x) Ve dfd.
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(i) If p € C™(99Q), then wt[0Q,a, Sa, u] belongs to C™*(clN) and w [0, a, Sa, u] belongs to
Ci*(clQ).  Moreover, the map from the space C™*(9) to C"™(clQ) which takes p to
wt[0Q, a, Sa, | is continuous and the map from the space C™*(9Q) to C™*(c1B, (0, R) \ )
which takes pu to w™[0Q, a, Sa, f1]|aB, (0,r)\o 8 continuous for all R €]0,+oo[ such that c1Q C

B, (0, R).

(iii) Letr € {1,...,n}. Ifp € C"™*(9Q) and U is an open neighborhood of 9Q in R™ and i € C™(U),
fioq = p, then the equality

2 o Suil) = Y g [ e =) S @) - 150) 2 ()] do

ox 0
r = A Yr

+ / [DSa(z — 1)a® + aSa(z — )] ve()uly) doy

o0
— /ax,‘sa(a: - y)l/t(y)a(l)u(y) do, VzeR"\0Q (7.1)
o

holds.

Note that formula (7.1) for the Laplace operator with n = 3 can be found in Giinter [14, Ch. 2, § 10,
(42)]. By combining Theorems 7.1 and 7.3, we deduce that under the assumptions of Theorem 7.3(jii),
the equality

0
ox,

- d
wh (09,2, Sa, ] = Y alj 5 vt [0, Sa, M (1] + DvT[09, Sa, vpp]aV)

jl=1

+ avt[09Q, Sa, vpu] — 0 v [0Q, Sa, (v'aV)u] on clQ (7.2)

ox,

holds.
Next, we introduce a result proved by Schauder [30, Hilfsatz VII, p. 112] for the Laplace operator,
which we extend here to the second order elliptic operators by exploiting Proposition 6.1.

Theorem 7.4. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], o €]0,1]
and let Q be a bounded open subset of R™ of the class C1*. If p € L>=(99), then w[0Q, a, Sa, ujo0 €
C%2(09Q). Moreover, the operator from L>®(9S) to CO*(9Y) which takes p to w[0S,a, Sa, tjaq is
continuous.

Proof. By Lemma 5.1, the function Ka(z,y) = Bg, ,(Sa(z —y)) belongs to K —1)—a,n—a,1(052). Since
w[aQ7 a, Sa7 HMOQ = u[@Q, K37 ,u] s

Proposition 6.1(ii) implies that the function w[0Q,a, Sa, -]jsq is continuous from L*>(9Q) to

CO,min{a,(nfl)f(nfa)Jrl} (89) _ C«O,a(aQ). 0

8 Auxiliary integral operators

In order to compute the tangential derivatives of the double layer potential, we introduce the following
two statements which concern two auxiliary integral operators. To shorten our notation, we define
the function © from (R™ x R™)\ Ag~ to R™\ {0} as follows:

Oz, y)=x—y V(z,y) € (R"xR")\ Agn. (8.1)

Theorem 8.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla,D] and
r€{l,...,n}. Then the following statements hold:
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(i) Let Q be a bounded open Lipschitz subset of R™ and 6 €]0,1]. If (f, ) € C%%(c1Q) x L>(09),
then the function

# 853
ox,

06, L.n](5) = [(f2) = J0) 52 (a ~ ply) doy, Y€ D

o0

Q

s continuous.

(i) Let a €]0,1[, 5,0 €]0,1], m € N\ {0} and Q be a bounded open subset of R™ of the class C™.
Then the map Q¥[252 00, -, -] from C™10(c1Q) x C™18(aQ) to C™—tmin{eB0} (1 Q) which

ox,.
takes (f,u) to Qﬁ[% 00, f, u] is bilinear and continuous.

Proof. By Lemma 4.3(ii), statement (i) is an immediate consequence of Lemma 6.3(i). Consider
statement (ii). By treating separately the cases x € 9Q and = € Q, and exploiting Theorem 7.1(ii),
we have

058, 0 0
§[92a _ 9 o+ _ +
Q57 0O Fo](@) = Fw) 50" 109 Sa, pl(w) — 507 (00, S, ful(x),
for all « € c1§2. Then the statement follows by Theorem 7.1(i) and by the continuity of the pointwise
product in Schauder spaces. O

Theorem 8.2. Let a be as in (1.1), (1.2), (1.3) and Sa be a fundamental solution of Pla, D]. Then
the following statement holds:

(i) Let Q be a bounded open Lipschitz subset of R™ and 6 €]0,1]. Then the bilinear map Q[gi: o
0, -, -] from C%?(9Q) x L>(99Q) to CO«()(9Q), which takes (g, 1) to the function

0Sa
ox,

26,9.4)() = [(90) ~90) 52 (0 - puly)do, Voo, (52)

[5}9]

Q

1S continuous.

(i) Let a €]0,1[, B €]0,1]. Let Q be a bounded open subset of R™ of the class C1*. Then the
bilinear map Q[g—ij 00, -, -] from C%(9Q) x C¥P(9N) to C**(99), which takes (g,u) to
Q[g—ij 00,4, ul, is continuous.

Proof. By Lemma 4.3, we have gfj € Kno1.0,1(09). Then Lemma 6.3(iii) implies the validity of
statement (i).

We now consider statement (ii). By statement (i) and by the continuity of the inclusion of C*#(99)
into L (99), we already know that Q[g—ij 00, -, -]is continuous from C%(92) x C*#(98) to CO(0NQ).
Then it suffices to show that Q[gTSj 00, -, -] is continuous from C%*(9Q) x C%#(99Q) to the semi-
normed space (C%%(99), |- : 9Q|,). By Lemma 6.3(iv), there exists g €]0, +oo[ such that

Q522 00.g.] ) - Q[ 522 0 0.0 0"

6I‘T axr
9Sa )
: qH oz, @‘ ICn,lynJ(aQ)HgHCO‘O‘(aQ)”MHCOvB(E)Q)lfL‘/ — |
9Sa / 05, )
+ llulleo @) Q[axr 06,9,1} (z') - Q[axT 0679,1} (") (8.3)

for all /., 2" € 9Q. Let R €]0, +oo[ be such that c1Q C B, (0, R). Let ‘* ~’ be an extension operator
as in Lemma 2.1, defined on C%%(99). Since

0Sa
oz,

0Sa
oz,

Q[ 09,9,1}(@:@1{ 09,5,1}@) Va e dQ,
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Theorem 8.1(ii) implies that Q[% 00, -,1] is continuous from C%*(9N) to itself and, accordingly,
there exists ¢’ €]0, +o00[ such that

lo[52 06,011 < dlgllonnony Vg € CO(00). (8.4
€02 (59)

Combining inequalities (8.3) and (8.4), we deduce that Q[% 00, -, -] is continuous from C%(9Q) x

COB(09) to (CO*(Q), |- : 09|,) and thus the proof is complete. O

In the next lemma, we introduce a formula for the tangential derivatives of Q[ 95 50, g, ).

Lemma 8.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], a €]0,1][,
0 €]0,1]. Let Q be a bounded open subset of R™ of class C*<, r € {1,...,n} and let g € C19(9Q),
u e CHOQ). Then Q[gi: 00,g,u] € CHON) and the formula

My [Q[ 522 0 0.9.1)] :m(@@[gj 06, Dasg.11)(2) ~ 1(1)Q

+u(7)Q [o@ g,z [Z;;}Z;LVMH(@
o o a3 22

PEA My [g)p 95a Vit
+ Z asni (2 { [a ° 0. yta@)y}(xHQ oz, OG’Q’M}”{W} (=)

s,h=1

08,

oz, 00, Da,l97 U} (Z‘)

0Sa Mhr[g]ﬂ 054 Vip
- aae {elG oo iy | +e gt 000 [ ] |

) T
s,h=1 v as

n

0Sa Vily 0Sa ViVp
_Zas{yl |:7 @7gamu:|(‘r)_yj(x)Q|:axs 097971/75(1(2)”/4(1')}

o{ 010 @010 S0 205 ) ) = i) 00 S ) 0)

Vilr

- [,,l (z)v [ag, Sarg u} (z) — v;(z)v [aQ, Sa, g %u} (:c)} } (8.5)

holds for all x € O and 1,5 € {1,...,n}. (For Q see (8.2).)

Proof. Let R €]0,400[ be such that c1Q C B,(0,R). Let ‘~’ be an extension operator as in
Lemma 2.1, defined either on C1(99Q) or on C1*(9€) depending on whether it has been applied
to g € CL9(99) or to v € CL(9Q) for I =1,...,n

Now, fix 3 €]0, min{#, a}[ and first prove the formula under the assumption u € C1#(0Q). By
Theorem 8.1(ii), we already know that QF [% 00, g, 1] belongs to C(c1€). Then we find it convenient
to introduce the notation ’

of
Oz,

of

M} [f)(z) = (@) 5 (2) = D () 5o (@) Vo€

for all f € C1(c1Q). If necessary, we write M}

1,z 10 emphasize that we are taking x as variable of the

differential operator Mlﬁj Next, we fix € (2 and compute

~ - 0 0Sa -
eagalu (x)_yj(m)%Qn Oz O@vgvﬂ“ (1’)

e >8% Qﬁ[

Ty
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Clearly,
0 0S.
f a ~
5 @ [ 5o 0,5, 1) (x)
= [ %) 2L sae - yuty)d +/<~<)—~<>)‘92 Sal — y)uly) d
= oz xaxr al\l — Y)ply)aoy gz gly 02,0z, al\l —Y)uly)aoy .
o0 o0

To shorten our notation, we set

o [o9g, . 0

Ji(z) = | 57 (2) 5= Sale —y)uly) doy .
o0 : "
Then we have
@2 00.5.u)w)

_ ~ ~ - vs(y)asnvn(y) O 0

— 1) 8{ @)= 300) 3. SR o Lo Snta =t
=)~ @) =500 3 () 5 ~10) 5 ) [ Sate )]

0 5=
AspV ( )
Z z/t(y;ba(};)i(y) (y) dory

N 0 (@®v(y))s
aé(g(x) —9()) ;Msl,y {37:7 Sa(z — y)} A ()a®u(y) n(y) doy
_ [y A N Ll 1)) :
- aé > Moty [56) ~50)] g1 Sl ) i s ) o,
n a®).
= [ 360 =) 5 S — ) Ma [P ] ) o,

aq =1

Since M1,y [g(x) = 9(y)] = —Malgl(y), we have

0 0Sa - ag 0
Qo0 g.u)w) = oL <x>aé o Sale — uly) do,
- 0 (@),
—aé 2 Malg)(y) Dz, Sa(z —y) S ()a@ () (y) doy
n a®y
+ [ 306 ~500) 5 Sale — ) Ma [P ] ) o,
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Accordingly, we have

M, [Qu [% o@@uﬂ(gg) = Mlﬂ[gﬂ(gj)/ 9

n

a®vy
{m( )Msj[zﬂ(y)—Dj(x)Msl[m(y)}aisa( _ o (@)

— . r—y) S (@)au(y) w(y) doy
a@v), _ a@ ),
+f Z Sate = {0 [ w0 - mina[ G ] ) ao,
o0 =1
- / Z - 3y, [axr I*y)] (@®v),(y) Dl(x)?;g;a(g?i 8”@) (y)do, . (8.6)
89

We now consider the first two terms in the right-hand side of formula (8.6). By the obvious identity

9 Dga®y ) Dga®v
# _ ~ g ~} o~ [ ~ g ~} .
My 9] =w [78%_ g Sia@5 v; vj s g S @7 | in clQ,

by the corresponding formula for M;;[g] on 0€2, by formula (2.4) and by straightforward computations
we obtain

afjr Sale — y)uly) doy

a®y
/Z 1/1 oz (x)Msz[é](y)} 6% Sa(z —y) g (y

A g)a@u(y) Y
90 s=1

~ 0 - Dj(z)aPv

(z) [a%_g(a:)— a(% } / = y) do,
~ 0 - Dy(x a(2)

~5y(0) | ) - DR ) / _ y)do,

e /[8% _Vty;j” }(Z i) y 0 g

) 2 A (y)

Tl / {Zays

o

~—
~—
w

asth( ) Dg(y)a®u(y)
U (y)a@v(y) v (y)a@D(y)

X (ﬁs(y)%)} ({% Sa(r —y)uly) doy,

_ d D§(y)aPo(y) _ L asnvn(y) d

+’/j(x)/ [aylg(y) MW@)]( ; Us(y) (hih) oz,
oN s,h=1

@) Sa(r —y)u(y) doy
» _ n 0 - asplV ( ) ( ) @ ( )
o0 s,h=1

X (Z(y) W) } aixr Salr —y)p(y)doy . (8.7)

Since

~ LA asnvh(y)
V(y):VQ/)’ (sﬁzzlys(y)gt(y;la(’;);(y)) =1 VyeaQ,
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we have

—~ 0 _ asvn(y)  Dg(y)a®o(y) 5 asnVh(y) _
{s,%::l 0. "W T a3 T T ()a®iy) ( ) 'Iﬁ(y)a@)ﬁ(y))} -

for all y € 9 and, accordingly, the right-hand side of (8.7) equals

o _ Dgadv _ o _ Dga®v _
8 5= . — g —g—
( )Q |:8$r ) axj g uta@)u V]Hu:|( ) V]( )Q [axr ’ 8xl g l/ta(Q)V Vl?/’[’:| (Z‘) .

Consider the third term in the right-hand side of formula (8.6) and note that

3200 - 50 o ute = {ans G2 ) - e[ G2 ] )} ao,
90 5= 1 r
o[G0 3t [l
— 7;(2)Q* Bia 00,9, Zn: Mg [% uH (). (8.8)
r s=1

Next, we consider the last integral in the right-hand side of formula (8.6) and note that if « € ) and
y € 0f2, we have

0 0
%; % |:ash

1

]—I—Zas— a(x —y) +aSa(z—y)=0.

S Ts
S

Thus we obtain

= > () 51 0) ) [ Salo=w)] 404 0) D e 5 Sale—v) +ri (aSale ).

s,h=1 s=1 s

and we note that the first parenthesis in the right-hand side equals M}, ,. The last integral in the
right-hand side of formula (8.6) equals

/ Z asnVa(y a [i Sa(w—y)} gl(x)zj ) - 7, Em)yl(y) u(y) doy

s A oz, Hy)a®v(y)
-/ (ﬁ(w)ﬁ(y)){ > oMy [ 5 Sale )]
90 s,h=1
~ 0 vi(z)v;(y) — vi(@)v(y) o
) Y0 Sale =) e usale — ) LT )
=3t [ @)~ ) M [ 1 Sl — )]
s,h=1 50 s
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We now consider separately each of the terms in the right-hand side of (8.9). By Lemma 2.2 and the
equality —Mp, ,[9(z) — §(y)] = Mpry[G(y)], the first integral in the right-hand side of (8.9) equals

[ @) = 56 My [ 5 Sula = )]

o0

+55(0) [ 00) ~ 50) e Sale — )M [ ) o,
1919)

= —ia >{Qﬁ[ 0075, (o >+Q“[ o@g,Mm[;(gH(@}

+%<x>{@ﬁ S2oom Mol ) 1 [8

S

Next, we note that the second integral in the right-hand side of (8.9) equals

- ~ aSa ~ i ~ i
S0 B [0 0 0.5, 2 ] (@) - (@ [ 0.5 ] )

s=1

ViVr

+ a{ﬁ(m) {DZ (x)v {GQ, Sa, mu} () — vj(z)v {BQ, Sa, %u} (m)]

Vivy

— [Dl(x)v{aQ,Sa,g i@y }(m)— i (x)v [8(2 Sa, g tVl(VT)VM} (w)}}

By combining formulas (8.6)—(8.10), we obtain
M [
n@@ [P0, L DIy k) sae oo @,g,ZMgJ [Z ] |@
@ G005 Y M3 S ]
=

~ 95, My, _ :
+ Z axshl/l(l‘>{Qﬁ|:axs O@;Vj7 I/t’;([zg)]l/ ]( )+Qu|: o®7g>Mh’r |:th;7(éj;yj|:|(x)}

0 _ Dga?v _
aaTjg_ Jta (2) l/j,/J/i|(.’E)

00,7, u” () = T (2)Qf {gij

5
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= - 0Sa My,
- Z ashyj(x){Qn[axSO@7ylth];([2g)]:6:|( >+Qﬁ|: 09 g’MhT|:tZl(/;)]/i|:|(x)}

s,h=1
= oS Vil ViVy
— b | ZPa G # 5
o G 0 0.3 0 n] @) -7 [ L ),
~ Ver I/ZV’I“
-~ o{gto) e 00 50, L ] ) - [ e )0
_ ViVyp Vll/r
_ [yl(x)v[aﬁ,sa,gyt;@)y ] [89 Sasg —ih— M} (x)} } (8.11)
Under our assumptions, the first argument of the maps Qﬁ[g—fj 00, -, ]and Qﬁ[g%‘ 00, -, -], which

appear in the right-hand side of (8.11) belongs to the space C*™*{:}(c1Q) and the second argument
of the maps Q”[ZTS: 00, -, ], Q”[g—ij 00, -, -], which appear in the right-hand side of (8.11) belongs
to C°(09). By Theorem 7.1(i) with m = 1, the single layer potentials in the right-hand side of (8.11)
are continuous in = € c1Q2. Then Theorem 8.1(i) implies that the right-hand side of (8.11) defines a
continuous function of the variable z € clQ. Since  is of the class C%* and § € 019(clQ) and since
we are assuming that u € C1#(99Q), Theorem 8.1(ii) implies that Mji [Qﬁ[ 2 0 0, g, u]] belongs to
C%(cl1Q). Hence, the equation of (8. 11) must hold for all z € clQ and in partlcular, for all z € 9.
Since Qﬁ[‘g—fi 00, -, -]= Q[‘gi*‘ 00, -, -] and Ml‘i = M;; on 09, we conclude that (8.5) holds.

Next, we assume that e E Cl(aﬂ) We denote by P, [g, 1] the right-hand side of (8.5). By Theo-
rem 8.2(i), the operators Q[ %%00,9, -], Q[as“ 00, D, jg, -], Q[aijG vy, | are linear and continuous
from the space C°(9Q) to CO((’?Q) By Theorem 7.2 and by the continuity of the pointwise product in
C°(99), the operator P,j.[g, -] is continuous from C?(9Q) to C°(0). In particular, Q[gf:‘ 00,g,u,
Pyjrlg, n] € C°(09).

We now show that the weak M;;-derivative of Q[gi: 00,g, -] in 0Q coincides with P;,[g, 1]

Considering both an extension of y of the class C'! with a compact support in R” and a sequence of
mollifiers of such an extension, and then taking the restriction to 9€2, we can conclude that there exists
a sequence of functions {up}pen in C?(9€2) converging to p in C1(9€2). We note that if o € C*(9Q),
then the validity of (8.5) for u, € C2(09) C C1#(09), the membership of Q[252 0O, g, 11] in C*(9Q)
(see Theorem 8.1(ii)) and Lemma 2.2 imply that

. 0S4
/Q ® 00, .| Myly ]da:bgr& Q[5,% 00,9, Myl do
o0
= _bliﬁlo/M” o@ e ubHsado—— lim /ng ub]wda——/szr[g,u]@do-

o0

Hence, P;;[g, 1] coincides with the weak M;;-derivative on[‘gfj 00, g,pu] foralll,j € {1,...,n}. Since
both Pj;[g, 1] and Q[ 95260, g, u] are the continuous functions, it follows that Q[gfj 00, g, u] € C1(0Q)
and M, [Q[sz 00,q, ]] = Py-[g, p], classically. Hence (8.5) holds also for p € C1(09). O

By exploiting formula (8.5), we can prove the following theorem.

Theorem 8.3. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], a €]0,1][,
m € N\ {0}. Let Q be a bounded open subset of R™ of the class C™ and let r € {1,...,n}. Then
the following statements hold:

(i) Let 0 €]0,1]. Then the bilinear map Q[asﬂ 00, -, -] from the space C™~19(9Q) x C™1(9N)
to C™m—1ws( )(QQ)} which takes a pair (g, ) to Q[amj 00,9, ], is continuous.

(i) Let B8 €]0,1]. Then the bilinear map Q[as“ 00, -, -] from the space C™~1*(9) x C™~1F(5Q)
to C™=1(9), which takes a pair (g, i) to Q[ 522 00,9, 4, is continuous.
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Proof. We first prove statement (i). We proceed by induction on m. Case m = 1 holds by Theo-
rem 8.2(i). We now prove that if the statement holds for m, then it holds for m + 1. Thus we now
assume that Q is of the class C™ % and we turn to prove that Q[% 00, -, -] is bilinear and

continuous from C™?(9Q) x C™(9N) to C™+¢()(9Q). By Lemma 2.3(ii), it suffices to prove that
the following two statements hold:

) Q[% 00, -, -] is continuous from C™%(9Q) x C™(IN) to C°(IN);

(Jj) My, [Q[ﬁsa 00O, -, -]] is continuous from C™?(9Q) x C™(9N) to the space C™~1<o()(9Q) for

l‘

alll,j€{1,..., }

Statement (j) holds by the case m = 1, and by the imbedding of C™?(99) x C™(9£2) into C*?(99) x
C°(09). We now prove statement (] _]) Smce m+ 1 > 2, Lemma 8.1 and the inductive assumption
imply that we can actually apply M;; to Q[ %2 6@, -, -]. We find it convenient to denote by Pi;.[g, 1]
the right-hand side of formula (8.5). Then we have

asa m m
My; [Q[aT o @,g,uH = Pyrlg.p] V(g,p) € C™P(0Q) x C™(09).

By Lemma 2.4 and the membership of v in C™<(99Q, R"), which is contained in C™~%(9Q, R"),
by the continuity of the pointwise product in Schauder spaces, by the continuity of the imbedding
of C™(09) into C™~1(9N) and of C™(9Q) into C™19(9N), by the inductive assumption on the
continuity of Q[g%: 00, -, -], by the continuity of v[0, Sa, -]jan from C™m=L2(9Q) to C™*(99Q) C
Cm=19(00Q), and by the continuity of the imbedding of C™(9Q) into C™~1:%(9Q) and of C™(9N)
into C™~1«0(*)(90), and by the continuity of D, from C™¢(99) to C™1¢(9N), we conclude that
Pyjr[+, -] is bilinear and continuous from C™?(9Q) x C™(9Q) to C™~1«e()(9Q), and the proof of
statement (jj) and, accordingly, of statement (i) is complete. The proof of statement (ii) follows the
lines of the proof of statement (i), by replacing the use of Theorem 8.2(i) with that of Theorem
8.2(ii). O

Definition 8.1. Let a be as in (1.1), (1.2), (1.3), S, be a fundamental solution of Pla, D], o €]0, 1]
and let Q be a bounded open subset of R™ of the class C*®. Then we set

i) = {2500 0025 o0s] - o[22 0.n.]

r=1

ox
+ a{gv[@Q,Sa,hu] hv[0R, Sa, gu] }

for all (g, h, p) € (C%*(02))? x C°(89).

Since

9(@)h(y)—g(y)h(z) = [g(x)h(z)—g(y)h(y)] —g(x)[h(z) = h(y)]—g(y)[h(z)=h(y)] Vz,ycd,

we have

n

Rlg il = [ {32 e 5 Sule =) + aSalo = )} [oe)hly) — 9] ) do, Vi € 09,

an =1

Since R is a composition of the operator Q[g—i‘: 00, -, ] and of a single layer potential, Theo-
rems 7.1, 7.2 and 8.3, the continuity of the product in Schauder spaces and also of the imbeddings of
C™=1(0Q) into C™=22(9N) for m > 2, of C™~1H%(9NQ) into C™~1@=(-)(9Q) and also of C™F(9N)
into C™~12(9Q), imply that the following theorem is valid.

Theorem 8.4. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], o €]0,1][,
m € N\ {0} and let Q be a bounded open subset of R™ of the class C™*. Then the following statements
hold:
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(i) The trilinear map R from the space (C™~1(982))% x C™~1(9Q) to C™~1wa()(99), which takes
a triple (g, h, 1) to R[g, h, p], is continuous.

(i) Let B €]0,1]. Then the trilinear map R from the space (C™~12(002))2 x C™=1A(9Q) to
C™=L2(9Q), which takes a triple (g, h, 1) to R[g, h, ], is continuous.

9 Tangential derivatives and regularizing properties of the
double layer potential

We now exploit Theorems 7.3, 7.4, Lemma 8.1 and Theorems 8.3, 8.4 in order to prove a formula for
the tangential derivatives of the double layer potential, which generalizes the corresponding formula
of Hofmann, Mitrea and Taylor [16, (6.2.6)] for homogeneous operators. We do so by means of the
following

Theorem 9.1. Leta be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], « €]0,1] and
let Q be a bounded open subset of R™ of the class C*. If up € C1(99Q), then w[0€Y, a, Sa, p1]joq € C(99Q)
and

My [w[09,2, Sa, 1] ] = w[09,a, Sa, Mi;[u]]

\BQ} |02

+ zn: abr{Q[gi: 0 ©, v, My [u]] _Q[% 00, yj,er[u}}}

b,r=1

+u-a(1){Q[gij O@,Vj7/$i| - Q[gia 097%#}}

o®7y-a(1),u}

J
—v- a(l)v[aﬂ, Sa, My;[u]] + v[0€, Sa, v - aM My, (W] + Rlvi,vj, 1] on 99 (9.1)

foralll,je{l,...,n}. (For @ see (8.2).)

Proof. Fix 3 €]0,a|. First consider the specific case in which p € C18(9Q). Let R €]0,+oo| be
such that c1Q C B, (0, R). Let ‘ ~’ be an extension operator of C1-#(9Q) to C*#(c1B,, (0, R)) as in
Lemma 2.1. By Theorem 7.3(i),(ii), we have w*[0Q, a, Sa, ] € C1A(clQ) and

1
M; [wh [0, a, Sa, pljoa] = 3 M (1] + My; [w[OS2, a, Sa, 1l joa] - (9.2)

By the definition of M;; and by equality (7.2), we obtain

Mlj [w+[897 a, Sa7 /“L]\QQ} =U i w+[695 a, Saa /U’] 0 w+[397 a, Sa7 /J’]

o) i o
= ul{ i abriv"r (092, Sa, M [u]] +iabiv+[89 Sa, Vi)
Pt Y = O Y
0. S (0 0] + [0, S v
8.13]‘
—u»[ z": ap iv+ (092, Sa, My (1] +Zn:abiv+[89 Sa, V1]
J = s axb y May T ot axb yMay
_ 9 T[99, Sa, (' - V)] + av?[09, Sa, Vlu]]
8931
:iab Vliv+[695 M; [u]]—uiv"‘[aﬂS M, [1]]
T a.’rb sy May Jr J axb y Mas T

b,r=1
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- 9 0
n 09, Sa, vy — v; 2 0 t[09, Sa
2 ab{ul azbv [09Q, Sa, v —v; 8acbv (092, S ,Z/lu]}

~ {4 5 0¥ 10 50,0 )] =y 7109, -0V}
+a{ylv[8Q,Sa,1/ju} — I/jv[aﬂ,Sa,Vlu]} on 0. (9.3)

We now consider the first term in braces in the right-hand side of (9.3) and note that

{ i« Mib 109, Sa, Mjp ] () — v a%”+ [OQ,Sa,MlT[u]](x)}
v (z)vp(z) 9
S Ml (o) + Vl(x)aé s Sale = )My () doy

vy (@) o
+ gl My pl(w) = y(0) [ 5 Sl = )M (0)do,

o0
) —vi(x)Mjr [ (2) + v; () Mir [p] ()
2vt (z)a@v(z)

+ / 8%:;, Sa(z — y){vi(z) M [1](y) — vj(2) My [p](y) } doy . (9.4)
)

=up(z

Further, we note that

0 0 0 0
[Vle,.[u} — Z/le,.[,uH =y, 37'“ — Y, 37# vy 87# + vjv, aul = —v, M;[p] on 0Q. (9.5)
r J r
Then we obtain
i _Vler[u] +Vle'r[:u/]
ort 2wta@y
b,r=1
> VbV
v Myjlp]  br=1 1
szl Wrls 5 o) = i@y, M) = §Mlj[,u] on 0f. (9.6)

Consider the term in braces in the argument of the integral in the right-hand side of (9.4) and note
that equality (9.5) yields

vi(x) Mj [p)(y) — vj(x) Mir[u](y)

= (@) = @) M pl () + W) M (1) (y) = v () Mir [ (9)] = v (@) = v; ()] M [p] (y)
= [n(z) - Vz(y)] el () = v () Myl (y) = v (@) = vi)IMie [l (y) Yo,y € 092, (9.7)
We now consider the term in the second braces in the right-hand side of equality (9.3) and we note that
() o 010, Susvypl(a) = 1 (2) a% " 108, Sa s @)
— (o) g Y + e / Vs )ty do
e Q(I)ﬂ))() nlalz) - vy(z) [ 8% Sale — )y uty) do,
0

/ 5 Sale = 9@ ) ~ @) do, V€ 00, 99)



Regularizing Properties of the Double Layer Potential of Second Order Elliptic Differential Operators 105

Next, we consider the term in the third braces in the right-hand side of equality (9.3) and we note that

n(e) g v

= —y(x) ME% (Vt(x) a(l))ﬂ( )+ vz )/% Salx — y)yt(y) 'a(l)ﬂ(y) doy

J

09, Sa, (v - eV (z) — v (2) 0

307V 02 S (' aM)p) ()

+vj(x) 21ﬁ(:1:y)l(§?2))1/(:v) (V' (z) - a(l) —vj(x / o2, a(T — a(l)u(y) doy

= —ua) [ [0(2)-a) = (0) - 0] - Salo — 9)n(e) dor

J
o0

+ule) [0) o) 8‘9 Sale — y)puly) dor,
oN

T v;(x) / (/' (x) - V) — (' (y) - )] ai Salx — y)uly) do,
o0

(@) [01@)-a) o Sule — y)uty) do,
onN

S— / (/' () - V) — (W (y) - )] ai Salz — y)uly) do,

o0

1y(a) [ [07@)-a) = 0) )] 5 Sale — 9)ulw) do,
onN

@) a) [ (o) 5= @) 5

) Sa(e —y)nly) do,

T v;(x) / [(v(2) - o) — (' (3) - aD)] ai Sal — y)uly) dor,

o0

+ (V' (x) - a) (Vz(x)—w(y))i‘Sa(l”—y)u(y) doy— [ (vi(z)—v;(y)) 0 Sa(z—y)u(y) doy
Ox; A ox;
o0

+0@)-a) [ () 5~ ) 2 )Sale = wut)da,  (09)

oN

for all z € 992. By Lemma 2.2, the last integral in the right-hand side of (9.9) equals

/Mljy (x —y)p(y) doy = /S (x —y)Mi;[p)(y) doy, Yo € 0. (9.10)

Thus the last term in the right-hand side of (9.9) equals

V(@) - ) / Sale = y) My () dor 84 (4 (2) - a®) = (W1(y) - a V)] Salr — ) Mis ) () dor
—I—/(u (y) - aM)Sa(x — y) My, (1) (y) do, Y € 9. (9.11)

o0
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The last term in braces of equation (9.3) equals

[ 8ula = @) - vi@mw]ut) o, Vo€ o0, (012)
o0

Combining (9.2)-(9.4), (9.6)—(9.12), we obtain

n

My [w]09, 8, Sa, ] (1) = 3 abr{ [ 040) = 10) 5 Sl = )M i) o,

b,r=1 90

- / (vi(z) = vi(y)) a%, Salz — y) M, [1](y) doy, — / vr(y) a%, Sa(r — y)Mi;[u](y) day}

o0 o0

+ bz a / ai Sa(z — 1) [(@); ) — v; (@) ()] () do,
=1 50

(M) - a<1>>{ / (ni(z) () ai Salz—y)uly) do, - / (3(2) ;) a% Salz—)u(y) doy}
o0 o0

—/[(Vt(x) -aM) = (W (y) - al")] Salz—y) My; 1) (y) day—/(vt(y)-a(”)Sa(x—y)sz[M](y) do,
oQ o0

ta / Sal — 1) () (v) — vi (@Y ()| ily) doy Y € 09,
o0

which we rewrite as

g 95, 05,
My 2.2, S ) @) = 32 abr{Q[ Sor © O My ] (2) — Q[ 2 0, uj,Mzr[umx)}
Fu(@Q[ 52 00,00, 4] (2) 1, ()Q[ 2 0 0.1 -0V, ] 0)
J

# oo a8 My D] ) + (400 Q[ 52 0 0.15.] () - Q[ T2 00 1)

- (V(x) - a(l))v[aﬁ, Sa, Mlj[u]] (x) + v[@Q, Sa, (V- a(l))Mlj[uH (x) + Ry, vy, pl(x) Yz edfd.

Thus we have proved formula (9.1) for u € C%5(99).

Next, we assume that u € C'(9€). We denote by Tj;[u] the right-hand side of (9.1). By the
continuity of M;; from C'(99Q) to C°(9R), of w[d€, a, Sa, -]joq and v[09Q, Sa, -]jsq from CY(8Q) to
C%*(09Q), of Q[gij 00, -, -] from C%(9) x C°(9N) to CO¥=(9Q), of R from (C**(9))% x C°(99)
to C%%=(9Q), and by the continuity of the pointwise product in Schauder spaces, we can conclude
that the operators w[0,a, Sa, -]ja0 and Tj;[-] are continuous from C*(92) to C**(99) and from
C1(80) to CO»=(1)(99), respectively. In particular, Tj;[u] and w[0Q, a, Sa, u]jsn belong to C°(ON).
We now show that the weak M;;-derivative of w[0€), a, Sa, u]jon coincides with Tj;[u].

By arguing just as at the end of the proof of Lemma 8.1, there exists a sequence of functions
{up}pen in CH(09), which converges to p in C1(99Q). Note that if ¢ € C1(9€), then the validity
of (9.1) for pu, € CH*(09), the membership of w[0, a, Sa, tp]jp0 in C12(09), the above-mentioned
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continuity of w[0€), a, Sa, -]jaq, and also Lemma 2.2 imply that

/ w[aQ7 a, Sa’ :LL]WQMU [QD] do = b1i>nolo w[@Q, a, Saa Hb]|6QMlj [‘P] do
o0 [519)

= *bli}c}o/sz [w[0%, a, Sa, w] 00w do = *blingo/ﬂj[ub]@dm: */sz[u]sod:u
[ol9) o0 o

Hence, Tj;[u] coincides with the weak Mjj-derivative of w[0€, a, Sa, 1] jaq for all [, j in {1,...,n}. Since
both Tj;[u] and w[0Q,a, Sa, it]jpo are the continuous functions, it follows that w[0Q,a, Sa, ujsa €
C1(0%2) and M;;[w[0Q, a, Sa, u]ja0] = Ti;[p], classically. Hence (9.1) holds also for p € C*'(0). O

Using formula (9.1), we now prove the following result, which says that the double layer potential
on 0N has a regularizing effect.

Theorem 9.2. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], « €10,1[,
m € N\ {0} and let Q be a bounded open subset of R™ of the class C™*. Then the following statements
hold:

(i) The operator w[0S2,a, Sa, -]jaq is linear and continuous from C™(0Q) to Cmwa()(00).

(ii) Let B €]0,a]. Then the operator w[0S2,a, Sa, -]jaq is linear and continuous from C™P(99) to
Cm™(00).

Proof. We prove statement (i) by induction on m. As in the previous proof, we denote by Tj;[u] the
right-hand side of formula (9.1). We first consider the case m = 1. By Lemma 2.3(ii) and formula
(9.1), it suffices to prove that the following two statements hold:

() w[69,a, Sa, -Jjaq is continuous from C* () to CO(€);
(i) Ti;[-] is continuous from C1(9N) to COw=()(9Q) for all I, j € {1,...,n}.

Theorem 7.4 implies the validity of (j). Statement (jj) follows by the continuity of the pointwise
product in Schauder spaces, by the continuity of M;; from C*(99) to C°(992), by the continuity of
0[O, Sa, -]joe and of w[0€, a, Sa, -]jsq from CO(9Q) to C*(9N) (cf. Theorems 7.2, 7.4), and also
by the continuity of Q[422 0 ©, -, -] from C**(99) x C°(9Q) to CO<=()(9Q) (cf. Theorem 8.2(i))
and by the continuity of R from (C’O’a(aQ))2 x C%(99) to CO«=(-)(99) (cf. Theorem 8.4(i).)

Next, we assume that € is of the class C™*1:® and we turn to prove that w[0€,a, Sa, Jjaq is
continuous from C™*+1(9Q) to C™+1w=(-)(9Q). By Lemma 2.3(ii) and formula (9.1), it suffices to
prove that the following two statements hold:

(a) w[0R, a, Sa, -]jaq is continuous from C™H1(9Q) to CO(0);

(b) Ty;[-] is continuous from C™+1(9Q) to C™«=()(9Q). for all I, j € {1,...,n}.

Statement (a) holds by the inductive assumption. We now prove statement (b). Since € is of the
class ™19 then v is of the class C"™%(9€2). Theorem 8.3(i) ensures that Q[g—i‘: 00,v-aM, -] and

Q[g—fj 0 ©,v;, -] are continuous from C™(9N) to C"™ ¥ (0Q) for all I, j, r in {1,...,n}. Since M;; is
continuous from C™*1(9Q) to C™(9€2), the inductive assumption implies that w[0€2, a, Sa, My;[ -]} 90
is continuous from C™+1(99Q) to C™«=()(9Q) for all I, j in {1,...,n}.

Since Mj; is continuous from C™+1(9Q) to C™ 1*(9€) and v[0€, Sa, -]jaq is continuous from
Cm=52(9Q) to C™*(9Q), ve (C™*(N))" and C™(9Q) is continuously imbedded into
Cmwa()(90), we conclude that v[0Q, Sa, Mi;[-]]joq and v[0€, Sa, v - a(l)Mlj[~]]|ag are continuous
from the space C"+1(99Q) to C™«=()(9Q) for all I, j in {1,...,n}. Moreover, R is continuous from
(C™(992))? x C™(99) to C™«=(-)(9Q) (cf. Theorem 8.4(i)). Then statement (b) holds true.

Statement (iii) can be proved by the same argument of the proof of statement (i) by exploiting
Theorem 8.3(ii) instead of Theorem 8.3(i) and Theorem 8.4(ii) instead of Theorem 8.4(i). O
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Since C™«=()(9Q) is compactly imbedded into C™(9€) and C™(9N) is compactly imbedded
into C™#(9Q) for all 8 €]0,a[, we have the following immediate consequence of Theorem 9.2.

Corollary 9.1. Under the assumptions of Theorem 9.2, the linear operator w[0S2,a, Sa, -]jaq is
compact from C™(0Q) to itself, from C™<=()(9N) to itself and from C™(IN) to itself.

10 Other layer potentials associated to Pla, D]

Another relevant layer potential operator associated to the analysis of boundary value problems for
the operator P[a, D] is the following

wi[0Q, a, Sa, p](x) = /u(y)DSa(x —9)aPu(z)do, YxedQ,
oN

which we now turn to consider.

Theorem 10.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], a €]0,1][,
m € N\ {0} and let Q be a bounded open subset of R™ of the class C™*. Then the following statements
hold:

(i) The operator w.[0S,a, Sa, *]joq is linear and continuous from C™~1(9Q) to C™~1w=(-)(9Q).
(i) Let B €]0,a]. Then the operator w.[09Q,a, Sa, - |jaq is linear and continuous from cm=18(00)
to C™=12(90Q).
Proof. First note that

n

0102880 pl(0) = 3 an [ 0(@)5 - Sule — p)uty) do,

b,r=1 90
- r0Sa T - 0]
= Z aprQ |92, ° O, vr p| () + Z Apr / vr(y) achSa(x —y)uly) doy
b,r=1 b,r=1 90
n 95, } n 9
= 3 Q5,2 0 Omnn]@) = [ nl) 3 awnl) g Sale—v)do,
b,r=1 -OTb . b,r=1 Yo
, 89 ,
& 195, 1
= 3 Q[ 22 06,11, (0) w00, 8, S0 @) ~ 0109 Su, @ Ox)  (10)

b,r=1

for all z € 9 and u € C°(99).

If m = 1, then Theorem 7.2 implies that v[0€2, Sa, - ]jaq is linear and continuous from C™~*(9Q)
to C™ =L (9Q).

If m > 1, then C™~1(9Q) is continuously imbedded into C™~2%(92) and Theorem 7.1 implies
that v[0Q, Sa, - ]jaq is linear and continuous from C™~%%(98) to C™~1*(982). Hence, v[0S2, Sa, - 100
is continuous from the space C™~1(99) to C™~1(9Q) for all m > 1. Then formula (10.1), the
continuity of the imbedding of C™~1(9€2) into C™~1%=(9Q) and Theorems 8.3(i), 9.2(i) imply the
validity of statement (i).

We now consider statement (ii). Since v[0€, Sa, -]ja0 is continuous from C™~1#(9%2) to C™#(0%)
and C™#(9Q) is continuously imbedded into C™~1:%(99), the operator v[d2, Sa, ]jaq is continuous
from C™~18(9Q) into C™~1*(99Q). Then formula (10.1) and Theorems 8.3(ii), 9.2(ii) imply the
validity of statement (ii). O

Since the space C™~1«=(*)(9Q) is compactly imbedded into C™~1(99), and C™~1(9Q) is com-
pactly imbedded into C™~18(9Q) for all 8 €]0, a, we have the following immediate consequence of
Theorem 10.1(ii).

Corollary 10.1. Under the assumptions of Theorem 10.1, w, [0, Sa, -]jaq is compact from C™=1(00)
to itself, from C™=1wa()(90) to itself and from C™~ 12 (0N) to itself.
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