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Abstract. The first Darboux problem for one class of nonlinear second order hyperbolic systems is
considered. The questions of the existence, uniqueness and smoothness of a global solution of this
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ÒÄÆÉÖÌÄ. ÌÄÏÒÄ ÒÉÂÉÓ ÀÒÀßÒ×ÉÅ äÉÐÄÒÁÏËÖÒ ÓÉÓÔÄÌÀÈÀ ÄÒÈÉ ÊËÀÓÉÓÀÈÅÉÓ ÂÀÍáÉËÖËÉÀ
ÃÀÒÁÖÓ ÐÉÒÅÄËÉ ÀÌÏÝÀÍÀ. ÂÀÌÏÊÅËÄÖËÉÀ ÀÌ ÀÌÏÝÀÍÉÓ ÂËÏÁÀËÖÒÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ,
ÄÒÈÀÃÄÒÈÏÁÉÓ ÃÀ ÓÉÂËÖÅÉÓ ÓÀÊÉÈáÄÁÉ.
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1 Statement of the problem
In a plane of variables x and t we consider the hyperbolic second order system of the type

Lu := utt − uxx +A(x, t)ux +B(x, t)ut + C(x, t)u+ f(x, t, u) = F (x, t), (1.1)

where A, B, C are the given square n-th order matrices, f = (f1, . . . , fn) and F = (F1, . . . , Fn) are
the given and u = (u1, . . . , un) is an unknown vector functions, n ≥ 2.

By DT we denote an angular domain lying in the characteristic angle {(x, t) ∈ R2 : t > |x|} and
bounded both by the characteristic segment γ1,T : x = t, 0 ≤ t ≤ T , and by the noncharacteristic
segments γ2,T : x = 0, 0 ≤ t ≤ T , and γ3,T : t = T , 0 ≤ x ≤ T .

For system (1.1) in the domain DT , we consider the boundary value problem which is formulated
as follows: find in the domain DT a solution u = u(x, t) of system (1.1) by the boundary conditions

u
∣∣
γi,T

= φi, i = 1, 2, (1.2)

where φi, i = 1, 2, are the given on γi,T vector functions satisfying at their common point O = O(0, 0)
the agreement condition φ1(O) = φ2(O). When T = ∞, we have D∞ : t > |x|, x > 0, and
γ1,∞ : x = t, 0 ≤ t <∞, γ2,∞ : x = 0, 0 ≤ t <∞. In a scalar case, where n = 1, problem (1.1), (1.2)
is known as the first Darboux problem.

If in a linear case for a scalar hyperbolic equation the boundary value problems, in particular, the
Goursat and Darboux problems, are well studied [4, 6, 7, 10, 15, 16], there arise additional difficulties
and new effects in passing to a hyperbolic system. First this has been observed by A. Bitsadze [5] who
constructed examples of second order hyperbolic systems for which the corresponding homogeneous
characteristic problem had a finite number, and in some cases, an infinite set of linearly independent
solutions. Later on, these problems for linear second order hyperbolic systems became a subject of
investigations (see [8,9]). In this direction, the work [3] is also noteworthy, in which by simple examples
the effect of lowest terms on the well-posedness of the problems under consideration has been revealed.
As is shown in [1,2,11–13], the presence of a nonlinear term in a scalar hyperbolic equation may affect
the well-posedness of the Darboux problem, when in one case this problem is globally solvable and
in other cases there may arise the so-called blow-up solutions. It should be noted that the above-
mentioned works do not contain linear terms involving the first order derivatives, since their presence
causes difficulties in investigating the problem, and not only of technical character.

In the present work, we investigate the Darboux problem for the nonlinear system (1.1) in the
presence of lowest terms involving the first order derivatives. The results obtained here are new even
in the case when (1.1) is a scalar hyperbolic equation.

Definition 1.1. Let A,B,C, F ∈ C(DT ), f ∈ C(DT × Rn) and φi ∈ C1(γi,T ), i = 1, 2. The vector
function u is said to be a generalized solution of problem (1.1), (1.2) of the class C in the domain DT ,
if u ∈ C(DT ) and there exists a sequence of vector functions um ∈ C2(DT ) such that um → u and
Lum → F in the space C(DT ), and um|γi,T

→ φi in the space C1(γi,T ), i = 1, 2, as m→ ∞.

Remark 1.1. Obviously, the classical solution u ∈ C2(DT ) of problem (1.1), (1.2) is likewise a
generalized solution of that problem of the class C in the domain DT . Moreover, if a generalized
solution of problem (1.1), (1.2) of the class C in the domain DT belongs to the space C2(DT ), then
this solution will likewise be a classical solution of that problem. It should also be noted that a
generalized solution of problem (1.1), (1.2) of the class C in the domain DT satisfies the boundary
conditions (1.2) in an ordinary classical sense. In case φ2 = 0 in Definition 1.1, we will assume that
um ∈ C2

0 (DT ; γ2,T ) := {v ∈ C2(DT ) : v|γ2,T
= 0}.

Definition 1.2. Let A,B,C, F ∈ C(D∞), f ∈ C(D∞×Rn) and φi ∈ C1(γi,∞), i = 1, 2. We say that
problem (1.1), (1.2) is locally solvable in the class C, if there exists the number T0 = T0(F, γ,γ2) > 0
such that for any T < T0, problem (1.1), (1.2) has at least one generalized solution of the class C in
the domain DT .

Definition 1.3. Let A,B,C, F ∈ C(D∞), f ∈ C(D∞ × Rn) and φi ∈ C1(γi,∞), i = 1, 2. We say
that problem (1.1), (1.2) is globally solvable in the class C, if for any positive number T , problem
(1.1), (1.2) has at least one generalized solution of the class C in the domain DT .



54 Giorgi Dekanoidze and Sergo Kharibegashvili

Definition 1.4. Let A,B,C, F ∈ C(D∞), f ∈ C(D∞ × Rn) and φi ∈ C1(γi,∞), i = 1, 2. The vector
function u ∈ C(D∞) is said to be a global generalized solution of problem (1.1), (1.2) of the class C,
if for any positive number T , the vector function U |DT

is a generalized solution of that problem of
the class C in the domain DT .

2 A priori estimate of a solution of problem (1.1), (1.2)
Let us consider the following conditions imposed on the vector function f = f(x, t, u):

∥fi(x, t, u)∥ ≤M1 +M2∥u∥, (x, t, u) ∈ DT × Rn, i = 1, 2 . . . , n, (2.1)

where Mj =Mj(T ) = const ≥ 0, j = 1, 2, ∥u∥ =
n∑

i=1

|ui|.

Assume
M0 = sup

(x,t)∈DT

max
1≤i,j≤n

(
max

{
|Ai,j(x, t)|, |Bi,j(x, t)|, |Ci,j(x, t)|

})
.

Lemma 2.1. Let F ∈ C(DT ), φ1 ∈ C1(γ1,T ), φ2 = 0, and the vector function f ∈ C(DT × Rn)
satisfy condition (2.1). Then for a generalized solution u = u(x, t) of problem (1.1), (1.2) of the class
C in the domain DT the a priori estimate

∥u∥C(DT ) ≤ c1∥F∥C(DT ) + c2∥φ1∥C1(γ1,T ) + c3 (2.2)

is valid, where the nonnegative constants ci = ci(M0,M1,M2, T ), i = 1, 2, 3, are independent of u, F
and φ1, where ci > 0, i = 1, 2, and

∥u∥C(DT ) =

n∑
i=1

∥ui∥C(DT ), ∥F∥C(DT ) =

n∑
i=1

∥Fi∥C(DT ),

∥φ1∥C1(γ1,T ) =

n∑
i=1

∥φ1i∥C1(γ1,T ).

Proof. Let u = u(x, t) be a generalized solution of problem (1.1), (1.2) of the class C in the domain
DT . Then, according to Definition 1.1 and Remark 1.1, the vector function u ∈ C(DT ) and there
exists a sequence of vector functions um ∈ C2

0 (DT , γ2,T ) such that

lim
m→∞

∥um − u∥C(DT ) = 0, lim
m→∞

∥Lum − F∥C(DT ) = 0, (2.3)

lim
m→∞

∥∥um∣∣
γ1,T

− φ1

∥∥
C1(γ1,T )

= 0. (2.4)

Consider the vector function um ∈ C2
0 (DT , γ2,T ) as a solution of the problem

Lum = Fm, (2.5)
um

∣∣
γ1,T

= φm
1 , um

∣∣
γ2,T

= 0. (2.6)

Here
Fm = Lum, φm

1 = um
∣∣
γ1,T

. (2.7)

Multiplying both parts of system (2.5) scalarwise by ∂um

∂t and integrating over the domain Dτ :=
{(x, t) ∈ DT : t < τ}, 0 < τ ≤ T , we have

1

2

∫
Dτ

∂

∂t

(∂um
∂t

,
∂um

∂t

)
dx dt−

∫
Dτ

(∂2um
∂x2

,
∂um

∂t

)
dx dt+

∫
Dτ

(
A(x, t)

∂um

∂x
,
∂um

∂t

)
dx dt

+

∫
Dτ

(
B(x, t)

∂um

∂t
,
∂um

∂t

)
dx dt+

∫
Dτ

(
C(x, t)um,

∂um

∂t

)
dx dt

+

∫
Dτ

(
f(x, t, um),

∂um

∂t

)
dx dt =

∫
Dτ

(
Fm,

∂um

∂t

)
dx dt, (2.8)
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where (v, w) =
n∑

i=1

viwi is a scalar product in the space Rn, v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Rn.

Integrating by parts and applying Green’s formula, we obtain
1

2

∫
Dτ

∂

∂t

(∂um
∂t

,
∂um

∂t

)
dx dt =

1

2

∫
∂Dτ

(∂um
∂t

,
∂um

∂t

)
νt ds, (2.9)

−
∫
Dτ

(∂2um
∂x2

,
∂um

∂t

)
dx dt = −

∫
∂Dτ

(∂um
∂x

,
∂um

∂t

)
νx ds+

∫
Dτ

(∂um
∂x

,
∂2um

∂t∂x

)
dx dt

= −
∫

∂Dτ

(∂um
∂x

,
∂um

∂t

)
νx ds+

1

2

∫
Dτ

∂

∂t

(∂um
∂x

,
∂um

∂x

)
dx dt

= −
∫

∂Dτ

(∂um
∂x

,
∂um

∂t

)
νx ds+

1

2

∫
Dτ

(∂um
∂x

,
∂um

∂x

)
νt ds, (2.10)

where ν = (νx, νt) is the unit vector of the outer normal to the boundary ∂Dτ of the domain Dτ .
Taking into account the fact that ∂Dτ = γ1,τ ∪ γ2,τ ∪ωτ , where γi,τ = γi,τ ∩ {t ≤ τ}, i = 1, 2, and

ωτ = ∂Dτ ∩ {t = τ} = {t = τ, 0 ≤ x ≤ τ}, we have

(νx, νt)
∣∣
γ1,τ

=
( 1√

2
,− 1√

2

)
, (2.11)

(νx, νt)
∣∣
γ2,τ

= (−1, 0), (νx, νt)
∣∣
ωτ

= (0, 1), (2.12)

(ν2x − ν2t )
∣∣
γ1,τ

= 0, (2.13)

νt
∣∣
γ1,τ

< 0. (2.14)

In view of (2.11)–(2.14) and the fact that um|γ2,T
= 0, from (2.9) and (2.10) we arrive at

1

2

∫
Dτ

∂

∂t

(∂um
∂t

,
∂um

∂t

)
dx dt =

1

2

∫
ωτ

(∂um
∂t

,
∂um

∂t

)
dx+

1

2

∫
γ1,τ

(∂um
∂t

,
∂um

∂t

)
νt ds

=
1

2

∫
ωτ

( n∑
i=1

(umit )
2
)
dx+

1

2

∫
γ1,τ

( n∑
i=1

(umit )
2
)
νt ds, (2.15)

−
∫
Dτ

(∂2um
∂x2

,
∂um

∂t

)
dx dt =

1

2

∫
ωτ

( n∑
i=1

(umix)
2
)
dx

+
1

2

∫
γ1,τ

( n∑
i=1

(umix)
2
)
νt ds−

∫
γ1,τ

( n∑
i=1

umixu
m
it

)
νx ds. (2.16)

By virtue of (2.13), it follows from (2.15) and (2.16) that

1

2

∫
Dτ

∂

∂t

(∂um
∂t

,
∂um

∂t

)
dx dt−

∫
Dτ

(∂2um
∂x2

,
∂um

∂t

)
dx dt

=
1

2

∫
ωτ

( n∑
i=1

(
(umix)

2 + (umit )
2
))
dx+

∫
γ1,τ

1

2νt

( n∑
i=1

[
(umixνt − umit νx)

2 + (umit )
2(ν2t − ν2x)

])
ds

=
1

2

∫
ωτ

( n∑
i=1

(
(umix)

2 + (umit )
2
))
dx+

∫
γ1,τ

1

2νt

( n∑
i=1

(umixνt − umit νx)
2
)
ds. (2.17)

Since (νt
∂
∂x − νx

∂
∂t ) is the derivative to the tangent, i.e., it is an inner differential operator on

γ1,τ , taking into account (2.6), we find that∣∣(umixνt − umit νx)
∣∣
γ1,τ

∣∣ ≤ ∥φm
1i∥C1(γ1,τ ) ≤ ∥φm

1i∥C1(γ1,T ). (2.18)
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In view of (2.18) and the fact that νt|γ1,τ = − 1√
2

, (2.17) yields

1

2

∫
Dτ

∂

∂t

(∂um
∂t

,
∂um

∂t

)
dx dt−

∫
Dτ

(∂2um
∂x2

,
∂um

∂t

)
dx dt

≥ 1

2

∫
ωτ

( n∑
i=1

(
(umix)

2 + (umit )
2
))
dx− 1√

2

∫
γ1,τ

n∑
i=1

∥φm
i ∥2C1(γ1,τ )

ds

≥ 1

2

∫
ωτ

( n∑
i=1

(
(umix)

2 + (umit )
2
))
dx− mes γ1,T√

2

n∑
i=1

∥φm
1i∥2C1(γ1,T ). (2.19)

Let E = E(x, t) ∈ C(DT ) be a square matrix of order n and u, v ∈ Rn.
If m0 = sup

(x,t)∈DT

max
1≤i,j≤n

|Eij(x, t)|, then

|(E(x, t)u, v)| ≤ m0

( n∑
i=1

|ui|
)( n∑

i=1

|vi|
)

≤ 1

2
m0

( n∑
i=1

|ui|
)2

+
1

2
m0

( n∑
i=1

|vi|
)2

≤ n

2
m0

n∑
i=1

|ui|2 +
n

2
m0

n∑
i=1

|vi|2. (2.20)

Analogously, in view of condition (2.1), we have

|(f(x, t, u), v)| ≤ (M1 +M2∥u∥)
n∑

i=1

|vi|

≤ 1

2
(M1 +M2∥u∥)2 +

1

2

( n∑
i=1

|vi|
)2

≤M2
1 +M2

2

( n∑
i=1

|ui|
)2

+
1

2

( n∑
i=1

|vi|
)2

≤M2
1 +M2

2n

n∑
i=1

|ui|2 +
n

2

( n∑
i=1

|vi|2
)
. (2.21)

Taking into account inequalities (2.20), (2.21) and the definition of the number M0, we obtain∣∣∣∣ ∫
Dτ

(
A(x, t)

∂um

∂x
,
∂um

∂t

)
dx dt+

∫
Dτ

(
B(x, t)

∂um

∂t
,
∂um

∂t

)
dx dt

+

∫
Dτ

(
C(x, t)um,

∂um

∂t

)
dx dt+

∫
Dτ

(
f(x, t, um),

∂um

∂t

)
dx dt

∣∣∣∣
≤

∫
Dτ

(
n

2
M0

n∑
i=1

∣∣∣∂umi
∂x

∣∣∣2 + n

2
M0

n∑
i=1

∣∣∣∂umi
∂t

∣∣∣2) dx dt

+

∫
Dτ

(
nM0

n∑
i=1

∣∣∣∂umi
∂t

∣∣∣2) dx dt+

∫
Dτ

(
n

2
M0

n∑
i=1

|umi |2 + n

2
M0

n∑
i=1

∣∣∣∂umi
∂t

∣∣∣2) dx dt

+

∫
Dτ

(
M2

1 +M2
2n

n∑
i=1

|umi |2 + n

2

n∑
i=1

∣∣∣∂umi
∂t

∣∣∣2) dx dt

≤M2
1 mesDτ +

(
M2

2n+
n

2
M0

) ∫
Dτ

n∑
i=1

|(umi )2| dx dt

+
n

2
M0

∫
Dτ

n∑
i=1

∣∣∣∂umi
∂x

∣∣∣2 dx dt+ (
2nM0 +

n

2

) ∫
Dτ

∣∣∣∂umi
∂x

∣∣∣2 dx dt
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≤M2
1 mesDτ +

(
M2

2n+ 2nM0 +
n

2

) ∫
Dτ

n∑
i=1

(
(umi )2 +

∣∣∣∂umi
∂x

∣∣∣2 + ∣∣∣∂umi
∂t

∣∣∣2) dx dt

=M3 +M4

∫
Dτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx dt, (2.22)

where
M3 =M2

1 mesDτ , M4 =M2
2n+ 2nM0 +

n

2
. (2.23)

By virtue of (2.19) and (2.22), it follows from (2.8) that∫
Dτ

(
Fm,

∂um

∂t

)
dx dt

≥ 1

2

∫
ωτ

( n∑
i=1

(
(umix)

2 + (umit )
2
)
dx− 1√

2
mes γ1,T

n∑
i=1

∥φm
1i∥2C1(γ1,T )

−M3 −M4

∫
Dτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx dt,

whence, owing to the fact that(
Fm,

∂um

∂t

)
≤ 1

2

n∑
i=1

(Fm
i )2 +

1

2

n∑
i=1

(umit )
2,

we get

1

2

∫
ωτ

( n∑
i=1

(
(umix)

2 + (umit )
2
)
dx ≤M4

∫
Dτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx dt

+
1√
2

mes γ1,T
n∑

i=1

∥φm
1i∥2C1(γ1,T ) +M3 +

1

2

∫
Dτ

n∑
i=1

(umit )
2 dx dt+

1

2

∫
Dτ

n∑
i=1

(Fm
i )2 dx dt

≤
(
M4 +

1

2

) ∫
Dτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx dt

+
1

2

∫
Dτ

n∑
i=1

(Fm
i )2 dx dt+

1√
2

mes γ1,T
n∑

i=1

∥φm
1i∥2C1(γ1,T ) +M3. (2.24)

Since umi (0, t) = 0, i = 1, . . . , n, we have

umi (x, τ) =

x∫
0

umix(σ, τ) dσ, 0 ≤ x ≤ τ.

Hence, taking into account the Schwartz inequality, we get

(umi )2(x, τ) ≤
x∫

0

12 dσ

x∫
0

(umix)
2(σ, τ) dσ ≤ x

τ∫
0

(umix)
2(σ, τ) dσ ≤ T

∫
ωτ

(umix)
2 dσ. (2.25)

Arguing analogously and taking into account (2.6), we obtain

umi (x, τ) = φm
1i +

τ∫
x

umit (x, s) ds
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and, consequently,

(umi )2(x, τ) ≤ 2(φm
1i)

2(x) + 2

( τ∫
x

umit (x, s) ds

)2

≤ 2(φm
1i)

2(x) + 2

τ∫
x

12 dt

τ∫
x

(umit )
2(x, t) dt

= 2(φm
1i)

2(x) + 2(τ − x)

τ∫
x

(umit )
2(x, t) dt ≤ 2(φm

1i)
2(x) + 2T

τ∫
x

(umit )
2(x, t) dt. (2.26)

Integration of inequality (2.26) yields

∫
ωτ

(umi )2 dx =

τ∫
0

(umi )2(x, τ) dx

≤ 2

τ∫
x

(φm
1i)

2(x) dx+ 2T

τ∫
0

[ τ∫
x

(umit )
2(x, t) dt

]
dx = 2

τ∫
0

(φm
1i)

2(x) dx+ 2T

∫
Dτ

(umit )
2 dx dt

≤ 2τ∥φm
1i∥2C1(γ1,τ )

+ 2T

∫
Dτ

(umit )
2(x, t) dx dt ≤ 2T∥φm

1i∥2C1(γ1,τ )
+ 2T

∫
Dτ

(umit )
2 dx dt,

from which it follows that

1

2

∫
ωτ

( n∑
i=1

(umi )2
)
dx ≤ T

n∑
i=1

∥φm
1i∥2C1(γ1,T ) + T

∫
Dτ

n∑
i=1

(umit )
2 dx dt. (2.27)

Combining inequalities (2.24) and (2.27), we obtain

1

2

∫
ωτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx

≤
(
M4 + T +

1

2

) ∫
Dτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx dt

+
1

2

∫
Dτ

n∑
i=1

(Fm
i )2 dx dt+

( 1√
2

mes γ1,T + T
) n∑

i=1

∥φm
1i∥2C1(γ1,T ) +M3. (2.28)

Assume
w(τ) =

∫
ωτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx. (2.29)

Taking into account that∫
Dτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx dt =

τ∫
0

w(σ) dσ,

∫
Dτ

n∑
i=1

(Fm
i )2 dx dt ≤ mesDT

n∑
i=1

∥Fm
i ∥2C(DT ),

from (2.28), in view of (2.29), we get

w(τ) ≤M5

τ∫
0

w(σ) dσ +M6

n∑
i=1

∥Fm
i ∥2C(DT ) +M7

n∑
i=1

∥φm
i ∥2C1(γ1,T ) +M8, (2.30)
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where

M5 = 2M4 + 2T + 1, M6 = mesDT , M7 =
√
2 mes γ1,τ + 2T, M8 = 2M3. (2.31)

According to Gronwall’s lemma, it follows from (2.30) that

w(τ) ≤
[
M6

n∑
i=1

∥Fm
i ∥2C(DT ) +M7

n∑
i=1

∥φm
1i∥2C1(γ1,T ) +M8

]
expM5T, 0 ≤ τ ≤ T. (2.32)

By virtue of (2.25), (2.29) and (2.32), it is not difficult to see that

(umi )2(x, τ) ≤ T

∫
ωτ

n∑
i=1

(umix)
2 dx ≤ Tw(τ)

≤ T

[
M6

n∑
i=1

∥Fm
i ∥2C(DT ) +M7

n∑
i=1

∥φm
1i∥2C1(γ1,T ) +M8

]
expM5T, 0 ≤ τ ≤ T. (2.33)

Taking into account the obvious inequality
( n∑
i=1

a2i
) 1

2 ≤
n∑

i=1

|ai|, from (2.33) we obtain

∥um∥C(DT ) =

n∑
i=1

∥umi ∥C(DT )

≤n 1
2

( n∑
i=1

∥umi ∥2
C(DT )

) 1
2

= n
1
2

( n∑
i=1

sup
(x,t)∈DT

|umi (x, τ)|2
) 1

2

≤n 1
2

(
nT

[
M6

n∑
i=1

∥Fm
i ∥2

C(DT )
+M7

n∑
i=1

∥φm
1i∥2C1(γ1,τ )

+M8

]
expM5T

) 1
2

≤n 1
2

(
n

1
2 (TM6)

1
2

n∑
i=1

∥Fm
i ∥C(DT )+n

1
2 (TM7)

1
2

n∑
i=1

∥φm
1i∥C1(γ1,τ )+n

1
2 (TM8)

1
2

)
exp 1

2
M5T

≤n(TM6)
1
2 exp 1

2
M5T

n∑
i=1

∥Fm
i ∥C(DT )

+ n(TM7)
1
2 exp 1

2
M5T

n∑
i=1

∥φm
1i∥C(γ1,T ) + n(TM8)

1
2 exp 1

2
M5T

= c1∥Fm∥C(DT ) + c2∥φm
1 ∥C1(γ1,τ ) + c3. (2.34)

Here

c1 = n(TM6)
1
2 exp 1

2
M5T, c2 = n(TM7)

1
2 exp 1

2
M5T, c3 = n(TM8)

1
2 exp 1

2
M5T. (2.35)

By (2.3) and (2.4), passing in inequality (2.34) to the limit, as m → ∞, we obtain an a priori
estimate (2.2) in which the constants c1, c2 and c3 are given by equalities (2.35), and the constants M5,
M6, M7 and M8 in (2.35) are defined from (2.1), (2.23) and (2.31). In addition, ci > 0, i = 1, 2.

3 Reduction of problem (1.1), (1.2) to a nonlinear system of
integral Volterra type equations

As a result of our passage to new independent variables ξ and η:

ξ =
1

2
(t+ x), η =

1

2
(t− x), (3.1)
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the domain DT turns into a triangle GT = OP1P2 of the plane Oξη, where O = O(0, 0), P1 = P1(T, 0),
P2 = P2(

1
2 T,

1
2 T ), and problem (1.1), (1.2) can now be rewritten in the form

L1v := vξη +A1(ξ, η)vξ +B1(ξ, η)vη + c1(ξ, η)v + f1(ξ, η, v) = F1(ξ, η), (ξ, η) ∈ GT , (3.2)
v
∣∣
OP1:η=0, 0≤ξ≤T

= ψ1(ξ), 0 ≤ ξ ≤ T, (3.3)

v
∣∣
OP2:ξ=η, 0≤η≤ 1

2 T
= ψ2(η), 0 ≤ η ≤ T, (3.4)

with respect to a new unknown vector function v(ξ, η) = u(ξ − η, ξ + η). Here

A1(ξ, η) =
1

2

(
A(ξ − η, ξ + η) +B(ξ − η, ξ + η)

)
,

B1(ξ, η) =
1

2

(
B(ξ − η, ξ + η)−A(ξ − η, ξ + η)

)
,

C1(ξ, η) = C(ξ − η, ξ + η),

F1(ξ, η) = F (ξ − η, ξ + η),

f1(ξ, η, v) = f(ξ − η, ξ + η, v),

(3.5)

ψ1(ξ) = φ1(ξ), ψ2(η) = φ2(2η). (3.6)

Below, it will be assumed that u ∈ C2(DT ) is a classical solution of problem (1.1), (1.2), and
according to this fact, v ∈ C2(DT ) is a classical solution of problem (3.2)–(3.4).

Consider first the case when in equation (3.2)

f1(ξ, η, v) = 0, (3.7)

and the coefficients A1, B1 and C1 of that equation satisfy the following condition:

B1η +A1B1 − C1 = 0. (3.8)

When conditions (3.7) and (3.8) are fulfilled, equation (3.2) can be rewritten in the form( ∂

∂η
+A1

)(∂v
∂ξ

+B1v
)
= F1, (ξ, η) ∈ GT . (3.9)

If we adopt the notation
w =

∂v

∂ξ
+B1v, (3.10)

then by virtue of (3.3) and (3.9), the vector function w = w(ξ, η) for fixed ξ will be a solution of the
Cauchy problem

wη +A1(ξ, η)w = F1(ξ, η), (3.11)
w(ξ, 0) = ψ1ξ(ξ) +B1(ξ, 0)ψ1(ξ). (3.12)

Since under the above assumptions A1 = A1(ξ, η) ∈ C(GT ), therefore, as is known, there exists
the fundamental matrix X1 = X1(ξ, η) of the corresponding to (3.11) homogeneous system satisfying
both the following matrix equality [14]

X1η +A1X1 = 0 (3.13)

and the condition
detX1(ξ, η) ̸= 0, (ξ, η) ∈ GT . (3.14)

Denote by K = K(ξ, η, ζ) the Cauchy matrix of order n of system (3.13) which satisfies the
conditions

Kη +A1K = 0, (3.15)
K(ξ, ζ, ζ) = I, (3.16)
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where I is the unit matrix of order n.
As is known, the Cauchy matrix K is given by the equality

K(ξ, η, ζ) = X1(ξ, η)X
−1
1 (ξ, ζ), (3.17)

where X1 = X1(ξ, η) is the fundamental matrix satisfying conditions (3.13), (3.14) [14].
The Cauchy matrix K for the constant matrix A1 is given by the equality [14]

K(ξ, η, ζ) = exp(A1(ζ − η)). (3.18)

By virtue of (3.15) and (3.16), the unit solution of the Cauchy problem (3.11), (3.12) is defined by
the formula [14]

w(ξ, η) = K(ξ, η, 0)
(
ψ1ξ(ξ) +B1(ξ, 0)ψ1(ξ)

)
+

η∫
0

K(ξ, η, ζ)F1(ξ, ζ) dζ. (3.19)

Owing to (3.18), in case the matrix A1 is constant, formula (3.19) takes the form

w(ξ, η) = exp(−A1η)
(
ψ1ξ(ξ) +B1(ξ, 0)ψ1(ξ)

)
+

η∫
0

exp(A1(ζ − η))F1(ξ, ζ) dζ. (3.20)

Taking into account equalities (3.9)–(3.12), it follows from the above reasoning that a solution v
of problem (3.2)–(3.4) satisfies the Cauchy problem

∂v

∂ξ
+B1v = w(ξ, η), η ≤ ξ ≤ T − η, (3.21)

v(ξ, η)
∣∣
ξ=η

= ψ2(η), 0 ≤ η ≤ 1

2
T, (3.22)

where the vector function w = w(ξ, η) is given by formula (3.19).
Analogously to the matrix K, we denote by Λ = Λ(η, ξ, θ) the Cauchy matrix of the corresponding

to (3.21) homogeneous system which satisfies the conditions

Λξ +B1Λ = 0, (3.23)
Λ(η, θ, θ) = 1, (3.24)

and which is given by the equality

Λ(η, ξ, θ) = X2(η, ξ)X
−1
2 (η, θ), (3.25)

where X2(η, ξ) is the fundamental matrix for the corresponding to (3.21) homogeneous system.
When the matrix B1 is constant, the Cauchy matrix Λ is given by the equality

Λ(η, ξ, θ) = exp(B1(θ − ξ)). (3.26)

Owing to (3.23) and (3.24), the unique solution of the Cauchy problem (3.21), (3.22) is defined by
the formula [14]

v(ξ, η) = Λ(η, ξ, η)ψ2(η) +

ξ∫
η

Λ(η, ξ, θ)w(θ, η) dθ. (3.27)

By (3.26), when the matrix B1 is constant, formula (3.27) takes the form

v(ξ, η) = exp(B1(η − ξ))ψ2(η) +

ξ∫
η

exp(B1(θ − ξ))w(θ, η) dθ. (3.28)
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Substituting (3.19) for the vector function w(ξ, η) into the right-hand side of equality (3.27), we obtain

v(ξ, η) = Λ(η, ξ, η)ψ2(η)

+

ξ∫
η

Λ(η, ξ, θ)

[
K(θ, η, 0)

(
ψ1ξ(θ) +B1(θ, 0)ψ1(θ)

)
+

η∫
0

K(θ, η, ζ)F1(θ, ζ) dζ

]
dθ

= Λ(η, ξ, η)ψ2(η) +

ξ∫
η

Λ(η, ξ, θ)
[
K(θ, η, 0)

(
ψ1,ξ(θ) +B1(θ, 0)ψ1(θ)

)]
dθ+

+

ξ∫
η

η∫
0

Λ(η, ξ, θ)K(θ, η, ζ)F1(θ, ζ) dζ dθ, (ξ, η) ∈ GT . (3.29)

We rewrite equality (3.29) in the form

v(ξ, η) =

ξ∫
η

η∫
0

R(ξ, η; θ, ζ)F1(θ, ζ) dζ dθ + F2(ξ, η), (ξ, η) ∈ GT . (3.30)

where

R(ξ, η; θ, ζ) = Λ(η, ξ, θ)K(θ, η, ζ), (3.31)

F2(ξ, η) = Λ(η, ξ, η)ψ2(η) +

ξ∫
η

Λ(η, ξ, θ)
[
K(θ, η, 0)

(
ψ1ξ(θ) +B1(θ, 0)ψ1(θ)

)]
dθ. (3.32)

In case the matrices A1 and B1 are constant, by virtue of (3.18) and (3.26), equalities (3.31) and
(3.32) take the form

R(ξ, η; θ, ζ) = exp
(
B1(θ − ξ) +A1(ζ − η)

)
, (3.33)

F2(ξ, η) = exp(B1(η − ξ))ψ2(η)

+

ξ∫
η

exp(B1(θ − ξ))
[

exp(A1η)
(
ψ1ξ(θ) +B1(θ, 0)ψ1(θ)

)]
dθ. (3.34)

Consider now a general case when it is not necessary for conditions (3.7) and (3.8) to be fulfilled.
We rewrite system (3.2) in the form( ∂

∂η
+A1

)(∂v
∂ξ

+B1v
)
= (B1η +A1B1 − C1)v − f1 + F1. (3.35)

Then, due to representation (3.30), the classical solution of problem (3.2)–(3.4) or, what comes to the
same, of problem (3.35), (3.3), (3.4), is given by the formula

v(ξ, η) =

ξ∫
η

η∫
0

R(ξ, η; θ, ζ)
[
(B1η+A1B1−C1)v(θ, ζ)−f1(θ, ζ, v)

]
dζ dθ+F3(ξ, η), (ξ, η) ∈ GT , (3.36)

where

F3(ξ, η) =

ξ∫
η

η∫
0

R(ξ, η; θ, ζ)F1(θ, ζ) dζ dθ + F2(ξ, η). (3.37)
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Remark 3.1. Equality (3.36) can be considered as a nonlinear system of integral Volterra type
equations which we rewrite as follows:

v = L2v + L3F1 + l0(ψ0, ψ2), (3.38)

where the operator L2 acts according to the formula

(L2v)(ξ, η) =

ξ∫
η

η∫
0

R(ξ, η; θ, ζ)
[
(B1η +A1B1 − C1)v(θ, ζ)− f1(θ, ζ, v)

]
dζ dθ, (ξ, η) ∈ GT , (3.39)

and the operators L3 and l0, by virtue of (3.32) and (3.37), act by the formulas

(L3F1)(ξ, η) =

ξ∫
η

η∫
0

R(ξ, η; θ, ζ)F1(θ, ζ) dζ dθ, (3.40)

(l0(ψ1, ψ2))(ξ, η) = Λ(η, ξ, η)ψ2(η) +

ξ∫
η

Λ(η, ξ, θ)
[
K(θ, η, 0)

(
ψ1ξ(θ) +B1(θ, 0)ψ1(θ)

)]
, (3.41)

where (ξ, η) ∈ GT .

4 Global solvability of problem (1.1), (1.2) in the class of
continuous functions

Remark 4.1. If we impose on the coefficients and on the vector function f appearing in equation
(1.1) the requirements of smoothness

A,B ∈ C2(DT ), C ∈ C1(DT ), f ∈ C1(DT × Rn), (4.1)

and along with equalities (3.17) and (3.25) take into account the properties dealt with the smoothness
of solutions of the system of ordinary differential equations, we will have [14]

R(ξ, η; θ, ζ) ∈ C2(GT ×GT ). (4.2)

Remark 4.2. Under conditions (4.1), in view of (4.2) for the operator L2 acting according to formula
(3.39), we have

L2v ∈ Ck+1(GT ), if v ∈ Ck(GT ), k = 0, 1, (4.3)
and, hence, the operator L2 : Ck(GT ) → Ck+1(GT ) will be continuous.

Arguing as above, we find that

L3F1 ∈ Ck+1(GT ), if F1 ∈ Ck(GT ), k = 0, 1, (4.4)

and
l0(ψ1, ψ2) ∈ Ck+1(GT ), if ψi ∈ Ck(OPi), k = 0, 1, 2; i = 1, 2. (4.5)

In addition, the operators L3 : Ck(GT ) → Ck+1(GT ) and l0 : Ck(OP1)×Ck(OP2) → Ck(GT ) will be
continuous.

Remark 4.3. It can be easily verified that if u is a generalized solution of problem (1.1), (1.2) of the
class C in the domain DT , then the vector function v(ξ, η) = u(ξ − η, ξ + η) will be a generalized
solution of problem (3.2)–(3.4) of the class C in the domain GT in the following sense: v ∈ C(GT ),
and there exists the sequence of vector functions vm ∈ C2(GT ) such that

lim
m→∞

∥vm − v∥C(GT ) = 0, lim
m→∞

∥L1v
m − F1∥C(GT ) = 0, (4.6)

lim
m→∞

∥∥vm∣∣
OPi

− ψi

∥∥
C1(OPi)

= 0, i = 1, 2, (4.7)

and the converse statement holds, too.
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Lemma 4.1. Let conditions (4.1) be fulfilled. Then the vector function will be a generalized solution
of problem (3.2)–(3.4) of the class C in the domain GT if and only if v is a solution of the nonlinear
system of integral Volterra type equations (3.38) of the class C(GT ).

Proof. Let v ∈ C(GT ) be a solution of system (3.38). Since the space Ck(GT ), k = 1, 2, is the dense
in C(GT ) and the space C2(OPi) is the dense in C1(OPi), i = 1, 2, [17], there exists the sequence of
vector functions F1n ∈ C1(GT ) (ψin ∈ C2(OPi), i = 1, 2) such that

lim
n→∞

∥F1n − F1∥C(GT ) = 0
(

lim
n→∞

∥ψin − ψi∥C1(OPi) = 0, i = 1, 2
)
. (4.8)

Analogously, since v ∈ C(GT ), there exists the sequence of vector functions wn ∈ C2(GT ) such
that

lim
n→∞

∥wn − v∥C(GT ) = 0. (4.9)

Let us now introduce the following sequence of vector functions:

vn = L2wn + L3F1n + l0(ψ1n, ψ2n). (4.10)

By virtue of (4.1)–(4.5), the vector function vn ∈ C2(GT ), and owing to its construction, we will
have

vn
∣∣
OPi

= ψin, i = 1, 2. (4.11)

Taking into account Remark 4.2 and the limiting equalities (4.8), (4.9), we find that

vn −→
[
L2v + L3F1 + l0(ψ1, ψ2)

]
(4.12)

in the space C(GT ), as n→ ∞. At the same time, by equality (3.38), we have

L2v + L3F1 + l0(ψ1, ψ2) = v. (4.13)

It follows from (4.12) and (4.13) that

lim
n→∞

∥vn − v∥C(GT ) = 0. (4.14)

In view of equality (4.10) and Remark 4.2, as well as of the fact how we have obtained equality
(3.30), from the representation (3.9) we get( ∂

∂η
+A1

)(∂vn
∂ξ

+B1vn

)
= (B1η +A1B1 − C1)wn − (f1( · , wn)) + F1n, (4.15)

vn
∣∣
OPi

= ψin, i = 1, 2. (4.16)

By virtue of the representation of equation (3.2) by equality (3.35), from (4.15) we obtain

L1vn = (B1η +A1B1 − C1)(wn − vn) +
(
f1( · , vn)− f1( · , wn)

)
+ F1n,

whence, in view of (4.9) and (4.14), we get

lim
n→∞

∥L1vn − F1∥C(GT ) = 0.

It follows from (4.16) and (4.8) that

lim
n→∞

∥∥vn∣∣OPi
− ψi∥C1(OPi) = 0, i = 1, 2.

The last two limiting equalities show that if v ∈ C(GT ) is a solution of system (3.38), then the
vector function v will be a generalized solution of problem (3.2)–(3.4) of the class C in the domain
GT . Thus Lemma 4.1 is proved, since the converse statement can be easily verified.
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As is known, the space C1(GT ) is compactly imbedded in the space C(GT ). Therefore, taking into
account Remark 4.2 and considering L2 as the operator acting in the space C(GT ) by formula (3.39),
the operator

L2 : C(GT ) −→ C(GT )

will be compact. In addition, for the fixed ψ1, ψ2 and F1, the operators L3 and l0 acting by formulas
(3.40) and (3.41) are constant, and hence their sum

L0 := (L2 + L3F1 + l0(ψ1, ψ2)) : C(GT ) −→ C(GT ) (4.17)

will likewise be compact. By (4.17), system (3.38) can be rewritten in the form

v = L0v. (4.18)

Let v ∈ C(DT ) be a solution of equation (4.18), and ψ2 = 0. Then, since v is connected with
u ∈ C(GT ) by the equality v(ξ, η) = u(ξ − η, ξ + η), and u satisfies a priori estimate (2.2), in view
of Lemma 4.1 and Lemma 2.1, an a priori estimate of the same type will take place likewise for the
vector function v,

∥v∥C(GT ) ≤ c1∥F∥C(GT ) + c2∥φ1∥C1(γ1,T ) + c3, (4.19)

where the constants ci, i = 1, 2, 3, are defined from equalities (2.35). It should now be noted that
owing to Remark 4.3 and Lemma 4.1, if v ∈ C(GT ) is a solution of equation v = τL0v, where
τ ∈ [0, 1], then the same a priori estimate (4.19) with the constants c1, c2 and c3, independent in view
of (2.1), (2.23), (2.31) and (2.35) of v, F , φ1 and τ , will be valid. Therefore, taking into account that
the operator L0 : C(GT ) → C(GT ) is continuous and compact, it follows from the Lere–Schauder
theorem [18] that equation (4.18) has at least one solution in the space C(GT ). This, in its turn, in
view of the above remarks, implies that problem (1.1), (1.2) has at least one generalized solution of
the class C in the domain DT . Thus, the following theorem is valid.

Theorem 4.1. Let conditions (2.1), (4.1) and F ∈ C(DT ), φ1 ∈ C1(γ1,T ), φ2 = 0, be fulfilled. Then
problem (1.1), (1.2) has at least one generalized solution of the class C in the domain DT .

5 The smoothness and uniqueness of a solution of
problem (1.1), (1.2). The existence of a global solution
in the domain D∞

By virtue of (4.3), (4.4) and (4.5), from Remark 4.3 and Lemma 4.1 follows

Lemma 5.1. Let the vector function u be a generalized solution of problem (1.1), (1.2) of the class
C in the domain DT in a sense of Definition 1.1, and in addition, the conditions of smoothness (4.1)
and F ∈ C1(DT ), φ1 ∈ C2(γ1,T ), i = 1, 2, hold. Then u belongs to the class C2(DT ) and is a classical
solution of problem (1.1), (1.2).

We say that the vector function f = f(x, t, u) satisfies the local Lipschitz condition on the set
DT × R if∥∥f(x, t, u2)− f(x, t, u1)

∥∥ ≤M(T,R)∥u2 − u1∥, (x, t) ∈ DT , ∥ui∥ ≤ R, i = 1, 2, (5.1)

where M = M(T,R) = const ≥ 0. Note that if f ∈ C1(DT × Rn), then condition (5.1) will automa-
tically be fulfilled.

Lemma 5.2. If the vector function f ∈ C(DT ×Rn) satisfies condition (5.1), then problem (1.1), (1.2)
fails to have more than one generalized solution of the class C in the domain DT .

Proof. Assume that problem (1.1), (1.2) has two generalized solutions u1 and u2 of the class C in the
domain DT . According to Remark 1.1 and Definition 1.1, there exists a sequence of vector functions
umj ∈ C2

0 (DT , γ2,T ) such that

lim
m→∞

∥umj − uj∥C(DT ) = lim
m→∞

∥Lumj − F∥C(DT ) = lim
m→∞

∥∥um∣∣
γ1,T

− φ1

∥∥
C1(γ1,T )

= 0. (5.2)
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We introduce the notation wm = um2 − um1 . It is easy to verify that wm ∈ C2(DT ) is a solution of
the following problem:

wm
tt − wm

xx +A(x, t)wm
x +B(x, t)wm

t + C(x, t)wm + gm = Fm, (5.3)
wm

∣∣
γ1,T

= φm
1 , wm

∣∣
γ2,T

= 0. (5.4)

Here

gm = f(x, t, um2 )− f(x, t, um1 ), (5.5)
Fm = Lum2 − Lum1 , (5.6)
φm
1 = (um2 − um1 )

∣∣
γ1,T

. (5.7)

It follows from (5.2) that there exists a number d = const > 0 such that it does not depend on the
indices j and m, and ∥umj ∥C(DT ) ≤ d. Hence, by virtue of (5.1) and (5.5), we have

∥gm∥ ≤M(T, d)∥um2 − um1 ∥ =M(T, d)∥wm∥. (5.8)

Reasoning now for the solution wm of problem (5.3), (5.4) in the same way as for the solution um of
problem (2.5), (2.6), owing to (5.8), we have to take in inequalities (2.1), (2.23), (2.28), (2.30) and
(2.34) the constants, corresponding to M1, M3, M8 and c3, equal to zero. Consequently, instead of
inequality (2.34) we will have

∥wm
j ∥C(DT ) ≤ c̃1∥Fm∥C(DT ) + c̃2∥φm

1 ∥C1(γ1,T ). (5.9)

Here, unlike (2.35), for the constants c̃1 and c̃2 we have

c̃1 = n(TM6)
1
8 exp 1

2
M̃5T, c̃2 = n(TM7)

1
2 exp 1

2
M̃5T,

where M6 and M7 are defined from (2.31) and, in view of (2.23),

M̃5 = 2M̃4 + 2T + 1, M̃4 =M2(T, d)n+ 2nM0 +
n

2
.

It follows from (5.2), (5.6) and (5.7) that

lim
m→∞

∥wm∥C(DT ) = ∥u2 − u1∥C(DT ), lim
m→∞

∥Fm∥C(DT ) = 0,

lim
m→∞

∥φm
1 ∥C1(γ1,T ) = 0.

(5.10)

If now we pass in inequality (5.9) to the limit, as m→ ∞, then due to the limiting equalities (5.10)
we get ∥u2 − u1∥C(DT ) ≤ 0, which implies that u2 = u1.

The consequence of Theorem 4.1 and Lemmas 5.1 and 5.2 is the following

Theorem 5.1. Let for any positive T conditions (2.1), (4.1) and F ∈ C1(D∞), φ1 ∈ C2(γ1,∞),
φ2 = 0 be fulfilled. Then problem (1.1), (1.2) has the unique classical solution u ∈ C2(D∞) in the
domain D∞.

Proof. It follows from Theorem 4.1 and Lemmas 5.1 and 5.2 that in the domain DT , where T = k ∈ N ,
there exists the unique classical solution uk ∈ C2(Dk of problem (1.1), (1.2). In addition, uk+1|Dk

is
likewise the classical solution of problem (1.1), (1.2) in the domain Dk. Therefore, by Lemma 5.2, the
equality uk+1|Dk

= uk holds. This implies that the vector function u constructed in the domain D∞
by the rule: u(x, t) = uk(x, t), where k = [t] + 1, [t] is an integer part of the number, and (x, t) ∈ D∞,
is the unique classical solution of problem (1.1), (1.2) in the domain D∞.
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