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REGULARIZING PROPERTIES OF THE DOUBLE
LAYER POTENTIAL OF SECOND ORDER
ELLIPTIC DIFFERENTIAL OPERATORS



Abstract. We prove the validity of regularizing properties of a double layer potential associated to
the fundamental solution of a nonhomogeneous second order elliptic differential operator with constant
coefficients in Schauder spaces by exploiting an explicit formula for the tangential derivatives of the
double layer potential itself. We also introduce ad hoc norms for kernels of integral operators in order
to prove continuity results of integral operators upon variation of the kernel, which we apply to the
layer potentials.
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ÒÄÆÉÖÌÄ. ÏÒÌÀÂÉ ×ÄÍÉÓ ÐÏÔÄÍÝÉÀËÉÓ ÌáÄÁÉ ßÀÒÌÏÄÁÖËÉÓ ÝáÀÃÉ ×ÏÒÌÖËÉÓ ÂÀÌÏÚÄÍÄÁÉÈ
ÃÀÌÔÊÉÝÄÁÖËÉÀ ÉÌ ÏÒÌÀÂÉ ×ÄÍÉÓ ÐÏÔÄÍÝÉÀËÉÓ ÒÄÂÖËÀÒÖËÉ ÈÅÉÓÄÁÄÁÉ, ÒÏÌÄËÉÝ ÃÀÊÀÅÛÉ-
ÒÄÁÖËÉÀ ÀÒÀÄÒÈÂÅÀÒÏÅÀÍÉ ÌÄÏÒÄ ÒÉÂÉÓ ÌÖÃÌÉÅÊÏÄ×ÉÝÉÄÍÔÄÁÉÀÍÉ ÄËÉ×ÓÖÒÉ ÃÉ×ÄÒÄÍÝÉÀ-
ËÖÒÉ ÏÐÄÒÀÔÏÒÉÓ ×ÖÍÃÀÌÄÍÔÖÒ ÀÌÏÍÀáÓÍÈÀÍ ÛÀÖÃÄÒÉÓ ÓÉÅÒÝÄÄÁÛÉ. ÀÂÒÄÈÅÄ ÛÄÌÏÙÄÁÖËÉÀ
ÓÐÄÝÉÀËÖÒÉ ÍÏÒÌÄÁÉ ÉÍÔÄÂÒÀËÖÒÉ ÏÐÄÒÀÔÏÒÄÁÉÓ ÂÖËÄÁÉÓÈÅÉÓ, ÒÀÈÀ ÃÀÌÔÊÉÝÄÁÖË ÉØÍÀÓ
ÉÍÔÄÂÒÀËÖÒÉ ÏÐÄÒÀÔÏÒÄÁÉÓ ÖßÚÅÄÔÏÁÀ ÂÖËÉÓ ÝÅËÉËÄÁÉÓÀÓ, ÒÏÌÄËÉÝ ÂÀÌÏÚÄÍÄÁÖËÉÀ
ÏÒÌÀÂÉ ×ÄÍÉÓ ÐÏÔÄÍÝÉÀËÄÁÉÓÈÅÉÓ.
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1 Introduction
In this paper, we consider the double layer potential associated to the fundamental solution of a second
order differential operator with constant coefficients. Throughout the paper, we assume that

n ∈ N \ {0, 1} ,

where N denotes a set of natural numbers including 0. Let α ∈ ]0, 1[ , m ∈ N\{0}. Let Ω be a bounded
open subset of Rn of the class Cm,α. Let ν ≡ (νl)l=1,...,n denote the external unit normal to ∂Ω. Let
N2 denote the number of multi-indices γ ∈ Nn with |γ| ≤ 2. For each

a ≡ (aγ)|γ|≤2 ∈ CN2 , (1.1)

we set
a(2) ≡ (alj)l,j=1,...,n, a(1) ≡ (aj)j=1,...,n, a ≡ a0 ,

with alj ≡ 2−1ael+ej for j ̸= l, ajj ≡ aej+ej , and aj ≡ aej , where {ej : j = 1, . . . , n} is the canonical
basis of Rn. We note that the matrix a(2) is symmetric. Then we assume that a ∈ CN2 satisfies the
following ellipticity assumption

inf
ξ∈Rn,|ξ|=1

Re
{ ∑

|γ|=2

aγξ
γ
}
> 0 , (1.2)

and we consider the case in which

alj ∈ R ∀ l, j = 1, . . . , n . (1.3)

Introduce the operators

P [a, D]u ≡
n∑

l,j=1

∂xl
(alj∂xj

u) +

n∑
l=1

al∂xl
u+ au ,

B∗
Ωv ≡

n∑
l,j=1

ajlνl∂xjv −
n∑
l=1

νlalv ,

for all u, v ∈ C2(Ω), a fundamental solution Sa of P [a, D], and the double layer potential

w
[
∂Ω,a, Sa, µ

]
(x) ≡

∫
∂Ω

µ(y)B∗
Ω,y

(
Sa(x− y)

)
dσy

= −
∫
∂Ω

µ(y)

n∑
l,j=1

ajlνl(y)
∂Sa
∂xj

(x− y) dσy −
∫
∂Ω

µ(y)

n∑
l=1

νl(y)alSa(x− y) dσy ∀x ∈ Rn , (1.4)

where the density (or the moment) µ is a function from ∂Ω to C. Here the subscript y of B∗
Ω,y means

that we take y as a variable of the differential operator B∗
Ω,y. The role of the double layer potential in

the solution of boundary value problems for the operator P [a, D] is well known (cf. e.g., Günter [14],
Kupradze, Gegelia, Basheleishvili and Burchuladze [20], Mikhlin [23]).

The analysis of the continuity and compactness properties of the integral operator associated to
the double layer potential is a classical topic. In particular, it has long been known that if µ is of the
class Cm,α, then the restriction of the double layer potential to the sets

Ω+ ≡ Ω , Ω− ≡ Rn \ clΩ

can be extended to a function of Cm,α(clΩ+) and to a function of Cm,αloc (clΩ−), respectively (cf., e.g.,
Miranda [24], Wiegner [36], Dalla Riva [3], Dalla Riva, Morais and Musolino [5]).



72 Francesco Dondi and Massimo Lanza de Cristoforis

In case n = 3 and Ω is of the class C1,α and Sa is the fundamental solution of the Laplace operator,
it has long been known that w[∂Ω,a, Sa, · ]|∂Ω is a linear and compact operator in C1,α(∂Ω) and is
linear and continuous from C0(∂Ω) to C0,α(∂Ω) (cf. Schauder [30], [31], Miranda [24].)

In case n = 3, m ≥ 1 and Ω is of the class Cm+1 and if P [a, D] is the Laplace operator, Günter [14,
Ch. II, § 21, Thm. 3] has proved that w[∂Ω,a, Sa, · ]|∂Ω is bounded from Cm−1,α′

(∂Ω) to Cm,α(∂Ω)
for α′ ∈ ]α, 1[ and, accordingly, is compact in Cm,α(∂Ω).

Fabes, Jodeit and Rivière [12] have proved that if Ω is of the class C1 and if P [a, D] is the Laplace
operator, then w[∂Ω,a, Sa, · ]|∂Ω is compact in Lp(∂Ω) for p ∈ ]1,+∞[ . Later, Hofmann, M. Mitrea
and Taylor [16] have proved the same compactness result under more general conditions on ∂Ω.

In case n = 2 and Ω is of the class C2,α, and if P [a, D] is the Laplace operator, Schippers [32] has
proved that w[∂Ω,a, Sa, · ]|∂Ω is continuous from C0(∂Ω) to C1,α(∂Ω).

In case n = 3 and Ω is of the class C2, and if P [a, D] is the Helmholtz operator, Colton and Kress [2]
have developed works of Günter [14] and Mikhlin [23] and proved that the operator w[∂Ω,a, Sa, · ]|∂Ω
is bounded from C0,α(∂Ω) to C1,α(∂Ω) and, accordingly, is compact in C1,α(∂Ω).

Wiegner [36] has proved that if γ ∈ Nn has odd length and Ω is of the class Cm,α, then the
operator with kernel (x − y)γ |x − y|−(n−1)−|γ| is continuous from Cm−1,α(∂Ω) to Cm−1,α(clΩ) (and
a corresponding result holds for the exterior of Ω).

In case n = 3, m ≥ 2 and Ω is of the class Cm,α, and if P [a, D] is the Helmholtz operator,
Kirsch [18] has proved that the operator w[∂Ω,a, Sa, · ]|∂Ω is bounded from Cm−1,α(∂Ω) to Cm,α(∂Ω)
and, accordingly, is compact in Cm,α(∂Ω).

von Wahl [35] has considered the case of Sobolev spaces and proved that if Ω is of the class C∞ and
Sa is the fundamental solution of the Laplace operator, then the double layer improves the regularity
of one unit on the boundary.

Later on, Heinemann [15] has developed the ideas of von Wahl in the frame of Schauder spaces
and proved that if Ω is of the class Cm+5 and Sa is the fundamental solution of the Laplace operator,
then the double layer improves the regularity of one unit on the boundary, i.e., w[∂Ω,a, Sa, · ]|∂Ω is
linear and continuous from Cm,α(∂Ω) to Cm+1,α(∂Ω).

Maz’ya and Shaposhnikova [22] have proved that w[∂Ω,a, Sa, · ]|∂Ω is continuous in fractional
Sobolev spaces under sharp regularity assumptions on the boundary and if P [a, D] is the Laplace
operator.

Mitrea [26] has proved that the double layer of second order equations and systems is compact in
C0,β(∂Ω) for β ∈ ]0, α[ and bounded in C0,α(∂Ω) under the assumption that Ω is of the class C1,α.
Then by exploiting a formula for the tangential derivatives such results have been extended to the
compactness and boundedness results in C1,β(∂Ω) and C1,α(∂Ω), respectively.

Mitrea, Mitrea and Verdera [28] have proved that if q is a homogeneous polynomial of odd order,
then the operator with kernel q(x− y)|x− y|−(n−1)−deg(q) maps C0,α(∂Ω) to C1,α(clΩ).

In this paper, of special interest are the regularizing properties of the operator w[∂Ω,a, Sa, · ]|∂Ω
in Schauder spaces under the assumption that Ω is of the class Cm,α. We prove our statements by
exploiting tangential derivatives and an inductive argument to reduce the problem to the case of
the action of w[∂Ω,a, Sa, · ]|∂Ω on C0,α(∂Ω) instead of flattening the boundary with parametrization
functions as done by the other authors. We mention that the idea of exploiting an inductive argument
together with the formula for the tangential gradient in order to prove the continuity and compactness
properties of the double layer potential has been used by Kirsch [18, Thm. 3.2] in case n = 3, P [a, D]
equals the Helmholtz operator and Sa is the fundamental solution satisfying the radiation condition.
The tangential derivatives of f ∈ C1(∂Ω) are defined by the equality

Mlr[f ] ≡ νl
∂f̃

∂xr
− νr

∂f̃

∂xl
on ∂Ω

for all l, r ∈ {1, . . . , n}. Here f̃ denotes an extension of f to an open neighbourhood of ∂Ω, and one
can easily verify that Mlr[f ] is independent of the specific choice of the extension f̃ of f . Then we
prove an explicit formula for

Mlr

[
w[∂Ω,a, Sa, µ]

]
(x)− w

[
∂Ω,a, Sa,Mlr[µ]

]
(x) ∀x ∈ ∂Ω (1.5)



Regularizing Properties of the Double Layer Potential of Second Order Elliptic Differential Operators 73

for all µ ∈ C1(∂Ω) and l, r ∈ {1, . . . , n} (see formula (9.1)).
We note that Günter [14, Ch. II, § 10, (42)] presents the formula for the partial derivatives of

the double layer with respect to the variables in Rn in case n = 3 and P [a, D] equals the Laplace
operator (see (7.1) for the case of the Laplace operator). A similar formula can be found in Kupradze,
Gegelia, Basheleishvili and Burchuladze [20, Ch. V, § 6, (6.11)] for the elastic double layer potential
in case n = 3. Schwab and Wendland [33] have proved that the difference in (1.5) can be written
in terms of pseudodifferential operators of order −1. Dindoš and Mitrea have proved a number of
properties of the double layer potential. In particular, [7, Prop. 3.2] proves the existence of integral
operators such that the gradient of the double layer potential corresponding to the Stokes system can
be written as a sum of such integral operators applied to the gradient of the moment of the double
layer. Duduchava, Mitrea, and Mitrea [11] analyze various properties of the tangential deriatives.
Duduchava [10] investigates partial differential equations on hypersurfaces and the Bessel potential
operators. In particular, [10, point B of the proof of Lem. 2.1] analyzes the commutator properties both
of the Bessel potential operator and of a tangential derivative. Hofmann, Mitrea and Taylor [16, (6.2.6)]
prove a general formula for the tangential derivatives of the double layer potential corresponding to
the second order elliptic homogeneous equations and systems in explicit terms.

Formula (9.1), we have computed here, extends the formula of [21] for the Laplace operator, which
has been computed with arguments akin to those of Günter [14, Ch. II, § 10, (42)], and a formula of [8]
for the Helmholtz operator, and can be considered as a variant of the formula of Hofmann, Mitrea
and Taylor [16, (6.2.6)] for the second order nonhomogeneous elliptic differential operator P [a, D].

Formula (9.1) involves auxiliary operators, which we analyze in Section 8. We have based our
analysis of the auxiliary operators involved in formula (9.1) on the introduction of boundary norms
for weakly singular kernels and on the result of the joint continuity of weakly singular integrals both
on the kernel of the integral and on the functional variable of the corresponding integral operator (see
Section 6). For fixed choices of the kernel and for some choices of the parameters, such lemmas are
known (cf. e.g., Kirsch and Hettlich [19, Thm. 3.17, p. 121]). The authors believe that the methods
of Section 6 may be applied to simplify also the exposition of other classical proofs of properties of
layer potentials.

By exploiting formula (9.1), we can prove that w[∂Ω,a, Sa, · ]|∂Ω induces a linear and continuous
operator from Cm(∂Ω) to the generalized Schauder space Cm,ωα(∂Ω) of functions with m-th order
derivatives which satisfy a generalized ωα-Hölder condition with

ωα(r) ∼ rα| ln r| as r → 0,

and that w[∂Ω,a, Sa, · ]|∂Ω induces a linear and continuous operator from Cm,β(∂Ω) to Cm,α(∂Ω) for
all β ∈ ]0, α]. In particular, the double layer potential has a regularizing effect on the boundary if Ω
is of the class Cm,α. As a consequence of our result, w[∂Ω,a, Sa, · ]|∂Ω induces a compact operator
from Cm(∂Ω) to itself, and from Cm,ωα( · )(∂Ω) to itself, and from Cm,α(∂Ω) to itself when Ω is of the
class Cm,α.

2 Notation
We denote the norm on a normed space X by ∥ · ∥X . Let X and Y be normed spaces. We endow
the space X × Y with the norm defined by ∥(x, y)∥X×Y ≡ ∥x∥X + ∥y∥Y for all (x, y) ∈ X × Y, while
we use the Euclidean norm for Rn. For standard definitions of Calculus in normed spaces, we refer to
Deimling [6]. If A is a matrix with real or complex entries, then At denotes the transpose matrix of
A. The set Mn(R) denotes the set of n×n matrices with real entries. Let D ⊆ Rn. Then clD denotes
the closure of D, and ∂D denotes the boundary of D, and diam(D) denotes the diameter of D. The
symbol | · | denotes the Euclidean modulus in Rn or in C. For all R ∈ ]0,+∞[ , x ∈ Rn, xj denotes the
j-th coordinate of x, and Bn(x,R) denotes the ball {y ∈ Rn : |x− y| < R}. Let Ω be an open subset
of Rn. The space of m times continuously differentiable complex-valued functions on Ω is denoted by
Cm(Ω,C) or, more simply, by Cm(Ω). Let s ∈ N\{0}, f ∈ (Cm(Ω))s. Then Df denotes the Jacobian
matrix of f . Let η ≡ (η1, . . . , ηn) ∈ Nn, |η| ≡ η1 + · · · + ηn. Then Dηf denotes ∂|η|f

∂x
η1
1 ...∂xηn

n
. The
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subspace of Cm(Ω) of those functions f whose derivatives Dηf of order |η| ≤ m can be extended with
continuity to clΩ is denoted by Cm(clΩ).

The subspace of Cm(cl Ω) whose derivatives up to order m are bounded is denoted by Cmb (cl Ω).
Then Cmb (cl Ω) endowed with the norm ∥f∥Cm

b (cl Ω) ≡
∑

|η|≤m
sup
cl Ω

|Dηf | is a Banach space.

Now, let ω be a function of ]0,+∞[ to itself such that

ω is increasing and lim
r→0+

ω(r) = 0 , (2.1)

sup
(a,t)∈[1,+∞[×]0,+∞[

ω(at)

aω(t)
< +∞,

and
sup
r∈ ]0,1[

ω−1(r)r <∞ . (2.2)

If f is a function from a subset D of Rn to C, we set

|f : D|ω( · ) ≡ sup
{ |f(x)− f(y)|

ω(|x− y|)
: x, y ∈ D, x ̸= y

}
.

If |f : D|ω( · ) < ∞, we say that the function f is ω( · )-Hölder continuous. Sometimes we simply
write |f |ω( · ) instead of |f : D|ω( · ). If ω(r) = r and |f : D|ω( · ) < ∞, then we say that f is Lipschitz
continuous and we set Lip(f) ≡ |f : D|ω( · ). The subspace of C0(D) whose functions are ω( · )-
Hölder continuous is denoted by C0,ω( · )(D), and the subspace of C0(D) whose functions are Lipschitz
continuous is denoted by Lip(D).

Let Ω be an open subset of Rn. The subspace of Cm(cl Ω) whose functions have m-th order
derivatives that are ω( · )-Hölder continuous is denoted by Cm,ω( · )(cl Ω). We set

C
m,ω( · )
b (cl Ω) ≡ Cm,ω( · )(cl Ω) ∩ Cmb (cl Ω) .

The space Cm,ω( · )b (clΩ), equipped with its usual norm

∥f∥
C

m,ω( · )
b (cl Ω)

= ∥f∥Cm
b (cl Ω) +

∑
|η|=m

|Dηf : Ω|ω( · ) ,

is well-known to be a Banach space.
Obviously, Cm,ω( · )b (cl Ω) = Cm,ω( · )(cl Ω) if Ω is bounded (in this case, we shall always drop the

subscript b). The subspace of Cm(cl Ω) of those functions f such that f|cl (Ω∩Bn(0,R)) ∈ Cm,ω( · )(cl (Ω∩
Bn(0, R))) for all R ∈ ]0,+∞[ is denoted by Cm,ω( · )loc (cl Ω). Clearly, Cm,ω( · )loc (cl Ω) = Cm,ω( · )(cl Ω) if
Ω is bounded.

Of particular importance is the case in which ω( · ) is the function rα for some fixed α ∈ ]0, 1]. In
this case, we simply write | · : clΩ|α instead of | · : clΩ|rα , Cm,α(cl Ω) instead of Cm,rα(cl Ω), and
Cm,αb (cl Ω) instead of Cm,r

α

b (cl Ω). We observe that property (2.2) implies that

Cm,1b (cl Ω) ⊆ C
m,ω( · )
b (cl Ω) .

For the definition of a bounded open Lipschitz subset of Rn, we refer, e.g., to Nečas [29, §1.3]. Let
m ∈ N \ {0}. We say that a bounded open subset Ω of Rn is of the class Cm,α if for every P ∈ ∂Ω
there exist an open neighborhood W of P in Rn, and a diffeomorphism ψ ∈ Cm,α(clBn,Rn) of
Bn ≡ {x ∈ Rn : |x| < 1} onto W such that ψ(0) = P , ψ({x ∈ Bn : xn = 0}) = W ∩ ∂Ω,
ψ({x ∈ Bn : xn < 0}) = W ∩ Ω (ψ is said to be a parametrization of ∂Ω around P ). Now, let
Ω be bounded and of class Cm,α. By the compactness of ∂Ω and by definition of a set of the class
Cm,α, there exist P1,…,Pr ∈ ∂Ω, and parametrizations {ψi}i=1,...,r, with ψi ∈ Cm,α(clBn,Rn) such
that

r∪
i=1

ψi({x ∈ Bn : xn = 0}) = ∂Ω. Let h ∈ {1, . . . ,m}. Let ω be as in (2.1), (2.2). Let

sup
r∈ ]0,1[

ω−1(r)rα <∞ . (2.3)
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We denote by Ch,ω( · )(∂Ω) the linear space of functions f of ∂Ω to C such that f ◦ ψi( · , 0) ∈
Ch,ω( · )(clBn−1) for all i = 1, . . . , r, and we set

∥f∥Ch,ω( · )(∂Ω) ≡ sup
i=1,...,r

∥f ◦ ψi( · , 0)∥Ch,ω( · )(cl Bn−1) ∀ f ∈ Ch,ω( · )(∂Ω).

It is well known that by choosing a different finite family of parametrizations as {ψi}i=1,...,r, we would
obtain an equivalent norm. In case ω( · ) is the function rα, we have the spaces Ch,α(∂Ω).

It is known that (Ch,ω( · )(∂Ω), ∥ · ∥Ch,ω( · )(∂Ω)) is complete. Moreover, condition (2.3) implies that
the restriction operator is linear and continuous from Ch,ω( · )(clΩ) to Ch,ω( · )(∂Ω).

We denote by dσ the area element of a manifold imbedded in Rn and retain the standard notation
for the Lebesgue spaces.

Remark 2.1. Let m ∈ N \ {0}, α ∈ ]0, 1[ . Let Ω be a bounded open subset of Rn of the class Cm,α.
Let ω be as in (2.1), (2.2). If h ∈ {1, . . . ,m}, h < m, then m − 1 ≥ 1 and Ω is of the class

Cm−1,1, and condition (2.2) implies the validity of condition (2.3) with α replaced by 1. Thus we can
consider the space Ch,ω( · )(∂Ω) even if we do not assume condition (2.3). If instead of h we take m,
the definition we gave requires (2.3).

Remark 2.2. Let ω be as in (2.1), D be a subset of Rn and let f be a bounded function from D to
C, a ∈ ]0,+∞[ . Then

sup
x,y∈D, |x−y|≥a

|f(x)− f(y)|
ω(|x− y|)

≤ 2

ω(a)
sup
D

|f | .

Thus the difficulty of estimating the Hölder quotient |f(x)−f(y)|
ω(|x−y|) of a bounded function f lies entirely

in case 0 < |x− y| < a. Then we have the following well known extension result. For a proof, we refer
to Troianiello [34, Thm. 1.3, Lem. 1.5].

Lemma 2.1. Let m ∈ N \ {0}, α ∈ ]0, 1[ , j ∈ {0, . . . ,m}, Ω be a bounded open subset of Rn of
the class Cm,α, and let R ∈ ]0,+∞[ be such that clΩ ⊆ Bn(0, R). Then there exists a linear and
continuous extension operator ‘ ∼ ’ of Cj,α(∂Ω) to Cj,α(clBn(0, R)), which takes µ ∈ Cj,α(∂Ω) to
a map µ̃ ∈ Cj,α(clBn(0, R)) such that µ̃|∂Ω = µ and the support of µ is compact and contained in
Bn(0, R). The same statement holds by replacing Cm,α by Cm and Cj,α by Cj.

Let Ω be a bounded open subset of Rn of the class C1. The tangential gradient D∂Ωf of f ∈ C1(∂Ω)
is defined as

D∂Ωf ≡ Df̃ − (ν ·Df̃)ν on ∂Ω ,

where f̃ is an extension of f of the class C1 in an open neighborhood of ∂Ω, and we have

∂f̃

∂xr
− (ν ·Df̃)νr =

n∑
l=1

Mlr[f ]νl on ∂Ω

for all r ∈ {1, . . . , n}. If a is as in (1.1), (1.2), then we also set

Daf ≡ (Da,rf)r=1,...,n ≡ Df̃ − Df̃a(2)ν

νta(2)ν
ν on ∂Ω .

Since

Da,rf =
∂f̃

∂xr
− Df̃a(2)ν

νta(2)ν
νr =

r∑
l=1

Mlr[f ]

( n∑
h=1

alhνh

νta(2)ν

)
on ∂Ω (2.4)

for all r ∈ {1, . . . , n}, Daf is independent of the specific choice of the extension f̃ of f . We also need
the following well known consequence of the Divergence Theorem.
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Lemma 2.2. Let Ω be a bounded open subset of Rn of the class C1. If φ, ψ ∈ C1(∂Ω), then∫
∂Ω

Mlj [φ]ψ dσ = −
∫
∂Ω

φMlj [ψ] dσ

for all l, j ∈ {1, . . . , n}.

Next, we introduce the following auxiliary Lemmas, whose proof is based on the definition of the
norm in a Schauder space.

Lemma 2.3. Let m ∈ N \ {0}, α ∈ ]0, 1]. Let ω be as in (2.1), (2.2), (2.3), and let Ω be a bounded
open connected subset of Rn of the class Cm,α. Then the following statements hold:

(i) A function f ∈ C1(∂Ω) belongs to Cm,ω( · )(∂Ω) if and only if Mlr[f ] ∈ Cm−1,ω( · )(∂Ω) for all
l, r ∈ {1, . . . , n}.

(ii) The norm ∥ · ∥Cm,ω( · )(∂Ω) is equivalent to the norm on Cm,ω( · )(∂Ω) defined by

∥f∥C0(∂Ω) +

n∑
l,r=1

∥∥Mlr[f ]
∥∥
Cm−1,ω( · )(∂Ω)

∀ f ∈ Cm,ω( · )(∂Ω) .

We have the following (see also Remark 2.1)

Lemma 2.4. Let m ∈ N \ {0}, α ∈ ]0, 1]. Let Ω be a bounded open connected subset of Rn of class
Cm,α, and let h ∈ {1, . . . ,m}. Then the following statements hold:

(i) Let h < m and ω be as in (2.1), (2.2). Then Mlj is linear and continuous from Ch,ω( · )(∂Ω)
to Ch−1,ω( · )(∂Ω) for all l, j ∈ {1, . . . , n}. If we further assume that ω satisfies condition (2.3),
then the same statement holds also for h = m.

(ii) Let h < m, ω be as in (2.1), (2.2), and let a be as in (1.1), (1.2). Then the function from
Ch,ω( · )(∂Ω) to Ch−1,ω( · )(∂Ω,Rn), which takes f to Daf is linear and continuous. If we further
assume that ω satisfies condition (2.3), then the same statement holds also for h = m.

(iii) Let h < m and ω be as in (2.1), (2.2). Then the space Ch,ω( · )(∂Ω) is continuously imbedded
into Ch−1,1(∂Ω). If we further assume that ω satisfies condition (2.3), then the same statement
holds also for h = m.

(iv) Let h < m. Let ψ1, ψ2 be as in (2.1), (2.2), and let the condition sup
r∈ ]0,1[

ψ−1
2 (r)ψ1(r) <∞ hold.

Then Ch,ψ1( · )(∂Ω) is continuously imbedded into Ch,ψ2( · )(∂Ω). If we further assume that ψj
satisfies condition (2.3) for j ∈ {1, 2}, then the same statement holds also for h = m.

(v) Let h < m. Let ψ1, ψ2, ψ3 be as in (2.1), (2.2), and let the conditions sup
j=1,2

sup
r∈ ]0,1[

ψj(r)ψ
−1
3 (r)<∞

hold. Then the pointwise product is bilinear and continuous from Ch,ψ1( · )(∂Ω) × Ch,ψ2( · )(∂Ω)
to Ch,ψ3( · )(∂Ω). If we further assume that ψj satisfies condition (2.3) for j ∈ {1, 2, 3}, then the
same statement holds also for h = m.

Lemma 2.5. Let Ω be a bounded open Lipschitz subset of Rn. Let ψ1, ψ2, ψ3 be as in (2.1), (2.2),
and let the conditions sup

j=1,2
sup
r∈ ]0,1[

ψj(r)ψ
−1
3 (r) < ∞ hold. Then the pointwise product is bilinear and

continuous from C0,ψ1( · )(∂Ω)× C0,ψ2( · )(∂Ω) to C0,ψ3( · )(∂Ω).

3 Preliminary inequalities
We first introduce the following elementary lemma on matrices.
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Lemma 3.1. Let Λ ∈Mn(R) be invertible. Let |Λ| ≡ sup
|x|=1

|Λx|. Then the following statements hold:

(i) If τΛ ≡ max{|Λ|, |Λ−1|}, then

τ−1
Λ |x| ≤ |Λx| ≤ τΛ|x| ∀x ∈ Rn .

(ii) If r ∈ ]0,+∞[ , then
|Λ−1x|−r ≤ |Λ|r|x|−r ∀x ∈ Rn \ {0} .

Proof. Statement (i) is well known. We now consider statement (ii). Let x ∈ Rn \ {0}. Then we have

|x| = |Λ(Λ−1x)| ≤ |Λ| |Λ−1x| .

Hence, |Λ−1x| ≥ |Λ|−1|x| and the statement follows.

Then we introduce the following elementary lemma, which collects either the known inequalities
or the variants of the known inequalities, which we will need in the sequel.

Lemma 3.2. Let γ ∈ R and Λ ∈Mn(R) be invertible. The following statements hold:

(i)

1

2
|x′ − y| ≤ |x′′ − y| ≤ 2|x′ − y| ,

1

2τ2Λ
|Λx′ − Λy| ≤ |Λx′′ − Λy| ≤ 2τ2Λ|Λx′ − Λy| ,

for all x′, x′′ ∈ Rn, x′ ̸= x′′, y ∈ Rn \ Bn(x′, 2|x′ − x′′|).

(ii)

|x′ − y|γ ≤ 2|γ||x′′ − y|γ , |x′′ − y|γ ≤ 2|γ||x′ − y|γ ,
|Λx′ − Λy|γ ≤ (2τ2Λ)

|γ||Λx′′ − Λy|γ , |Λx′′ − Λy|γ ≤ (2τ2Λ)
|γ||Λx′ − Λy|γ ,

for all x′, x′′ ∈ Rn, x′ ̸= x′′, y ∈ Rn \ Bn(x′, 2|x′ − x′′|).

(iii) ∣∣|x′ − y|γ − |x′′ − y|γ
∣∣ ≤ (2|γ| − 1)|x′ − y|γ ∀ y ∈ Rn \ Bn(x′, 2|x′ − x′′|) ,

for all x′, x′′ ∈ Rn, x′ ̸= x′′.

(iv) There exist mγ , mγ(Λ) ∈ ]0,+∞[ such that∣∣|x′ − y|γ − |x′′ − y|γ
∣∣ ≤ mγ |x′ − x′′| |x′ − y|γ−1,∣∣|Λx′ − Λy|γ − |Λx′′ − Λy|γ
∣∣ ≤ mγ(Λ)|Λx′ − Λx′′| |Λx′ − Λy|γ−1

for all x′, x′′ ∈ Rn, x′ ̸= x′′, y ∈ Rn \ Bn(x′, 2|x′ − x′′|).

(v) ∣∣ ln |x′ − y| − ln |x′′ − y|
∣∣ ≤ 2|x′ − x′′| |x′ − y|−1 ∀ y ∈ Rn \ Bn(x′, 2|x′ − x′′|) ,

for all x′, x′′ ∈ Rn, x′ ̸= x′′.

Proof. The first two inequalities of statement (i) follow by the triangular inequality. Further, we have

|Λx′ − Λy| ≤ τΛ|x′ − y| ≤ τΛ2|x′′ − y| ≤ 2τ2Λ|Λx′′ − Λy| ,

and thus the first of the second two inequalities of statement (i) holds true. The second of the second
two inequalities of statement (i) can be proved by interchanging the roles of x′ and x′′.
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It now suffices to prove only the second inequalities in statements (ii), (iv). Indeed, the first
inequalities follow by the second ones and by the equality τΛ = 1 when Λ is the identity matrix.

The first of the second inequalities in (ii) for γ ≥ 0 follows by raising the inequality |Λx′ − Λy| ≤
(2τ2Λ)|Λx′′ −Λy| of statement (i) to the power γ. For γ < 0 the same inequality follows by raising the
inequality |Λx′′ − Λy| ≤ (2τ2Λ)|Λx′ − Λy| of statement (i) to the power γ. The second of the second
inequalities of (ii) can be proved by interchanging the roles of x′ and x′′.

Statement (iii) follows by a direct application of (ii). To prove (iv) and (v), we follow Cialdea [1, § 8].
First consider (iv) and assume that |Λx′ − Λy| ≤ |Λx′′ − Λy|. By the Lagrange Theorem, there exists
ζ ∈ [|Λx′ − Λy|, |Λx′′ − Λy|] such that∣∣|Λx′ − Λy|γ − |Λx′′ − Λy|γ

∣∣ ≤ ∣∣γ|ζγ−1| |Λx′ − Λy| − |Λx′′ − Λy|
∣∣ .

If γ ≥ 1, then the inequality ζ ≤ |Λx′′ − Λy| and (i) imply

ζγ−1 ≤ |Λx′′ − Λy|γ−1 ≤ (2τ2Λ)
|γ−1||Λx′ − Λy|γ−1 .

If γ < 1, then the inequalities ζ ≥ |Λx′ − Λy| and τΛ ≥ 1 imply

ζγ−1 ≤ |Λx′ − Λy|γ−1 ≤ (2τ2Λ)
|γ−1||Λx′ − Λy|γ−1 .

Then we have∣∣|Λx′ − Λy|γ − |Λx′′ − Λy|γ
∣∣ ≤ |γ|(2τ2Λ)|γ−1|∣∣|Λx′ − Λy| − |Λx′′ − Λy|

∣∣ |Λx′ − Λy|γ−1 , (3.1)

which implies the validity of (iv). Similarly, in case |Λx′ − Λy| > |Λx′′ − Λy|, we can prove that (3.1)
holds with x′ and x′′ interchanged. Thus (ii) implies the validity of (iv).

We now consider statement (v) and assume that |x′ − y| ≤ |x′′ − y|. By the Lagrange Theorem,
there exists ζ ∈ [|x′ − y|, |x′′ − y|] such that∣∣ ln |x′ − y| − ln |x′′ − y|

∣∣ ≤ ζ−1| |x′ − y| − |x′′ − y| | ≤ ζ−1|x′ − x′′| . (3.2)

By the above assumption, ζ−1 ≤ |x′ − y|−1, and thus statement (v) follows. Similarly, if |x′ − y| >
|x′′ − y|, we can prove that (3.2) holds with x′ and x′′ interchanged and (i) implies that ζ−1 ≤
|x′′ − y|−1 ≤ 2|x′ − y|−1, which yields the validity of (v).

Lemma 3.3. Let G be a nonempty bounded subset of Rn. Then the following statements hold:

(i) Let F ∈ Lip(∂Bn × [0,diam (G)]) with

Lip(F ) ≡
{
|F (θ′, r′)− F (θ′′, r′′)|
|θ′ − θ′′|+ |r′ − r′′|

: (θ′, r′), (θ′′, r′′) ∈ ∂Bn × [0,diam (G)], (θ′, r′) ̸= (θ′′, r′′)

}
.

Then∣∣∣∣F( x′ − y

|x′ − y|
, |x′ − y|

)
− F

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣ ≤ Lip(F )(2 + diam (G))
|x′ − x′′|
|x′ − y|

(3.3)

∀ y ∈ G \ Bn
(
x′, 2|x′ − x′′|

)
for all x′, x′′ ∈ G, x′ ̸= x′′. In particular, if f ∈ C1(∂Bn × R,C), then

Mf,G ≡ sup
{∣∣∣∣f( x′ − y

|x′ − y|
, |x′ − y|

)
− f

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣ |x′ − y|
|x′ − x′′|

:

x′, x′′ ∈ G, x′ ̸= x′′, y ∈ G \ Bn
(
x′, 2|x′ − x′′|

)}
<∞ .

(ii) Let W be an open neighbourhood of cl (G−G). Let f ∈ C1(W,C). Then

M̃f,G ≡ sup
{∣∣f(x′ − y)− f(x′′ − y)

∣∣ |x′ − x′′|−1 : x′, x′′ ∈ G, x′ ̸= x′′, y ∈ G
}
<∞ .

Here G−G ≡ {y1 − y2 : y1, y2 ∈ G}.
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Proof. First we consider statement (i). The Lipschitz continuity of F implies that the left-hand side
of (3.3) is less or equal to

Lip(F )
{∣∣∣ x′ − y

|x′ − y|
− x′′ − y

|x′′ − y|

∣∣∣+ ∣∣|x′ − y| − |x′′ − y|
∣∣}

≤ Lip(F )
{
|x′′ − y|

∣∣∣ 1

|x′′ − y|
− 1

|x′ − y|

∣∣∣+ 1

|x′ − y|
∣∣|x′′ − y| − |x′ − y|

∣∣+ |x′ − x′′|
}

≤ Lip(F )
{
|x′′ − y| |x′ − x′′|

|x′′ − y| |x′ − y|
+

|x′ − x′′|
|x′ − y|

+ |x′ − x′′|
}

≤ Lip(F )|x′ − x′′|
{
2 + |x′ − y|
|x′ − y|

}
,

and thus inequality (3.3) holds true.
Since ∂Bn × R is a manifold of the class C∞ imbedded into Rn+1, there exists F ∈ C1(Rn+1)

which extends f . Since ∂Bn× [0,diam (G)] is a compact subset of Rn+1, F is Lipschitz continuous on
∂Bn × [0,diam (G)], and the second part of statement (i) follows by inequality (3.3).

We now consider statement (ii). Since f ∈ C1(W,C), f is Lipschitz continuous on the compact set
cl (G−G), and statement (ii) follows.

We have the following well-known statement.

Lemma 3.4. Let α ∈ ]0, 1] and Ω be a bounded open connected subset of Rn of the class C1,α. Then
there exists cΩ,α > 0 such that∣∣ν(y) · (x− y)

∣∣ ≤ cΩ,α|x− y|1+α ∀x, y ∈ ∂Ω .

Next, we introduce a list of classical inequalities which can be verified by exploiting the local
parametrizations of ∂Ω.

Lemma 3.5. Let Ω be a bounded open Lipschitz subset of Rn. Then the following statements hold:

(i) Let γ ∈ ]−∞, n− 1[ . Then

c′Ω,γ ≡ sup
x∈∂Ω

∫
∂Ω

dσy
|x− y|γ

< +∞ .

(ii) Let γ ∈ ]−∞, n− 1[ . Then

c′′Ω,γ ≡ sup
x′,x′′∈∂Ω, x′ ̸=x′′

|x′ − x′′|−(n−1)+γ

∫
Bn(x′,3|x′−x′′|)∩∂Ω

dσy
|x′ − y|γ

< +∞ .

(iii) Let γ ∈ ]n− 1,+∞[ . Then

c′′′Ω,γ ≡ sup
x′,x′′∈∂Ω, x′ ̸=x′′

|x′ − x′′|−(n−1)+γ

∫
∂Ω\Bn(x′,2|x′−x′′|)

dσy
|x′ − y|γ

is finite.

(iv)

civΩ ≡ sup
x′,x′′∈∂Ω, 0<|x′−x′′|<1/e

∣∣ ln |x′ − x′′|
∣∣−1

∫
∂Ω\Bn(x′,2|x′−x′′|)

dσy
|x′ − y|n−1

< +∞ .
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4 Preliminaries on the fundamental solution
First we introduce a formula for the fundamental solution of P [a, D]. For this, we follow a formulation
of Dalla Riva [3, Thm. 5.2, 5.3] and Dalla Riva, Morais and Musolino [5, Thm. 3.1, 3.2] (see also
John [17], Miranda [24] for homogeneous operators, and Mitrea and Mitrea [27, p. 203]).

Theorem 4.1. Let a be as in (1.1), (1.2). Let Sa be a fundamental solution of P [a, D]. Then there
exist a real analytic function A0 from ∂Bn to C, a real analytic function A1 from ∂Bn × R to C,
b0 ∈ C, a real analytic function B1 from Rn to C, B1(0) = 0, and a real analytic function C from Rn
to C such that

Sa(x) = |x|2−nA0

( x

|x|

)
+ |x|3−nA1

( x

|x|
, |x|

)
+ b0 ln |x|+B1(x) ln |x|+ C(x) (4.1)

for all x ∈ Rn \ {0}, and both b0 and B1 equal zero if n is odd. Moreover,

|x|2−nA0

( x

|x|

)
+ δ2,nb0 ln |x|

is a fundamental solution for the principal part
n∑

l,j=1

∂xl
(alj∂xj ) of P [a, D]. Here δ2,n denotes the

Kronecker symbol. Namely,

δ2,n = 1 if n = 2, δ2,n = 0 if n > 2 .

Corollary 4.1. Let a be as in (1.1), (1.2). Let Sa be a fundamental solution of P [a, D]. Then the
following statements hold:

(i) If n ≥ 3, then there exists one and only one fundamental solution of the principal part
n∑

l,j=1

∂xl
(alj∂xj

) of P [a, D] which is positively homogeneous of degree 2− n in Rn \ {0}.

(ii) If n = 2, then there exists one and only one fundamental solution S(x) of the principal part
n∑

l,j=1

∂xl
(alj∂xj

) of P [a, D] such that

β0 ≡ lim
x→0

S(x)

ln |x|
∈ C ,

∫
∂Bn

S dσ = 0 ,

and S(x)− β0 ln |x| is positively homogeneous of degree 0 in Rn \ {0}.

Proof. We retain the notation of Theorem 4.1. We first consider statement (i). By Theorem 4.1,
the function |x|2−nA0(

x
|x| ) is a fundamental solution of the principal part of P [a, D] and is, clearly,

positively homogeneous of degree 2−n. Now assume that u is a fundamental solution of the principal
part of P [a, D] and u is positively homogeneous of degree 2− n in Rn \ {0}. Then the difference

w(x) ≡ |x|2−nA0

( x

|x|

)
− u(x)

defines an entire real analytic function in Rn and is positively homogeneous of degree 2−n in Rn \{0}.
In particular,

λn−2w(λx) = w(x) ∀ (λ, x) ∈ ]0,+∞[×(Rn \ {0}) ,

and, accordingly,

λ(n−2)+|β|Dβw(λx) = Dβw(x) ∀ (λ, x) ∈ ]0,+∞[×(Rn \ {0})

for all β ∈ Nn. Then by letting λ tend to 0+, we obtain Dβw(0) = 0 for all β ∈ Nn. Since w is real
analytic, we deduce that w is equal to 0 in Rn and thus statement (i) holds.
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Now assume that n = 2. By Theorem 4.1, the function

S(x) ≡ A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ + b0 ln |x|

is a fundamental solution of the principal part of P [a, D] and satisfies the conditions of statement (ii).
Suppose that u is another fundamental solution. Then the difference

w(x) ≡ A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ + b0 ln |x| − u(x)

defines an entire real analytic function in Rn and we have

0 = lim
x→0

w(x)

ln |x|
= lim
x→0

A0(
x
|x| )−

1
2π

∫
∂Bn

A0 dσ

ln |x|
+ b0 − lim

x→0

u(x)

ln |x|
,

and, accordingly,
b0 = lim

x→0

u(x)

ln |x|
≡ β0 ∈ C .

Then our assumption implies that the real analytic function

u(x)− β0 ln |x| = u(x)− b0 ln |x|

is positively homogeneous of degree 0 in Rn \ {0}. Hence, there exists a function g0 from ∂Bn to C
such that

u(x)− b0 ln |x| = g0

( x

|x|

)
∀x ∈ Rn \ {0} .

In particular, g0 is real analytic and

w(x) = A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ + b0 ln |x| −
(
g0

( x

|x|

)
+ b0 ln |x|

)
= A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ − g0

( x

|x|

)
.

Moreover, w must be positively homogeneous of degree 0 in Rn \ {0}. Since w is continuous at 0, w
must be constant in the whole Rn. Since∫

∂Bn

w dσ =

∫
∂Bn

S dσ −
∫
∂Bn

u dσ = 0,

such a constant must equal 0 and thus

A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ = g0

( x

|x|

)
for all x ∈ Rn \ {0}.

Hence,
u(x) = A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ + b0 ln |x|

and statement (ii) follows.

We can introduce the following

Definition 4.1. Let a be as in (1.1), (1.2). We define the normalized fundamental solution of the
principal part of P [a, D], to be the only fundamental solution of Corollary 4.1.
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By Theorem 4.1 and Corollary 4.1, the normalized fundamental solution of the principal part of
P [a, D] equals

|x|2−nA0

( x

|x|

)
if n ≥ 3, and

A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ + b0 ln |x|

if n = 2, where A0 and b0 are as in Theorem 4.1. We now see that if the principal coefficients of
P [a, D] are real, then the normalized fundamental solution of the principal part of P [a, D] has a very
specific form. To do so, we introduce the fundamental solution Sn of the Laplace operator. Namely,
we set

Sn(x) ≡


1

sn
ln |x| ∀x ∈ Rn \ {0}, if n = 2 ,

1

(2− n)sn
|x|2−n ∀x ∈ Rn \ {0}, if n > 2 ,

where sn denotes the (n − 1)-dimensional measure of ∂Bn. Then we have the following elementary
statement, which can be verified by the chain rule and by Corollary 4.1 (cf. e.g., Dalla Riva [4]).

Lemma 4.1. Let a be as in (1.1), (1.2), (1.3). Then there exists an invertible matrix T ∈ Mn(R)
such that

a(2) = TT t (4.2)

and the function
Sa(2)(x) ≡

1√
det a(2)

Sn(T
−1x) ∀x ∈ Rn \ {0} ,

coincides with the normalized fundamental solution of the principal part of P [a, D] if n ≥ 3, and
coincides with the normalized fundamental solution of the principal part of P [a, D] up to an additive
constant if n = 2.

Theorem 4.1, Corollary 4.1 and Lemma 4.1 imply the validity of the following

Corollary 4.2. Let a be as in (1.1), (1.2), (1.3), T ∈Mn(R) be as in (4.2) and let Sa be a fundamental
solution of P [a, D].

Then there exist a real analytic function A1 from ∂Bn × R to C, a real analytic function B1 from
Rn to C, B1(0) = 0, and a real analytic function C from Rn to C such that

Sa(x) =
1√

det a(2)
Sn(T

−1x) + |x|3−nA1

( x

|x|
, |x|

)
+

(
B1(x) + b0(1− δ2,n)

)
ln |x|+ C(x) , (4.3)

for all x ∈ Rn \ {0}, and both b0 and B1 equal zero if n is odd. Moreover,

1√
det a(2)

Sn(T
−1x)

is a fundamental solution for the principal part of P [a, D].

Next we prove the following technical statement.

Lemma 4.2. Let a be as in (1.1), (1.2), Sa be a fundamental solution of P [a, D] and let G be a
nonempty bounded subset of Rn.

(i) Let γ ∈ [0, 1[. Then

C0,Sa,G,n−1−γ ≡ sup
0<|x|≤diam (G)

|x|n−1−γ |Sa(x)| < +∞ . (4.4)

If n > 2, then (4.4) holds also for γ = 1.
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(ii)

C̃0,Sa,G ≡ sup
{
|x′ − y|n−1

|x′ − x′′|
∣∣Sa(x

′ − y)− Sa(x
′′ − y)

∣∣ :
x′, x′′ ∈ G, x′ ̸= x′′, y ∈ G \ Bn(x′, 2|x′ − x′′|)

}
<∞ .

Proof. Statement (i) is an immediate consequence of formula (4.1). Now prove statement (ii). For
this, we resort to formula (4.1) and set

A(θ, r) ≡ A0(θ) + rA1(θ, r) ∀ (θ, r) ∈ ∂Bn × R,
B(x) ≡ b0 +B1(x) ∀x ∈ Rn .

Then Lemmas 3.2 and 3.3 imply

∣∣Sa(x
′ − y)− Sa(x

′′ − y)
∣∣ ≤ |x′ − y|2−n

∣∣∣∣A( x′ − y

|x′ − y|
, |x′ − y|

)
−A

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣
+

∣∣∣∣A( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣ ∣∣|x′ − y|2−n − |x′′ − y|2−n
∣∣+ ∣∣ ln |x′ − y|

∣∣ ∣∣B(x′ − y)−B(x′′ − y)
∣∣

+ |B(x′′ − y)|
∣∣ ln |x′ − y| − ln |x′′ − y|

∣∣+ ∣∣C(x′ − y)− C(x′′ − y)
∣∣

≤ |x′ − y|2−nMA,G
|x′ − x′′|
|x′ − y|

+
(

sup
∂Bn×[0,diam (G)]

|A|
)
m2−n

|x′ − x′′|
|x′ − y|n−1

+
∣∣ ln |x′ − y|

∣∣M̃B,G|x′ − x′′|+ sup
G−G

|B| 2 |x′ − x′′|
|x′ − y|

+ M̃C,G|x′ − x′′| .

Since A is continuous on the compact set ∂Bn × [0,diam (G)], and B and C are continuous on the
compact set cl (G−G), there exists c > 0 such that∣∣Sa(x

′ − y)− Sa(x
′′ − y)

∣∣ ≤ c|x′ − x′′|
{
|x′ − y|1−n +

1

|x′ − y|
+ ln |x′ − y|+ 1

}
≤ c|x′ − x′′| |x′ − y|1−n

{
1 + |x′ − y|n−2 + |x′ − y|n−1 ln |x′ − y|+ |x′ − y|n−1

}
,

and thus statement (ii) holds.

Lemma 4.3. Let a be as in (1.1), (1.2), (1.3), T ∈ Mn(R) be as in (4.2). Let Sa be a fundamental
solution of P [a, D], B1, C be as in Corollary 4.2, and let G be a nonempty bounded subset of Rn.
Then the following statements hold:

(i) There exists a real analytic function A2 from ∂Bn × R to Cn such that

DSa(x) =
1

sn
√

det a(2)
|T−1x|−nxt(a(2))−1

+ |x|2−nA2

( x

|x|
, |x|

)
+DB1(x) ln |x|+DC(x) ∀x ∈ Rn \ {0} . (4.5)

(ii)
C1,Sa,G ≡ sup

0<|x|≤diam (G)

|x|n−1|DSa(x)| < +∞ .

(iii)

C̃1,Sa,G ≡ sup
{
|x′ − y|n

|x′ − x′′|
∣∣DSa(x

′ − y)−DSa(x
′′ − y)

∣∣ :
x′, x′′ ∈ G, x′ ̸= x′′, y ∈ G \ Bn(x′, 2|x′ − x′′|)

}
<∞ .
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Proof. By formula (4.3) and by the chain rule, we have

DSa(x) =
1

sn
√

det a(2)
|T−1x|−nxt(a(2))−1 + (3− n)|x|2−n x

t

|x|
A1

( x

|x|
, |x|

)
+ |x|3−n

{
DA1

( x

|x|
, |x|

)[
|x|I − x⊗ x|x|−1

]
|x|−2 +

∂A1

∂r

( x

|x|
, |x|

) xt

|x|

}
+DB1(x) ln |x|+

(
B1(x) + b0(1− δ2,n)

) xt

|x|2
+DC(x) (4.6)

for all x ∈ Rn \ {0}, where by A1 we have still denote any real analytic extension of the function A1

of Corollary 4.2 to an open neighbourhood of ∂Bn × R in Rn+1 and where x⊗ x denotes the matrix
(xlxj)l,j=1,...,n. Next, we consider the term B1(x)/|x|. By the Fundamental Theorem of Calculus, we
have

B1(x)

|x|
=

1∫
0

DB1

(
t
x

|x|
|x|

) x

|x|
dt ∀x ∈ Rn \ {0} . (4.7)

Thus, if we set

β(θ, r) =

1∫
0

DB1(tθr)θ dt ∀ (θ, r) ∈ Rn × R ,

the function β will be real analytic and will satisfy the equality

B1(x)

|x|
= β

( x

|x|
, |x|

)
∀x ∈ Rn \ {0} . (4.8)

Define

A2(θ, r) ≡ (3− n)θtA1(θ, r) +DA1(θ, r)[I − θ ⊗ θ] +
∂A1

∂r
(θ, r)θtr

+ β(θ, r)rn−2θt + rn−3θtb0(1− δ2,n) ∀ (θ, r) ∈ ∂Bn × R .

By the real analyticity of A1 and β, and by the equality rn−3θtb0(1− δ2,n) = 0 if n = 2, the function
A2 is real analytic. Hence, equalities (4.6) and (4.8) imply the validity of statement (i).

Next, we turn to the proof of statement (ii). By Lemma 3.1(ii) and by the Schwartz inequality, we
have

|T−1x|−n |xt(a(2))−1| ≤ |x|1−n|T |n
∣∣(a(2))−1

∣∣ .
Hence, formula (4.5) implies that

|x|n−1|DSa(x)| ≤
1

sn
√

det a(2)
|T |n

∣∣(a(2))−1
∣∣

+

{
|x|A2

( x

|x|
, |x|

)
+
(
|x|n−1 ln |x|

)
DB1(x) + |x|n−1DC(x)

}
for all x ∈ Rn \ {0}. Then the continuity of A2 on the compact set ∂Bn × [0,diam(G)] and the
continuity of DB1 and DC on the compact set clBn(0,diam (G)) imply the validity of statement (ii).

We now turn to statement (iii). Let x′, x′′ ∈ G, x′ ̸= x′′, y ∈ G \ Bn(x′, 2|x′ − x′′|). By statement
(i), we have∣∣DSa(x

′ − y)−DSa(x
′′ − y)

∣∣
≤ 1

sn
√

det a(2)
∣∣∣|T−1(x′ − y)|−n(x′ − y)t(a(2))−1 − |T−1(x′′ − y)|−n(x′′ − y)t(a(2))−1

∣∣∣
+

∣∣∣∣|x′ − y|2−nA2

( x′ − y

|x′ − y|
, |x′ − y|

)
− |x′′ − y|2−nA2

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣
+
∣∣∣ ln |x′ − y|DB1(x

′ − y)− ln |x′′ − y|DB1(x
′′ − y)

∣∣∣+ ∣∣DC(x′ − y)−DC(x′′ − y)
∣∣ . (4.9)
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We first estimate the first summand in the right-hand side of inequality (4.9). By the triangular
inequality, we have∣∣∣|T−1(x′ − y)|−n(x′ − y)t(a(2))−1 − |T−1(x′′ − y)|−n(x′′ − y)t(a(2))−1

∣∣∣
≤ |x′ − y|

∣∣(a(2))−1
∣∣ ∣∣∣|T−1(x′ − y)|−n − |T−1(x′′ − y)|−n

∣∣∣
+ |x′ − x′′|

∣∣(a(2))−1
∣∣ |T−1(x′′ − y)|−n . (4.10)

Thus Lemmas 3.1(ii), 3.2(ii),(iv) with γ = −n, Λ = T−1 imply that∣∣|T−1(x′ − y)|−n − |T−1(x′′ − y)|−n
∣∣ ≤ m−n(T

−1)|T−1x′ − T−1x′′| |T−1x′ − T−1y|−n−1

≤ m−n(T
−1)|T−1| |T |n+1|x′ − x′′| |x′ − y|−n−1 , (4.11)

|T−1(x′′ − y)|−n ≤ |T |n|x′′ − y|−n , |x′′ − y|−n ≤ 2n|x′ − y|−n .

Next, we estimate the second summand in the right-hand side of inequality (4.9). By Lemmas 3.2(iv)
and 3.3(i), the second summand is less or equal to

∣∣|x′ − y|2−n − |x′′ − y|2−n
∣∣ ∣∣∣∣A2

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣
+ |x′ − y|2−n

∣∣∣∣A2

( x′ − y

|x′ − y|
, |x′ − y|

)
−A2

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣
≤ m2−n|x′−x′′| |x′−y|2−n−1 sup

∂Bn×[0,diam(G)]

|A2|+|x′−y|2−n
( n∑
j=1

MA2,j ,G

)
|x′−x′′||x′−y|−1 . (4.12)

Further, we estimate the third summand in the right-hand side of inequality (4.9). By Lemmas 3.2(v)
and 3.3(ii), the third summand is less or equal to∣∣ ln |x′ − y| − ln |x′′ − y|

∣∣ |DB1(x
′′ − y)|+

∣∣ ln |x′ − y|
∣∣ ∣∣DB1(x

′ − y)−DB1(x
′′ − y)

∣∣
≤ 2|x′ − x′′| |x′ − y|−1 sup

G−G
|DB1|+

( n∑
j=1

M̃ ∂B1
∂xj

,G

)
|x′ − x′′|

∣∣ ln |x′ − y|
∣∣

≤ |x′ − x′′| |x′ − y|−n
{
2|x′ − y|n−1 sup

G−G
|DB1|+

( n∑
j=1

M̃ ∂B1
∂xj

,G

)
|x′ − y|n

∣∣ ln |x′ − y|
∣∣} . (4.13)

Finally, Lemma 3.3(ii) implies that

|DC(x′ − y)−DC(x′′ − y)| ≤
( n∑
j=1

M̃ ∂C
∂xj

,G

)
|x′ − x′′|

≤ |x′ − x′′| |x′ − y|−n
( n∑
j=1

M̃ ∂C
∂xj

,G

)
sup

(x′,y)∈G×G
|x′ − y|n . (4.14)

Thus inequalities (4.9)–(4.14) imply the validity of statement (iii).

5 Preliminary inequalities on the boundary operator
Let us turn to estimate the kernel B∗

Ω,y (Sa(x− y)) of the double layer potential of (1.4). We will
do it under assumption (1.3). For this, we introduce some basic inequalities for B∗

Ω,y (Sa(x− y)) by
means of the following
Lemma 5.1. Let a be as in (1.1), (1.2), (1.3), T ∈Mn(R) be as in (4.2) and let Sa be a fundamental
solution of P [a, D].

Let α ∈ ]0, 1] and Ω be a bounded open subset of Rn of the class C1,α. Then the following statements
hold:
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(i) If α ∈ ]0, 1[ , then

bΩ,α ≡ sup
{
|x− y|n−1−α∣∣B∗

Ω,y(Sa(x− y))
∣∣ : x, y ∈ ∂Ω, x ̸= y

}
< +∞ . (5.1)

If n > 2, then (5.1) holds also for α = 1.

(ii)

b̃Ω,α ≡ sup
{
|x′ − y|n−α

|x′ − x′′|
∣∣B∗

Ω,y(Sa(x
′ − y))−B∗

Ω,y(Sa(x
′′ − y))

∣∣ :
x′, x′′ ∈ ∂Ω, x′ ̸= x′′, y ∈ ∂Ω \ Bn(x′, 2|x′ − x′′|)

}
< +∞ .

Proof. By Lemma 4.3(i), we have

B∗
Ω,y(Sa(x− y)) =−DSa(x− y)a(2)ν(y)− νt(y)a(1)Sa(x− y)

=− 1

sn
√

det a(2)
|T−1(x− y)|−n(x− y)tν(y)

− |x− y|2−nA2

( x− y

|x− y|
, |x− y|

)
a(2)ν(y)−DB1(x− y)a(2)ν(y) ln |x− y|

−DC(x− y)a(2)ν(y)− νt(y)a(1)Sa(x− y) ∀x, y ∈ ∂Ω, x ̸= y . (5.2)

By Lemmas 3.1(ii), 3.4, 4.2(i), and by the equality in (5.2), we have

|x− y|n−1−α∣∣B∗
Ω,y(Sa(x− y))

∣∣ ≤ 1

sn
√

det a(2)
cΩ,α|T |n|x− y|−n+1+α+n−1−α

+ |x− y|2−1−α|a(2)|
∣∣∣A2

( x− y

|x− y|
, |x− y|

)∣∣∣+ |x− y|n−1−α∣∣ ln |x− y|
∣∣ |a(2)| |DB1(x− y)|

+ |x− y|n−1−α|a(2)| |DC(x− y)|+ |a(1)|C0,Sa,∂Ω,n−1−α

for all x, y ∈ ∂Ω, x ̸= y. If either α ∈ ]0, 1[ or α ∈ ]0, 1] and n > 2, then the right-hand side is bounded
for x, y ∈ ∂Ω, x ̸= y. Hence, we conclude that statement (i) holds true.

Next, we consider statement (ii).

∣∣B∗
Ω,y(Sa(x

′ − y))−B∗
Ω,y(Sa(x

′′ − y))
∣∣

≤
∣∣|T−1(x′ − y)|−n(x′ − y)tν(y)− |T−1(x′′ − y)|−n(x′′ − y)tν(y)

∣∣
sn

√
det a(2)

+ |a(2)|
∣∣∣∣A2

( x′ − y

|x′ − y|
, |x′ − y|

)
−A2

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣ |x′ − y|2−n

+ |a(2)|
∣∣∣∣A2

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣ ∣∣|x′ − y|2−n − |x′′ − y|2−n
∣∣

+ |a(2)|
∣∣DB1(x

′−y)−DB1(x
′′−y)

∣∣ ∣∣ ln |x′−y|
∣∣+|a(2)| |DB1(x

′′−y)|
∣∣ ln |x′−y|−ln |x′′−y|

∣∣
+ |a(2)|

∣∣DC(x′ − y)−DC(x′′ − y)
∣∣+ |a(1)|

∣∣Sa(x
′ − y)− Sa(x

′′ − y)
∣∣ (5.3)

for all x′, x′′ ∈ ∂Ω, x′ ̸= x′′, y ∈ ∂Ω \Bn(x′, 2|x′ − x′′|). Denote by J1 the first term in the right-hand
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side of (5.3). By Lemmas 3.1(ii), 3.2(ii),(iv) with γ = −n, Λ = T−1, and by Lemma 3.4, we have

J1 ≤ 1

sn
√

det a(2)

×
{∣∣|T−1(x′−y)|−n−|T−1(x′′−y)|−n

∣∣ ∣∣(x′−y)tν(y)∣∣+|T−1(x′′−y)|−n
∣∣(x′−x′′)tν(y)∣∣}

≤ 1

sn
√

det a(2)

×
{
m−n(T

−1)
∣∣|T−1x′ − T−1x′′| |T−1x′ − T−1y|−n−1

∣∣ |x′ − y|1+αcΩ,α

+ 2n|T |n|x′ − y|−n
∣∣(x′ − x′′)tν(y)

∣∣} (5.4)

for all x′, x′′ ∈ ∂Ω, x′ ̸= x′′, y ∈ ∂Ω \ Bn(x′, 2|x′ − x′′|). Note that∣∣(x′ − x′′)tν(y)
∣∣ ≤ ∣∣(x′ − x′′)t(ν(y)− ν(x′))

∣∣+ ∣∣(x′ − x′′)tν(x′)
∣∣

≤ |x′ − x′′| |ν|α|x′ − y|α + cΩ,α|x′ − x′′|1+α ≤ |x′ − x′′| |x′ − y|α(|ν|α + cΩ,α)

and, accordingly,

J1 ≤ |x′ − x′′|
sn

√
det a(2)

{
m−n(T

−1)|T−1| |T |n+1|x′ − y|−n−1|x′ − y|1+αcΩ,α

+ 2n|T |n|x′ − y|−n|x′ − y|α(|ν|α + cΩ,α)
}

(5.5)

for all x′, x′′ ∈ ∂Ω, x′ ̸= x′′, y ∈ ∂Ω \ Bn(x′, 2|x′ − x′′|). Next, we denote by J2 the sum of the terms
different from J1 in the right-hand side of (5.3). Then Lemma 3.2(iv),(v) and Lemmas 3.3, 4.2(ii)
imply that

J2 ≤ |a(2)|
( n∑
j=1

MA2,j ,∂Ω

) |x′−x′′|
|x′−y|

|x′−y|2−n+|a(2)| sup
∂Bn×[0,diam(∂Ω)]

|A2|m2−n|x′−x′′| |x′−y|1−n

+ |a(2)|
( n∑
j=1

M̃ ∂B1
∂xj

,∂Ω

)
|x′ − x′′|

∣∣ ln |x′ − y|
∣∣+ |a(2)| sup

∂Ω−∂Ω
|DB1| 2

|x′ − x′′|
|x′ − y|

+ M̃C |x′ − x′′|+ C̃0,Sa,∂Ω|a(1)|
|x′ − x′′|

|x′ − y|n−1
(5.6)

for all x′, x′′ ∈ ∂Ω, x′ ̸= x′′, y ∈ ∂Ω \Bn(x′, 2|x′ −x′′|). By inequalities (5.3), (5.5), (5.6), we conclude
that statement (ii) holds.

6 Boundary norms for kernels
For each subset A of Rn, we find it convenient to set

∆A ≡
{
(x, y) ∈ A×A : x = y

}
.

We now introduce a class of functions on (∂Ω)2 \∆∂Ω which may carry a singularity as the variable
tends to a point of the diagonal, just as in the case of the kernels of integral operators corresponding
to layer potentials defined on the boundary of an open subset Ω of Rn.

Definition 6.1. Let G be a nonempty bounded subset of Rn. Let γ1, γ2, γ3 ∈ R. We denote by
Kγ1,γ2,γ3(G) the set of continuous functions K from (G×G) \∆G to C such that

∥K∥Kγ1,γ2,γ3
(G) ≡ sup

{
|x− y|γ1 |K(x, y)| : x, y ∈ G, x ̸= y

}
+ sup

{
|x′ − y|γ2
|x′ − x′′|γ3

|K(x′, y)−K(x′′, y)| : x′, x′′ ∈ G, x′ ̸= x′′, y ∈ G \ Bn(x′, 2|x′ − x′′|)
}
< +∞ .
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One can easily verify that (Kγ1,γ2,γ3(G), ∥ · ∥Kγ1,γ2,γ3 (G)) is a Banach space.

Remark 6.1. Let a be as in (1.1), (1.2) and Sa be a fundamental solution of P [a, D].

(i) Let G be a nonempty bounded subset of Rn. Then Lemma 4.2 implies that Sa(x − y) ∈
Kn−1−γ,n−1,1(G) for all γ ∈ [0, 1[ and the same membership holds also for γ = 1 if n > 2. If we
further assume that a satisfies (1.3), then Lemma 4.3 implies that ∂

∂xj
Sa(x− y) ∈ Kn−1,n,1(G)

for all j ∈ {1, . . . , n}.

(ii) Let a satisfy (1.3), α ∈ ]0, 1[ and let Ω be a bounded open subset of Rn of the class C1,α. Then
Lemma 5.1 implies that B∗

Ω,y (Sa(x− y)) ∈ Kn−1−α,n−α,1(∂Ω).

For each θ ∈ ]0, 1], we define the function ωθ( · ) from ]0,+∞[ to itself by setting

ωθ(r) ≡

{
rθ| ln r|, r ∈ ]0, rθ] ,

rθθ | ln rθ|, r ∈ ]rθ,+∞[ ,

where

rθ ≡

{
min

{
e−1/θ, e

2θ−1
θ(1−θ)

}
if θ ∈ ]0, 1[ ,

e−1 if θ = 1.

Obviously, ωθ( · ) is concave and satisfies (2.1), (2.2), and (2.3) with α = θ. We also note that if D is
a subset of Rn, then the continuous imbedding

C
0,ωθ( · )
b (D) ⊆ C0,θ′

b (D)

holds for all θ′ ∈ ]0, θ[ . We now consider the properties of an integral operator with a kernel in the
class Kγ1,γ2,γ3(∂Ω).

Proposition 6.1. Let Ω be a bounded open Lipschitz subset of Rn. Let γ1 ∈ ]−∞, n−1[ , γ2, γ3 ∈ R.
Then the following statements hold:

(i) If (K,µ) ∈ Kγ1,γ2,γ3(∂Ω) × L∞(∂Ω), then the function K(x, · )µ( · ) is integrable in ∂Ω for all
x ∈ ∂Ω, and the function u[∂Ω,K, µ] from ∂Ω to C defined by

u[∂Ω,K, µ](x) ≡
∫
∂Ω

K(x, y)µ(y) dσy ∀x ∈ ∂Ω (6.1)

is continuous. Moreover, the bilinear map from Kγ1,γ2,γ3(∂Ω)×L∞(∂Ω) to C0(∂Ω), which takes
(K,µ) to u[∂Ω,K, µ], is continuous.

(ii) If γ1 ∈ [n − 2, n − 1[, γ2 ∈ ]n − 1,+∞[ , γ3 ∈ ]0, 1], (n − 1) − γ2 + γ3 ∈ ]0, 1], then the bilinear
map from Kγ1,γ2,γ3(∂Ω) × L∞(∂Ω) to the space C0,min{(n−1)−γ1,(n−1)−γ2+γ3}(∂Ω), which takes
(K,µ) to u[∂Ω,K, µ], is continuous.

(iii) If γ1 ∈ [n− 2, n− 1[, γ2 = n− 1, γ3 ∈ ]0, 1], then the bilinear map from Kγ1,γ2,γ3(∂Ω)×L∞(∂Ω)

to the space C0,max{r(n−1)−γ1 ,ωγ3 (r)}(∂Ω), which takes (K,µ) to u[∂Ω,K, µ] is continuous.

Proof. By definition of the norm in Kγ1,γ2,γ3(∂Ω), we have∣∣K(x, y)µ(y)
∣∣ ≤ ∥K∥Kγ1,γ2,γ3

(∂Ω)∥µ∥L∞(∂Ω)
1

|x− y|γ1
∀ (x, y) ∈ (∂Ω)2 \D∂Ω .

Then the function K(x, · )µ( · ) is integrable in ∂Ω for all x ∈ ∂Ω, and the Vitali Convergence The-
orem implies that u[∂Ω,K, µ] is continuous on ∂Ω (cf., e.g., Folland [13, (2.33), pp. 60, 180].) By
Lemma 3.5(i), we also have∣∣∣∣ ∫

∂Ω

K(x, y)µ(y) dσy

∣∣∣∣ ≤ ∥K∥Kγ1,γ2,γ3
(∂Ω)∥µ∥L∞(∂Ω)c

′
Ω,γ1 . (6.2)



Regularizing Properties of the Double Layer Potential of Second Order Elliptic Differential Operators 89

Hence, statement (i) follows. Next, we turn to estimate the Hölder coefficient of u[∂Ω,K, µ] under
the assumptions of statements (ii) and (iii). Let x′, x′′ ∈ ∂Ω, x′ ̸= x′′. By Remark 2.2, there is
no loss of generality in assuming that 0 < |x′ − x′′| ≤ rγ3 . Then the inclusion Bn(x′, 2|x′ − x′′|) ⊆
Bn(x′′, 3|x′ − x′′|) and the triangular inequality imply that

∣∣u[∂Ω,K, µ](x′)− u[∂Ω,K, µ](x′′)
∣∣ ≤ ∥µ∥L∞(∂Ω)

{ ∫
Bn(x′,2|x′−x′′|)∩∂Ω

|K(x′, y)| dσy

+

∫
Bn(x′′,3|x′−x′′|)∩∂Ω

|K(x′′, y)| dσy +
∫

∂Ω\Bn(x′,2|x′−x′′|)

∣∣K(x′, y)−K(x′′, y)
∣∣ dσy} . (6.3)

From Lemma 3.5(ii) it follows that∫
Bn(x′,2|x′−x′′|)∩∂Ω

|K(x′, y)| dσy +
∫

Bn(x′′,3|x′−x′′|)∩∂Ω

|K(x′′, y)| dσy

≤ ∥K∥Kγ1,γ2,γ3
(∂Ω)

{ ∫
Bn(x′,2|x′−x′′|)∩∂Ω

dσy
|x′ − y|γ1

+

∫
Bn(x′′,3|x′−x′′|)∩∂Ω

dσy
|x′′ − y|γ1

}
≤ ∥K∥Kγ1,γ2,γ3

(∂Ω)2c
′′
Ω,γ1 |x

′ − x′′|(n−1)−γ1 . (6.4)

Moreover, we have∫
∂Ω\Bn(x′,2|x′−x′′|)

∣∣K(x′, y)−K(x′′, y)
∣∣ dσy ≤ ∥K∥Kγ1,γ2,γ3

(∂Ω)

∫
∂Ω\Bn(x′,2|x′−x′′|)

|x′ − x′′|γ3
|x′ − y|γ2

dσy (6.5)

both in case γ2 ∈ ]n− 1,+∞[ and γ2 = n− 1 and for all γ3 ∈ ]0, 1].
Under the assumptions of statement (ii), Lemma 3.5(iii) yields∫

∂Ω\Bn(x′,2|x′−x′′|)

|x′ − x′′|γ3
|x′ − y|γ2

dσy ≤ c′′′Ω,γ2 |x
′ − x′′|(n−1)−γ2+γ3 . (6.6)

Instead, under the assumptions of statement (iii), Lemma 3.5(iv) implies that∫
∂Ω\Bn(x′,2|x′−x′′|)

|x′ − x′′|γ3
|x′ − y|γ2

dσy ≤ civΩ |x′ − x′′|γ3
∣∣ ln |x′ − x′′|

∣∣ . (6.7)

Inequalities (6.2)–(6.7) imply the validity of statements (ii), (iii).

Note that Proposition 6.1(ii) for n = 3, γ1 = 2 − α, γ2 = 3 − α, γ3 = 1 and for fixed K is known
(see Kirsch and Hettlich [19, § 3.1.3, Thm. 3.17 (a)]). Next, we introduce two technical lemmas, which
we need to define an auxiliary integral operator.

Lemma 6.1. Let Ω be a bounded open Lipschitz subset of Rn, α, β ∈ ]0, 1[ and γ2 ∈ R, γ3 ∈ ]0, 1].
If γ2 − β > n− 1, we further require that γ3 + (n− 1)− (γ2 − β) > 0.
Then there exists c > 0 such that the function u[∂Ω,K, µ] defined by (6.1) satisfies the inequality∣∣u[∂Ω,K, µ](x′)− u[∂Ω,K, µ](x′′)

∣∣ ≤ c∥K∥K(n−1)−α,γ2,γ3
(∂Ω)∥µ∥C0,β(∂Ω)ω(|x′ − x′′|)

+ ∥µ∥C0(∂Ω)

∣∣u[∂Ω,K, 1](x′)− u[∂Ω,K, 1](x′′)
∣∣ ∀x′, x′′ ∈ ∂Ω (6.8)

for all (K,µ) ∈ K(n−1)−α,γ2,γ3(∂Ω)× C0,β(∂Ω), where

ω(r) ≡


rmin{α+β,γ3} if γ2 − β < n− 1 ,

max
{
rα+β , ωγ3(r)

}
if γ2 − β = n− 1 ,

rmin{α+β,γ3+(n−1)−(γ2−β)}− if γ2 − β > n− 1 ,

∀ r ∈ ]0,+∞[ .
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Proof. By Remark 2.2 and Proposition 6.1(i), it suffices to consider the case 0 < |x′ − x′′| < rγ3 . By
the triangular inequality, we have∣∣u[∂Ω,K, µ](x′)− u[∂Ω,K, µ](x′′)

∣∣
≤

∣∣∣∣ ∫
∂Ω

[
K(x′, y)−K(x′′, y)

]
(µ(y)− µ(x′)) dσy

∣∣∣∣+ |µ(x′)|
∣∣∣∣ ∫
∂Ω

[
K(x′, y)−K(x′′, y)

]
dσy

∣∣∣∣ . (6.9)

By exploiting the inclusion Bn(x′, 2|x′ − x′′|) ⊆ Bn(x′′, 3|x′ − x′′|), the triangular inequality, Lem-
mas 3.2(i), 3.5(ii), and the inequality

|y − x′|β ≤ |y − x′′|β + |x′ − x′′|β ,

we have∣∣∣∣ ∫
∂Ω

[
K(x′, y)−K(x′′, y)

]
(µ(y)− µ(x′)) dσy

∣∣∣∣
≤

∫
Bn(x′,2|x′−x′′|)∩∂Ω

|K(x′, y)| |y − x′|β dσy∥µ∥C0,β(∂Ω)

+

∫
Bn(x′′,3|x′−x′′|)∩∂Ω

|K(x′′, y)| |y − x′|β dσy∥µ∥C0,β(∂Ω)

+

∫
∂Ω\Bn(x′,2|x′−x′′|)

∣∣K(x′, y)−K(x′′, y)
∣∣ |y − x′|β dσy∥µ∥C0,β(∂Ω)

≤ ∥K∥K(n−1)−α,γ2,γ3
(∂Ω)∥µ∥C0,β(∂Ω)

{ ∫
Bn(x′,2|x′−x′′|)∩∂Ω

dσy
|y − x′|(n−1)−(α+β)

+

∫
Bn(x′′,3|x′−x′′|)∩∂Ω

|x′ − x′′|β

|y − x′′|(n−1)−α dσy

+

∫
Bn(x′′,3|x′−x′′|)∩∂Ω

dσy
|y − x′′|(n−1)−(α+β)

+

∫
∂Ω\Bn(x′,2|x′−x′′|)

|x′ − x′′|γ3 |x′ − y|β

|x′ − y|γ2
dσy

}
≤ ∥K∥K(n−1)−α,γ2,γ3

(∂Ω)∥µ∥C0,β(∂Ω)

×
{
2c′′Ω,(n−1)−(α+β)|x

′ − x′′|α+β + |x′ − x′′|βc′′Ω,(n−1)−α|x
′ − x′′|α

+ |x′ − x′′|γ3
∫

∂Ω\Bn(x′,2|x′−x′′|)

dσy
|x′ − y|γ2−β

}
. (6.10)

At this point we distinguish three cases. If γ2 − β < n− 1, then by Lemma 3.5(i)∫
∂Ω\Bn(x′,2|x′−x′′|)

dσy
|x′ − y|γ2−β

≤
∫
∂Ω

dσy
|x′ − y|γ2−β

≤ c′Ω,γ2−β ,

and thus inequalities (6.9) and (6.10) imply that there exists c > 0 such that inequality (6.8) holds
with ω(r) = rmin{α+β,γ3}. If γ2 − β = n− 1, then by Lemma 3.5(iv)∫

∂Ω\Bn(x′,2|x′−x′′|)

dσy
|x′ − y|γ2−β

≤ civΩ
∣∣ ln |x′ − x′′|

∣∣ ,



Regularizing Properties of the Double Layer Potential of Second Order Elliptic Differential Operators 91

and thus inequalities (6.9) and (6.10) imply that there exists c > 0 such that inequality (6.8) holds
with ω(r) = max{rα+β , ωγ3(r)}. If γ2 − β > n− 1, then by Lemma 3.5(iii)∫

∂Ω\Bn(x′,2|x′−x′′|)

dσy
|x′ − y|γ2−β

≤ c′′′Ω,γ2−β |x
′ − x′′|(n−1)−(γ2−β) ,

and thus inequalities (6.9) and (6.10) imply that there exists c > 0 such that inequality (6.8) holds
with ω(r) = rmin{α+β,γ3+(n−1)−(γ2−β)}.

We also point out the validity of the following ‘folklore’ Lemma.

Lemma 6.2. Let Ω be a bounded open Lipschitz subset of Rn, γ1 ∈ ] −∞, n − 1[ , G be a subset of
Rn. Let K ∈ C0((G× ∂Ω) \∆∂Ω) be such that

κγ1 ≡ sup
(x,y)∈(G×∂Ω)\∆∂Ω

|x− y|γ1 |K(x, y)| < +∞ .

Let µ ∈ L∞(∂Ω). Then the function K(x, · )µ( · ) is integrable in ∂Ω for all x ∈ G and the function
u♯[∂Ω,K, µ] from G to C defined by

u♯[∂Ω,K, µ](x) ≡
∫
∂Ω

K(x, y)µ(y) dσy ∀x ∈ G

is continuous. If sup
x∈G

∫
∂Ω

dσy

|x−y|γ1 <∞, then u♯[∂Ω,K, µ] satisfies the inequality

∣∣u♯[∂Ω,K, µ](x)∣∣ ≤ sup
x∈G

∫
∂Ω

dσy
|x− y|γ1

κγ1∥µ∥L∞(∂Ω) ∀x ∈ G . (6.11)

Proof. The integrability of K(x, · )µ( · ) follows from the inequality∣∣K(x, y)µ(y)
∣∣ ≤ κγ1∥µ∥L∞(∂Ω)

|x− y|γ1
a.a. y ∈ ∂Ω .

Since sup
x∈G

∫
∂Ω

dσy

|x−y|γ1 <∞, inequality (6.11) follows and the Vitali Convergence Theorem implies that

u♯[∂Ω,K, µ] is continuous on G (cf., e.g., Folland [13, (2.33) pp. 60, 180]).

We now introduce an auxiliary integral operator and deduce some properties which we will need
in the sequel by applying Proposition 6.1 and Lemma 6.1.

Lemma 6.3. Let θ ∈ ]0, 1] and Ω be a bounded open Lipschitz subset of Rn. Then the following
statements hold:

(i) Let Z ∈ C0((clΩ× ∂Ω) \∆∂Ω) satisfy the inequality

κn−1[Z] ≡ sup
(x,y)∈(cl Ω×∂Ω)\∆∂Ω

|x− y|n−1|Z(x, y)| < +∞ . (6.12)

Let (f, µ) ∈ C0,θ(clΩ) × L∞(∂Ω) and H♯[Z, f ] be the function from (clΩ × ∂Ω) \ ∆∂Ω to C
defined by

H♯[Z, f ](x, y) ≡ (f(x)− f(y))Z(x, y) ∀ (x, y) ∈ (clΩ× ∂Ω) \∆∂Ω .

If x ∈ clΩ, then the function H♯[Z, f ](x, · ) is Lebesgue integrable in ∂Ω and the function
Q♯[Z, f, µ] from clΩ to C defined by

Q♯[Z, f, µ](x) ≡
∫
∂Ω

H♯[Z, f ](x, y)µ(y) dσy ∀x ∈ clΩ

is continuous.
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(ii) The map H from Kn−1,n,1(∂Ω) × C0,θ(∂Ω) to Kn−1−θ,n−1,θ(∂Ω), which takes (Z, g) to the
function from (∂Ω)2 \∆∂Ω to C defined by

H[Z, g](x, y) ≡ (g(x)− g(y))Z(x, y) ∀ (x, y) ∈ (∂Ω)2 \∆∂Ω ,

is bilinear and continuous.

(iii) The map Q from Kn−1,n,1(∂Ω) × C0,θ(∂Ω) × L∞(Ω) to C0,ωθ( · )(∂Ω), which takes (Z, g, µ) to
the function from ∂Ω to C defined by

Q[Z, g, µ](x) ≡
∫
∂Ω

H[Z, g](x, y)µ(y) dσy ∀x ∈ ∂Ω ,

is trilinear and continuous.

(iv) Let α ∈ ]0, 1[ , β ∈ ]0, 1]. Then there exists q ∈ ]0,+∞[ such that∣∣Q[Z, g, µ](x′)−Q[Z, g, µ](x′′)
∣∣ ≤ q∥Z∥Kn−1,n,1(∂Ω)∥g∥C0,α(∂Ω)∥µ∥C0,β(∂Ω)|x′ − x′′|α

+ ∥µ∥C0(∂Ω)

∣∣Q[Z, g, 1](x′)−Q[Z, g, 1](x′′)
∣∣ ∀x′, x′′ ∈ ∂Ω

for all (Z, g, µ) ∈ Kn−1,n,1(∂Ω)× C0,α(∂Ω)× C0,β(∂Ω).

Proof. By assumption (6.12) and by the Hölder continuity of f , we have∣∣H♯[Z, f ](x, y)
∣∣ ≤ |f |θ

|x− y|(n−1)−θ κn−1[Z]

for all (x, y) ∈ (clΩ× ∂Ω) \∆∂Ω. Thus Lemma 6.2 implies the validity of statement (i).
By the Hölder continuity of g, we have∣∣H[Z, g](x, y)

∣∣ ≤ |g|θ
|x− y|(n−1)−θ ∥Z∥Kn−1,n,1(∂Ω) ∀ (x, y) ∈ (∂Ω)2 \∆∂Ω . (6.13)

Now, let x′, x′′ ∈ ∂Ω, x′ ̸= x′′, y ∈ ∂Ω \ Bn(x′, 2|x′ − x′′|). Then we have∣∣H[Z, g](x′, y)−H[Z, g](x′′, y)
∣∣ ≤ |g(x′)− g(y)|

∣∣Z(x′, y)− Z(x′′, y)
∣∣+ |g(x′)− g(x′′)| |Z(x′′, y)|

≤ ∥g∥C0,θ(∂Ω)∥Z∥Kn−1,n,1(∂Ω)

{
|x′ − y|θ|x′ − x′′|

|x′ − y|n
+

|x′ − x′′|θ

|x′′ − y|n−1

}
. (6.14)

Since |x′ − x′′| ≤ |x′ − y|, we have |x′ − x′′|1−θ ≤ |x′ − y|1−θ. Moreover, Lemma 3.2(i) implies that
|x′′ − y| ≥ 1

2 |x
′ − y| and thus the term in braces in the right-hand side of (6.14) is less or equal to

|x′ − y| |x′ − x′′|θ

|x′ − y|n
+

2n−1|x′ − x′′|θ

|x′ − y|n−1
≤ (1 + 2n−1)

|x′ − x′′|θ

|x′ − y|n−1
. (6.15)

Thus inequalities (6.13)–(6.15) imply that∥∥H[Z, g]
∥∥
Kn−1−θ,n−1,θ(∂Ω)

≤ 2n∥Z∥Kn−1,n,1(∂Ω)∥g∥C0,θ(∂Ω) . (6.16)

Hence statement (ii) holds true. We now turn to prove (iii). By Proposition 6.1(iii) with γ1 =
n− 1− θ, γ2 = n− 1, γ3 = θ, the map u[∂Ω, · , · ] is continuous from Kn−1−θ,n−1,θ(∂Ω)×L∞(∂Ω) to
C0,max{r(n−1)−[(n−1)−θ],ωθ(r)}(∂Ω) = C0,ωθ( · )(∂Ω). Then statement (ii) implies that u[∂Ω,H[ · , · ], · ] is
continuous from Kn−1,n,1(∂Ω)× C0,θ(∂Ω)× L∞(∂Ω) to C0,ωθ( · )(∂Ω). Since

u
[
∂Ω,H[Z, g], µ

]
=

∫
∂Ω

H[Z, g](x, y)µ(y) dσy ∀x ∈ ∂Ω , (6.17)

statement (iii) holds true. Since C0,β1(∂Ω) is continuously imbedded into C0,β2(∂Ω) whenever 0 <
β2 ≤ β1 ≤ 1, we can assume that α+ β < 1. Then by equality (6.17), by Lemma 6.1 with γ2 = n− 1,
γ3 = α and by statement (ii) with θ = α, statement (iv) holds true.
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7 Preliminaries on layer potentials
Let a be as in (1.1), (1.2), Sa be a fundamental solution of P [a, D] and let Ω be a bounded open
Lipschitz subset of Rn. If µ ∈ L∞(∂Ω), Lemma 4.2(i) ensures the convergence of the integral

v[∂Ω, Sa, µ](x) ≡
∫
∂Ω

Sa(x− y)µ(y) dσy ∀x ∈ Rn ,

which defines the single layer potential relative to µ, Sa. We collect in the following statement some
known properties of the single layer potential which we will exploit in the sequel (cf. Miranda [24],
Wiegner [36], Dalla Riva [3], Dalla Riva, Morais and Musolino [5] and the references therein).
Theorem 7.1. Let a be as in (1.1), (1.2), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
m ∈ N \ {0} and let Ω be a bounded open subset of Rn of the class Cm,α. Then the following
statements hold:

(i) If µ ∈ Cm−1,α(∂Ω), then the function v+[∂Ω, Sa, µ] ≡ v[∂Ω, Sa, µ]|cl Ω belongs to Cm,α(clΩ) and
the function v−[∂Ω, Sa, µ] ≡ v[∂Ω, Sa, µ]|cl Ω− belongs to Cm,αloc (clΩ−). Moreover, the map which
takes µ to the function v+[∂Ω, Sa, µ] is continuous from Cm−1,α(∂Ω) to Cm,α(clΩ) and the map
from the space Cm−1,α(∂Ω) to Cm,α(clBn(0, R) \ Ω) which takes µ to v−[∂Ω, Sa, µ]|cl Bn(0,R)\Ω
is continuous for all R ∈ ]0,+∞[ such that clΩ ⊆ Bn(0, R).

(ii) Let l ∈ {1, . . . , n}. If µ ∈ C0,α(∂Ω), then we have the following jump relation

∂

∂xl
v±[∂Ω, Sa, µ](x) = ∓ νl(x)

2ν(x)ta(2)ν(x)
µ(x) +

∫
∂Ω

∂xl
Sa(x− y)µ(y) dσy ∀x ∈ ∂Ω ,

where the integral in the right-hand side exists in the sense of the principal value.
We now introduce the following refinement of a classical result for the homogeneous second order

elliptic operators (cf. Miranda [25]).
Theorem 7.2. Let a be as in (1.1), (1.2), Sa be a fundamental solution of P [a, D], Ω be a bounded
open Lipschitz subset of Rn and let γ ∈ ]0, 1[ . Then the operator v[∂Ω, Sa, · ]|∂Ω from L∞(∂Ω) to
C0,γ(∂Ω) which takes µ to v[∂Ω, Sa, µ]|∂Ω is continuous.

If, in addition, we assume that n > 2, then v[∂Ω, Sa, · ]|∂Ω is continuous from L∞(∂Ω) to
C0,ω1( · )(∂Ω).
Proof. By Lemma 4.2, we have Sa(x− y) ∈ K(n−1)−γ,n−1,1(∂Ω), and also Sa(x− y) ∈ Kn−2,n−1,1(∂Ω)
if we assume that n > 2. Since

v[∂Ω, Sa, µ]|∂Ω = u
[
∂Ω, Sa(x− y), µ

]
,

Proposition 6.1(iii) implies that v[∂Ω, Sa, · ] is continuous from L∞(∂Ω) to C0,max{rγ ,ω1(r)}(∂Ω) =
C0,γ(∂Ω), and also that v[∂Ω, Sa, · ] is continuous from L∞(∂Ω) to C0,max{r,ω1(r)}(∂Ω) = C0,ω1(r)(∂Ω)
if we assume that n > 2.

Next, we turn to the double layer potential and introduce the following technical result (cf. Mi-
randa [24], Wiegner [36], Dalla Riva [3], Dalla Riva, Morais and Musolino [5] and the references
therein).
Theorem 7.3. Let a be as in (1.1), (1.2), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
m ∈ N \ {0} and let Ω be a bounded open subset of Rn of the class Cm,α. Then the following
statements hold:

(i) If µ ∈ C0,α(∂Ω), then the restriction w[∂Ω,a, Sa, µ]|Ω can be extended uniquely to a continuous
function w+[∂Ω,a, Sa, µ] from clΩ to C, and w[∂Ω,a, Sa, µ]|Ω− can be extended uniquely to a
continuous function w−[∂Ω,a, Sa, µ] from clΩ− to C, and we have the following jump relation

w±[∂Ω,a, Sa, µ](x) = ±1

2
µ(x) + w[∂Ω,a, Sa, µ](x) ∀x ∈ ∂Ω .



94 Francesco Dondi and Massimo Lanza de Cristoforis

(ii) If µ ∈ Cm,α(∂Ω), then w+[∂Ω,a, Sa, µ] belongs to Cm,α(clΩ) and w−[∂Ω,a, Sa, µ] belongs to
Cm,αloc (clΩ−). Moreover, the map from the space Cm,α(∂Ω) to Cm,α(clΩ) which takes µ to
w+[∂Ω,a, Sa, µ] is continuous and the map from the space Cm,α(∂Ω) to Cm,α(clBn(0, R) \ Ω)
which takes µ to w−[∂Ω,a, Sa, µ]|cl Bn(0,R)\Ω is continuous for all R ∈ ]0,+∞[ such that clΩ ⊆
Bn(0, R).

(iii) Let r ∈ {1, . . . , n}. If µ ∈ Cm,α(∂Ω) and U is an open neighborhood of ∂Ω in Rn and µ̃ ∈ Cm(U),
µ̃|∂Ω = µ, then the equality

∂

∂xr
w[∂Ω,a, Sa, µ](x) =

n∑
j,l=1

alj
∂

∂xl

{∫
∂Ω

Sa(x− y)
[
νr(y)

∂µ̃

∂yj
(y)− νj(y)

∂µ̃

∂yr
(y)

]
dσy

}

+

∫
∂Ω

[
DSa(x− y)a(1) + aSa(x− y)

]
νr(y)µ(y) dσy

−
∫
∂Ω

∂xr
Sa(x− y)νt(y)a(1)µ(y) dσy ∀x ∈ Rn \ ∂Ω (7.1)

holds.

Note that formula (7.1) for the Laplace operator with n = 3 can be found in Günter [14, Ch. 2, § 10,
(42)]. By combining Theorems 7.1 and 7.3, we deduce that under the assumptions of Theorem 7.3(iii),
the equality

∂

∂xr
w+[∂Ω,a, Sa, µ] =

n∑
j,l=1

alj
∂

∂xl
v+

[
∂Ω, Sa,Mrj [µ]

]
+Dv+[∂Ω, Sa, νrµ]a

(1)

+ av+[∂Ω, Sa, νrµ]−
∂

∂xr
v+[∂Ω, Sa, (ν

ta(1))µ] on clΩ (7.2)

holds.
Next, we introduce a result proved by Schauder [30, Hilfsatz VII, p. 112] for the Laplace operator,

which we extend here to the second order elliptic operators by exploiting Proposition 6.1.

Theorem 7.4. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[
and let Ω be a bounded open subset of Rn of the class C1,α. If µ ∈ L∞(∂Ω), then w[∂Ω,a, Sa, µ]|∂Ω ∈
C0,α(∂Ω). Moreover, the operator from L∞(∂Ω) to C0,α(∂Ω) which takes µ to w[∂Ω,a, Sa, µ]|∂Ω is
continuous.

Proof. By Lemma 5.1, the function Ka(x, y) ≡ B∗
Ω,y(Sa(x−y)) belongs to K(n−1)−α,n−α,1(∂Ω). Since

w[∂Ω,a, Sa, µ]|∂Ω = u[∂Ω,Ka, µ] ,

Proposition 6.1(ii) implies that the function w[∂Ω,a, Sa, · ]|∂Ω is continuous from L∞(∂Ω) to
C0,min{α,(n−1)−(n−α)+1}(∂Ω) = C0,α(∂Ω).

8 Auxiliary integral operators
In order to compute the tangential derivatives of the double layer potential, we introduce the following
two statements which concern two auxiliary integral operators. To shorten our notation, we define
the function Θ from (Rn × Rn) \∆Rn to Rn \ {0} as follows:

Θ(x, y) ≡ x− y ∀ (x, y) ∈ (Rn × Rn) \∆Rn . (8.1)

Theorem 8.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D] and
r ∈ {1, . . . , n}. Then the following statements hold:
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(i) Let Ω be a bounded open Lipschitz subset of Rn and θ ∈ ]0, 1]. If (f, µ) ∈ C0,θ(clΩ)× L∞(∂Ω),
then the function

Q♯
[∂Sa
∂xr

◦Θ, f, µ
]
(x) =

∫
∂Ω

(f(x)− f(y))
∂Sa
∂xr

(x− y)µ(y) dσy ∀x ∈ clΩ

is continuous.

(ii) Let α ∈ ]0, 1[ , β, θ ∈ ]0, 1], m ∈ N \ {0} and Ω be a bounded open subset of Rn of the class Cm,α.
Then the map Q♯[∂Sa

∂xr
◦Θ, · , · ] from Cm−1,θ(clΩ)×Cm−1,β(∂Ω) to Cm−1,min{α,β,θ}(clΩ) which

takes (f, µ) to Q♯[∂Sa
∂xr

◦Θ, f, µ] is bilinear and continuous.

Proof. By Lemma 4.3(ii), statement (i) is an immediate consequence of Lemma 6.3(i). Consider
statement (ii). By treating separately the cases x ∈ ∂Ω and x ∈ Ω, and exploiting Theorem 7.1(ii),
we have

Q♯
[∂Sa
∂xr

◦Θ, f, µ
]
(x) = f(x)

∂

∂xr
v+[∂Ω, Sa, µ](x)−

∂

∂xr
v+[∂Ω, Sa, fµ](x),

for all x ∈ clΩ. Then the statement follows by Theorem 7.1(i) and by the continuity of the pointwise
product in Schauder spaces.

Theorem 8.2. Let a be as in (1.1), (1.2), (1.3) and Sa be a fundamental solution of P [a, D]. Then
the following statement holds:

(i) Let Ω be a bounded open Lipschitz subset of Rn and θ ∈ ]0, 1]. Then the bilinear map Q[∂Sa
∂xr

◦
Θ, · , · ] from C0,θ(∂Ω)× L∞(∂Ω) to C0,ωθ( · )(∂Ω), which takes (g, µ) to the function

Q
[∂Sa
∂xr

◦Θ, g, µ
]
(x) =

∫
∂Ω

(g(x)− g(y))
∂Sa
∂xr

(x− y)µ(y) dσy ∀x ∈ ∂Ω , (8.2)

is continuous.

(ii) Let α ∈ ]0, 1[ , β ∈ ]0, 1]. Let Ω be a bounded open subset of Rn of the class C1,α. Then the
bilinear map Q[∂Sa

∂xr
◦ Θ, · , · ] from C0,α(∂Ω) × C0,β(∂Ω) to C0,α(∂Ω), which takes (g, µ) to

Q[∂Sa
∂xr

◦Θ, g, µ], is continuous.

Proof. By Lemma 4.3, we have ∂Sa
∂xr

∈ Kn−1,n,1(∂Ω). Then Lemma 6.3(iii) implies the validity of
statement (i).

We now consider statement (ii). By statement (i) and by the continuity of the inclusion of C0,β(∂Ω)
into L∞(∂Ω), we already know that Q[∂Sa

∂xr
◦Θ, · , · ] is continuous from C0,α(∂Ω)×C0,β(∂Ω) to C0(∂Ω).

Then it suffices to show that Q[∂Sa
∂xr

◦ Θ, · , · ] is continuous from C0,α(∂Ω) × C0,β(∂Ω) to the semi-
normed space (C0,α(∂Ω), | · : ∂Ω|α). By Lemma 6.3(iv), there exists q ∈ ]0,+∞[ such that∣∣∣∣Q[∂Sa

∂xr
◦Θ, g, µ

]
(x′)−Q

[∂Sa
∂xr

◦Θ, g, µ
]
(x′′)

∣∣∣∣
≤ q

∥∥∥∂Sa
∂xr

◦Θ
∥∥∥
Kn−1,n,1(∂Ω)

∥g∥C0,α(∂Ω)∥µ∥C0,β(∂Ω)|x′ − x′′|α

+ ∥µ∥C0(∂Ω)

∣∣∣∣Q[∂Sa
∂xr

◦Θ, g, 1
]
(x′)−Q

[∂Sa
∂xr

◦Θ, g, 1
]
(x′′)

∣∣∣∣ (8.3)

for all x′, x′′ ∈ ∂Ω. Let R ∈ ]0,+∞[ be such that clΩ ⊆ Bn(0, R). Let ‘ ∼ ’ be an extension operator
as in Lemma 2.1, defined on C0,α(∂Ω). Since

Q
[∂Sa
∂xr

◦Θ, g, 1
]
(x) = Q♯

[∂Sa
∂xr

◦Θ, g̃, 1
]
(x) ∀x ∈ ∂Ω ,
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Theorem 8.1(ii) implies that Q[∂Sa
∂xr

◦ Θ, · , 1] is continuous from C0,α(∂Ω) to itself and, accordingly,
there exists q′ ∈ ]0,+∞[ such that∥∥∥∥Q[∂Sa

∂xr
◦Θ, g, 1

]∥∥∥∥
C0,α(∂Ω)

≤ q′∥g∥C0,α(∂Ω) ∀ g ∈ C0,α(∂Ω) . (8.4)

Combining inequalities (8.3) and (8.4), we deduce that Q[∂Sa
∂xr

◦Θ, · , · ] is continuous from C0,α(∂Ω)×
C0,β(∂Ω) to (C0,α(∂Ω), | · : ∂Ω|α) and thus the proof is complete.

In the next lemma, we introduce a formula for the tangential derivatives of Q[∂Sa
∂xr

◦Θ, g, µ].

Lemma 8.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
θ ∈ ]0, 1]. Let Ω be a bounded open subset of Rn of class C2,α, r ∈ {1, . . . , n} and let g ∈ C1,θ(∂Ω),
µ ∈ C1(∂Ω). Then Q[∂Sa

∂xr
◦Θ, g, µ] ∈ C1(∂Ω) and the formula

Mlj

[
Q
[∂Sa
∂xr

◦Θ, g, µ
]]

= νl(x)Q
[∂Sa
∂xr

◦Θ, Da,jg, µ
]
(x)− νj(x)Q

[∂Sa
∂xr

◦Θ, Da,lg, µ
]
(x)

+ νl(x)Q

[
∂Sa
∂xr

◦Θ, g,
n∑
s=1

Msj

[ n∑
h=1

ashνh
νta(2)ν

µ
]]
(x)

− νj(x)Q

[
∂Sa
∂xr

◦Θ, g,
n∑
s=1

Msl

[ n∑
h=1

ashνh
νta(2)ν

µ
]]
(x)

+

n∑
s,h=1

ashνl(x)

{
Q
[∂Sa
∂xs

◦Θ, νj ,
Mhr[g]µ

νta(2)ν

]
(x) +Q

[
∂Sa
∂xs

◦Θ, g,Mhr

[ νjµ

νta(2)ν

]]
(x)

}

−
n∑

s,h=1

ashνj(x)

{
Q
[∂Sa
∂xs

◦Θ, νl,
Mhr[g]µ

νta(2)ν

]
(x) +Q

[
∂Sa
∂xs

◦Θ, g,Mhr

[ νlµ

νta(2)ν

]]
(x)

}

−
n∑
s=1

as

{
νl(x)Q

[∂Sa
∂xs

◦Θ, g, νjνr
νta(2)ν

µ
]
(x)− νj(x)Q

[∂Sa
∂xs

◦Θ, g, νlνr
νta(2)ν

µ
]
(x)

}
− a

{
g(x)

[
νl(x)v[∂Ω, Sa,

νjνr
νta(2)ν

µ
]
(x)− νj(x)v

[
∂Ω, Sa,

νlνr
νta(2)ν

µ
]
(x)

]
−
[
νl(x)v

[
∂Ω, Sa, g

νjνr
νta(2)ν

µ
]
(x)− νj(x)v

[
∂Ω, Sa, g

νlνr
νta(2)ν

µ
]
(x)

]}
(8.5)

holds for all x ∈ ∂Ω and l, j ∈ {1, . . . , n}. (For Q see (8.2).)

Proof. Let R ∈ ]0,+∞[ be such that clΩ ⊆ Bn(0, R). Let ‘ ∼ ’ be an extension operator as in
Lemma 2.1, defined either on C1,θ(∂Ω) or on C1,α(∂Ω) depending on whether it has been applied
to g ∈ C1,θ(∂Ω) or to νl ∈ C1,α(∂Ω) for l = 1, . . . , n.

Now, fix β ∈ ]0,min{θ, α}[ and first prove the formula under the assumption µ ∈ C1,β(∂Ω). By
Theorem 8.1(ii), we already know that Q♯[∂Sa

∂xr
◦Θ, g, µ] belongs to C1(clΩ). Then we find it convenient

to introduce the notation

M ♯
lj [f ](x) ≡ ν̃l(x)

∂f

∂xj
(x)− ν̃j(x)

∂f

∂xl
(x) ∀x ∈ clΩ

for all f ∈ C1(clΩ). If necessary, we write M ♯
lj,x to emphasize that we are taking x as variable of the

differential operator M ♯
lj . Next, we fix x ∈ Ω and compute

ν̃l(x)
∂

∂xj
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]
(x)− ν̃j(x)

∂

∂xl
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]
(x) .
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Clearly,

∂

∂xl
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]
(x)

=

∫
∂Ω

∂g̃

∂xl
(x)

∂

∂xr
Sa(x− y)µ(y) dσy +

∫
∂Ω

(g̃(x)− g̃(y))
∂2

∂xl∂xr
Sa(x− y)µ(y) dσy .

To shorten our notation, we set

J1(x) ≡
∫
∂Ω

∂g̃

∂xl
(x)

∂

∂xr
Sa(x− y)µ(y) dσy .

Then we have

∂

∂xl
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]
(x)

= J1(x)−
∫
∂Ω

(g̃(x)− g̃(y))

n∑
s,h=1

νs(y)ashνh(y)

νt(y)a(2)ν(y)

∂

∂yl

[ ∂

∂xr
Sa(x− y)

]
µ(y) dσy

= J1(x)−
∫
∂Ω

(g̃(x)− g̃(y))

n∑
s=1

(
νs(y)

∂

∂yl
− νl(y)

∂

∂ys

)[ ∂

∂xr
Sa(x− y)

]

×
n∑
h=1

ashνh(y)

νt(y)a(2)ν(y)
µ(y) dσy

−
∫
∂Ω

(g̃(x)− g̃(y))

n∑
s=1

∂

∂ys

[ ∂

∂xr
Sa(x− y)

] n∑
h=1

ashνh(y)
νl(y)

νt(y)a(2)ν(y)
µ(y) dσy .

By Lemma 2.2, the second term in the right-hand side takes the form

∫
∂Ω

(g̃(x)− g̃(y))

n∑
s=1

Msl,y

[ ∂

∂xr
Sa(x− y)

] (a(2)ν(y))s
νt(y)a(2)ν(y)

µ(y) dσy

= −
∫
∂Ω

n∑
s=1

Msl,y

[
g̃(x)− g̃(y)

] ∂

∂xr
Sa(x− y)

(a(2)ν(y))s
νt(y)a(2)ν(y)

µ(y) dσy

−
∫
∂Ω

n∑
s=1

(g̃(x)− g̃(y))
∂

∂xr
Sa(x− y)Msl

[ (a(2)ν)s
νta(2)ν

µ
]
(y) dσy .

Since Msl,y[g̃(x)− g̃(y)] = −Msl[g̃](y), we have

∂

∂xl
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]
(x) =

∂g̃

∂xl
(x)

∫
∂Ω

∂

∂xr
Sa(x− y)µ(y) dσy

−
∫
∂Ω

n∑
s=1

Msl[g̃](y)
∂

∂xr
Sa(x− y)

(a(2)ν(y))s
νt(y)a(2)ν(y)

µ(y) dσy

+

∫
∂Ω

n∑
s=1

(g̃(x)− g̃(y))
∂

∂xr
Sa(x− y)Msl

[ (a(2)ν)s
νta(2)ν

µ
]
(y) dσy

−
∫
∂Ω

(g̃(x)− g̃(y))

n∑
s=1

∂

∂ys

[ ∂

∂xr
Sa(x− y)

]
(a(2)ν(y))s

νl(y)

νt(y)a(2)ν(y)
µ(y) dσy .
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Accordingly, we have

M ♯
lj

[
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]]
(x) =M ♯

lj [g̃](x)

∫
∂Ω

∂

∂xr
Sa(x− y)µ(y) dσy

−
∫
∂Ω

n∑
s=1

{
ν̃l(x)Msj [g̃](y)− ν̃j(x)Msl[g̃](y)

} ∂

∂xr
Sa(x− y)

(a(2)ν(y))s
νt(y)a(2)ν(y)

µ(y) dσy

+

∫
∂Ω

n∑
s=1

(g̃(x)− g̃(y))
∂

∂xr
Sa(x− y)

{
ν̃l(x)Msj

[ (a(2)ν)s
νta(2)ν

µ
]
(y)− ν̃j(x)Msl

[ (a(2)ν)s
νta(2)ν

µ
]
(y)

}
dσy

−
∫
∂Ω

(g̃(x)− g̃(y))

n∑
s=1

∂

∂ys

[ ∂

∂xr
Sa(x− y)

]
(a(2)ν)s(y)

ν̃l(x)νj(y)− ν̃j(x)νl(y)

νt(y)a(2)ν(y)
µ(y) dσy . (8.6)

We now consider the first two terms in the right-hand side of formula (8.6). By the obvious identity

M ♯
lj [g̃] = ν̃l

[ ∂

∂xj
g̃ − Dg̃a(2)ν̃

ν̃ta(2)ν̃
ν̃j

]
− ν̃j

[ ∂

∂xl
g̃ − Dg̃a(2)ν̃

ν̃ta(2)ν̃
ν̃l

]
in clΩ ,

by the corresponding formula for Mlj [g̃] on ∂Ω, by formula (2.4) and by straightforward computations,
we obtain

M ♯
lj [g̃](x)

∫
∂Ω

∂

∂xr
Sa(x− y)µ(y) dσy

−
∫
∂Ω

n∑
s=1

{
ν̃l(x)Msj [g̃](y)− ν̃j(x)Msl[g̃](y)

} ∂

∂xr
Sa(x− y)

(a(2)ν(y))s
νt(y)a(2)ν(y)

µ(y) dσy

= ν̃l(x)

[
∂

∂xj
g̃(x)− Dg̃(x)a(2)ν̃(x)

ν̃t(x)a(2)ν̃(x)
ν̃j(x)

] ∫
∂Ω

∂

∂xr
Sa(x− y)µ(y) dσy

− ν̃j(x)

[
∂

∂xl
g̃(x)− Dg̃(x)a(2)ν̃(x)

ν̃t(x)a(2)ν̃(x)
ν̃l(x)

] ∫
∂Ω

∂

∂xr
Sa(x− y)µ(y) dσy

− ν̃l(x)

∫
∂Ω

[
∂

∂yj
g̃(y)− Dg̃(y)a(2)ν̃(y)

ν̃t(y)a(2)ν̃(y)
ν̃j(y)

]( n∑
s,h=1

ν̃s(y)
a
(2)
sh νh(y)

ν̃t(y)a(2)ν̃(y)

) ∂

∂xr
Sa(x− y)µ(y) dσy

+ ν̃l(x)

∫
∂Ω

ν̃j(y)

{ n∑
s,h=1

∂

∂ys
g̃(y)

ashνh(y)

ν̃t(y)a(2)ν̃(y)
− Dg̃(y)a(2)ν̃(y)

ν̃t(y)a(2)ν̃(y)

×
(
ν̃s(y)

ashνh(y)

ν̃t(y)a(2)ν̃(y)

)} ∂

∂xr
Sa(x− y)µ(y) dσy

+ ν̃j(x)

∫
∂Ω

[
∂

∂yl
g̃(y)− Dg̃(y)a(2)ν̃(y)

ν̃t(y)a(2)ν̃(y)
ν̃l(y)

]( n∑
s,h=1

ν̃s(y)
ashνh(y)

ν̃t(y)a(2)ν̃(y)

) ∂

∂xr
Sa(x− y)µ(y) dσy

− ν̃j(x)

∫
∂Ω

ν̃l(y)

{ n∑
s,h=1

∂

∂ys
g̃(y)

ashνh(y)

ν̃t(y)a(2)ν̃(y)
− Dg̃(y)a(2)ν̃(y)

ν̃t(y)a(2)ν̃(y)

×
(
ν̃s(y)

ashνh(y)

ν̃t(y)a(2)ν̃(y)

)} ∂

∂xr
Sa(x− y)µ(y) dσy . (8.7)

Since

ν̃(y) = ν(y) ,
( n∑
s,h=1

ν̃s(y)
ashνh(y)

ν̃t(y)a(2)ν̃(y)

)
= 1 ∀ y ∈ ∂Ω ,
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we have { n∑
s,h=1

∂

∂ys
g̃(y)

ashνh(y)

ν̃t(y)a(2)ν̃(y)
− Dg̃(y)a(2)ν̃(y)

ν̃t(y)a(2)ν̃(y)

(
ν̃s(y)

ashνh(y)

ν̃t(y)a(2)ν̃(y)

)}
= 0

for all y ∈ ∂Ω and, accordingly, the right-hand side of (8.7) equals

ν̃l(x)Q
♯
[∂Sa
∂xr

◦Θ, ∂

∂xj
g̃ − Dg̃a(2)ν̃

νta(2)ν
ν̃j , µ

]
(x)− ν̃j(x)Q

♯
[∂Sa
∂xr

◦Θ, ∂

∂xl
g̃ − Dg̃a(2)ν̃

νta(2)ν
ν̃l, µ

]
(x) .

Consider the third term in the right-hand side of formula (8.6) and note that

∫
∂Ω

n∑
s=1

(g̃(x)− g̃(y))
∂

∂xr
Sa(x− y)

{
ν̃l(x)Msj

[ (a(2)ν)s
νta(2)ν

µ
]
(y)− ν̃j(x)Msl

[ (a(2)ν)s
νta(2)ν

µ
]
(y)

}
dσy

= ν̃l(x)Q
♯

[
∂Sa
∂xr

◦Θ, g̃,
n∑
s=1

Msj

[ (a(2)ν)s
νta(2)ν

µ
]]
(x)

− ν̃j(x)Q
♯

[
∂Sa
∂xr

◦Θ, g̃,
n∑
s=1

Msl

[ (a(2)ν)s
νta(2)ν

µ
]]

(x) . (8.8)

Next, we consider the last integral in the right-hand side of formula (8.6) and note that if x ∈ Ω and
y ∈ ∂Ω, we have

n∑
s,h=1

∂

∂xh

[
ash

∂

∂xs
Sa(x− y)

]
+

n∑
s=1

as
∂

∂xs
Sa(x− y) + aSa(x− y) = 0 .

Thus we obtain
n∑

s,h=1

ashνh(y)
∂

∂xr

[ ∂

∂ys
Sa(x− y)

]
=

n∑
s,h=1

ash

(
νh(y)

∂

∂yr
−νr(y)

∂

∂yh

)[ ∂

∂xs
Sa(x−y)

]
+νr(y)

n∑
s=1

as
∂

∂xs
Sa(x−y)+νr(y)aSa(x−y) ,

and we note that the first parenthesis in the right-hand side equals Mhr,y. The last integral in the
right-hand side of formula (8.6) equals

∫
∂Ω

(g̃(x)− g̃(y))

n∑
s,h=1

ashνh(y)
∂

∂ys

[ ∂

∂xr
Sa(x− y)

] ν̃l(x)νj(y)− ν̃j(x)νl(y)

νt(y)a(2)ν(y)
µ(y) dσy

=

∫
∂Ω

(g̃(x)− g̃(y))

{ n∑
s,h=1

ashMhr,y

[ ∂

∂xs
Sa(x− y)

]

+ νr(y)

n∑
s=1

as
∂

∂xs
Sa(x− y) + νr(y)aSa(x− y)

}
ν̃l(x)νj(y)− ν̃j(x)νl(y)

νt(y)a(2)ν(y)
µ(y) dσy

=

n∑
s,h=1

ash

∫
∂Ω

(g̃(x)− g̃(y))Mhr,y

[ ∂

∂xs
Sa(x− y)

]
× ν̃l(x)(ν̃j(y)− ν̃j(x)) + ν̃j(x)(ν̃l(x)− ν̃l(y))

νt(y)a(2)ν(y)
µ(y) dσy

+

∫
∂Ω

(g̃(x)− g̃(y))
[ n∑
s=1

as
∂

∂xs
Sa(x− y) + aSa(x− y)

] ν̃l(x)νj(y)− ν̃j(x)νl(y)

νt(y)a(2)ν(y)
νr(y)µ(y) dσy . (8.9)



100 Francesco Dondi and Massimo Lanza de Cristoforis

We now consider separately each of the terms in the right-hand side of (8.9). By Lemma 2.2 and the
equality −Mhr,y[g̃(x)− g̃(y)] =Mhr,y[g̃(y)], the first integral in the right-hand side of (8.9) equals∫
∂Ω

(g̃(x)− g̃(y))Mhr,y

[ ∂

∂xs
Sa(x− y)

]
× ν̃l(x)(ν̃j(y)− ν̃j(x)) + ν̃j(x)(ν̃l(x)− ν̃l(y))

νt(y)a(2)ν(y)
µ(y) dσy

=

∫
∂Ω

Mhr[g̃]
∂

∂xs
Sa(x− y)

(
− ν̃l(x)

ν̃j(x)− νj(y)

νt(y)a(2)ν(y)
+ ν̃j(x)

ν̃l(x)− νl(y)

νt(y)a(2)ν(y)

)
µ(y) dσy

+

∫
∂Ω

(g̃(x)− g̃(y))
∂

∂xs
Sa(x− y)

×
(
− ν̃l(x)Mhr

[ νjµ

νta(2)ν

]
(y) + ν̃j(x)Mhr

[ νlµ

νta(2)ν

]
(y)

)
dσy

= −ν̃l(x)
∫
∂Ω

(ν̃j(x)− νj(y))
∂

∂xs
Sa(x− y)

Mhr[g̃]

νt(y)a(2)ν(y)
µ(y) dσy

+ ν̃j(x)

∫
∂Ω

(ν̃l(x)− νl(y))
∂

∂xs
Sa(x− y)

Mhr[g̃]

νt(y)a(2)ν(y)
µ(y) dσy

− ν̃l(x)

∫
∂Ω

(g̃(x)− g̃(y))
∂

∂xs
Sa(x− y)Mhr

[ νjµ

νta(2)ν

]
(y) dσy

+ ν̃j(x)

∫
∂Ω

(g̃(x)− g̃(y))
∂

∂xs
Sa(x− y)Mhr

[ νlµ

νta(2)ν

]
(y) dσy

= −ν̃l(x)
{
Q♯

[∂Sa
∂xs

◦Θ, ν̃j ,
Mhr[g]µ

νta(2)ν

]
(x) +Q♯

[
∂Sa
∂xs

◦Θ, g̃,Mhr

[ νjµ

νta(2)ν

]]
(x)

}
+ ν̃j(x)

{
Q♯

[∂Sa
∂xs

◦Θ, ν̃l,
Mhr[g]µ

νta(2)ν

]
(x) +Q♯

[
∂Sa
∂xs

◦Θ, g̃,Mhr

[ νlµ

νta(2)ν

]]
(x)

}
. (8.10)

Next, we note that the second integral in the right-hand side of (8.9) equals

n∑
s=1

as

{
ν̃l(x)Q

♯
[∂Sa
∂xs

◦Θ, g̃, νjνr
νta(2)ν

µ
]
(x)− ν̃j(x)Q

♯
[∂Sa
∂xs

◦Θ, g̃, νlνr
νta(2)ν

µ
]
(x)

}
+ a

{
g̃(x)

[
ν̃l(x)v

[
∂Ω, Sa,

νjνr
νta(2)ν

µ
]
(x)− ν̃j(x)v

[
∂Ω, Sa,

νlνr
νta(2)ν

µ
]
(x)

]
−
[
ν̃l(x)v

[
∂Ω, Sa, g

νjνr
νta(2)ν

µ
]
(x)− ν̃j(x)v

[
∂Ω, Sa, g

νlνr
νta(2)ν

µ
]
(x)

]}
.

By combining formulas (8.6)–(8.10), we obtain

M ♯
lj

[
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]]
(x) = ν̃l(x)Q

♯
[∂Sa
∂xr

◦Θ, ∂

∂xj
g̃ − Dg̃a(2)ν̃

νta(2)ν
ν̃j , µ

]
(x)

− ν̃j(x)Q
♯
[∂Sa
∂xr

◦Θ, ∂

∂xl
g̃−Dg̃a(2)ν̃

νta(2)ν
ν̃l, µ

]
(x)+ν̃l(x)Q

♯

[
∂Sa
∂xr

◦Θ, g̃,
n∑
s=1

Msj

[ n∑
h=1

ashνh
νta(2)ν

µ
]]
(x)

− ν̃j(x)Q
♯

[
∂Sa
∂xr

◦Θ, g̃,
n∑
s=1

Msl

[ n∑
h=1

ashνh
νta(2)ν

µ
]]
(x)

+

n∑
s,h=1

ashν̃l(x)

{
Q♯

[∂Sa
∂xs

◦Θ, νj ,
Mhr[g]µ

νta(2)ν

]
(x) +Q♯

[
∂Sa
∂xs

◦Θ, g̃,Mhr

[ νjµ

νta(2) ν

]]
(x)

}
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−
n∑

s,h=1

ashν̃j(x)

{
Q♯

[∂Sa
∂xs

◦Θ, νl,
Mhr[g]µ

νta(2)ν

]
(x) +Q♯

[
∂Sa
∂xs

◦Θ, g̃,Mhr

[ νlµ

νta(2)ν

]]
(x)

}

−
n∑
s=1

as

{
ν̃l(x)Q

♯
[∂Sa
∂xs

◦Θ, g̃, νjνr
νta(2)ν

µ
]
(x)− ν̃j(x)Q

♯
[∂Sa
∂xs

◦Θ, g̃, νlνr
νta(2)ν

µ
]
(x)

}
− a

{
g(x)

[
ν̃l(x)v

[
∂Ω, Sa,

νjνr
νta(2)ν

µ
]
(x)− ν̃j(x)v

[
∂Ω, Sa,

νlνr
νta(2)ν

µ
]
(x)

]
−
[
ν̃l(x)v

[
∂Ω, Sa, g

νjνr
νta(2)ν

µ
]
(x)− ν̃j(x)v

[
∂Ω, Sa, g

νlνr
νta(2)ν

µ
]
(x)

]}
. (8.11)

Under our assumptions, the first argument of the maps Q♯[∂Sa
∂xr

◦Θ, · , · ] and Q♯[∂Sa
∂xs

◦Θ, · , · ], which
appear in the right-hand side of (8.11) belongs to the space C0,min{α,θ}(clΩ) and the second argument
of the maps Q♯[∂Sa

∂xr
◦Θ, · , · ], Q♯[∂Sa

∂xs
◦Θ, · , · ], which appear in the right-hand side of (8.11) belongs

to C0(∂Ω). By Theorem 7.1(i) with m = 1, the single layer potentials in the right-hand side of (8.11)
are continuous in x ∈ clΩ. Then Theorem 8.1(i) implies that the right-hand side of (8.11) defines a
continuous function of the variable x ∈ clΩ. Since Ω is of the class C2,α and g̃ ∈ C1,θ(clΩ) and since
we are assuming that µ ∈ C1,β(∂Ω), Theorem 8.1(ii) implies that M ♯

lj [Q
♯[∂Sa
∂xr

◦ Θ, g, µ]] belongs to
C0(clΩ). Hence, the equation of (8.11) must hold for all x ∈ clΩ and, in particular, for all x ∈ ∂Ω.
Since Q♯[∂Sa

∂xr
◦Θ, · , · ] = Q[∂Sa

∂xr
◦Θ, · , · ] and M ♯

lj =Mlj on ∂Ω, we conclude that (8.5) holds.
Next, we assume that µ ∈ C1(∂Ω). We denote by Pljr[g, µ] the right-hand side of (8.5). By Theo-

rem 8.2(i), the operators Q[∂Sa
∂xr

◦Θ, g, · ], Q[∂Sa
∂xr

◦Θ, Da,jg, · ], Q[∂Sa
∂xr

◦Θ, νl, · ] are linear and continuous
from the space C0(∂Ω) to C0(∂Ω). By Theorem 7.2 and by the continuity of the pointwise product in
C0(∂Ω), the operator Pljr[g, · ] is continuous from C0(∂Ω) to C0(∂Ω). In particular, Q[∂Sa

∂xr
◦Θ, g, µ],

Pljr[g, µ] ∈ C0(∂Ω).
We now show that the weak Mlj-derivative of Q[∂Sa

∂xr
◦Θ, g, · ] in ∂Ω coincides with Pljr[g, µ].

Considering both an extension of µ of the class C1 with a compact support in Rn and a sequence of
mollifiers of such an extension, and then taking the restriction to ∂Ω, we can conclude that there exists
a sequence of functions {µb}b∈N in C2(∂Ω) converging to µ in C1(∂Ω). We note that if φ ∈ C1(∂Ω),
then the validity of (8.5) for µb ∈ C2(∂Ω) ⊆ C1,β(∂Ω), the membership of Q[∂Sa

∂xr
◦Θ, g, µb] in C1(∂Ω)

(see Theorem 8.1(ii)) and Lemma 2.2 imply that∫
∂Ω

Q
[∂Sa
∂xr

◦Θ, g, µ
]
Mlj [φ] dσ = lim

b→∞

∫
∂Ω

Q
[∂Sa
∂xr

◦Θ, g, µb
]
Mlj [φ] dσ

= − lim
b→∞

∫
∂Ω

Mlj

[
Q
[∂Sa
∂xr

◦Θ, g, µb
]]
φdσ = − lim

b→∞

∫
∂Ω

Pljr[g, µb]φdσ = −
∫
∂Ω

Pljr[g, µ]φdσ .

Hence, Pljr[g, µ] coincides with the weak Mlj-derivative of Q[∂Sa
∂xr

◦Θ, g, µ] for all l, j ∈ {1, . . . , n}. Since
both Pljr[g, µ] andQ[∂Sa

∂xr
◦Θ, g, µ] are the continuous functions, it follows thatQ[∂Sa

∂xr
◦Θ, g, µ] ∈ C1(∂Ω)

and Mlj [Q[∂Sa
∂xr

◦Θ, g, µ]] = Pljr[g, µ], classically. Hence (8.5) holds also for µ ∈ C1(∂Ω).

By exploiting formula (8.5), we can prove the following theorem.

Theorem 8.3. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
m ∈ N \ {0}. Let Ω be a bounded open subset of Rn of the class Cm,α and let r ∈ {1, . . . , n}. Then
the following statements hold:

(i) Let θ ∈]0, 1]. Then the bilinear map Q[∂Sa
∂xr

◦ Θ, · , · ] from the space Cm−1,θ(∂Ω) × Cm−1(∂Ω)

to Cm−1,ωθ( · )(∂Ω), which takes a pair (g, µ) to Q[∂Sa
∂xr

◦Θ, g, µ], is continuous.

(ii) Let β ∈ ]0, 1]. Then the bilinear map Q[∂Sa
∂xr

◦Θ, · , · ] from the space Cm−1,α(∂Ω)×Cm−1,β(∂Ω)

to Cm−1,α(∂Ω), which takes a pair (g, µ) to Q[∂Sa
∂xr

◦Θ, g, µ], is continuous.
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Proof. We first prove statement (i). We proceed by induction on m. Case m = 1 holds by Theo-
rem 8.2(i). We now prove that if the statement holds for m, then it holds for m + 1. Thus we now
assume that Ω is of the class Cm+1,α, and we turn to prove that Q[∂Sa

∂xr
◦ Θ, · , · ] is bilinear and

continuous from Cm,θ(∂Ω) × Cm(∂Ω) to Cm,ωθ( · )(∂Ω). By Lemma 2.3(ii), it suffices to prove that
the following two statements hold:

(j) Q[∂Sa
∂xr

◦Θ, · , · ] is continuous from Cm,θ(∂Ω)× Cm(∂Ω) to C0(∂Ω);

(jj) Mlj [Q[∂Sa
∂xr

◦ Θ, · , · ]] is continuous from Cm,θ(∂Ω) × Cm(∂Ω) to the space Cm−1,ωθ( · )(∂Ω) for
all l, j ∈ {1, . . . , n}.

Statement (j) holds by the case m = 1, and by the imbedding of Cm,θ(∂Ω)×Cm(∂Ω) into C0,θ(∂Ω)×
C0(∂Ω). We now prove statement (jj). Since m + 1 ≥ 2, Lemma 8.1 and the inductive assumption
imply that we can actually apply Mlj to Q[∂Sa

∂xr
◦Θ, · , · ]. We find it convenient to denote by Pljr[g, µ]

the right-hand side of formula (8.5). Then we have

Mlj

[
Q
[∂Sa
∂xr

◦Θ, g, µ
]]

= Pljr[g, µ] ∀ (g, µ) ∈ Cm,θ(∂Ω)× Cm(∂Ω) .

By Lemma 2.4 and the membership of ν in Cm,α(∂Ω,Rn), which is contained in Cm−1,1(∂Ω,Rn),
by the continuity of the pointwise product in Schauder spaces, by the continuity of the imbedding
of Cm(∂Ω) into Cm−1(∂Ω) and of Cm,α(∂Ω) into Cm−1,θ(∂Ω), by the inductive assumption on the
continuity of Q[∂Sa

∂xr
◦ Θ, · , · ], by the continuity of v[∂Ω, Sa, · ]|∂Ω from Cm−1,α(∂Ω) to Cm,α(∂Ω) ⊆

Cm−1,θ(∂Ω), and by the continuity of the imbedding of Cm(∂Ω) into Cm−1,α(∂Ω) and of Cm(∂Ω)
into Cm−1,ωθ( · )(∂Ω), and by the continuity of Da from Cm,θ(∂Ω) to Cm−1,θ(∂Ω), we conclude that
Pljr[ · , · ] is bilinear and continuous from Cm,θ(∂Ω) × Cm(∂Ω) to Cm−1,ωθ( · )(∂Ω), and the proof of
statement (jj) and, accordingly, of statement (i) is complete. The proof of statement (ii) follows the
lines of the proof of statement (i), by replacing the use of Theorem 8.2(i) with that of Theorem
8.2(ii).

Definition 8.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[
and let Ω be a bounded open subset of Rn of the class C1,α. Then we set

R[g, h, µ] ≡
∑
r=1

ar

{
Q
[∂Sa
∂xr

◦Θ, gh, µ
]
− gQ

[∂Sa
∂xr

◦Θ, h, µ
]
−Q

[∂Sa
∂xr

◦Θ, h, gµ
]}

+ a
{
gv[∂Ω, Sa, hµ]− hv[∂Ω, Sa, gµ]

}
for all (g, h, µ) ∈ (C0,α(∂Ω))2 × C0(∂Ω).

Since

g(x)h(y)−g(y)h(x)=
[
g(x)h(x)−g(y)h(y)

]
−g(x)[h(x)−h(y)]−g(y)[h(x)−h(y)] ∀x, y∈∂Ω ,

we have

R[g, h, µ] =

∫
∂Ω

{ n∑
r=1

ar
∂

∂xr
Sa(x− y) + aSa(x− y)

}[
g(x)h(y)− g(y)h(x)

]
µ(y) dσy ∀x ∈ ∂Ω .

Since R is a composition of the operator Q[∂Sa
∂xr

◦ Θ, · , · ] and of a single layer potential, Theo-
rems 7.1, 7.2 and 8.3, the continuity of the product in Schauder spaces and also of the imbeddings of
Cm−1(∂Ω) into Cm−2,α(∂Ω) for m ≥ 2, of Cm−1,α(∂Ω) into Cm−1,ωα( · )(∂Ω) and also of Cm,β(∂Ω)
into Cm−1,α(∂Ω), imply that the following theorem is valid.

Theorem 8.4. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
m ∈ N\{0} and let Ω be a bounded open subset of Rn of the class Cm,α. Then the following statements
hold:
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(i) The trilinear map R from the space (Cm−1,α(∂Ω))2×Cm−1(∂Ω) to Cm−1,ωα( · )(∂Ω), which takes
a triple (g, h, µ) to R[g, h, µ], is continuous.

(ii) Let β ∈ ]0, 1]. Then the trilinear map R from the space (Cm−1,α(∂Ω))2 × Cm−1,β(∂Ω) to
Cm−1,α(∂Ω), which takes a triple (g, h, µ) to R[g, h, µ], is continuous.

9 Tangential derivatives and regularizing properties of the
double layer potential

We now exploit Theorems 7.3, 7.4, Lemma 8.1 and Theorems 8.3, 8.4 in order to prove a formula for
the tangential derivatives of the double layer potential, which generalizes the corresponding formula
of Hofmann, Mitrea and Taylor [16, (6.2.6)] for homogeneous operators. We do so by means of the
following

Theorem 9.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ and
let Ω be a bounded open subset of Rn of the class C1,α. If µ ∈ C1(∂Ω), then w[∂Ω,a, Sa, µ]|∂Ω ∈ C1(∂Ω)
and

Mlj

[
w
[
∂Ω,a, Sa, µ

]
|∂Ω

]
= w

[
∂Ω,a, Sa,Mlj [µ]

]
|∂Ω

+

n∑
b,r=1

abr

{
Q
[∂Sa
∂xb

◦Θ, νl,Mjr[µ]
]
−Q

[∂Sa
∂xb

◦Θ, νj ,Mlr[µ]
]}

+ νlQ
[∂Sa
∂xj

◦Θ, ν · a(1), µ
]
− νjQ

[∂Sa
∂xl

◦Θ, ν · a(1), µ
]

+ ν · a(1)
{
Q
[∂Sa
∂xl

◦Θ, νj , µ
]
−Q

[∂Sa
∂xj

◦Θ, νl, µ
]}

− ν · a(1)v
[
∂Ω, Sa,Mlj [µ]

]
+ v

[
∂Ω, Sa, ν · a(1)Mlj [µ]

]
+R[νl, νj , µ] on ∂Ω (9.1)

for all l, j ∈ {1, . . . , n}. (For Q see (8.2).)

Proof. Fix β ∈ ]0, α[. First consider the specific case in which µ ∈ C1,β(∂Ω). Let R ∈ ]0,+∞[ be
such that clΩ ⊆ Bn(0, R). Let ‘ ∼ ’ be an extension operator of C1,β(∂Ω) to C1,β(clBn(0, R)) as in
Lemma 2.1. By Theorem 7.3(i),(ii), we have w+[∂Ω,a, Sa, µ] ∈ C1,β(clΩ) and

Mlj

[
w+[∂Ω,a, Sa, µ]|∂Ω

]
=

1

2
Mlj [µ] +Mlj

[
w[∂Ω,a, Sa, µ]|∂Ω

]
. (9.2)

By the definition of Mlj and by equality (7.2), we obtain

Mlj

[
w+[∂Ω,a, Sa, µ]|∂Ω

]
= νl

∂

∂xj
w+[∂Ω,a, Sa, µ]− νj

∂

∂xl
w+[∂Ω,a, Sa, µ]

= νl

[ n∑
b,r=1

abr
∂

∂xb
v+

[
∂Ω, Sa,Mjr[µ]

]
+

n∑
b=1

ab
∂

∂xb
v+[∂Ω, Sa, νjµ]

− ∂

∂xj
v+[∂Ω, Sa, (ν

t · a(1))µ] + av+[∂Ω, Sa, νjµ]
]

− νj

[ n∑
b,r=1

abr
∂

∂xb
v+

[
∂Ω, Sa,Mlr[µ]

]
+

n∑
b=1

ab
∂

∂xb
v+[∂Ω, Sa, νlµ]

− ∂

∂xl
v+[∂Ω, Sa, (ν

t · a(1))µ] + av+[∂Ω, Sa, νlµ]
]

=

n∑
b,r=1

abr

{
νl

∂

∂xb
v+

[
∂Ω, Sa,Mjr[µ]

]
− νj

∂

∂xb
v+

[
∂Ω, Sa,Mlr[µ]

]}
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+

n∑
b=1

ab

{
νl

∂

∂xb
v+[∂Ω, Sa, νjµ]− νj

∂

∂xb
v+[∂Ω, Sa, νlµ]

}
−
{
νl

∂

∂xj
v+[∂Ω, Sa, (ν

t · a(1))µ]− νj
∂

∂xl
v+[∂Ω, Sa, (ν

t · a(1))µ]
}

+ a
{
νlv[∂Ω, Sa, νjµ]− νjv[∂Ω, Sa, νlµ]

}
on ∂Ω . (9.3)

We now consider the first term in braces in the right–hand side of (9.3) and note that{
νl(x)

∂

∂xb
v+

[
∂Ω, Sa,Mjr[µ]

]
(x)− νj

∂

∂xb
v+

[
∂Ω, Sa,Mlr[µ]

]
(x)

}
= − νl(x)νb(x)

2νt(x)a(2)ν(x)
Mjr[µ](x) + νl(x)

∫
∂Ω

∂

∂xb
Sa(x− y)Mjr[µ](y) dσy

+
νj(x)νb(x)

2νt(x)a(2)ν(x)
Mlr[µ](x)− νj(x)

∫
∂Ω

∂

∂xb
Sa(x− y)Mlr[µ](y) dσy

= νb(x)
−νl(x)Mjr[µ](x) + νj(x)Mlr[µ](x)

2νt(x)a(2)ν(x)

+

∫
∂Ω

∂

∂xb
Sa(x− y)

{
νl(x)Mjr[µ](y)− νj(x)Mlr[µ](y)

}
dσy . (9.4)

Further, we note that[
νlMjr[µ]− νjMlr[µ]

]
= νlνj

∂µ

∂xr
− νlνr

∂µ

∂xj
− νjνl

∂µ

∂xr
+ νjνr

∂µ

∂xl
= −νrMlj [µ] on ∂Ω . (9.5)

Then we obtain
n∑

b,r=1

abrνb
−νlMjr[µ] + νjMlr[µ]

2νta(2)ν

=

n∑
b,r=1

abrνb
νrMlj [µ]

2νta(2)ν
=

n∑
b,r=1

νbabrνr

2νta(2)ν
Mlj [µ] =

1

2
Mlj [µ] on ∂Ω . (9.6)

Consider the term in braces in the argument of the integral in the right-hand side of (9.4) and note
that equality (9.5) yields

νl(x)Mjr[µ](y)− νj(x)Mlr[µ](y)

= [νl(x)− νl(y)]Mjr[µ](y) +
[
νl(y)Mjr[µ](y)− νj(y)Mlr[µ](y)

]
− [νj(x)− νj(y)]Mlr[µ](y)

= [νl(x)− νl(y)]Mjr[µ](y)− νr(y)Mlj [µ](y)− [νj(x)− νj(y)]Mlr[µ](y) ∀x, y ∈ ∂Ω . (9.7)

We now consider the term in the second braces in the right-hand side of equality (9.3) and we note that

νl(x)
∂

∂xb
v+[∂Ω, Sa, νjµ](x)− νj(x)

∂

∂xb
v+[∂Ω, Sa, νlµ](x)

= −νl(x)
νb(x)

2νt(x)a(2)ν(x)
νj(x)µ(x) + νl(x)

∫
∂Ω

∂

∂xb
Sa(x− y)νj(y)µ(y) dσy

+ νj(x)
νb(x)

2νt(x)a(2)ν(x)
νl(x)µ(x)− νj(x)

∫
∂Ω

∂

∂xb
Sa(x− y)νl(y)µ(y) dσy

=

∫
∂Ω

∂

∂xb
Sa(x− y)[νl(x)νj(y)− νj(x)νl(y)]µ(y) dσy ∀x ∈ ∂Ω . (9.8)
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Next, we consider the term in the third braces in the right-hand side of equality (9.3) and we note that

νl(x)
∂

∂xj
v+[∂Ω, Sa, (ν

t · a(1))µ](x)− νj(x)
∂

∂xl
v+[∂Ω, Sa, (ν

t · a(1))µ](x)

= −νl(x)
νj(x)

2νt(x)a(2)ν(x)
(νt(x) · a(1))µ(x) + νl(x)

∫
∂Ω

∂

∂xj
Sa(x− y)νt(y) · a(1)µ(y) dσy

+ νj(x)
νl(x)

2νt(x)a(2)ν(x)
(νt(x) · a(1))µ(x)− νj(x)

∫
∂Ω

∂

∂xl
Sa(x− y)νt(y) · a(1)µ(y) dσy

= −νl(x)
∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xj
Sa(x− y)µ(y) dσy

+ νl(x)

∫
∂Ω

(νt(x) · a(1)) ∂

∂xj
Sa(x− y)µ(y) dσy

+ νj(x)

∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xl
Sa(x− y)µ(y) dσy

− νj(x)

∫
∂Ω

(νt(x) · a(1)) ∂

∂xl
Sa(x− y)µ(y) dσy

= −νl(x)
∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xj
Sa(x− y)µ(y) dσy

+ νj(x)

∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xl
Sa(x− y)µ(y) dσy

+ (νt(x) · a(1))
∫
∂Ω

(
νl(x)

∂

∂xj
− νj(x)

∂

∂xl

)
Sa(x− y)µ(y) dσy

= −νl(x)
∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xj
Sa(x− y)µ(y) dσy

+ νj(x)

∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xl
Sa(x− y)µ(y) dσy

+ (νt(x) · a(1))
{∫
∂Ω

(νl(x)−νl(y))
∂

∂xj
Sa(x−y)µ(y) dσy−

∫
∂Ω

(νj(x)−νj(y))
∂

∂xl
Sa(x−y)µ(y) dσy

}

+ (νt(x) · a(1))
∫
∂Ω

(
νl(y)

∂

∂xj
− νj(y)

∂

∂xl

)
Sa(x− y)µ(y) dσy (9.9)

for all x ∈ ∂Ω. By Lemma 2.2, the last integral in the right-hand side of (9.9) equals

−
∫
∂Ω

Mlj,y[Sa(x− y)]µ(y) dσy =

∫
∂Ω

Sa(x− y)Mlj [µ](y) dσy ∀x ∈ ∂Ω . (9.10)

Thus the last term in the right-hand side of (9.9) equals

(νt(x) · a(1))
∫
∂Ω

Sa(x− y)Mlj [µ](y) dσy =

∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

]
Sa(x− y)Mlj [µ](y) dσy

+

∫
∂Ω

(νt(y) · a(1))Sa(x− y)Mlj [µ](y) dσy ∀x ∈ ∂Ω . (9.11)
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The last term in braces of equation (9.3) equals∫
∂Ω

Sa(x− y)
[
νl(x)νj(y)− νj(x)νl(y)

]
µ(y) dσy ∀x ∈ ∂Ω . (9.12)

Combining (9.2)–(9.4), (9.6)–(9.12), we obtain

Mlj

[
w[∂Ω,a, Sa, µ]

]
(x) =

n∑
b,r=1

abr

{∫
∂Ω

(νl(x)− νl(y))
∂

∂xb
Sa(x− y)Mjr[µ](y) dσy

−
∫
∂Ω

(νj(x)− νj(y))
∂

∂xb
Sa(x− y)Mlr[µ](y) dσy −

∫
∂Ω

νr(y)
∂

∂xb
Sa(x− y)Mlj [µ](y) dσy

}

+

n∑
b=1

ab

∫
∂Ω

∂

∂xb
Sa(x− y)

[
νl(x)νj(y)− νj(x)νl(y)

]
µ(y) dσy

+ νl(x)

∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xj
Sa(x− y)µ(y) dσy

− νj(x)

∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xl
Sa(x− y)µ(y) dσy

− (νt(x) · a(1))
{∫
∂Ω

(νl(x)−νl(y))
∂

∂xj
Sa(x−y)µ(y) dσy−

∫
∂Ω

(νj(x)−νj(y))
∂

∂xl
Sa(x−y)µ(y) dσy

}

−
∫
∂Ω

[
(νt(x) · a(1))−(νt(y) · a(1))

]
Sa(x−y)Mlj [µ](y) dσy−

∫
∂Ω

(νt(y) · a(1))Sa(x−y)Mlj [µ](y) dσy

+ a

∫
∂Ω

Sa(x− y)
[
νl(x)νj(y)− νj(x)νl(y)

]
µ(y) dσy ∀x ∈ ∂Ω ,

which we rewrite as

Mlj

[
w[∂Ω,a, Sa, µ]

]
(x) =

n∑
b,r=1

abr

{
Q
[∂Sa
∂xb

◦Θ, νl,Mjr[µ]
]
(x)−Q

[∂Sa
∂xb

◦Θ, νj ,Mlr[µ]
]
(x)

}
+ νl(x)Q

[∂Sa
∂xj

◦Θ, νt · a(1), µ
]
(x)− νj(x)Q

[∂Sa
∂xl

◦Θ, νt · a(1), µ
]
(x)

+ w
[
∂Ω,a, Sa,Mlj [µ]

]
(x) + (νt(x) · a(1))

{
Q
[∂Sa
∂xl

◦Θ, νj , µ
]
(x)−Q

[∂Sa
∂xj

◦Θ, νl, µ
]
(x)

}
− (νt(x) · a(1))v

[
∂Ω, Sa,Mlj [µ]

]
(x) + v

[
∂Ω, Sa, (ν

t · a(1))Mlj [µ]
]
(x) +R[νl, νj , µ](x) ∀x ∈ ∂Ω .

Thus we have proved formula (9.1) for µ ∈ C1,β(∂Ω).
Next, we assume that µ ∈ C1(∂Ω). We denote by Tlj [µ] the right-hand side of (9.1). By the

continuity of Mlj from C1(∂Ω) to C0(∂Ω), of w[∂Ω,a, Sa, · ]|∂Ω and v[∂Ω, Sa, · ]|∂Ω from C0(∂Ω) to
C0,α(∂Ω), of Q[∂Sa

∂xr
◦Θ, · , · ] from C0,α(∂Ω)×C0(∂Ω) to C0,ωα(∂Ω), of R from (C0,α(∂Ω))2×C0(∂Ω)

to C0,ωα(∂Ω), and by the continuity of the pointwise product in Schauder spaces, we can conclude
that the operators w[∂Ω,a, Sa, · ]|∂Ω and Tlj [ · ] are continuous from C1(∂Ω) to C0,α(∂Ω) and from
C1(∂Ω) to C0,ωα( · )(∂Ω), respectively. In particular, Tlj [µ] and w[∂Ω,a, Sa, µ]|∂Ω belong to C0(∂Ω).
We now show that the weak Mlj-derivative of w[∂Ω,a, Sa, µ]|∂Ω coincides with Tlj [µ].

By arguing just as at the end of the proof of Lemma 8.1, there exists a sequence of functions
{µb}b∈N in C1,α(∂Ω), which converges to µ in C1(∂Ω). Note that if φ ∈ C1(∂Ω), then the validity
of (9.1) for µb ∈ C1,α(∂Ω), the membership of w[∂Ω,a, Sa, µb]|∂Ω in C1,α(∂Ω), the above-mentioned
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continuity of w[∂Ω,a, Sa, · ]|∂Ω, and also Lemma 2.2 imply that∫
∂Ω

w[∂Ω,a, Sa, µ]|∂ΩMlj [φ] dσ = lim
b→∞

∫
∂Ω

w[∂Ω,a, Sa, µb]|∂ΩMlj [φ] dσ

= − lim
b→∞

∫
∂Ω

Mlj

[
w[∂Ω,a, Sa, µb]|∂Ω

]
φdσ = − lim

b→∞

∫
∂Ω

Tlj [µb]φdx = −
∫
∂Ω

Tlj [µ]φdx .

Hence, Tlj [µ] coincides with the weak Mlj-derivative of w[∂Ω,a, Sa, µ]|∂Ω for all l, j in {1, . . . , n}. Since
both Tlj [µ] and w[∂Ω,a, Sa, µ]|∂Ω are the continuous functions, it follows that w[∂Ω,a, Sa, µ]|∂Ω ∈
C1(∂Ω) and Mlj [w[∂Ω,a, Sa, µ]|∂Ω] = Tlj [µ], classically. Hence (9.1) holds also for µ ∈ C1(∂Ω).

Using formula (9.1), we now prove the following result, which says that the double layer potential
on ∂Ω has a regularizing effect.

Theorem 9.2. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
m ∈ N\{0} and let Ω be a bounded open subset of Rn of the class Cm,α. Then the following statements
hold:

(i) The operator w[∂Ω,a, Sa, · ]|∂Ω is linear and continuous from Cm(∂Ω) to Cm,ωα( · )(∂Ω).

(ii) Let β ∈ ]0, α]. Then the operator w[∂Ω,a, Sa, · ]|∂Ω is linear and continuous from Cm,β(∂Ω) to
Cm,α(∂Ω).

Proof. We prove statement (i) by induction on m. As in the previous proof, we denote by Tlj [µ] the
right-hand side of formula (9.1). We first consider the case m = 1. By Lemma 2.3(ii) and formula
(9.1), it suffices to prove that the following two statements hold:

(j) w[∂Ω,a, Sa, · ]|∂Ω is continuous from C1(∂Ω) to C0(∂Ω);

(jj) Tlj [ · ] is continuous from C1(∂Ω) to C0,ωα( · )(∂Ω) for all l, j ∈ {1, . . . , n}.

Theorem 7.4 implies the validity of (j). Statement (jj) follows by the continuity of the pointwise
product in Schauder spaces, by the continuity of Mlj from C1(∂Ω) to C0(∂Ω), by the continuity of
v[∂Ω, Sa, · ]|∂Ω and of w[∂Ω,a, Sa, · ]|∂Ω from C0(∂Ω) to C0,α(∂Ω) (cf. Theorems 7.2, 7.4), and also
by the continuity of Q[∂Sa

∂xr
◦ Θ, · , · ] from C0,α(∂Ω) × C0(∂Ω) to C0,ωα( · )(∂Ω) (cf. Theorem 8.2(i))

and by the continuity of R from
(
C0,α(∂Ω)

)2 × C0(∂Ω) to C0,ωα( · )(∂Ω) (cf. Theorem 8.4(i).)
Next, we assume that Ω is of the class Cm+1,α and we turn to prove that w[∂Ω,a, Sa, · ]|∂Ω is

continuous from Cm+1(∂Ω) to Cm+1,ωα( · )(∂Ω). By Lemma 2.3(ii) and formula (9.1), it suffices to
prove that the following two statements hold:

(a) w[∂Ω,a, Sa, · ]|∂Ω is continuous from Cm+1(∂Ω) to C0(∂Ω);

(b) Tlj [ · ] is continuous from Cm+1(∂Ω) to Cm,ωα( · )(∂Ω). for all l, j ∈ {1, . . . , n}.

Statement (a) holds by the inductive assumption. We now prove statement (b). Since Ω is of the
class Cm+1,α, then ν is of the class Cm,α(∂Ω). Theorem 8.3(i) ensures that Q[∂Sa

∂xr
◦Θ, ν · a(1), · ] and

Q[∂Sa
∂xr

◦Θ, νj , · ] are continuous from Cm(∂Ω) to Cm,ωα(∂Ω) for all l, j, r in {1, . . . , n}. Since Mlj is
continuous from Cm+1(∂Ω) to Cm(∂Ω), the inductive assumption implies that w[∂Ω,a, Sa,Mlj [ · ]]|∂Ω
is continuous from Cm+1(∂Ω) to Cm,ωα( · )(∂Ω) for all l, j in {1, . . . , n}.

Since Mlj is continuous from Cm+1(∂Ω) to Cm−1,α(∂Ω) and v[∂Ω, Sa, · ]|∂Ω is continuous from
Cm−1,α(∂Ω) to Cm,α(∂Ω), ν ∈ (Cm,α(∂Ω))n and Cm,α(∂Ω) is continuously imbedded into
Cm,ωα( · )(∂Ω), we conclude that v[∂Ω, Sa,Mlj [ · ]]|∂Ω and v[∂Ω, Sa, ν · a(1)Mlj [ · ]]|∂Ω are continuous
from the space Cm+1(∂Ω) to Cm,ωα( · )(∂Ω) for all l, j in {1, . . . , n}. Moreover, R is continuous from
(Cm,α(∂Ω))2 × Cm(∂Ω) to Cm,ωα( · )(∂Ω) (cf. Theorem 8.4(i)). Then statement (b) holds true.

Statement (iii) can be proved by the same argument of the proof of statement (i) by exploiting
Theorem 8.3(ii) instead of Theorem 8.3(i) and Theorem 8.4(ii) instead of Theorem 8.4(i).
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Since Cm,ωα( · )(∂Ω) is compactly imbedded into Cm(∂Ω) and Cm,α(∂Ω) is compactly imbedded
into Cm,β(∂Ω) for all β ∈ ]0, α[ , we have the following immediate consequence of Theorem 9.2.
Corollary 9.1. Under the assumptions of Theorem 9.2, the linear operator w[∂Ω,a, Sa, · ]|∂Ω is
compact from Cm(∂Ω) to itself, from Cm,ωα( · )(∂Ω) to itself and from Cm,α(∂Ω) to itself.

10 Other layer potentials associated to P [a, D]

Another relevant layer potential operator associated to the analysis of boundary value problems for
the operator P [a, D] is the following

w∗[∂Ω,a, Sa, µ](x) ≡
∫
∂Ω

µ(y)DSa(x− y)a(2)ν(x) dσy ∀x ∈ ∂Ω ,

which we now turn to consider.
Theorem 10.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
m ∈ N\{0} and let Ω be a bounded open subset of Rn of the class Cm,α. Then the following statements
hold:

(i) The operator w∗[∂Ω,a, Sa, · ]|∂Ω is linear and continuous from Cm−1(∂Ω) to Cm−1,ωα( · )(∂Ω).

(ii) Let β ∈ ]0, α]. Then the operator w∗[∂Ω,a, Sa, · ]|∂Ω is linear and continuous from Cm−1,β(∂Ω)
to Cm−1,α(∂Ω).

Proof. First note that

w∗[∂Ω,a,Sa, µ](x) =
n∑

b,r=1

abr

∫
∂Ω

νr(x)
∂

∂xb
Sa(x− y)µ(y) dσy

=

n∑
b,r=1

abrQ
[∂Sa
∂xb

◦Θ, νr, µ
]
(x) +

n∑
b,r=1

abr

∫
∂Ω

νr(y)
∂

∂xb
Sa(x− y)µ(y) dσy

=

n∑
b,r=1

abrQ
[∂Sa
∂xb

◦Θ, νr, µ
]
(x)−

∫
∂Ω

µ(y)

n∑
b,r=1

abrνr(y)
∂

∂yb
Sa(x− y) dσy

=

n∑
b,r=1

abrQ
[∂Sa
∂xb

◦Θ, νr, µ
]
(x)− w[∂Ω,a, Sa, µ](x)− v[∂Ω, Sa, (a

(1)ν)µ](x) (10.1)

for all x ∈ ∂Ω and µ ∈ C0(∂Ω).
If m = 1, then Theorem 7.2 implies that v[∂Ω, Sa, · ]|∂Ω is linear and continuous from Cm−1(∂Ω)

to Cm−1,α(∂Ω).
If m > 1, then Cm−1(∂Ω) is continuously imbedded into Cm−2,α(∂Ω) and Theorem 7.1 implies

that v[∂Ω, Sa, · ]|∂Ω is linear and continuous from Cm−2,α(∂Ω) to Cm−1,α(∂Ω). Hence, v[∂Ω, Sa, · ]|∂Ω
is continuous from the space Cm−1(∂Ω) to Cm−1,α(∂Ω) for all m ≥ 1. Then formula (10.1), the
continuity of the imbedding of Cm−1,α(∂Ω) into Cm−1,ωα(∂Ω) and Theorems 8.3(i), 9.2(i) imply the
validity of statement (i).

We now consider statement (ii). Since v[∂Ω, Sa, · ]|∂Ω is continuous from Cm−1,β(∂Ω) to Cm,β(∂Ω)
and Cm,β(∂Ω) is continuously imbedded into Cm−1,α(∂Ω), the operator v[∂Ω, Sa, · ]|∂Ω is continuous
from Cm−1,β(∂Ω) into Cm−1,α(∂Ω). Then formula (10.1) and Theorems 8.3(ii), 9.2(ii) imply the
validity of statement (ii).

Since the space Cm−1,ωα( · )(∂Ω) is compactly imbedded into Cm−1(∂Ω), and Cm−1,α(∂Ω) is com-
pactly imbedded into Cm−1,β(∂Ω) for all β ∈ ]0, α[ , we have the following immediate consequence of
Theorem 10.1(ii).
Corollary 10.1. Under the assumptions of Theorem 10.1, w∗[∂Ω, Sa, · ]|∂Ω is compact from Cm−1(∂Ω)

to itself, from Cm−1,ωα( · )(∂Ω) to itself and from Cm−1,α(∂Ω) to itself.
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