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ON THE WELL-POSEDNESS OF ANTIPERIODIC PROBLEM
FOR SYSTEMS OF NONLINEAR IMPULSIVE DIFFERENTIAL EQUATIONS

WITH FIXED IMPULSES POINTS

Abstract. The antiperiodic problem for systems of nonlinear impulsive equations with fixed points
of impulses actions is considered. The sufficient (among them effective) conditions for the well-
posedness of this problem are given.
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Let m0 be a fixed natural number, ω be a fixed positive real number, and 0 < τ1 < · · · < τm0
< ω be

fixed points (we assume τ0 = 0 and τm0+1 = ω, if necessary). Let T = {τl +mω : l = 1, . . . ,m0; m =
0,±1,±2, . . . }.

Consider the system of nonlinear impulsive differential equations with fixed impulses points
dx

dt
= f(t, x) almost everywhere on R \ T,

x(τ+)− x(τ−) = I(τ, x(τ)) for τ ∈ T,

under the ω-antiperiodic problem
x(t+ ω) = −x(t) for t ∈ R,

where f = (fi)
n
i=1 is a vector-function belonging to the Carathéodory class Car([R × Rn,Rn), and

I = (Ii)
n
i=1 : T ×Rn → Rn is a vector-function such that I(τ, · ) is continuous for every τ ∈ Tm0

.
We assume that

f(t+ ω, x) = −f(t,−x) and I(τ + ω, x) = −I(τ,−x), t ∈ R, τ ∈ T, x ∈ Rn.

In view of this condition, if x : R → Rn is a solution of the given system, then the vector-function
y(t) = −x(t + ω) (t ∈ R) will be a solution of the system, as well. Moreover, it is evident that if
x : R → Rn is a solution of the given ω-antiperiodic problem, then its restriction on the closed interval
[0, ω] will be a solution of the problem

dx

dt
= f(t, x) almost everywhere on [0, ω] \ {τ1, . . . , τm0}, (1)

x(τl+)− x(τl−) = I(τl, x(τl)) (l = 1, . . . ,m0); (2)
x(0) = −x(ω). (3)

Let now x : [0, ω] → Rn be a solution of the system on [0, ω]. By x we designate the continuation
of this function on the whole R as a solution of the system (1), (2). As above, the vector-function
y(t) = −x(t + ω) (t ∈ R) will be the solution of the system (1), (2). On the other hand, according
to the equality (3), we have y(0) = −x(ω) = x(0). Thus, if we assume that the system (1), (2) under
the Cauchy condition x(0) = c is uniquely solvable for every c ∈ Rn, then x(t+ ω) = −x(t) for t ∈ R,
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i.e., x is ω-antiperiodic. This means that the set of restrictions of the ω-antiperiodic solutions of the
system (1), (2) on [0, ω] coincides with the set of solutions of the problem (1), (2); (3).

In this connection we consider the boundary value problem (1), (2); (3) on the closed interval [0, ω].
Below, we will give the sufficient conditions guaranteeing the well-posedness of this problem.

Consider a sequence of vector-functions fk ∈ Car([0, ω] × Rn,Rn) (k = 1, 2, . . . ), the sequences
of points τlk (k = 1, 2, . . . ; l = 1, . . . ,m0), a < τ1k < · · · < τm0k < b, a sequences of operators
Ik : {τ1k, . . . , τm0k} × Rn → Rn (k = 1, 2, . . . ) such that Ik(τlk, · ) (k = 1, 2, . . . ; l = 1, . . . ,m0) are
continuous.

In this paper the sufficient conditions are established which guarantee both the solvability of the
impulsive systems (k = 1, 2, . . . )

dx

dt
= fk(t, x) almost everywhere on [0, ω] \ {τ1k, . . . , τm0k}, (1k)

x(τlk+)− x(τlk−) = Ik(τlk, x(τlk)) (l = 1, . . . ,m0) (2k)

under the condition (3) for any sufficient large k and the convergence of its solutions to a solution of
the problem (1), (2); (3) as k → +∞.

We assume that the circumscribed above concept is fulfilled for the problems (1k), (2k); (3) (k =
1, 2, . . . ), as well.

The well-posed problem for the linear boundary value problem for impulsive systems with a finite
number of impulses points is investigated in [5], where the necessary and sufficient conditions are given
for the case. Analogous problems are investigated in [2,12–14] (see also the references therein) for the
linear and nonlinear boundary value problems for ordinary differential systems.

Quite a number of issues on the theory of systems of differential equations with impulsive effect
(both linear and nonlinear) have been studied sufficiently well (for a survey of the results on impulsive
systems see, e.g., [1, 3, 4, 6–10,15–17] and the references therein). But the above-mentioned works, as
we know, do not contain the results obtained in the present paper.

Throughout the paper, the following notation and definitions will be used.
R = ]−∞,+∞[ , R+ = [0,+∞[ , [a, b] (a, b ∈ R) is a closed segment.
Rn×m is the space of all real n×m-matrices X = (xij)

n,m
i,j=1 with the norm ∥X∥ = max

j=1,...,m

n∑
i=1

|xij |,

|X| = (|xij |)n,mi,j=1, [X]+ = |X|+X
2 .

Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)

}
.

R(n×n)×m = Rn×n × · · · × Rn×n (m-times).
Rn = Rn×1 is the space of all real column n-vectors x = (xi)

n
i=1; Rn

+ = Rn×1
+ .

If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the determinant
of X and the spectral radius of X; In×n is the identity n× n-matrix.

b∨
a
(X) is the total variation of the matrix-function X : [a, b] → Rn×m, i.e., the sum of total variations

of the latter components; V (X)(t) = (v(xij)(t))
n,m
i,j=1, where v(xij)(a) = 0, v(xij)(t) =

t∨
a
(xij) for

a < t ≤ b.
X(t−) and X(t+) are the left and the right limits of the matrix-function X : [a, b] → Rn×m at the

point t (we assume X(t) = X(a) for t ≤ a and X(t) = X(b) for t ≥ b, if necessary).
BV([a, b], Rn×m) is the set of all matrix-functions of bounded variation X : [a, b] → Rn×m (i.e.,

such that
b∨
a
(X) < +∞).

C([a, b], D), where D ⊂ Rn×m, is the set of all continuous matrix-functions X : [a, b] → D.
Let Tm0 = {τ1, . . . , τm0}.
C([a, b], D;Tm0

), is the set of all matrix-functions X : [a, b] → D having the one-sided limits X(τl−)
(l = 1, . . . ,m0) and X(τl+) (l = 1, . . . ,m0) whose restrictions to an arbitrary closed interval [c, d]
from [a, b] \ Tm0

belong to C([c, d], D).
Cs([a, b],Rn×m;Tm0

) is the Banach space of all X ∈ C([a, b],Rn×m;Tm0
) with the norm ∥X∥s =

sup{∥X(t)∥ : t ∈ [a, b]}.
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If y ∈ Cs([a, b],R;Tm0) and r ∈]0,+∞[, then

U(y; r) =
{
x ∈ Cs([a, b],Rn;Tm0) : ∥x− y∥s < r

}
.

D(y, r) is the set of all x ∈ Rn such that inf{∥x− y(t)∥ : t ∈ [a, b]} < r.
C̃([a, b], D), where D ⊂ Rn×m, is the set of all absolutely continuous matrix-functions X : [a, b] →

D.
C̃([a, b], D;Tm0

) is the set of all matrix-functions X : [a, b] → D having the one-sided limits X(τl−)
(l = 1, . . . ,m0) and X(τl+) (l = 1, . . . ,m0) whose restrictions to an arbitrary closed interval [c, d]
from [a, b] \ Tm0

belong to C̃([c, d], D).
If B1 and B2 are the normed spaces, then an operator g : B1 → B2 (nonlinear, in general) is

positive homogeneous if g(λx) = λg(x) for every λ ∈ R+ and x ∈ B1.
An operator φ : C([a, b],Rn×m;Tm0

) → Rn is called nondecreasing if the inequality φ(x)(t) ≤
φ(y)(t) for t ∈ [a, b] holds for every x, y ∈ C([a, b],Rn×m;Tm0) such that x(t) ≤ y(t) for t ∈ [a, b].

A matrix-function is said to be continuous, nondecreasing, integrable, etc., if each of its components
is such.

L([a, b], D), where D ⊂ Rn×m, is the set of all measurable and integrable matrix-functions X :
[a, b] → D.

If D1 ⊂ Rn and D2 ⊂ Rn×m, then Car([a, b] ×D1, D2) is the Carathéodory class, i.e., the set of
all mappings F = (fkj)

n,m
k,j=1 : [a, b] ×D1 → D2 such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . ,m} and

k ∈ {1, . . . , n}:
(a) the function fkj( · , x) : [a, b] → D2 is measurable for every x ∈ D1;
(b) the function fkj(t, · ) : D1 → D2 is continuous for almost every t ∈ [a, b], and

sup{|fkj( · , x)| : x ∈ D0} ∈ L([a, b], R; gik) for every compact D0 ⊂ D1.

Car0([a, b] × D1, D2) is the set of all mappings F = (fkj)
n,m
k,j=1 : [a, b] × D1 → D2 such that the

functions fkj( · , x( · )) (i = 1, . . . , l; k = 1, . . . , n) are measurable for every vector-function x : [a, b] →
Rn with bounded total variation.

We say that the pair {X; {Yl}ml=1} consisting of the matrix-function X ∈ L([a, b],Rn×n) and of a
sequence of constant n×n matrices {Yl}ml=1} satisfies the Lappo–Danilevskiĭ condition if the matrices
Y1, . . . , Ym are pairwise permutable and there exists t0 ∈ [a, b] such that

t∫
t0

X(τ) dX(τ) =

t∫
t0

dX(τ) ·X(τ) for t ∈ [a, b]

and
X(t)Yl = YlX(t) for t ∈ [a, b] (l = 1, . . . ,m).

M([a, b]×R+,R+) is the set of all functions ω ∈ Car([a, b]×R+,R+) such that the function ω(t, · )
is nondecreasing and ω(t, 0) = 0 for every t ∈ [a, b].

By a solution of the impulsive system (1), (2) we understand a continuous from the left vector-
function x∈ C̃([0, ω],Rn;Tm0

) satisfying both the system (1) for a.e. on [0, ω] \ Tm0
and the relation

(2) for every l ∈ {1, . . . ,m0}.

Definition 1. Let ℓ : Cs([0, ω],Rn;Tm0
) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0

) → Rn
+ be, respectively,

a linear continuous and a positive homogeneous operators. We say that a pair (P, J), consisting of
a matrix-function P ∈ Car([0, ω] × Rn,Rn×n) and a continuous with respect to the last n-variables
operator J : Tm0 ×Rn → Rn, satisfies the Opial condition with respect to the pair (ℓ, ℓ0) if:

(a) there exist a matrix-function Φ ∈ L([0, ω],Rn×n
+ ) and a constant matrices Ψl ∈ Rn×n (l =

1, . . . ,m0) such that

|P (t, x)| ≤ Φ(t) a.e. on [0, ω], x ∈ Rn,

and
|J(τl, x)| ≤ Ψl for x ∈ Rn (l = 1, . . . ,m0);
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(b)
det(In×n +Gl) ̸= 0 (l = 1, . . . ,m0) (4)

and the problem
dx

dt
= A(t)x a.e. on [0, ω] \ Tm0

, (5)

x(τl+)− x(τl−) = Gl x(τl) (l = 1, . . . ,m0); (6)
|ℓ(x)| ≤ ℓ0(x) (7)

has only a trivial solution for every matrix-function A ∈ L([0, ω],Rn×n) and constant matrices
Gl, . . . , Gm0

for which there exists a sequence yk ∈ C̃([0, ω],Rn;Tm0
) (k = 1, 2, . . . ) such that

lim
k→+∞

t∫
0

P (τ, yk(τ)) dτ =

t∫
0

A(τ) dτ uniformly on [0, ω]

and
lim

k→+∞
J(τl, yk(τl)) = Gl (l = 1, . . . ,m0).

Remark 1. In particular, the condition (4) holds if
∥Ψl∥ < 1 (l = 1, . . . ,m0).

As above, we assume that f = (fi)
n
i=1 ∈ Car([0, ω]×Rn,Rn×n) and, moreover, f(τl, x) is arbitrary

for x ∈ Rn (l = 1, . . . ,m0).
Let x0 be a solution of the problem (1), (2); (3), and r be a positive number. We introduce the

following

Definition 2. A solution x0 is said to be strongly isolated in the radius r if there exist the matrix-
and the vector-functions P ∈ Car([0, ω]×Rn,Rn×n) and q ∈ Car([0, ω]×Rn,Rn), a continuous with
respect to the last n-variables operators J, H : Tm0

× Rn → Rn, linear continuous operators ℓ and ℓ̃
and a positive homogeneous operator ℓ0 acting from Cs([0, ω],Rn;Tm0) into Rn such that:

(a) the equalities
f(t, x) = P (t, x)x+ q(t, x) for t ∈ [0, ω] \ Tm0 , ∥x− x0(t)∥ < r,

I(τl, x) = J(τl, x)x+H(τl, x) for ∥x− x0(τl)∥ < r (l = 1, . . . ,m0)

and
x(0) + x(ω) = ℓ(x) + ℓ̃(x) for x ∈ U(x0; r)

are valid;
(b) the functions α(t, ρ) = max{∥q(t, x)∥ : ∥x∥ ≤ ρ}, β(τl, ρ) = max{∥H(τl, x)∥ : ∥x∥ ≤ ρ}

(l = 1, . . . ,m0) and γ(ρ) = sup{[|l̃(x)| − l0(x)]+ : ∥x∥s ≤ ρ} satisfy the condition

lim
ρ→+∞

1

ρ

(
γ(ρ) +

ω∫
0

α(t, ρ) dt+

m0∑
l=1

β(τl, ρ)

)
= 0; (8)

(c) the problem
dx

dt
= P (t, x)x+ q(t, x) a.e. on [0, ω] \ Tm0

,

x(τl+)− x(τl−) = J(τl, x(τl))x(τl) +H(τl, x(τl)) (l = 1, . . . ,m0);

ℓ(x) + ℓ̃(x) = 0

has no solution different from x0.
(d) the pair (P, J) satisfies the Opial condition with respect to the pair (ℓ, ℓ0).

Remark 2. If ℓ(x) ≡ x(0) + x(ω) and ℓ0(x) ≡ 0, then we say that the pair (P, J) satisfies the Opial
ω-antiperiodic condition. In this case, the condition (7) coincides with the condition (3), and ℓ̃(x) ≡ 0
and γ(ρ) ≡ 0 in Definitions 1 and 2.
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Definition 3. We say that a sequence (fk, Ik) (k = 1, 2, . . . ) belongs to the set Wr(f, I;x
0) if:

(a) the equalities

lim
k→+∞

t∫
0

fk(τ, x) dτ =

t∫
0

f(τ, x) dτ uniformly on [0, ω]

and
lim

k→+∞
Ik(τlk, x) = I(τl, x) (l = 1, . . . ,m0)

are valid for every x ∈ D(x0; r);
(b) there exists a sequence of functions ωk ∈ M([a, b]× R+,R+) (k = 1, 2, . . . ) such that

sup
{ ω∫

0

ωk(t, r) dt : k = 1, 2, . . .

}
< +∞, (9)

sup
{ m0∑

l=1

ωk(τlk, r) : k = 1, 2, . . .

}
< +∞; (10)

lim
s→0+

sup
{ ω∫

0

ωk(t, s) dt : k = 1, 2, . . .

}
= 0, (11)

lim
s→0+

sup
{ m0∑

l=1

ωk(τlk, s) : k = 1, 2, . . .
}
= 0; (12)

∥∥fk(t, x)− fk(t, y)
∥∥ ≤ ωk

(
t, ∥x− y∥

)
for t ∈ [0, ω] \ Tm0

, x, y ∈ D(x0; r) (k = 1, 2, . . . ),∥∥Ik(τlk, x)− Ik(τlk, y)
∥∥ ≤ ωk

(
τlk, ∥x− y∥

)
for x, y ∈ D(x0; r) (l = 1, . . . ,m0; k = 1, 2, . . . ).

Remark 3. If for every natural m there exists a positive number νm such that

ωk(t,mδ) ≤ νmωk(t, δ) for δ > 0, t ∈ [0, ω] \ Tm0 (k = 1, 2, . . . ),

then the estimate (9) follows from the condition (11); analogously, if

ωk(τlk,mδ) ≤ νmωk(τlk, δ) for δ > 0, (l = 1, . . . ,m0; k = 1, 2, . . . ),

then the estimate (10) follows from the condition (12). In particular, the sequences of functions

ωk(t, δ) = max
{∥∥fk(t, x)− fk(t, y)

∥∥ : x, y ∈ U
(
0, ∥x0∥+ r

)
, ∥x− y∥ ≤ δ

}
for t ∈ [0, ω] \ Tm0

(k = 1, 2, . . . )

and

ωk(τlk, δ) = max
{∥∥Ik(τlk, x)− Ik(τlk, y)

∥∥ : x, y ∈ U
(
0, ∥x0∥+ r

)
, ∥x− y∥ ≤ δ

}
(l = 1, . . . ,m0; k = 1, 2, . . . )

have the latters’ properties, respectively.

Definition 4. The problem (1), (2); (3) is said to be (x0; r)-correct if for every ε ∈ ]0, r[ and
(fk, Ik)

+∞
k=1 ∈ Wr(f, I;x

0) there exists a natural number k0 such that the problem (1k), (2k) has
at last one ω-antiperiodic solution contained in U(x0; r), and any such solution belongs to the ball
U(x0; ε) for every k ≥ k0.

Definition 5. The problem (1), (2); (3) is said to be correct if it has a unique solution x0 and it is
(x0; r)-correct for every r > 0.

Theorem 1. If the problem (1), (2); (3) has a solution x0, strongly isolated in the radius r, then it is
(x0; r)-correct.
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Theorem 2. Let the conditions∥∥f(t, x)− P (t, x)x
∥∥ ≤ α(t, ∥x∥) a.e. on [0, ω] \ Tm0

, x ∈ Rn, (13)∥∥I(τl, x)− J(τl, x)x
∥∥ ≤ β(τl, ∥x∥) for x ∈ Rn (l = 1, . . . ,m0) (14)

and ∣∣x(0) + x(ω)− ℓ(x)
∣∣ ≤ ℓ0(x) + ℓ1(∥x∥s) for x ∈ BV([0, ω],Rn) (15)

hold, where ℓ : Cs([0, ω],Rn;Tm0) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0) → Rn
+ are, respectively, a linear

continuous and a positive homogeneous operators, the pair (P, J) satisfies the Opial condition with
respect to the pair (ℓ, ℓ0); α ∈ Car([0, ω] × R+,R+) and β ∈ C(Tm0

× [0, ω],R+) are the functions,
nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a vector-function such that

lim
ρ→+∞

1

ρ

(
∥ℓ1(ρ)∥+

ω∫
0

α(t, ρ) dt+

m0∑
l=1

β(τl, ρ)

)
= 0. (16)

Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Theorem 3. Let the conditions (13)–(15),
P1(t) ≤ P (t, x) ≤ P2(t) a.e. on [0, ω] \ {τ1, . . . , τm0

}, x ∈ Rn, (17)
and

J1l ≤ J(τl, x) ≤ J2l for x ∈ Rn (l = 1, . . . ,m0) (18)
hold, where P ∈ Car0([0, ω] × Rn,Rn×n), Pi ∈ L([0, ω],Rn×n), Jil ∈ Rn×n (i = 1, 2; l = 1, . . . ,m0);
ℓ : Cs([0, ω],Rn;Tm0

) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0
) → Rn

+ are, respectively, a linear continuous
and a positive homogeneous operators; α ∈ Car([0, ω]× R+,R+) and β ∈ C(Tm0

× [0, ω],R+) are the
functions, nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a vector-function such that the
condition (16) holds. Let, moreover, the condition (4) hold and the problem (5), (6), (7) have only
a trivial solution for every matrix-function A ∈ L([0, ω],Rn×n) and constant matrices Gl ∈ Rn×n

(l = 1, . . . ,m0) such that
P1(t) ≤ A(t) ≤ P2(t) a.e. on [0, ω] \ Tm0

, x ∈ Rn, (19)
and

J1l ≤ Gl ≤ J2l for x ∈ Rn (l = 1, . . . ,m0). (20)
Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Remark 4. Theorem 3 is of interest only in the case P /∈ Car([0, ω]×Rn,Rn×n), because the theorem
immediately follows from Theorem 2 in the case P ∈ Car([0, ω]× Rn,Rn×n).

Theorem 4. Let the conditions (15),
|f(t, x)− P (t)x| ≤ Q(t) |x|+ q(t, ∥x∥) a.e. on [0, ω] \ Tm0

, x ∈ Rn, (21)
and

|Il(x)− Jl x| ≤ Hl |x|+ h(τl, ∥x∥) for x ∈ Rn (l = 1, . . . ,m0) (22)
hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n

+ ), Jl ∈ Rn×n and Hl ∈ Rn×n
+ (l = 1, . . . ,m0) are

constant matrices, ℓ : Cs([0, ω],Rn;Tm0
) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0

) → Rn
+ are, respectively, a

linear continuous and a positive homogeneous operators; q ∈ Car([0, ω]× R+,Rn
+) and h ∈ C(Tm0 ×

R+;Rn×n
+ ) are the vector-functions, nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a
vector-function such that the condition

lim
ρ→+∞

1

ρ

(
∥ℓ1(ρ)∥+

ω∫
0

∥q(t, ρ)∥ dt+
m0∑
l=1

∥h(τl, ρ)∥
)

= 0. (23)

holds. Let, moreover, the conditions
det(In×n + Jl) ̸= 0 (l = 1, . . . ,m0) (24)
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and
∥Hl∥ ·

∥∥(In×n + Jl)
−1

∥∥ < 1 (j = 1, 2; l = 1, . . . ,m0) (25)
hold and the system of impulsive inequalities∣∣∣dx

dt
− P (t)x

∣∣∣ ≤ Q(t)x a.e. on [0, ω] \ Tm0 , (26)∣∣x(τl+)− x(τl−)− Jlx(τl)
∣∣ ≤ Hl |x(τl)| (l = 1, . . . ,m0) (27)

have only a trivial solution satisfying the condition (7). Then the problem (1), (2); (3) is solvable. If,
moreover, the problem has a unique solution, then it is correct.

Corollary 1. Let the conditions

|f(t, x)− P (t)x| ≤ q(t, ∥x∥) a.e. on [0, ω] \ Tm0
, x ∈ Rn, (28)∣∣I(τl, x)− Jl x

∣∣ ≤ h(τl, ∥x∥) for x ∈ Rn (l = 1, . . . ,m0) (29)

and ∣∣x(0) + x(ω)− ℓ(x)
∣∣ ≤ ℓ1(∥x∥s) for x ∈ BV([0, ω],Rn) (30)

hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are constant matrices satisfying the
condition (24), ℓ : Cs([0, ω],Rn;Tm0

) → Rn is the linear continuous operator; q ∈ Car([0, ω]×R+,Rn
+)

and h ∈ C(Tm0 × R+;Rn×n
+ ) are the vector-functions, nondecreasing in the second variable, and

ℓ1 ∈ C(R,Rn
+) is a vector-function such that the condition (23) holds. Let, moreover, the problem

dx

dt
= P (t)x a.e. on [0, ω] \ Tm0 , (31)

x(τl+)− x(τl−) = Jl x(τl) (l = 1, . . . ,m0); (32)
ℓ(x) = 0. (33)

have only a trivial solution. Then the problem (1), (2); (3) is solvable. If, moreover, the problem has
a unique solution, then it is correct.

Remark 5. Let Y = (y1, . . . , yn) be a fundamental matrix, with columns y1, . . . , yn, of the system
(31), (32). Then the homogeneous boundary value problem (31), (32); (33) has only a trivial solution
if and only if

det(ℓ(Y )) ̸= 0, (34)
where ℓ(Y ) = (ℓ(y1), . . . , ℓ(yn)).

If the pair {P ; {Jl}m0

l=1} satisfies the Lappo–Danilevskiĭ condition, then the fundamental matrix Y
(Y (0) = In×n) of the homogeneous system (31), (32) has the form

Y (t) ≡ exp
( t∫

0

P (τ) dτ

)
·

∏
0≤τl<t

(In×n + Jl).

Theorem 5. Let the conditions∣∣f(t, x)− f(t, y)− P (t) (x− y)
∣∣ ≤ Q(t)|x− y| a.e. on [0, ω] \ Tm0 , x, y ∈ Rn, (35)∣∣I(τl, x)− I(τl, y)− Jl (x− y)
∣∣ ≤ Hl|x− y| for x, y ∈ Rn (k = l, . . . ,m0) (36)

and ∣∣x(0)− y(ω) + x(ω)− y(ω)− ℓ(x− y)
∣∣ ≤ ℓ0(x− y) for x, y ∈ BV([0, ω],Rn)

hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ), Jl ∈ Rn×n and Hl ∈ Rn×n

+ (l = 1, . . . ,m0)
are constant matrices satisfying the conditions (24) and (25), ℓ : Cs([0, ω],Rn;Tm0

) → Rn and
ℓ0 : Cs([0, ω],Rn;Tm0

) → Rn
+ are, respectively, linear continuous and positive homogeneous continuous

operators. Let, moreover, the problem (26), (27); (7) have only a trivial solution. Then the problem
(1), (2); (3) is correct.
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Corollary 2. Let there exist a solution x0 of the problem (1), (2); (3) and a positive number r > 0
such that the conditions∣∣f(t, x)− f(t, x0(t))− P (t) (x− x0(t))

∣∣ ≤ Q(t)
∣∣x− x0(t)

∣∣ a.a. [0, ω] \ Tm0 , ∥x− x0(t)∥ < r,∣∣∣I(τl, x)− I
(
τl, x

0(τl)
)
− Jl (x− x0(τl))

∣∣∣ ≤ Hl

∣∣x− x0(τl)
∣∣ for ∥x− x0(τl)∥ < r (l = l, . . . ,m0)

and ∣∣x(0)− x0(0) + x(ω)− x0(ω)− ℓ(x− x0)
∣∣ ≤ ℓ∗

(
|x− x0|

)
for x ∈ U(x0, r)

hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ), Jl,Hl ∈ Rn×n (l = 1, . . . ,m0) are constant ma-

trices satisfying the conditions (24) and (25), ℓ : Cs([0, ω],Rn;Tm0
)→ Rn and ℓ∗ : Cs([0, ω],Rn;Tm0

)→
Rn

+ are, respectively, linear continuous and positive homogeneous continuous operators. Let, moreover,
the system of impulsive inequalities∣∣∣dx

dt
− P (t)x

∣∣∣ ≤ Q(t)x a.e. on [0, ω] \ Tm0 ,∣∣x(τl+)− x(τl−)− Jl x(τl)
∣∣ ≤ Hl · x(τl) (l = 1, . . . ,m0)

have only a trivial solution under the condition
|ℓ(x)| ≤ ℓ∗(|x|).

Then the problem (1), (2); (3) is (x0; r)-correct.

Corollary 3. Let the components of the vector-functions f and Il (l = 1, . . . , n) have partial derivatives
by the last n variables belonging to the Carathéodory class Car([0, ω]×Rn,Rn). Let, moreover, x0 be
a solution of the problem (1), (2); (3) such that the condition

det
(
In×n +Gl(x

0(τl))
)
̸= 0 (l = 1, . . . ,m0)

holds and the system
dx

dt
= F (t, x0(t))x almost everywhere on [0, ω] \ Tm0

,

x(τl+)− x(τl−) = Gl(x
0(τl))x(τl) (l = 1, . . . ,m0);

ℓ(x) = 0,

where F (t, x) ≡ ∂f(t,x)
∂x and Gl(x) ≡ ∂Il(x)

∂x , have only a trivial solution under the condition (3). Then
the problem (1), (2); (3) is (x0; r)-correct for any sufficiently small r.

In general, it is quite difficult to verify the condition (34) directly even in the case where one is able
to write out the fundamental matrix of the system (31), (32); (33). Therefore it is important to seek
for effective conditions which would guarantee the absence of nontrivial ω-antiperiodic solutions of
the homogeneous system (31), (32); (33). Below we will give the results concerning the question under
consideration. Analogous results have been obtained in [3] for general linear boundary value problems
for impulsive systems, and in [14] by T. Kiguradze for the case of ordinary differential equations.

In this connection, we introduce the following operators. For every matrix-function X ∈
L([0, ω],Rn×n) and a sequence of constant matrices Yk ∈ Rn×n (k = 1, . . . ,m0) we put[

(X,Y1, . . . , Ym0)(t)
]
0
= In for 0 ≤ t ≤ ω,[

(X,Y1, . . . , Ym0)(0)
]
i
= On×n (i = 1, 2, . . . ),

[
(X,Y1, . . . , Ym0

)(t)
]
i+1

=

t∫
0

X(τ)
[
(X,Y1, . . . , Ym0

)(τ)
]
i
dτ

+
∑

0≤τl<t

Yl

[
(X,Y1, . . . , Ym0

)(τl)
]
i

for 0 < t ≤ ω (i = 1, 2, . . . ). (37)

Corollary 4. Let the conditions (28)–(30) hold, where

ℓ(x) ≡
ω∫

0

dL(t) · x(t),
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P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are constant matrices satisfying the condition (24),
L ∈ L([0, ω],Rn×n); q ∈ Car([0, ω] × R+,Rn

+) and h ∈ C(Tm0 × R+;Rn×n
+ ) are the vector-functions,

nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn
+) is a vector-function such that the condition

(23) holds. Let, moreover, there exist natural numbers k and m such that the matrix

Mk = −
k−1∑
i=0

ω∫
0

dL(t) ·
[
(P, Jl, . . . , Jm0

)(t)
]
i

is nonsingular and
r(Mk,m) < 1, (38)

where the operators [(P, J1, . . . , Jm0
)(t)]i (i = 0, 1, . . . ) are defined by (37), and

Mk,m =
[(
|P |, |J1|, . . . , |Jm0 |

)
(ω)

]
m

+

m−1∑
i=0

[(
|P |, |J1|, . . . , |Jm0

|
)
(ω)

]
i

ω∫
0

dV (M−1
k L)(t) ·

[(
|P |, |J1|, . . . , |Jm0

|
)
(t)

]
k
.

Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Corollary 5. Let the conditions (28)–(30) hold, where

ℓ(x) ≡
n0∑
j=1

Ljx(tj), (39)

P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are constant matrices satisfying the condition (24),
tj ∈ [0, ω] and Lj ∈ Rn×n (j = 1, . . . , n0), L ∈ L([0, ω],Rn×n), ℓ : Cs([0, ω],Rn;Tm0

) → Rn is the
linear continuous operator; q ∈ Car([0, ω] × R+,Rn

+) and h ∈ C(Tm0
× R+;Rn×n

+ ) are the vector-
functions, nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a vector-function such that the
condition (23) holds. Let, moreover, there exist natural numbers k and m such that the matrix

Mk =

n0∑
j=1

k−1∑
i=0

Lj

[
(P, Jl, . . . , Jm0

)(tj)
]
i

is nonsingular and the inequality (38) holds, where

Mk,m =
[(
|P |, |Jl|, . . . , |Jm0 |

)
(ω)

]
m

+
(m−1∑

i=0

[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
i

) n0∑
j=1

|M−1
k Lj | ·

[(
|P |, |Jl|, . . . , |Jm0

|
)
(tj)

]
k
.

Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Corollary 5 has the following form for k = 1 and m = 1.

Corollary 6. Let the conditions (28)–(30) hold, where the operator ℓ is defined by (39), P ∈
L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are constant matrices satisfying the condition (24),
tj ∈ [0, ω] and Lj ∈ Rn×n (j = 1, . . . , n0); q ∈ Car([0, ω]× R+,Rn

+) and h ∈ C(Tm0
× R+;Rn×n

+ ) are
the vector-functions, nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is the vector-function
such that the condition (23) holds. Let, moreover,

det
( n0∑

j=1

Lj

)
̸= 0 and r(L0A0) < 1,

where

L0 = In×n +

∣∣∣∣( n0∑
j=1

Lj

)−1
∣∣∣∣ · n0∑

j=1

|Lj | and A0 =

ω∫
0

|P (t)| dt+
m0∑
l=1

|Jl|.
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Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Remark 6. If the pair {P ; {Jl}m0

l=1} satisfies the Lappo–Danilevskiĭ condition, then the condition (34)
has the forms

det
( ω∫

0

dL(t) · exp
( t∫

0

P (τ) dτ

)
·

∏
0≤τl<t

(In×n + Jl)

)
̸= 0

and

det
( n0∑

j=1

Lj exp
( tj∫

0

P (τ) dτ

)
·

∏
0≤τl<tj

(In×n + Jl)

)
̸= 0

for the operators ℓ defined, respectively, in Corollary 4 and Corollary 5.

By Remark 2, in the case where ℓ(x) ≡ x(0)+x(ω) and ℓ0(x) ≡ 0, the results given above have the
following forms, respectively.
Theorem 2′. Let the conditions (13) and (14) hold, where the pair (P, J) satisfies the Opial ω-
antiperiodic condition, α ∈ Car([0, ω] × R+,R+) and β ∈ C(Tm0

× [0, ω],R+) are the functions,
nondecreasing in the second variable, such that

lim
ρ→+∞

1

ρ

( ω∫
0

α(t, ρ) dt+

m0∑
l=1

β(τl, ρ)

)
= 0. (40)

Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Theorem 3′. Let the conditions (13), (14), (17), (18) and (40) hold, where P ∈ Car0([0, ω] ×
Rn,Rn×n), Pi ∈ L([0, ω],Rn×n), Jil ∈ Rn×n (i = 1, 2; l = 1, . . . ,m0); α ∈ Car([0, ω] × R+,R+) and
β ∈ C(Tm0

× [0, ω],R+) are the functions, nondecreasing in the second variable. Let, moreover, the
condition (4) hold and the problem (5), (6); (3) have only a trivial solution for every matrix-function
A ∈ L([0, ω],Rn×n) and constant matrices Gl ∈ Rn×n (l = 1, . . . ,m0) satisfying the conditions (19)
and (20). Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution,
then it is correct.

Theorem 4′. Let the conditions (21) and (22) hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ),

Jl ∈ Rn× and Hl ∈ Rn×n
+ (l = 1, . . . ,m0) are the constant matrices satisfying the conditions (24) and

(25), q ∈ Car([0, ω]× R+,Rn
+), and h ∈ C(Tm0

× R+;Rn×n
+ ) are the vector-functions, nondecreasing

in the second variable, such that

lim
ρ→+∞

1

ρ

( ω∫
0

∥q(t, ρ)∥ dt+
m0∑
l=1

∥h(τl, ρ)∥
)

= 0. (41)

Let, moreover, the system of impulsive inequalities (26), (27) have only a trivial solution satisfying
the condition (3). Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique
solution, then it is correct.

Corollary 1′. Let the conditions (28), (29) and (40) hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n

(l = 1, . . . ,m0) are constant matrices satisfying the condition (24), q ∈ Car([0, ω] × R+,Rn
+) and

h ∈ C(Tm0 ×R+;Rn×n
+ ) are the vector-functions, nondecreasing in the second variable. Let, moreover,

the problem (31), (32), (3) have only a trivial solution. Then the problem (1), (2); (3) is solvable. If,
moreover, the problem has a unique solution, then it is correct.

Theorem 5′. Let the conditions (35) and (36) hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ),

Jl ∈ Rn×n and Hl ∈ Rn×n
+ (l = 1, . . . ,m0) are constant matrices satisfying the conditions (24)

and (25). Let, moreover, the problem (26), (27); (7) have only a trivial solution. Then the problem
(1), (2); (3) is correct.
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Corollary 5′. Let the conditions (28), (29) and (41) hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n

(l = 1, . . . ,m0) are constant matrices satisfying the condition (24); q ∈ Car([0, ω] × R+,Rn
+) and

h ∈ C(Tm0
×R+;Rn×n

+ ) are the vector-functions, nondecreasing in the second variable. Let, moreover,
there exist natural numbers k and m such that the matrix

Mk =

k−1∑
i=0

[
(P, Jl, . . . , Jm0

)(ω)
]
i

is nonsingular and the inequality (38) holds, where

Mk,m =
[(
|P |, |Jl|, . . . , |Jm0 |

)
(ω)

]
m

+
(m−1∑

i=0

[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
i

)
|M−1

k | ·
[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
k
.

Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Corollary 5′ has the following form for k = 1 and m = 1.
Corollary 6′. Let the conditions (28), (29) and (41) hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n

(l = 1, . . . ,m0) are constant matrices satisfying the condition (24); q ∈ Car([0, ω] × R+,Rn
+) and

h ∈ C(Tm0
×R+;Rn×n

+ ) are the vector-functions, nondecreasing in the second variable. Let, moreover,

r(A0) <
1

2
,

where

A0 =

ω∫
0

|P (t)| dt+
m0∑
l=1

|Jl|.

Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Remark 7. In the conditions of Corollary 6′, if the pair {P ; {Jl}m0

l=1} satisfies the Lappo–Danilevskiĭ
condition, then the condition (34) has the form

det
(
In×n + exp

( ω∫
0

P (τ) dτ

)
·
m0∏
l=1

(In×n + Jl)

)
̸= 0.

The analogous questions have been investigated in [7, 8] for the system (1), (2) under the general
nonlinear boundary condition h(x) = 0, where h : C([0, ω],Rn;Tm0

) → Rn is a continuous vector-
functional which is nonlinear, in general. The results given in the paper are the particular cases of
the results obtained in [7, 8] when h(x) ≡ x(0) + x(ω).
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