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Abstract. The aim of the present article is to get efficient conditions for the solvability of the periodic
boundary value problem

W= fhw); u(0) = u(w), u'(0) = u'w),

where the function f: [0,w]X |0, +oo[— R satisfies local Carathéodory conditions, i.e., it may have
“singularity” for u = 0. For this purpose, first the technique of differential inequalities is developed
and the question on existence and uniqueness of a positive solution of the linear problem

W = pltyut q(t); u(0) = u(w), W'(0)=1'(w)

is studied. A systematic application of the above-mentioned technique enables one to derive sufficient
and in certain cases also necessary conditions for the solvability of the nonlinear problem considered.
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Introduction

The aim of the present work is to study solvability of the periodic boundary value problem

u’ = ftu); u(0) = u(w), v'(0)=u'(w), (0.1)
where the function f satisfies either
f € K([0,w] x R;R) (0.2)
(i.e., f:[0,w] x R — R satisfies Carathéodory conditions), or
f € Kipe([0,w]x )0, +00[; R) (0.3)

(i.e., f: [0,w]x ]0,400[— R satisfies local Carathéodory conditions).

Under a solution of the problem (0.1) in the case when (0.2) holds we understand a function
u € AC([0,w]) satisfying given equation for almost all ¢ € [0,w] and boundary conditions in (0.1),
while in the case when (0.3) is fulfilled, solutions of (0.1) are supposed to be positive.

Among the earlier works playing an important role in the development of the theory of the periodic
boundary value problem for differential equations and their systems, we refer to [7, 15, 11, 13]. In
particular, all these works contributed significantly to the study of problem (0.1) with f satisfying
(0.2). A comprehensive exposition of the topic with relevant historical and bibliographical notes up to
2006 can be found in [4] (see also the survey [20]). The last mentioned book, which is devoted mainly
to boundary value problems for second order equations, is the first monographic publication dealing
with “phase singular” periodic problems (0.1), i.e., when f satisfies (0.3). The further development
of the theory of singular periodic problems is described in [21] (mainly in Section 8). The theory of
phase singular problems (0.1) is currently under active development and is far from being complete.
A number of recent results are contained, in particular, in [1, 6, 3, 9] and papers cited therein.

The present work is organized as follows. Chapter 1 is of technical character and contains several
known results in a suitable for us form for the convenience of references.

Chapter 2 is devoted to the description of the sets V™ (w) and V' (w) introduced in Definition 0.1.
Both these sets play crucial role for the whole article with two reasons. First, each of the inclusions
p € V™ (w) and p € VT (w) yield the unique solvability of the linear problem

W= p(tu+g(t); u(0) = ulw), w'(0) =u'(w), (0.4)

and the second, that the condition p € V™ (w), resp. p € V7 (w), implies the validity of a certain
theorem on differential inequalities which is widely used further for the study of nonlinear problem
(0.1) (see Remarks 0.5 and 0.6).

In the case when p is a constant function, say p(t) def ¢, the inclusion p € V™ (w) holds if and only
if ¢ €]0, +o00[ while the inclusion p € VT (w) is equivalent with ¢ € [—%Z, 0[ (if ¢ = 0 then p € Vp(w),
where the set Vy(w) is introduced in Definition 0.2). However, in general, description of the sets V'~ (w)
and V*(w) is not so simple and is far from to be complete. In Section 8, resp. Section 9, we state
necessary and sufficient conditions for the validity of the the inclusion p € V™ (w), resp. p € V1 (w),
while in Sections 11 and 12 several optimal efficient conditions are stated. Section 10 is devoted to
the properties of the sets V™ (w) and VT (w). For example, Proposition 10.7 states that the set Y+ (w)
is unbounded from above. This property of the set V¥ (w) is not possible to realise for the constant
function p. In Section 13, difference of the sets V™ (w) and VT (w) is shown with respect to Lyapunov
stability. In particular, it is shown that if p € V~(w) then the equation

u’ = p(t)u (0.5)
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is exponentially dichotomic while if p € V¥ (w) then it is Lyapunov stable. As an off product of
Chapter 2 there are efficient conditions for stability, resp. unstability of the equation (0.5).

Chapter 3 is devoted to the periodic boundary value problem (0.1). First, in Section 16, the
existence of a positive solution of the linear problem (0.4) is studied. As it follows from the definitions
of the sets V™ (w) and V*(w), if p € V™ (w), resp. p € VT (w), and ¢ is nontrivial and nonpositive,
resp. nonnegative, then then the problem (0.4) has a unique solution and this solution is positive.
In Section 16 optimal efficient conditions are stated guaranteeing the existence of a (unique) positive
solution of (0.4) even in the case when the function ¢ may change its sign.

Section 17 is rather technical, however Theorem 17.1 stated therein together with the results of
Section 11 generalize, resp. make more complete, previously known results on the solvability of the
problem (0.1) with f satisfying (0.2) (see Remark 17.5).

The rest of the article is devoted to the solvability of the problem (0.1) in the case when (0.3) is
fulfilled. Clearly, the assumption (0.3) include the case when the function f is defined only for positive
values of the second variable and may have “singularity” for v = 0. In this case the problem (0.1) is
referred as “phase singular”. A typical example of phase singular problem is
h(t)

W= pltyut 5 gt u(0) = u(w), W(0) = (w) (0.6)

with A > 0. If A < 0in (0.6) then the “phase singularity” disappears however, as it was mentioned in
very beginning of the introduction now we will be interested in the existence of a positive solution
of the given problem.

In Sections 19 and 22, general theorems on the solvability of (0.1) and their consequences for the
problem

v =pt)u+ h(t,u); u(0) =u(w), u'(0)=1u(w) (0.7)
are established. Applications of these general results for the problem (0.6) can be found in Sections 20
and 23.

Roughly speaking, results of Sections 19 and 20 concern the problems (0.7) and (0.6) with p € V™ (w)
while the case when p € VT (w) is considered in Sections 22 and 23.

The problem (0.7) with p € Vy(w) we refer as “resonant like case” and it is considered in Sections 21
and 24. Interest on the resonant like problems became from historical development of the theory of
singular periodic problems. Although phase singular periodic problems have been studied even in
earlier 60’th of 20’th century, actually its systematic treatment began from 1987 after the paper [16]
by Lazer and Solimini.

In [16], the authors considered the problems

u = g(u) +q(t);  u(0) =uw), v (0)=u'(w) (0.8)
and
u" = —g(u) +q(t); u(0) =uw), v (0)=u'(w), (0.9)
where g: ]0, +00[—]0, +00[ is a continuous function and

lim g(z) =400, lim g(z)=0.

r—0+ T—+00

In our terminology problems (0.8) and (0.9) belongs to the resonant like case. Results of Section 21
and 24 generalize and make more complete results of [16].

An important step in development of the theory of phase singular periodic problems was the paper
[5]. One of the main results of this paper is a Fredholm alternative like result for the problem

1
W= et b glt); u(0) = u(w), W(0) = (), (0.10)
where ¢ > 0, A > 1, and g € C([0,w];R). Theorem 1.1 of [5] states that the problem (0.10) is solvable

provided ¢ # ’Tw’;Q for n € N. Theorem 23.5 below partially make more complete mentioned results of

[5] (see Corollaries 23.8 and 23.9).




Notations and Main Definitions

The following notations are used below:
e N is a set of natural numbers.

o R=]— 00,400, Ry = [0, +o0].

If z € R then [z]4 = 1 (|z| + 2) and [z]_ = L (|z| — 2).
C(A; B), where A, B C R, is the set of continuous functions v: A — B.
For u € (([a,b]; D) we put ||lu||c = max {|u(t)| : ¢ € [a,b]}.

C,, is a Banach space of all continuous and w-periodic real functions u: R — R equipped with
the norm |ju|lc = max{|u(t)| : t € [0,w]}.

AC(I), where I C R, is a set of absolutely continuous functions uw: I — R.

AC/(I), where I C R, is a set of functions u: I — R which are absolutely continuous on I
together with their first derivatives.

—
AC (I), where I C R, is a set of functions v € AC(I) such that the function 4" admits the
representation ' (t) = ag(t) + a1 (t) for t € I, where ag € AC(I) and oy is a nondecreasing
function whose derivative is equal to zero almost everywhere on I.

L([a, b)) is the Banach space of Lebesgue integrable functions p: [a,b] — R endowed with the
b
norm [jp[| = [ p(s)| ds.

L¥([a, b]) is the set of functions p: [a,b] — R such that |p|¥ € L([a, b]).
b

For p € L¥([a,b]) we put ||p||z- = ([ |p(s)|” ds)*/".
a

L, is a Banach space of all w-periodic real functions, which are Lebesgue integrable on [0, w],
w

equipped with the norm ||p||; = [ |p(s)|ds.
0

For A C L, the symbols A, Int A, and OA denote closure, interior part, and boundary of the

set A.

def

For any ¢ > 0, we denote B(p,0) = {g € L, : |[p—gllL <d}.

If p € L, then we put
/p(S) ds. (0.11)
0
and "
) = exp (% [1to))as). (0.12)
0

If ¢ € L, then we put

Q% / lg(s))+ ds, Q% / lg(s)] ds. (0.13)
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o /: L, — C, is an operator defined by

t+w s

o(p)(t) déf_é / / (p(€) —p)deds for tEeR (0.14)
and
¢ max {|6(p)()] : t € [0,0]}. (0.15)

o If p € L, then

1
— if M
o def J o7 1 0< M < +oo, (0.16)

0 if M=0 or M = +o0,
where M % ess sup {[p(t)]— : t € [0,w]}.

e K([a,b] x A;B) , where A, B C R, is the set Carathéodory functions, i.e., the set functions
f:]a,b] x A — B such that:

[
(1) for any x € A, the function f(-,x): [a,b] — R is a measurable;
(2) for almost all t € [a, b], the function f(¢, -): A — B is continuous;
(3) for any r > 0, there exists ¢. € L([a, b]) such that

|[f(t,z)] < g (t) for t€a,b], v € AN[-rT].

o Kjoe([0,w]x ]0, +00[; B), where B C R, is the set of function f: [0,w]x |0, +o00[ — B such that
f € K([0,w] x [, +0o0[; B) for any € > 0.

o K4([0,w] X R;R) is the set of sublinear functions, i.e., the set of functions ¢ € K([0,w] x R; R)
satisfying

. 1
lim -
r—+oo 1

/ lg(s,7)|ds = 0.
0

e Having a function h € Kj,c([0,w]x |0, +00[;R), we put

o

H(x) :ef/h(s,x) ds for z>0. (0.17)
0

e Under a solution of the equation

u’ = p(t)u+q(t),

where p,q € L([a,b]), we understand a function u € AC([a,b]) satisfying given equation
almost everywhere on [a, b].

e Let u € AC([a,b]) be such that u(0) = u(w) and v/(0) = v’ (w). If it will be needed we will
extend the function u periodically and denote it by the same letter.

Definition 0.1. We say that the function p € L, belongs to the set V™~ (w) (resp., V1 (w)) if, for any
function u € AC([0,w]) satisfying

u”(t) > p(t)u(t) for t € [0,w]; u(0)=u(w), v (0)=r'(w),
the inequality
u(t) <0 for t€[0,w] (resp., u(t) >0 for t e [0,w])
is fulfilled.
Definition 0.2. We say that the function p € L, belongs to the set Vy(w) if the problem
' =pt)u; w(0) =u(w), v'(0)=1u'(w) (0.18)

has a (nontrivial) sign-constant solution.
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Definition 0.3. We say that the function p € L, belongs to the set D if any nontrivial solution of
the equation u” = p(t)u has at most one zero in R.

Definition 0.4. We say that the function p € L, belongs to the set D(w) if the problem
v =pt)u; u(a) =0, u(B3)=0

has no nontrivial solution for any « < /3 satisfying g — a < w.
Remark 0.5. It is clear that if p € V™ (w) (resp., p € VT (w)) then the problem (0.18) has no nontrivial
solution. Therefore, by virtue of Fredholm’s alternative, for any ¢ € L, the problem

v =ptu+qt); u(0) =u(w), v'(0)=ru'(w)
has a unique solution u. Moreover, if ¢(t) > 0 (resp., ¢(t) < 0) for ¢ € R then u(t) < 0 (resp., u(t) > 0)
for t € R.

Remark 0.6. One can easily verify that if p € V™ (w) then a certain assertion on differential in-
equalities holds. More precisely, let p € V™ (w), ¢ € L, and the functions u,v € AC'([0,w]) satisfy
differential inequalities
u”(t) < p(tult) +q(t), v"(t) = p(t)o(t) + q(t) for t € [0,w]
and boundary conditions
w(0) = u(w), v(0) =v(w), v(0)=u'(w), v(0)=1"(w).

Then the inequality

u(t) > wv(t) for t € [0,w]
is fulfilled. Analogously, if p € VT (w), ¢ € L, and the functions u and v are the same as above then
the inequality

u(t) <w(t) for te[0,w]
holds.

Remark 0.7. The inclusion p € Vy(w) holds if and only if the function p admits the representation

2

p(t) =g(t) + (U(g)(t))” for t €R, (0.19)
where g € L, and g = 0. Indeed, if p admits the representation (0.19) then one can easily verify that
p € L, and the function

u(t) & exp { /t 0(g)(s) ds] for t € R

is a solution of the problem (0.18). Let now p € Vy(w) and u be a sign-constant solution of the problem
(0.18). Put
def U/<t) def
t) = t) = o' (t) for teR.
oft) = Ty 9B = o) for te
It is clear that g = 0 and p(t) = ¢'(t) + ¢*(t) for t € R. On the other hand, one can easily verify that
o(t) = £(¢')(t) for t € R, and thus (0.19) is fulfilled.

From Definitions 0.2-0.4 and Sturm’s separation theorem if follows

Proposition 0.8. Vy(w) C D and D C D(w).



CHAPTER 1

Auxiliary Propositions

1. ON THE SET D

The next proposition follows from Definition 0.3.
Proposition 1.1. Let p € D. Then the problem
W = pltu u(0) = u(w), W(0) = u'(w) (L1)
has no more then one, up to a constant multiple, nontrivial solution.

Lemma 1.2. Let p € L, and there exist a function B € %(R.ﬁr) such that
B (t) <pt)B(t) for t>0,
B(t) >0 fort>0.

Then the equation v" = p(t)v possesses a solution v satisfying

0<w(t) <B(t) for t>0, v(0)=p(0). (1.2)
In particular, p € D.
Proof. For any k € N, consider on [0, k] the Dirichlet problem

v" =p(t)v; v(0) = B(0), v(k)=0. (1.3%)

Since the functions a3 = 0 and f are, respectively, lower and upper functions of the problem (1.3;),
there is a solution v; € AC'([0,1]) of this problem satisfying

0<wvi(t) <B(t) for te]0,1]
(see, e.g., [4] or [14, Lemma 3.7]). Moreover,
v (0) < B(0), v (1) <.
Let now vy be a solution of the problem (1.3;) and
0 <w(t) < p(t) for tel0,k|.
Clearly, v}, (k) < 0 and the function
G PR

is a lower function of the problem (1.3x41), while the function § is its upper function. Then there is
a solution vy, 1 € AC'([0,k + 1]) of the problem (1.3, ;) such that

apt1(t) <wvppr(t) < B(t) for te[0,k+1).
Clearly, v, (0) < vy, ,(0) < B’(0). Therefore, for any k € N, we have
0 < vp(t) <wveyr(t) < B(t) for te€0,k|

and
vr(0) = B(0),  v1(0) < vi(0) < vjy4(0) < B(0).
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Hence, we easily get that the sequences {vl(f) };::1)7 i = 0,1, are uniformly bounded and equicontinuous

in [0, 4+o00[ (i.e., on every closed subinterval of [0, 400[). Then, by virtue of the Arzeld—Ascolli lemma,
there is a v € AC (R, ) and a subsequence {v, },;/>5 such that

lim v,(;) (t) =v@(t) uniformly in [0, +oo[, i=0,1.

n—-+o0o

It is clear that the function v is a solution of the equation v/ = p(¢)v and satisfies (1.2). As for the
inclusion p € D, it follows immediately from Sturm’s (separation) theorem. O

Lemma 1.3. Let p € D, q € L, q(t) > 0 fort € R, and u be a solution of the problem
u =pt)utq(t); u(0) =u(w), u'(0)=1u'(w)
satisfying u(t) > 0 for t € R. Let, moreover, a > 0, v be a solution of the problem
v" =p(t)v; v(a) =u(a), v'(a) <u(a),

and
u'(a) —v'(a) + mes {t € [0,w] : ¢(t) >0} > 0. (1.4)

Then the function v does not preserve its sign in [a, 400 .

Proof. Suppose the contrary that

v(t) >0 for t>a. (1.5)
Evidently,
u' (t)o(t) — u(t)v'(t) = u(a) (v (a) — v'(a)) + /q(s)v(s) ds for t > a. (1.6)
Hence, in view of (1.4) and (1.5), we get ’
' (t)v(t) —u(t)'(t) > 6 >0 for t > a+w, (1.7)
a+w

where § = u(a)(uw'(a) —v'(a)) + [ q(s)v(s)ds. Therefore,

(Zgi)/>0 for t>a+w (1.8)
and, consequently,
0 <o(t) < cou(t) for t>a+ w, (1.9)
where ¢cg = %
Introduce the notation
op(t) € ot + kw) for t€[a,atw], keN. (1.10)

It follows from (1.8) (since u(t + kw

) = u(t) for t € R) that
u(t)  u(t+kw) u(t+(k
(t+ (k

1
+hw) __u®) for t € la,a+w], keN.
+ Dw

) ~ ot Rw) v @)~ o)
Thus
0 <wvpt1(t) <wv(t) for t€la,a+w], keN. (1.11)
On the other hand, (1.9) and (1.10) yield
0 < wvg(t) < cou(t) for ¢ € la,a+w], k€N. (1.12)

It is clear that, for any k € N, there is a & € [a,a + w] such that
vi(a + w) — v (a) = v (Ek)w.
Hence, in view of (1.12),

o, (&4)] < QWE u(a) for keN. (1.13)
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By virtue of (1.12) and (1.13), we get

a+w
O] < @)+ [ plo)lonle) de
260
< ju(a) +collullellpll for t€la,a+w], kEN (1.14)
and
[ ()] < colp(®)|||ullc for t € [a,a+w], k€N. (1.15)

Now it follows from (1.12), (1.14), and (1.15) that the sequences {v,(:)}:fl’, i = 0,1, are uniformly
bounded and equicontinuous on [a, a + w]. Therefore, by virtue of the Arzeld—Ascolli lemma, there is
a function vy € AC'([a,a + w]) and a subsequence {vy, },7>] such that

nEIJIrlOO v,(j) (t) = U(()i)(t) uniformly on [a,a +w], i=0,1. (1.16)
Taking, moreover, into account (1.11), we get
kgr-ir-loo v (t) = vo(t) uniformly on [a,a + w], (1.17)
as well. Moreover, (1.11) and (1.17) imply
vg(t) > vo(t) for t €a,a+w], k€N, (1.18)
vo(t) >0 for t € fa,a+w]. (1.19)

On the other hand, in view of (1.7) and (1.10), we have
u' (t)vg, (£) — vy, (H)u(t) > 6 >0 for tela,a+w],
which, together with (1.16), results in

o' () (t) — v (t)u(t) > 6 >0 for t € [a,a+ w], (1.20)
Taking, moreover, into account (1.19) we get
vo(t) >0 for ¢ € [a,a+ w]. (1.21)
On account of (1.10) and (1.18), it is clear that
a+(k+1)w P
/ q(s)v(s)ds = Z / q(s)v(s)ds
atw =1 afiw
e atw atw
= Z / q(s)vi(s)ds >k / q(s)vo(s)ds for ke N.
i=1 a a
Consequently, (1.6) implies that
atw

v (a)vgs1(a) — vy (a)u(a) > k / q(s)vo(s)ds for k € N.

a

The latter inequality (with k = k,, — 1), together with (1.16) and (1.21), yields that
q=0. (1.22)
Hence, in view of (1.4), (1.6), and (1.10) we get
o (t)vg(t) — v (Hu(t) =c for t € [a,a+w], k€N, (1.23)

where ¢ = u(a)(u/(a) —v'(a)) > 0. Since u(t) > 0 for ¢ € R, it easily follows from (1.23), on account
of (1.17), that the sequence {v},};°] is uniformly convergent. However, its subsequence {v}, }.5%
uniformly converges to v}, and thus

lim v (t) =vy(t) uniformly on [a,a + w]. (1.24)

k——+oo



Theorems on Differential Inequalities and Periodic BVP for Second-Order ODEs 11
By virtue of (1.10), (1.17) and (1.24), it is clear that the function vy is a solution of the equation
v = p(t)v.
On the other hand, in view of (1.10),
v,i?_l(a) = v,ii)(a +w) for keN, i=0,1,
which, together with (1.17) and (1.24), results in
vo(a) = vola +w), vy(a)=v(a+w).

Moreover, in view of (1.17) and (1.24), we get from (1.23) that

o () (t) — vy (t)u(t) =c >0 for t € [a,a+ w]. (1.25)

Therefore, we have proved that the equation v” = p(¢)v has a (nontrivial) periodic solution vy satis-

fying (1.25). On the other hand, in view of (1.22), the function w is a nontrivial periodic solution of

the same equation. Hence, by virtue of Proposition 1.1, there is a A > 0 such that v = Avy. However,

this contradicts (1.25). O
Lemma 1.4. Let p € L, v be a solution of the equation
v’ =p(t)u (1.26)
and
O<w(t) <M fort>0, (1.27)
where M > 0. Then
ttw) =29 o) for t>0 (1.28)
v w) = v 0 . .
v(0) -
Proof. 1t is clear that for any k € N there is a &, € [(k — 1)w, kw] such that
v(kw) —v((k — Dw) = v (& )w.
Hence, in view of (1.27), we get
) oM
[v'(&)| < — for keN. (1.29)
w
On the other hand,
kw
o' ()] < [0 (&) + / [p(s)[v(s)ds for t € [(k—1)w ko], k€N,
(k—1)w
This inequality together with (1.27) and (1.29) implies
[v'(t) < My for ¢ >0, (1.30)
where My = 22 4 M ||p|| ..
Introduce the notation
() Lot +w) for teR.
Since the function v; is a solution of the equation (1.26), there is a ¢ € R such that
vi(t)v(t) —vi(t)v'(t) = ¢ for t € R. (1.31)
!
Hence, (UJ((;))) = UQ—C(t) for t > 0 and thus
() _w© [ 1
U1 t U1
= ds for t>0. 1.32
w0 S o e e 32
0

) _ () I
v(0)  M?
which contradicts first inequality in (1.27).

t for t >0,
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Let now ¢ > 0. Then it follows from (1.32), in view of (1.27), that

v1(0) ¢t
M > v (t) > ( O W)v(t) for ¢ > 0.
Hence
t_lgrnoov(t) =0. (1.33)
Now we get from (1.31), in view of (1.30) and (1.33) that ¢ = 0, which contradicts our assumption.
Thus we have proved that ¢ = 0, which together with (1.32) implies (1.28). O

2. ON THE SET D(w)

Proposition 2.1. D(w) = D(w).

Proof. Suppose the contrary, let D(w) # D(w). Then there exist p € D(w), @ € [0,w[, and 8 €
Ja, & + w[ such that the problem

u" =p(thu; u(a) =0, u(B)=0
possesses a nontrivial solution u such that
u(t) >0 for t€la, .

Clearly,
u'(a) >0 (2.1)
and there exists 5y €15, @ + w| such that u(5y) < 0.
On the other hand, there is a sequence {p,}>5 C D(w) such that

lim |[pn, —pllz = 0. (2.2)

n—r—+o0
For any n € N consider on [, @ + w] the Cauchy problem
v =p,(tv; v(a) =0, v(a)=1u(a)
and denote its solution by v,,. In view of (2.1) it is clear that
v (t) >0 for t €la,a+w|[ neN. (2.3)

Let now ¢ €]0,—u(Bp)[. Then, by virtue of (2.2) and well-posedness of the Cauchy problem there
exists ng € N such that

lun(t) —u(t)] <e for ¢ € |o,a+w], n>ng.
Consequently, v, (8o) < u(Bo) + € < 0 for n > ng, which contradicts (2.3). O
Proposition 2.2. Letp € L,. Then the inclusion p € Int D(w) holds if and only if the problem
v =p(thu; u(a) =0, u(B)=0 (2.4)
has no nontrivial solution for any o < B satisfying 5 — a < w.

Proof. Denote by A the set of p € L, such that the problem (2.4) has no nontrivial solution for any
a < [ satisfying 8 — a < w.
Let p € Int D(w) and p & A. Then there is a « € [0,w[ such that the problem
v =pt)hu; u(a) =0, ul@a+w)=0
possesses a solution u and
u(t) >0 for t €la,a+w|.

Clearly,

v (a+w) <O0. (2.5)
Since p € Int D(w), there is a § > 0 such that p — § € D(w). Let v be a solution of the problem

0" = (p(t) = §)v; v(a) =0, v'(a)=1.

Clearly,
v(t) >0 for t€la,a+w]
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and, consequently,
v(a+w) > 0. (2.6)
On the other hand,

(u' (t)o(t) — u(t)' (1)) = du(t)v(t) >0 for t €la,a+w|.
Integrating the latter inequality on [a, o + w] we get
v (a+w)v(a+w) >0,

which contradicts (2.5) and (2.6). Therefore, we have proved that Int D(w) C A.
Let now p € A and p & Int D(w). Then there is a sequence {p, };'> C L such that p, & D(w) for
n € N and

lim_[|pn — pll = 0. (2.7)

n—-+4oo

Hence, for some «,, € [0,w] and S, € |an,, @, + w| the problem
v =po()u; u(an) =0, u(B,) =0
possesses a nontrivial solution wu,,. Suppose without loss of generality that

lim «, = «, lim g, = 5. (2.8)

n—-+o0o n—-+oo

Clearly, @ € [0,w] and 8 € [, w].
Let v, is a solution of the Cauchy problem

vV =pu(t)v; v(a,) =0, V'(a,) =1

Clearly, v, (t) = u;/l(a) un,(t) and, consequently,
vp(Br) =0 for neN. (2.9)
In view of (2.7), (2.8) and well-posedness of the Cauchy problem we get
ngrfoo v () = o@D (#)  uniformly on [0,2w], i=0,1, (2.10)

where v is a solution of the Cauchy problem
v =p(t)v; wv(a) =0, v'(a)=1.

Since v, (o) = 0 and v,(B,) = 0, there is a &, €]an, Bn[ such that v, (&,) = 0. Hence, 8 > a,
since otherwise, on account of (2.10), we get the contradiction v'(«) = 0. On the other hand, (2.9)
and (2.10) imply v(8) = 0. Therefore, v is a nontrivial solution of the equation v" = p(t)v satisfying
v(a) =0 and v(B) = 0, where o < 8 and 8 — a < w. However, this contradicts our assumption that
p € A. Therefore, we have proved that A C Int D(w) as well. O

Proposition 2.3. Let p € L,,. Then the inclusion p € D(w) holds if and only if the problem (2.4)
has no nontrivial solution for any a < B satisfying 8 — a < w and there is a ag € [0,w] such that the
problem

u =pt)u;  u(ag) =0, ulag+w)=0

has a nontrivial solution.

Proof. The assertion follows immediately from Proposition 2.1 and 2.2, and the formula 0D(w) =

D(w) \ Int D(w). O
Proposition 2.4. Let p € 9D(w). Then the problem (1.1) has no nontrivial solution.

Proof. The assertion of the proposition follows immediately from Proposition 2.3 and Sturm’s sepa-
ration theorem. 0
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Proposition 2.5. Let p € D(w) (p € Int D(w)). Then for any a < B and u € AC ([o, B]) satisfying
B-—a<w (B—a<w) and

u”(t) > p(t)u(t) for t € [a,fl, (2.11)
u(e) <0, u(B) <0, (2.12)

the inequality
u(t) <0 for t € o, f]
holds.

Proof. Suppose the contrary, let the assertion of the proposition is violated. Then there are p € D(w)
(p € Int D(w)), a < B, and u € AC ([, B]) such that B —a < w (B — a < w), (2.11) is fulfilled and

u(t) >0 for t€lo, B[, u(a)=0, u(B)=0.

It is clear that
u'(B) <0. (2.13)

Moreover, either w'(3) < 0 or
u'(8) =0 and mes{t € [a, ] : u"(t) > p(t)u(t)} > 0. (2.14)
Let v is a solution of the problem
v =p(t)v; wv(a) =0, v'(a)=1.

The inclusion p € D(w) (p € Int D(w)) implies that

v(t) >0 for t€la,a+w[ (v(t) >0 for t€la,a+uw]). (2.15)
On the other hand, it is clear that

(u'(t)o(t) — u(®)v'(t)) = v(t) (u"(t) — p(t)u(t)) for t € |a, b].

Integration of the latter equality on [, 5] results in

B

' (B)v(B) = /v(s) (u”(s) —p(s)u(s)) ds. (2.16)

(e

Hence, in view of (2.11) and (2.15) we get that «'(8) > 0 which, together with (2.13), implies that
(2.14) is fulfilled. However, (2.14) and (2.15) contradicts (2.16). O

Proposition 2.6. Letp € L,,. Then the inclusion p € Int D(w) holds if and only if for any a € [0,w]
there exists Vo € AC (Ja, a + w)) satisfying

Yt < p(t)ya(t) for t € o, a+ w], (2.17)
Ya(t) >0 for t €lo,a+w[, (2.18)

and
(@) + Yol @) + mes {£ € o, + ] 7L(0) < p(E)ra(t)} > 0. (2.19)

Proof. Let p € Int D(w) and « € [0,w[. By virtue of Proposition 2.2, the problem
v =pt)u; u(a) =0, ul@a+w)=0
has no nontrivial solution. Therefore, by virtue of Fredholm’s alternative, the problem

V' =pt)y; ) =1, ylatw) =1
possesses a (unique) solution 7,. Clearly, (2.17) and (2.19) hold. It is also evident that min{~,(¢) :
t € [, @ + w]} # 0 because otherwise there is a tg € Jo, & + w[ such that v, (to) = 0, v, (to) = 0 and
therefore v, = 0.
Suppose that min{~y,(¢) : t € [, & + w]} < 0. Then there are o € |a, @ + w[ and fy € |ag, ap + W]
such that v,(ag) = 0 and v,(8o) = 0, which contradicts the assumption p € Int D(w). Thus the
function y, satisfies (2.18) as well.



Theorems on Differential Inequalities and Periodic BVP for Second-Order ODEs 15

Let now for any a € [0,w| there is a v, € AC ([, a +w)) satisfying (2.17)—(2.19) and p & Int D(w).
Then, by virtue of Proposition 2.2, there are a € [0,w[, 8 € ]a, a + w] and u € AC ([a, B]) such that
u’(t) = p(t)u(t) for t €[, B], ul(a)=0, u(B)=0,

u(t) >0 for t€]a, . (2.20)
It is clear that,

() >0, u'(B)<O0. (2.21)
On the other hand,

(W (7 (t) — ult)7(0) = uld) (pEVa(t) — 72(0)  for ¢ € [a, 5]
Integration of this inequality on [«, 8] results in
B
081708 ~ ' (@ala) = [ u(s)(p(s)a(s) — 7 (5)) . (222)

Hence, in view of (2.17), (2.20), and (2.21), we get vo(a) = 0, 74(8) = 0. Taking, moreover, into
account (2.18) we get that 5 = o+ w. Thus

atw
1@ =0, talat©) =0, [ uls)(plshals) ~2() ds =0

which, together with (2.19) and (2.20), yields the contradiction 0 > 0. O

Lemma 2.7. Let p € D(w) and u be a solution of the problem
v =pt)u+q(t); u(0) =u(w), v'(0)=ru'(w), (2.23)
where ¢ € L, and
q(t) >0 for t eR. (2.24)
Then either u(t) > 0 fort € R or u(t) <0 fort € R. If, moreover, ¢ Z 0 then either u(t) > 0 for
teR oru(t) <0 forteR.
Proof. Let u be a solution of (2.23) and
max {u(t) : t € [0,w]} >0, min{u(t): te€[0,w]} <O0.
Then there are o € [0,w] and S €], a + w[ such that
u(a) =0, u(B) =0, (2.25)
u(t) >0 for t€]a, . (2.26)
In view of (2.24) and (2.25), it follows from Proposition 2.5 that u(t) < 0 for t € [a, ], which
contradicts (2.26). Therefore, either u(t) > 0 for t € R or u(t) <0 for t € R.

Suppose, moreover, that ¢ # 0 and there is a ¢y € [0,w[ such that u(tp) = 0. Then, in view of the
above-proved we get that u/(tp) = 0 as well. However, u is an w-periodic function and therefore

u(to) =0=u(ty +w), u'(to) =0=1u'(ty+w). (2.27)
Let v be a solution of the problem
v =p(t)v;  wv(te) =0, V' (tg) = 1.
Since p € D(w), we get v(t) > 0 for ¢ €]tg, to + w[. Consequently,
totw
q(s)v(s)ds > 0. (2.28)

On the other hand, clearly

/

(u' (t)v(t) — u(t)'(t)) = q(t)v(t) for t € [to,to + w).
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t0+w
Integrating the latter equality on [to, to+w] and taking (2.27) into account, we get [ ¢(s)v(s)ds =0
to
which contradicts (2.28). Therefore, either u(t) > 0 for t € R or u(t) < 0 for t € R. O

Lemma 2.8. Let p € 0D(w), q € L, satisfy (2.24), and g Z 0. Let, moreover, u be a solution of the
problem (2.23). Then u(t) > 0 fort € R.

Proof. By virtue of Proposition 2.1 and Lemma 2.7 either u(¢) > 0 for ¢t € R or

u(t) <0 for t €R. (2.29)

Suppose that (2.29) is fulfilled. Then it is clear that the function v, (t) def —u(t) for t € [, +w] and

a € [0,w[ satisfies (2.17)—(2.19). Therefore, by virtue of Proposition 2.6, we get p € Int D(w), which
contradicts the assumption p € 9D(w). O

3. ON A SEQUENCE OF PERIODIC PROBLEMS

First of all we recall that a linear periodic problem is well-posed. More precisely, consider the
problem

v =pt)u+q(t); u(0)=uw), v'(0)=1u(w), (3.1)
and a sequence of the problems
v =pa()u+ g (t); u(0) =u(w), v (0) =14 (w), (3.1,)

where p,q € L, and p,,q, € L, for n € N.
From the general theory of boundary value problems for the systems of linear equations it follows
that (see [13, Theorem 1.2])

Lemma 3.1. Let the problem (3.1) have a unique solution u. Let, moreover,

sup{||pn||L in € N} < 400,

t ¢

Egr_l pr(s)ds = /p(s) ds uniformly on [0,w],
0 0
t ¢

ll)r_{l gn(s)ds = /q(s) ds uniformly on [0,w].
0 0

Then there is a ng € N such that, for any n > ng, the problem (3.1,) has a unique solution u, and

i — ullo =0,

Next proposition immediately follows from Lemma 3.1.

Proposition 3.2. Let the problem (3.1) have a unique solution u. Then for any e > 0 there exists
0 > 0 such that, for any g,q € L, satisfying

lg —pllz <9,

Lj(gw)—iﬂ@)ds

<d for te€0,wl,

the problem
v =gt +4q(t); v(0) =v(w), v(0)=1(w)
has a unique solution v and
lu—vlc <e.

By the standard arguments using in the proof of well-posedness of a periodic boundary value
problem one can show that
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Proposition 3.3. Let
lim |p, —plz=0, lim |g,—qllz =0.

n—-+4oo n—-+oo

Let, moreover, for any n € N, u,, be a solution of the problem (3.1,,) and the sequence {||un| o}, is
bounded. Then there is a subsequence {un, };°5 such that

lim ugfz ) =uD(t)  uniformly on [0,w], i=0,1,

k— 400

where u is a solution of the problem (3.1).

4. SOME TECHNICAL ESTIMATES

Let p € Ly, a € [0,w] and p* be the number defined by (0.16). Let, moreover,

Fi(t) d:ef//[p(g)}_dfds for t € [a,a+ w],

a+w a+w (41)
Fo(t) / / PO)]_deds for € [a,a+ wl.
Proposition 4.1. The inequality
Fut) + Fa(t) > I’Z*H[p},u‘j for t € [a,a+wl. (4.2)
is satisfied.
Proof. Set
def p* / ?
hi(t) = Fy(t) — 5 (/[p(s)]_ ds> for t € [a,a + w],
. (jl-‘rcu 2
ha(t) def F(t) — p2( / [p(s)]- ds) for t € [a,a 4+ w].
It is clear that, hq(a) =0, ha(a +w) = 0 and
Ry(t) = (1 = p*[p(t)]-) /[p(s)]_ ds >0 for ¢ € [a,a+w],
U;L—i-w
L) = (0 Ip(0)]- — 1) / p(s)_ds <0 for ¢ € [a,a+ ]
Hence,
hi(t) >0, ha(t)>0 for te€ [a,a+w]. (4.3)

On the other hand, in view of the inequality 2% + (¢ — x)? > % for x € [0, ], we get

(/tlp<8>1d8>2+ ( 7w[p<s>]ds)2 > % P[> for ¢ € [a,a+wl. (4.4)

Inequality (4.2) now follows from (4.3) and (4.4). O
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Proposition 4.2. Let p € L, and

I(t) & ] exp (2 j 0(p)(€) dg) ds for t€R,
0 s

where £(p) is defined by (0.14). Then the estimate
wl 1
7 for teR (4.5)

I(t) <
holds.

Proof. Introduce the notation

h(t,s) =2 [ £(p)(§)d¢ for t,s € R.

m\“

Since

/ Up)(€) dE = 0 (4.6)
0

it is sufficient to prove the validity of (4.5) only for ¢ € [0, w].
Assume that ¢t € [0,w/2]. Then it is clear
h(t,s) <20(t—s) for se]0,t],
h(t,s) <20(s—t) for se[t,w/2+1t].

Moreover, in view of (4.6), clearly

Wt,s) =2 / ((p)(€) dé — 2 / (p)(€) dé =2 / ((p)(€) e +2 / Up)(€) de
0 0 0 s

<2t+w—3s) for set+w/2,w].

Hence
t t+3% w
20t wl wl 20t
-1 e“ —1 e“ —e
h(ts) gg < © h(t,s) qg < h(ts) gg < & — ¢
/ ¢ =T ¢ 8= T ¢ Sy
0 t +4

and therefore (4.5) is fulfilled for ¢ € [0,w/2].
Analogously, if t € [w/2,w] then

ht,s) =2 / ((p)(€) de — 2 / (p) () de

= —2/€(p)(§)d§—20/€(p)(§)d§ <Uw-—t+s) for se(0,t—w/2

h(t,s) <20(t—s) for se€[t—w/2,t], h(t,s) <2(s—1t) for s€[t,w]

and by direct calculation one can verify that (4.5) is fulfilled for ¢ € [w/2,w]. O
Proposition 4.3. Letp € L, v €]0,1/2[, and
(1—-v)(1-2v)
wlllpl+ |, < 2 :
Let, moreover, a € [0,w] and v be a solution of the equation
v = p(t)v (4.7)

satisfying
v(t) >0 for t€la,a+wl.
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Then
a+w
/ L d4s< d r, (4.8)
S o(s)] T \|v||c(m+w])

where

(T Sy R E R I I

Proof. First of all mention that
lim ——% —0, lim 2FYt_g (4.9)
SEREI - ]
Choose ¢ € [a, a + w] such that
v(c) = ||U||C([a,a+w])-
It is clear that, either
c¢#a and v'(c) >0, (4.10)
or
c#a+w and v'(c) <0.

Suppose that ¢ # a. Introduce the notations

C C

def 1 s det [ (5 —a)[v'(s)| s
' o= 2 e

a a

gt [ a WP
/ o(s))’

v
—v
a

By virtue of Holder’s inequality, we have
A2 <IB. (4.11)

In view of (4.9), clearly
c—a v

I< + A. (4.12)
|7 1-v
C( a,a+w))

Multiplying both sides of (4.7) by % and integrating it on [a, c], we get
v(t)]1-v

(=) [ (2s=a) o) Y [ Gt
<><[ : ) /[ L p(s) ds.

HU”C([(L a+wl]) a

Hence,on account of (4.10), we have

S—a 2
/ [() [p(s)]. ds. (4.13)

It is clear that,

HU”C ([a,a+w]) a

<( =t A>w||[p]+HL- (4.14)
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It follows from (4.11), by virtue of (4.12)—(4.14), that

# < (5 4 —=t ) |- sl )4+ T,
||U||c(aa+w]) [[v ||C(aa+w]

and, consequently,
1—-v
A=) —20) ],

X (1 —v+ww|[pl]|, + \/(1 —v)?+(1 _”)WHU’]+|‘L)

A<

cC—a
11l g,

The latter inequality, together with (4.12), results in

c—a 1-v
10l e aray (1= )2 = ”\/(1 — )2+ (L= v)w|plll,

Thus we have proved that

1<

C

1 —
/[( —— ds < ;a r if ¢ # a.
v(s

a 1ol a0

Analogously, one can show that

a+w

1 _
/ ———ds < wr if c#£a+w.
) v(s)] ™ [El[pEA—

Clearly, the latter two inequalities imply (4.8). O

The next proposition is an analog of the well-known Gronwall-Bellman lemma.

Proposition 4.4. Let v € C([0,w];R), a € [0,w], A €]0,1[, and u > 0 be such that
t
0<w(t) < u’ /U”\(s) ds| for t €[0,w]. (4.15)
Then
o(t) < [(1=MNp] ™ [t —a|™x  for t € [0,u]. (4.16)

e

Proof. Let ¢ > 0 is arbitrary and w(t) = e+ p| fv )ds| for t € [0,w]. It is clear that, w € AC([0,w])
and
w' (t)sgn(t —a) = () for t € [0,w)].
Hence, in view of (4.15), we get that
w'(t)sgn(t —a) < pw(t) for t € [0,w)].
Therefore,
—— (W) — ") < plt—a| for te[0,uw]
and, consequently,
w(t) < [(1= Nplt —a] + 77> for t e [0,u].
Since € > 0 was arbitrary, the latter inequality implies (4.16). O
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5. EFFICIENT CONDITIONS FOR INCLUSION p € Int D(w)

Remark 5.1. It is well known that, for any w > 0, there is a (best) constant k*(w) such that, for
any a € R and v € AC ([a,a + w]) satisfying v(a) = 0 and v(a + w) = 0, the inequality

a+w a+w 2
/ vi(t)dt < k*(w)( / (v’(t))2dt) (5.1)
holds (see, e.g., [2, 22]). It is also known that
1 2 (T(H\* 64
= lternativel =—
(@)~ 1227 (F(Z)) or alternatively )~ 308 X5,
1
where I' is a Gamma function of Euler and x Lef Ik 1d_ss =.
0
Proposition 5.2. Letp € L, [p|> € L., and
k*(w)|[[p12 ]|, < 1. (5.2)

Then p € Int D(w).

One can prove Proposition 5.2 using inequality (5.1). Proof based on elementary arguments can
be found in [12]. Mention also that the inequality (5.2) is optimal in Proposition 5.2 and cannot be
weaken to k*(w)H[p]{HL <1 (see Lemmas 2.1 and 2.2 in [12]).

Proposition 5.3. Let p € L, be such that

4 p* 2
-l < 2+ 2 -, 53
where the number p* is defined by (0.16). Then p € Int D(w).

Proof. Let a € [0,w] and

t a-+w

L0 (@ rw-0) [s-ap)-ds+ t-0) [ @+w-lpl)-ds

a t

for t € [a,a + w]. It is proved in [18, Theorem 1.1] that if
sup {I,(t): t € [a,a+w]} <w (5.4)

then any nontrivial solution of the equation u” = p(¢)u has at most one zero in [a, a + w]. Therefore,
if (5.4) is fulfilled for any a € [0,w[ then p € Int D(w) (see Proposition 2.2). Now we show that (5.3)
implies that (5.4) is fulfilled for any a € [0,w|[. Clearly,

I(t) = (a+w—1t)(t —a)||[p]-||, — (a+w—t)Fi(t) — (t — a) F(t)

S(t—a)(a—l—w—t)(”[p]_HL (Fl(t)+F2(t))) for ¢ € [a,a + w,

1
w
where the functions F; and F» are defined by (4.1). Hence, in view of Proposition 4.1, we get

1) < S (1B, ~ Nl 17) for t€ aate

which, together with (5.3), implies (5.4). O
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6. ON THE SET Int D(w)

Let p € Int D(w). Then, in view of Proposition 2.2 and Fredholm’s first theorem, for any a € [0, w]|
and ¢ € L, the problem
v =pt)u+q(t); u(a)=0, u(a+w)=0 (6.1)

possesses a unique solution u. Let Q4: L([a,a + w]) = C([a,a + w];R) is a Green’s operator of the

problem (6.1), i.e.,
Qa(q)(2) def u(t) for t € [a,a+ w).

It is known that €, is a bounded linear operator (this actually follows from well-posedness of Dirichlet
problem). Denote by ||£2,]| the norm of the operator 2, and set

AL L9, aeo,w])}.
Proposition 6.1. Let p € Int D(w). Then the set A is bounded.
Proof. Suppose the contrary, let the set A be unbounded from above. Then, for any n € N, there are
an € [0,w] and ¢, € L, such that
lgnllz <1 (6.2)
and
[onlle = n, (6.3)

where v,, € AC ([an, an + w]) is a solution of the problem
v =pt)vn + qn(t);  va(an) =0, v,(a, +w)=0.
Assume without loss of generality that

nll)rJIrloo an = ao, (6.4)

where ag € [0,w]. Put

~ 1 1

U (t) = an(t), gn(t) (t) for t€lan,an +w], neN.

~ leallc **
Clearly,
lFlle =1, tim (Gl =0, (6.5)
and for any n € N
Un(t) = p(t)0n(t) + Gn(t) for ¢ € [an, an + w],
Up(an) =0, Vp(an, +w)=0. (6.6)

Moreover, for any n € N, there is a t,, € [an, an + w] such that v/, (¢,) = 0. Hence, in view of (6.2),
(6.3), and (6.6), we get

an+tw

- 1
< / |vx(s)|ds§||p||L+E for t € [ap,an +w], n€N. (6.7)

An

0l = [0

Introduce the notation
%n(t) _ Up(t) for t € [an,an + w],
0 for t € [0,2w]\ [an, an + w].

In view of (6.5) and (6.7), the sequence {%n}:ﬁ is uniformly bounded and equicontinuous on [0, 2w].
Hence, by virtue of the Arzelda—Ascoli lemma we can assume without loss of generality that

lim 0, (t) = vo(t) uniformly on [0, 2w], (6.8)

n—-+oo
where vg € C([0, 2w]; R). Tt is clear that,
vo(ao) =0, wvo(ap +w) =0, and |vgllc = 1. (6.9)
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On the other hand, in view of (6.6), we have

Balt) = [(an b= 1) [(5 = an) (p(6)7(5) + Guls) ds

an

an+w
+ (t—an) / (an +w — 8)(p()0n(s) + Gn(s)) ds| for t € [an, an + w].
t
Hence, on account of (6.4), (6.5), and (6.8), we get

vo(t) = —% [(ao +w-—1t) /(s —ag)p(s)vo(s)ds

ao

ao+w

+ (t — ap) / (ap +w — s)p(s)vo(s)ds| for t € [ag,ap + w].

Thus vy € AC ([ag, ap + w]) and

vy (t) = p(t)vo(t) for t € [ag,ap + w].
However the latter equality, together with (6.9), contradicts the assumption p € Int D(w) (see Propo-
sition 2.2). O

Introduce the definition

Definition 6.2. Let p € Int D(w). Set

def
po(p) = sup { || : a € [a,a + w]},

where €, is defined as above.

Remark 6.3. Let p = Const. and p € } — —32,0[. Then, by direct calculation one can easily show
that
w?V/1p)
< .
polp) < 4sin(w+/|p|)

Remark 6.4. In view of Proposition 6.1, the number po(p) is finite and, for any a € [0,w] and
q € L([a,a + w]), the (unique) solution v of the problem (6.1) satisfies the estimate

@) < poP)llgllz for t € fa,a+w].

Bellow we will establish some estimates of the number pg(p). First of all mention that, by virtue
of Proposition 2.5, if p € Int D(w) then the operator €2, is nonpositive, i.e., transforms the set of
nonnegative functions to the set of nonpositive functions. Therefore,

1921 = sup {2 (a)llc : a(t) < 0fort € [a,a+w], [lgll, <1} (6.10)
Proposition 6.5. Let p € L, and
4 p* 2
Il < 2+ 2 ), (6.1)
where p* is defined by (0.16). Then
4 p* 2 -1
pop) < [ =+ 2 lipl- |1~ llipl-,] - (6.12)

Proof. In view of (6.11) and Proposition 5.3, we have —[p]_ € Int D(w). On account of Proposition 2.6,
we easily get that p € Int D(w) as well. Let a € [0,w] be arbitrary and let u € AC([a,a + w]) be
a solution of the problem (6.1), where ¢ € L([a,a + w]),

q(t) <0 for t€fa,a+w], Jq|lr <1 (6.13)
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On account of Proposition 2.5 we have
u(t) >0 for t € [a,a+ w]. (6.14)

By direct calculation one can verify that
. ¢
) == (w0 [(s= ) ple)uts) + ) as

a

atw
+(t—a) / (a+w—s)(p(s)u(s) +q(s))ds| for t € [a,a+ w].

Hence, in view of (6.13) and (6.14) we get

ogu(t)g%r%f(t) for ¢ € [a,a+ w], (6.15)

where

atw

I() %! (a—|—w—t)/(s—a)[p(s)]_d5+(t—a)/(a—!—w—s)[p(s)]_ds for ¢ € [a,a+wl.
It is clear that,
I(t) = (t—a)(a+w—1)||[p]-||, — (a+w —t)Fi(t) — (t — a)Fa(t)

< (t—a)a+w— )|, - % (Fu(t) + Fo(t))) for € [, 4],

where the functions F; and Fy are defined by (4.1). Hence, by virtue of Proposition 4.1 we get

2
< (ol - ) tor te foaa
The latter inequality together with (6.11) and (6.15) imply that
~1
e < [2 + 2 12— a1, ]
which, in view of (6.10), leads to the desired estimate (6.12). O

Proposition 6.6. Let p € L, [p]2 € L., and
w)||lp) ], <1, (6.16)

where k*(w) is a number appearing in Remark 5.1. Then

po(p)_4( w)||lp] ||L> ~ (6.17)

Proof. In view of (6.16) we have —[p|- € IntD(w) (see Proposition 5.2). Hence, on account of
Proposition 2.6, we get p € Int D(w) as well. Let a € [0,w][ be arbitrary and let u € AC ([a,a+ w]) be
a solution of the problem (6.1), where ¢ € L([a, a +w]) satisfies (6.13). On account of Proposition 2.5,
we have that (6.14) holds.

Multiplying both sides of (6.1) by u and integrating it on [a, a + w] we get

atw atw atw
/ [u’(s)fds =— / p(s)u?(s)ds — / q(s)u(s)ds
which, together with (6.13) and (6.14), results in
a+w a+w
[ w6 as < [ b))+ e (6.15)
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By virtue of Hoélder’s inequality and Remark 5.1, we have

atw ,  atw atw atw 9
([wenceas) < [pera [ <re@lpe],( [ WePs)

which, together with (6.16) and (6.18), implies
a-+w L
) _
[ el (1= e@IpEl,) " e (6.19)
Let now ¢¢ €]a,a+w[ be such that u(ty) = ||u|lc. Then, by virtue of Holder’s inequality we obtain

to 2 to

Jull?. = ( / u’(s)ds) <(to-a) [ W] s
(lerw 2 ’ at+w
||u||g=(/u/(s)ds) < (a+w—to) / [/ (s)]? ds.

Hence, using the inequality 4xy < (x + y)? we get
a+w
Jul2 < 2 / [ (5)]2 ds,

a

which, together with (6.19), implies that
W —1
llle <% (1= R @)lp2 ], ) -
Taking now (6.10) into account we get that the desired estimate (6.17) is fulfilled. O

Let now again p € Int D(w) and a € [0,w]. Then, in view of Proposition 2.2 and Fredholm’s first
theorem the problem

u =pt)u; wu(a)=1, ufa+w)=1 (6.20)
possesses a unique solution u, and
ug(t) >0 for ¢ € [a,a+ wl. (6.21)
Introduce the notation
v*(p) def sup {||uallc : a € [0,w]}. (6.22)
Remark 6.7. By direct calculation one can easily verify that if p = Const. and p € } — :%, 0] then

1

w/|p|
Pl

Proposition 6.8. Let p € Int D(w). Then
v*(p) < 1+ po(p)||[p]-| - (6.23)

Proof. Let a € [0,w| be arbitrary, u, be a solution of the problem (6.20), and let v, be a solution of
the problem

vi(p) =

Ccos

v =pt)v—[pt)]-; wv(a) =0, v(a+w)=0.
Put w(t) ef Ua(t) — v (t) — 1 for ¢ € [a,a + w]. Tt is clear that,
w”(t) = pt)w(t) + [p(t)]y for t € [a,a+ w],
w(a) =0, w(a+w)=0.
Hence, by virtue of Proposition 2.5, we get that w(t) < 0 for ¢ € [a,a + w]. Consequently,
Ue(t) < 14 w,(t) for t € [a,a+ w).
Taking now (6.21) and Remark 6.4 into account, we get

lualle < 1+ po(p)||[P]-|,
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which, together with (6.22), implies (6.23). O
Recall that the numbers p and ¢ are defined by (0.11) and (0.15), respectively.

Proposition 6.9. Let p € L, and
2

A= ) << 24
( (ot —1yz) <P < (6.24)
Then p € Int D(w) and
ewl
* < 2
) < 1 (6.25)
where co & ewiig_l 02 —7p.
Proof. First of all mention that, by virtue of the first inequality in (6.24), ¢o < 1. Put
jf(p)(s)ds
polt) S p(t) =P+ L)1), uo(t) = e for ¢ € [0,u].
It is clear that, pg € Ly, uo(t +w) = ug(t) for t € R,
up(t) < et for t €R, (6.26)
and
ug (t) = po(t)up(t) for t € R. (6.27)
Moreover, it follows from Proposition 4.2 that
2(t)/w Loo<® 1 fier (6.28)
U s T . .
0 u(s) —— 4
0
Let a € [0,w[ and
it -1
def 1
Ao = cmr(/ ds) ,
ud(s)
0
1 / 1 e 1
def
() = in (A d in [ A —d
w07 S lsm ( o/ a3(s) ) e ( | 3(s) )1
a t
for t € [a,a + w]. One can easily verify that
1
0 < @g(t) < ——— for t € [a, 6.29
<(p()_cos% T or t € [a,a+ w] (6.29)
and
AU =~ 3, (1) ~ 26O 1) for £ a0+
@ ud(t) ™ @ ’ ’ (6.30)
wala) =1, pala+w)=1.
Let now
va(t) %ef uo(t)pa(t) for t € la,a+ wl. (6.31)
In view of (6.27) and (6.30), we easily get that
)\2
Y(t) = (po(t) — —2< Jva(t) for t 6.32
i) = (polt) = iy Jvalt) for 1€ asa+ (6.32)
ve(a) =1, wve(a+w) =1 (6.33)
On the other hand, by virtue of (6.24) and (6.28), the inequality
cin? A2

2>

= 42 = 2:77
P C) 25— = — D 2 —
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holds. Hence, it follows from (6.32), by virtue of (6.29) and (6.31), that
vl (t) < p(t)va(t) for t € [a,a + w], (6.34)
ve(t) >0 for ¢ € [a,a+ w]. (6.35)

Consequently, by virtue of Proposition 2.6, we get that p € Int D(w).
Let now u, be a solution of the problem

v =pt)u; wla) =1, ula+w)=1.
Then, in view of (6.33), (6.34), and Proposition 2.5, we get that
ug(t) < wvg(t) for t € la,a+ wl.

Hence, on account of (6.26), (6.29), and (6.31), the inequality
wl

e
o(t) <
U(>_1760

holds and, consequently, (6.25) is fulfilled. O

for t € [a,a + W]

Proposition 6.10. Let p € Int D(w), g € L, and
q(t) <0 for te[0,w], ¢q#0O.
Then, for any a € [0,w], the unique solution u of the problem
W = p(tyu+ at); u(a) =0, ula+w)=0

satisfies
u(t) >0 for t €la,a+ wl. (6.36)

Proof. In view of Proposition 2.5 we have that
u(t) >0 for ¢ e [0,w]. (6.37)
Let there is a tg €a,a + w[ such that

u(te) = 0. (6.38)
Then, in view of (6.37), we have
W (to) = 0. (6.39)
Denote by ui, resp. us solutions of the problems
uf =p(thur; wi(a) =0, uy(a) =1, (6.40)
uy =p(t)ug; wuz(a+w) =0, uhla+w)=-1. (6.41)
Since p € Int D(w), we have
ui(t) >0 for t €la,a+w], wuz(t)>0 for te€a,a+uwl. (6.42)

On the other hand, it is clear that
(u' ()us(t) — u(t)uli(t)) = qO)ui(t) for t € [a,a+w], i=1,2.

Integrating the latter equalities on [a, o] and [tg, a + w], and taking into account (6.38) and (6.39) we
get

to atw
/q(s)ul(s) ds =0, / q(s)uz(s)ds = 0.
a to
Hence, on account of (6.42) we get ¢ = 0, which contradicts an assumption of the proposition. 0

Proposition 6.11. Let p € L, p(t) > 0 for t € [0,w], and p Z 0. Then, for any a € [0,w], the
unique solution u of the problem (6.20) satisfies the estimates

(@) <u(t) < @ p(p) for t €la,a+w|, (6.43)

u(t) > 1 for t €la,a+ wl, (6.44)

p(p)

where ug is a solution of the problem (6.41) and p(p) is defined by (0.12).
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Proof. In view of Proposition 2.6 (with 7, = 1), clearly p € Int D(w). Hence, for any a € [0,w],
the problem (6.20) possesses a unique solution u. Let u; be a solution of the problem (6.40). Since
p € Int D(w), it is clear that (6.42) holds. On the other hand, u}(¢)ua(t) — uy(t)ub(t) = Const. and
thus u1(a + w) = us(a). Now it is clear that

1
t) = ——~ t t for t .
) = s () () for ¢ € fo.a-+0]
Let us estimate the functions u; and ug. It follows from (6.40) and (6.41) that
¢

ui(t) =t—a Jr/(tfs)p(s)ul(s) ds for t€(a,a + wl,

. (6.45)

ug(t) = atw—t + /(s—t)p(s)ug(s) ds for t€[a,a+ wl.

Hence, on account of (6.42) and the conditions p(t) > 0, p Z 0, we get
u1(t) +ue(t) >w for t € [a,a+ w]

and, consequently, the first inequality in (6.43) holds.
On the other hand, by virtue of the inequalities

t—s at+w—s

fi €la,t
< for selat],
s—t s—a ‘ G]t n [
or s a—+w
a+w—t ’ ’

it follows from (6.45) that

t

uy (t) 1 / uy(s)
=1+ — — — ds for te
P +w (a+w—39)(s a)p(s)s_a s for la,a+ wl,
a
" 1 a+tw
#og)—t =1+ - / (a—i—w—s)(s—a)p(s)HuQT(szs ds for t €la,a+ wl.

t

Hence, by virtue of Gronwall-Bellman’s lemma we get
t a+w

) < - | (o] w6 < @ro-nen|s [ al

t

for ¢ € [a,a 4+ w]. The latter inequalities, together with the condition p # 0, imply that
u(t) < (t—a)p(p), wu2(t) < (a+w—1t)p(p) for t € [a,a+ w] (6.46)
and, for any t €la,a + w[, at least one of the previous inequalities is strict. Consequently,
ur(t) + ua(t) <wp(p) for t €la,a+ w]

and therefore, the second inequality in (6.43) is fulfilled.
As for the inequality (6.44), it immediately follows from the first inequality in (6.43) and the second
inequality in (6.46). O

Proposition 6.12. Let p € Int D(w) and [p]— # 0. Then, for any a € [0,w], the unique solution u of
the problem (6.20) satisfies the estimate

1
u(t) > — for t€la,a+ wl, 6.47
(t) ) ] [ (6.47)
where p(p) is a number defined by (0.12).
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Proof. Let a € [0,w] be arbitrary and let u be a solution of the problem (6.20). It is clear that

u(t) >0 for ¢ € la,a+w). (6.48)
Denote by v the solution of the problem
v =[p)]vv; v(a) =1, viatw)=1
and put w(t) L u(t) — v(t) for t € [a,a + w]. It is clear that

W(t) = PO w(t) + gt) for ¢ € [a,a+w),

w(a) =0, w(a+w)=0,
where ¢(t) 2ef —[p(t)]—u(t) for t € [a,a+w]. By virtue of (6.48) and the assumption [p]_ # 0, we have
that

q(t) <0 for t€la,a+w], q#0.

Taking, moreover, into account that [p]4+ € Int D(w) we get, by virtue of Proposition 6.10 that

u(t) > wv(t) for t€la,a+wl. (6.49)

If [p]+ = 0 then clearly v = 1 and, consequently, in view of (6.49), the desired estimate (6.47) holds.

If [p]+ # 0 then, by virtue of proposition 6.11, we get v(t) > ﬁ pro t €la,a + w|[ which, together
with (6.49), yields the desired estimate (6.47). O

In the next proposition we will establish estimates of the numbers po(p) and v*(p) (see Definition 6.2
and (6.22)) in the case when p € Vo(w). It is clear that, Vo(w) C Int D(w) and therefore po(p) and
v*(p) are defined correctly.

Proposition 6.13. Let p € Vy(w). Then the estimates

v (p) < e VP, po(p) < — VP (6.50)

w
4
are fulfilled, where p is a number defined by (0.11).

Proof. Let a € [0,w] be fixed and w,, be a solution of the problem

ug = p(t)ta, (6.51)
ua(a) =1, wugla+w)=1. (6.52)
Since p € Vp(w), it is clear that u,(¢) > 0 for ¢ € [a,a + w] and
v (a) = ul (a + w) (6.53)
as well. Extend the function u, periodically and denote it by the same letter. Put
Uy (1)
pa(t) = w(d) for t € R,

M, = max {uq(t) : t € [0,w]}, my =min {u,(t): ¢ € [0,w]},
and choose a € [a,a + w[ and B €], a + w| such that
ug(a) = My,  ug(B) = myg.
It is clear that,
po(t) =p(t) — pa(t) for teR

and
a+w

/ p2(s)ds = wp. (6.54)

e

On the other hand, by virtue of Hélder’s inequality, we have that

n? Mo _ ( j pals) ds>2 <(6-a) i p2(s) ds

meq
« «
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and

a+tw 2 atw
m?ﬂf::(/pa(s)ds) <@+u-p) [ s
B8 B

Hence, in view of the inequality 4y < (x + y)? for x,y € R, we get that

4 Ma w? a+w2 ?
<
In = 16( / pa(s)ds)

which, together with (6.54), implies that

M, w
7<eQ
Mg

E

(6.55)

In view of (6.52), we have that m, < 1. Consequently, (6.55) implies that M, < e%V? and therefore,
the firs inequality in (6.50) is fulfilled.

Now we will show that the second estimate in (6.50) is fulfilled. Let ¢ € L, q(t) <0 for t € R and
llgllz < 1. Denote by w a solution of the problem

W = pu+a(t); u(a) =0, ula+w)=0.
Let, moreover, u; and uy be solutions of the problems (6.40) and (6.41), respectively. It is clear that
u(t) > 0 for t €]a,a + w|[. By direct calculations one can easily verify that
a-+w
1 1

20 ds,  ua(t) = ug(?) / 20 ds for t € [a,a+uw]

up(t) = ua(t)j

and
t atw

)= e (1 /u Sldstur(t) [ ol ds)

for ¢ € [a,a + w|. Hence we get that

t a+w a+w

0<u( < et /u /ugl(s) ds [ was)lats)l s

a

<(t)(/ 1 d)/ (5)
~ duy(a+w) u2(s) 5 uq(s)|q(s)| ds

a+w
< Mz / L dslql (M) lalL for ¢ € [a,a+w]
=7 ua(s) qlln < 1 qilL
which, together with (6.55), implies that
0<u(t) < % VP gl for t € [a,a+ wl.

Now, in view of Definition 6.2 and (6.10), it is clear that the second estimate in (6.50) is fulfilled. O

Proposition 6.14. Let p,,p € Int D(w) and

Jim (i, —pllr = 0. (6.56)
Then
lim po(pn) = po(p),  lm_ v*(pn) =v"(p). (6.57)

n—-+4oo n—-+oo
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Proof. Let a € [0,w[ and u,, and v, be solutions of the problems

W = paltyut gt u(@) =0, u(a+w) =0,

o = p(t)o+q(t); v(@) =0, va+w)=0,
where g € L, q(t) > 0 for t € R, ||lg]| < 1. It is clear, the function uy,, is a solution of the problem

W = p(tyu+ 4(8) + (pu(t) — p())na(t); u(a) =0, u(a+w)=0
as well. Hence,
Una(t) = va(t) + Qa((Pn — P)tna)(t) for t € [a,a+w], neN, (6.58)
where ), is a Green’s operator of the problem (6.1). It follows from (6.58) that
[tnallc < llvallc + [1Qall [Ipn = pllz unallc for n €N,

(6.59)
[vallc < llunalle + [Qall llpn = pllz lunallc - for » € N.
Hence, in view of the inequality ||| < po(p) (see Definition 6.2), we get that
lunalle(1 = po(®)lIpn = plls) < llvallc for neN,
(6.60)

[vallo < lunallo(1+ po®)llpn = pllz)  for n e N.

Taking now into account that ||ve|lc < po(p) and ||unallc < po(pn) (see Remark 6.4), we get
IIUWHc(l = po(p)llpn — pIIL) < po(p) for neN,

lvalle < po(pa) (1 + po(Pllpn —pll) for neN.

Consequently, in view of (6.56) and Definition 6.2, the inequalities

po(p) po(p)
< po(pn) <
e P o) P
hold for n € N large enough which, in view of (6.56), implies that lirf p0(Pn) = po(p).
n—-+oo

Let now u,, and v, be solutions of the problems
v =p,()u; ula) =1, ula+w) =1,
v =pt); wvia) =1, via+w)=1
Clearly, u,, is a solution of the problem
v =pt)u+ (pa(t) = p(t))una(t);  u(a) =1, u(a+w)=1
as well. In view of Green’s formula, we have that (6.58) holds and, consequently, (6.59) and (6.60)

are fulfilled. Taking now into account that ||v,||c < v*(p) and ||una|lc < v*(pn) (see (6.22)), we get
from (6.60) that

lunalle(1 = po(@)llpn = plls) < v*(p) for neN,

lvallo < v*(a) (1 + po(®)lIpn = pll2) for n e N.

Consequently, the inequalities

v*(p)
Huna”C <
L —po(p)llpn — pllL
and
v*(pn)
VallC S
Palle < T @) pn — 211z

hold for n € N large enough. The latter inequalities, in view of (6.22), implies that for n € N large
enough,

. " v (p)
v (p)(l + po(p)pn —pIIL) e oy e
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which, together with (6.56), implies that lim v*(p,) = v*(p). O

—+o0

7. ON THE FLOQUET THEORY

In this chapter, for convenience of references, we recall Floquet theorems for the equation
u" = p(t)u, (7.1)

where p € L.
Denote by v and wve solutions of the problems

v =p(tvr; vi(0) =1, v1(0)
vy = p(t)va;  v2(0) =0, v5(0)

0,
L.

The number A & v1(w) + vh(w) is called Lyapunov constant and the equation
22— Az +1=0

is called a characteristic equation for (7.1). Roots of the characteristic equation are called Floquet’s
multipliers of equation (7.1).
Floquet’s first theorem states that

Theorem 7.1. Equation (7.1) is stable if and only if either

(1) Flogquet multipliers of equation (7.1) are complex valued,

or

(2) Floquet multipliers py and ps of equation (7.1) are real valued, p1 = pa, |p1| = 1, and any
solution u of the equation (7.1) satisfies

u(t +w) = pu(t) for teR.
Floquet’s second theorem states that

Theorem 7.2. The number u € R is a Floguet multiplier of the equation (7.1) if and only if there is
a nontrivial solution u of the equation (7.1) satisfying

u(t +w) = pu(t) for t € R.

Theorem 7.3. The complexr number u € R with real and imaginary parts o and 3, respectively, is
a Floquet multiplier of the equation (7.1) if and only if

a® 4+ B =1, (7.2)
and there are linearly independent solutions u and v of the equation (7.1) satisfying
u(t +w) = au(t) — fv(t), v(t+w)=PBut)+av(t) forteR. (7.3)

It is well known that the stability of the equation (7.1) is connected with the solvability of a certain
periodic boundary value problem. More precisely, consider the problem

w” = p(t)w + % o w(0) =ww), w'(0)=uw'(w), (7.4)

where p € L,. Under a solution of the problem (7.4) we understand a positive function w €
AC([0,w)) satisfying given equation almost everywhere on [0,w] and boundary conditions in (7.4).

Proposition 7.4. FEquation (7.1) is stable if and only if the problem (7.4) is solvable.

Proof. Let equation (7.1) is stable. Then, by virtue of Theorems 7.1-7.3 there are linearly independent
solutions u and v of the equation (7.1) satisfying either (7.2) and (7.3), or

u(t +w) = pu(t), v(t+w)=upv(t) for teR,
where p € R and |p| = 1. Assume without loss of generality that
' (H)o(t) —u(t)'(t)=1 for teR (7.5)
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and put

w(t) = Vu?(t) + v2(t) for ¢ € R.

It is clear that w € AC'([0,w]),
w(t) >0, w(t+w)=w) for teR. (7.6)

On the other hand, one can easily verify that

for t € R. (7.7)

Hence, w is a solution of the problem (7.4).

Let now the problem (7.4) possess a solution w. Extend the function w periodically and denote it
by the same letter. Clearly, (7.6) and (7.7) are fulfilled. It is also evident that there is a ¢ty € [0,w]|
such that

w/(to) =0.
Denote by u and v solutions of the problems

1

w(ty) '

v =p(t)v;  v(ty) = w(ty), v'(te) =0

wo(t) & \/u2(t) + v2(t) for t € R. (7.8)

It is clear that (7.5) holds. One can easily verify that

u’ =pt)u;  u(te) =0, u'(ty) =

and put

0 = w L or w
W (0) = ple)unlt) + e for t€ 0. 79

wo(to) = w(to), wy(to) = 0.
Let now
w?(t) + wo(t)w(t) + wi(t)
(w(t)wo(t))”
It follows from (7.7) and (7.9) that the function « is a solution of the initial value problem
" =pt)e;  alte) =0, o(tg) =0.

Hence, a = 0 and, consequently, wo(t) = w(t) for ¢ € R. Therefore, in view of (7.6), the function wq
is bounded. Taking now into account (7.8) we get that any solution of the equation (7.1) is bounded
and thus the equation (7.1) is stable. O

def

alt) L wt) —wo®), pit) L pt) — for t € R.




CHAPTER 2

Theorems on Differential Inequalities

8. ON THE SET V™ (w)

Theorem 8.1. V™ (w) U Vy(w) = D.

Proof. Show that V™ (w) U Vy(w) C D. In view of Proposition 0.8, we have Vy(w) C D. Thus, it is
sufficient to show that V™ (w) C D. Let p € V™ (w). By virtue of Remark 0.5, the problem

u’ =pthu—pt) =1 w(0) =uw), v'(0)=u'(w) (8.1)

has a unique solution v and
u(t) >0 for teR. (8.2)

By direct calculation one can easily verify that the function 8 defined by
Bt) =1+4u(t —kw) for t€[(k— 1w, kw], k€N

satisfies assumptions of Lemma 1.2 and, therefore, p € D.
Now we will show that D C V™ (w) U Vy(w). Let p € D. Suppose first that the problem

u’ =p(t)u; u(0) = u(w), v'(0)=1u'(w) (8.3)

has a nontrivial solution u. Since p € D, the function u is of a constant sign and thus p € Vo (w).
Now suppose that the problem (8.3) has no nontrivial solution. We will show that p € V™ (w) in
this case. Assume the contrary, let p &€ V™~ (w). Then there is a ¢ € L, such that

qit)>0 for teR, q#0, (8.4)
and the solution w of the problem
W =pt)utq(t); u0)=u(w), u(0)=1u(w)

does not satisfy the inequality u(¢) < 0 for some ¢ € R. Then, by virtue of Proposition 0.8 and
Lemma 2.7 we get
u(t) >0 for t €R. (8.5)

Let v be a solution of the initial value problem
v =p(t)v; v(0) =0, v'(0)=1.
Since p € D, we have

v(t) >0 for t>0. (8.6)
Therefore,
(u' ()v(t) —u(t)'(t)) = q(t)o(t) >0 for ¢ > 0. (8.7)
However u/(0)v(0) — u(0)v'(0) = —u(0) < 0. Hence, we get from (8.7) that either
o (H)o(t) —u(t)v'(t) <0 for t >0 (8.8)
or there is a a > 0 such that
v (a)v(a) — u(a)v'(a) = 0. (8.9)

First assume that (8.8) is fulfilled. Then, in view of (8.6), we get

(Zg;)/<0 for ¢t > 0.

34
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Therefore, there are ¢ > 0 and ty > 0 such that
v(t) > cu(t) for t > to.

Hence, it follows from (8.7) that

W (B)o(t) — u(B) (#) = 6+ / o(s)o(s)ds > 6+ ¢ / g(s)u(s)ds for ¢ > o, (8.10)

where
d=—u(0)+ /q(s)v(s) ds.

On the other hand, on account of (8.4) and (8.5), we have

—+o00

/ a(s)u(s) ds = +oo

to

which, together with (8.10), contradicts (8.8).
Now assume that (8.9) holds for a certain @ > 0. Then, in view of (8.5) and (8.6), there is a A > 0
such that

v(a) = Au(a), v'(a) = \/(a).

However, conditions (8.4), (8.5) and Lemma 1.3 imply that the function %v does not preserve its sign
in [a,4o00[, which contradicts (8.6). O

Remark 8.2. It follows from Theorem 8.1, Proposition 0.8, Lemma 2.7, and Remark 0.5 that if
pEV (w), q € Ly, q(t) >0 for t € R, and ¢ # 0, then the (unique) solution u of the problem

v =pt)u+q(t); u(0)=uw), u'(0)=1u(w)
satisfies u(t) < 0 for t € R.

Theorem 8.3. Let p € L,. Then the inclusion p € V™ (w) holds if and only if there exists a function
v € AC(]0,w]) satisfying

Y'(t) < pt)y(t)  for t € [0,w], (8.11)
v(t) >0 for t € 0,w], (8.12)
7' (w) _ 7'(0)
v(0) > y(w), Ww)Z'WM’ (8.13)
and
7(0) — y(w) + ’;((:j)) - 7;((8)) +mes {t € [0,w] : ¥"(t) < p(t)y(t)} > 0. (8.14)

Proof. Let p € V™ (w). Then, on account of Remark 0.5, the problem (8.1) has a unique solution u

and (8.2) is fulfilled. Evidently, the function () EC u(t) for t € [0, w] satisfies (8.11)—(8.14).
Suppose now that there is a v € AC'([0,w]) satisfying (8.11)(8.14). Introduce the function 3 by

B(t) (m>k17(t C(k=1)w) for te|(k—1)w ko], keN.

In view (8.13), it is clear that 3 € /A\E’/(RQ. Moreover, by virtue of (8.11) and (8.12), the function S
satisfies assumptions of Lemma 1.2 and therefore

peD. (8.15)
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Consequently, by virtue of Theorem 8.1, we have p € V™ (w) U Vy(w). Let us show that p & Vo(w).
Assume the contrary, let p € Vo(w). Then, there is a u € AC([0,w]) satisfying

u”(t) = p(tyu(t) for t € [0,w], (8.16)
u(0) = u(w), u'(0) =u'(w), (8.17)
u(0) = 5(0), (8.18)
u(t) >0 for t e [0,w]. (8.19)
By virtue of Lemma 1.2, there is a function v € AC' (R, satisfying
v"(t) = p(t)v(t) for t € [0,w] (8.20)

and (1.2). In view of (1.2), (8.15), (8.18), and (8.19), it follows from Lemma 1.3 (with a = 0 and
q = 0) that

v'(0) > /(0). (8.21)
Relations (1.2), together with the first inequality in (8.13), imply that v(w) < v(0). Therefore, either

v(w) < v(0), (8.22)
or

v(w) = v(0). (8.23)

Assume first that (8.22) holds. Put w(t) = v(t) —u(t) for ¢t > 0. Clearly, the function w is a solution of
the equation w” = p(t)w. On the other hand, by virtue of (1.2), (8.18), and (8.21), we have w(0) =0
and w'(0) > 0. Taking , moreover, into account (8.15) we get

w(t) >0 for t>0. (8.24)

However, in view of (1.2), (8.17), (8.18) and (8.22) we have w(w) < 0, which contradicts (8.24).
Now assume that (8.23) is fulfilled. Then, it follows from (1.2) and the first inequality in (8.13)
that

7(0) = v(w), (8.25)
V(w) =9 (w), v'(w) <+(0).
Taking, moreover, into account the second inequality in (8.13) we get
7(0) =7 (w). (8.26)
By virtue of (8.11), (8.14), (8.25), and (8.26), we have
V') = p(t)y(t) —a(t) for t € [0,u], (8.27)
where

q(t) E p(t)y(t) —~"(t) for t € [0,w],
q(t)>0 for t€[0,w], ¢#0. (8.28)

In view of (8.16) and (8.27), we have
(W (D) — u(t)y' (1) = g(tyu(t) >0 for 1> 0.
Hence, on account of (8.17), (8.25), and (8.26), we get

/w q(s)u(s)ds = 0.

o o

However, the latter equality contradicts (8.19) and (8.28). O

Remark 8.4. Theorem 8.3 (with v = 1) implies, in particular, that if p(¢) > 0 for ¢ € [0,w] and p Z 0
then p € V™ (w). More general, if py € Vo(w), p(t) > po(t) for t € [0,w], and p # po then p € V~(w).

Remark 8.5. It follows from Theorem 8.3 that if pg € V™ (w) and p(t) > po(t) for t € [0,w] then
p €V (w) as well.
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Remark 8.6. Let p € L, a €]0,w][, and p,(t) 2 p(t+ a) for t € R. Then the inclusion p, € V" (w)
implies the inclusion p € V™ (w). Indeed, let p, € V™ (w). Then, in view of Remark 8.2, the problem

w' =p.,(Hu—1; u(0)=u(w), v'(0)=1u(w)
has a unique solution v and u(t) > 0 for ¢t € R. Clearly, the function

v(t) et u(t —a) for t€[0,w]

satisfies the assumptions of Theorem 8.3 and thus p € V™ (w) as well.

9. ON THE ET V*(w)

Theorem 9.1. Let p € L,. Then the inclusion p € VT (w) holds if and only if p € D(w) and there
exists a function v € AC ([0,w)]) satisfying
V') = p(t)y(t) for t €[0,w], (9.1)
v(t) >0 for t € 0,w],
7(0) =), 7' (0) >+ (),
and
7'(0) = 7' (w) +mes {t € [0,w] : '(t) > p(t)y(t)} > 0. (9.4)
Proof. Let p € VT (w). Then, in view of Remark 0.5, the problem
u" =pt)u+Ip) +1; u(0)=uw), v'(0)=1u(w)
has a unique solution ug and ug(t) > 0 for ¢ € R. By direct calculations one can easily verify that the

function ~(¢) C 4 (t) for t € [0,w] satisfies (9.1)—(9.4).
Now we will show that p € D(w). Suppose the contrary, let p ¢ D(w). Then there are o < g,
b —a < w, and a solution v of the equation

v = p(t)v
such that
v(t) >0 for t€la,B], v(a)=0, v(B)=0

Clearly,

v'(a) >0, v'(B) <0, (9.5)
and there is a 8y €], a + w[ such that

v(t) <0 for t€|p, ol (9.6)
Put

)0 for t € fa, BlU]Bo, a + w,
q(t)_{l for t €18, ol

and extend it w-periodically. Since p € VT (w), the problem
W =pt)u+q(t); u0)=uw), u'(0)=1(w)

has a unique solution u and

u(t) >0 for teR. (9.7)
Let
w(t) ol (Ho(t) — ut)'(t) for t e R. (9.8)
It is clear that,
w'(t) = q(t)v(t) <0 for t € |, a+w], (9.9)
w' Z0 on o, a+w)]. (9.10)

However,
w'(t)=0 for t € |a,p]
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and
w(a) = = (@)u(a), w(B)=—v"(B)u(B).
Taking, together with this, into account (9.5) and (9.7), we get u(a) = 0 and «/(«) = 0. Since w is
an w-periodic function, we have u(a + w) = 0 and v/ (o + w) = 0, as well. Consequently, in view of
(9.8), we get w(a) =0 and w(a + w) = 0, which contradicts (9.9) and (9.10). Therefore, p € D(w).
Now let p € D(w) and there is a function v € AC'([0,w]) satisfying (9.1)-(9.4). We will show that
p € VH(w). Suppose the contrary, let p ¢ V*(w). Then there are u € AC(R) and ¢ € L, such that

u”(t) = p(t)u(t) + q(t) for t € R, (9.11)
uw(0) = u(w), ' (0)=1u'(w), (9.12)
q(t) >0 for t R, (9.13)

and the inequality u(t) > 0 does not hold for some ¢t € R (consequently, v # 0). Then, in view of
Lemma 2.7, we get

u(t) <0 for teR, u#0. (9.14)
By virtue of (9.11) and (9.14) it is clear that

(' (t)y(1) = u(t)y' (1) = a®)r(t) + [u(D] (7" (t) = p(t)y (1) for ¢ € [0,w].
The integration of the latter equality on [0, w], together with (9.3), (9.12), and (9.14), implies

(/) =) = [ [atr(0)+ o) (27 0) = pler(@)] a.
Hence, in view of (9.1), (9.2), (9.13), and the second inequality in (9.3), we get

w

[ lattrn® + a1 @) - p01(6)] ae =0,

0
Consequently,
q(t) =0 for t € 0,w], (9.15)
lu(t)| (7" (t) — p(t)y(t)) =0 for t € [0,w], (9.16)
[u(0)|(7'(w) —~'(0)) = 0. (9.17)

However, (9.11), (9.14), and (9.15) yield that u(t) < 0 for ¢ € [0,w]. Hence, it follows from (9.16) and
(9.17) that

V(1) =p)y(t) for te[0,w], 7'(w)=(0),
which contradicts (9.4). O

Remark 9.2. It follows from Theorem 9.1, Lemma 2.7, and Remark 0.5 that if p € V*(w), q € Ly,
q(t) >0 for t € R, and ¢ # 0, then the (unique) solution u of the problem

W =p(t)u+q(t); u0)=uw), u(0)=1u'(w)
satisfies u(t) > 0 for ¢ € R.

Theorem 9.1'. Let p € L,. Then the inclusion p € Int V*(w) holds if and only if p € Int D(w) and
there exists v € AC ([0,w]) satisfying (9.1)—(9.4).

Proof. Let p € Int VT (w). Then, in view of Theorem 9.1, there is a function v € AC'([0,w]) satisfying
(9.1)—(9.4). On the other hand, there is an €9 > 0 such that B(p,e9) C V' (w). Hence, by virtue of
Theorem 9.1, we get B(p,e0) C D(w) and therefore p € Int D(w).

Let now p € Int D(w) and there is a function v € AC' ([0, w]) satisfying (9.1)—(9.4). Then, by virtue
of Theorem 9.1, p € V*(w). Consequently, there is a (unique) solution w of the problem

v =pt)u+pt) +1; u(0)=uw), u(0)=1u(w),

and moreover (see Remark 0.6)
u(t) >1 for teR. (9.18)
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On account of Proposition 3.2, there is an 6; > 0 such that, for any g € B(p, d1), the problem
=gt +]9t)+1; v(0) =v(w), v(0)=1(w) (9.19)

has a unique solution v and |u(t) — v(t)| < 1 for t € R. Hence, in view of (9.18), we get

v(t) > % for t € R. (9.20)

On the other hand, since p € Int D(w), there is an d > 0 such that
B(p, d2) C D(w). (9.21)
Let now 0 = min{dy,d2}. Then, in view of (9.19)—(9.21), it follows from Theorem 9.1 that B(p,d) C
V¥ (w). Consequently, p € Int VT (w). O

Theorem 9.3. Let p € L, be such that
p#0, /p(s) ds < 0. (9.22)
0

Then p € VT (w) (p € Int VT (w)) if and only if p € D(w) (p € Int D(w)).

Proof. By virtue of Theorem 9.1 (Theorem 9.1'), we have V1 (w) C D(w) (Int V' (w) C Int D(w)).
Thus it is sufficient to prove that the conditions (9.22) and the inclusion p € D(w) (p € Int D(w))
imply p € VF(w) (p € Int V' (w)).

Let

o) -2 [ [ 4o -pacas o ter
t ot
where D is defined by (0.11). It is clear that

p'(t)=p(t)—p for t €R, (9.23)
p(t) = p(0) +/ (p(s) —p)ds for t € R. (9.24)
0
In, particular,
p(0) = p(w). (9.25)

The integration of (9.24) over [0, w] yields

/w p(s)ds = wp(0) +
0

Mention also that either p < O or p=0. If p =
from (9.23) that p # 0. Thus in both cases

S

/ p) d¢ds = 0. (9.26)

O O\E

0
holds then, in view of the condition p # 0, we get

p’(t)>p for te€R, mes{te€[0,w]: p*(t)>p} >0. (9.27)
Now, let,

t
~(t) ef exp </p(s) ds) for t € [0, w].
0
On account of (9.23) and (9.25)—(9.27), one can easily verify that (9.1)—(9.4) are fulfilled. Taking,
moreover, into account assumption p € D(w) (p € Int D(w)) we get from Theorem 9.1 (Theorem 9.1”)
that p € VT (w) (p € Int VT (w)). O
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10. PROPERTIES OF THE SETS V™ (w) AND VT (w)

Proposition 10.1. The set V~(w) is unbounded, open, and conver.

Proof. Unboundedness of V™~ (w) follows from Remark 8.4. Show that the set V™ (w) is open. Let
p € V™ (w). Then, in view of Remark 0.6, there is a unique solution u of the problem

=pt)u—[p(t) —1; w(0) = u(w), v'(0)=1r'(w),
and moreover
u(t)>1 for teR. (10.1)
On account of Proposition 3.2, there is a § > 0 such that, for any g € B(p, d), the problem
=gt —lg®) —1; v(0) =v(w), v'(0)=1"(w)
has a unique solution v and |u(t) — v(t)| < § for ¢ € R. Hence, in view of (10.1), we get v(t) > 3 for
t € R. and therefore, by virtue of Theorem 8 3, we have B(p,d) C V" (w).
Now we will show that the set V™ (w) is convex. Let pg,p1 € V™ (w). In view of Remark 0.6, the
problems
u —pl( ) _lpl( )| 1 ui(o):ui(w)’ ug(O):u;(w), i=0,1
possess unique solutions ug and u; respectively and, moreover, u;(t) > 1 for t € R, i = 0, 1. Introduce
the notations

def Ul(t) def 1 .
() T (1) = 1 ; fi R, :=0,1.
pi(t) ui(t)’ hil?) Uz(t)( +|pz(t)\) ortelt =0
It is clear that,
Pt = pilt) — halt) = p2(t) for tER, i=0,1, (10.2)
O =), [n)ds=0 i=o1 (10.3)
0

Let now A € [0,1] and p(t) = 2ef (1 =XN)po(t) + Ap1(t) for t € R. Then, in view of (10.2) we get
#(8) = (1= Npo(t) + Xpr () — [(1=Nho(H)+ M (8]~ [(1= N+ ARD)] for teR. (10.4)

However, (1 — X)a? + Ay? > ((1 — M)z + Ay)? for z,y € R. Hence, it follows from (10.4) that
J(E) < (1— Npolt) + A () — (1) for t € R (10.5)

and

mes {t e [0,w]: /() < (1= Npolt) + Apr () — p2(t)} > 0.
¢
Set ~(t) ef exp([ p(s)ds) for ¢t € [0,w]. In view of (10.3) and (10.5), one can easily verify that
0

the function + satisfies (8.11)—(8.14) with p(t) def (1 — Npo(t) + Ap1(t) and therefore, by virtue of
Theorem 8.3, we get (1 — N)pg + Ap1 € V™ (w). O

Proposition 10.2. V= (w) = V™ (w) U V(w) and VT (w) = VT (w) U Vy(w).

Proof. Let p € V=(w) (p € VF(w)). Then there is a sequence {p, },;>5 C V™ (w) ({pn},/25 € VT (w))
such that
lim ||p, —p|lL =0. (10.6)

n—r—+0o
By virtue of Remark 0.6, for any n € N, there is a unique solution v,, of the problem

" =pa(t)v = [pa(®)] — 1 0(0) = v(w), v'(0)=1'(w)
(v =pa(v+ [pa (O] + 1 0(0) = v(w), v/(0) =v'(w))

and, moreover,
vp(t) >1 for teR. (10.7)

Without loss of generality we can assume that there exists a finite or infinite limit

limJoaflo =\
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In view of (10.7) clearly either 1 < A\ < 400 or A = +o00. Introduce the notations

def Up(t) def
un(t) = ,  qn(t) = 1+ Pn(t)]),
0= oo @O o A O]
and
gef | 0 if A= +4o0,
q(t) =<1 £ 3
3 (1+p@®)]) if A< +oc.

On account of (10.6), clearly
lim g, — ¢z = 0.

n——+oo
By virtue of Proposition 3.3, we can assume without loss of generality that

lim v (t) = u®(t) uniformly on [0,w], i=0,1,
—+00

n

where u is a solution of the problem
W =pthu—q(t); u(0) =uw), u'(0)="1u(w)

(u" = pt)u+q(t); w(0) = u(w), w'(0) =u'(w)). (10.8)

Moreover, it is clear that
u(t) >0 for te[0,w], |ulc=1. (10.9)
If A = +oo then (by definition) ¢ = 0 and it follows from (10.8) and (10.9) that u(¢) > 0 for ¢t € [0, w].

Hence, in this case p € Vo(w).
def

Let now A < +oo. By direct calculation one can easily verify that the function y(t) = u(t) + 3
for t € [0, w] satisfies (8.11)—(8.14) ((9.1)—(9.4)). Then, in view of Theorem 8.3, we get p € V~(w) (by
virtue of Theorem 9.1 we have p,, € D(w). Taking, moreover, into account (10.6) and Proposition 2.1,
we get p € D(w). Hence, on account of Theorem 9.1, we get p € VT (w)). Thus we have proved that
V= (w) SV (w) UVo(w) (VF(w) € VT (w) UVo(w)).

To complete the proof it is sufficient to show that Vy(w) C V= (w) (Vo(w) C V+(w)). Let p € Vo(w).
Then there is a function v € AC([0,w]) satisfying

v(t) >0, ~"(t) =pt)y(t) for t€[0,w];
7(0) = y(w), 7'(0) =~ (w).

Introduce the notation p,, (t) e p(t)+L (pn(t) e p(t)—1). In view of Theorem 8.3 and (10.10), we get
Pn € V™ (w) (by virtue of (10.10) and Sturm’s comparison theorem we get p,, € D. However, D C D(w)
and thus p,, € D(w). Taking moreover into account (10.10), we get, by virtue of Theorem 9.1, that

Pn € VT (w)).On the other hand, clearly (10.6) holds and therefore p € V= (w) (p € V(w)). O
Remark 10.3. It follows from Propositions 10.1 and 10.2 that 0V~ (w) = Vo(w).
Proposition 10.4. 0V (w) = dD(w) U Vy(w) and 0D(w) C VT (w).

(10.10)

Proof. Tt is clear that OV1(w) = V*(w) \ Int V*(w). Taking into account Proposition 10.2 and the
fact that VT (w) N Vy(w) = &, we get

WVt (w) = (VT (w) \ Int VT (w)) UVp(w).

By virtue of Theorems 9.1 and 9.1, the inclusion p € V1 (w) \ Int VT (w) holds if and only if there is
a function v € AC/([0,w]) satisfying (9.1)-(9.4) and the inclusion

p € D(w) \ Int D(w) (10.11)
is fulfilled. On account of Proposition 2.1, the inclusion (10.11) is equivalent with
p € 0D(w). (10.12)

Therefore, to complete the proof it is sufficient to show that if (10.12) is fulfilled then there exists
v € AC/([0,w]) satisfying (9.1)-(9.4). Let (10.12) holds. Then, by virtue of Proposition 2.4 and
Fredholm’s alternative, the problem

Y =p)y+Ip®]+ 1 y(0) =y(w), 7 (0)=7(w)
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has a unique solution . In view of (10.12) and Proposition 2.1, we have p € D(w). Hence, by virtue of
Lemma 2.8, we get v(t) > 0 for t € [0,w]. Now, it is clear that, the function v satisfies (9.1)—(9.4). O

The next proposition immediately follows from the previous one.
Proposition 10.5. V1 (w) = 0D(w) UInt VT (w).
Proposition 10.6. V1 (w) UV~ (w) UVy(w) = D(w).
Proof. In view of Theorem 9.1, we have V1 (w) C D(w) while, by virtue of Theorem 8.1 (and Propo-

sition 0.8), V™ (w) UVo(w) = D C D(w). Hence, VT (w) UV~ (w) UVo(w) C D(w).
Let now p € D(w). Suppose first that the problem

u’ =pt)u; w(0) =u(w), v'(0)=1u'(w) (10.13)
has a nontrivial solution w. Then, in view of Lemma 2.7, we can assume without loss of generality
that u(t) > 0 for t € R. However, u # 0 and thus u(t) > 0 for t € R. Therefore, in this case p € Vo(w).

Suppose now that the problem (10.13) has no nontrivial solution. Then, by virtue of Fredholm’s
alternative, the problem
W =pt)u+Ip@) +1; u0)=uw), v'(0)=1(w)

has a unique solution u. On account of Lemma 2.7, either

u(t) >0 for teR (10.14)
or

u(t) <0 for teR. (10.15)
If (10.14) holds then, by virtue of Theorem 9.1 (with v = u) we get p € V*(w), while if (10.15)
is fulfilled then, in view of Theorem 8.3 (with v = —u) we get p € V™ (w). Therefore, D(w) C
VHw) UV~ (w) UVy(w). O

Now we will show that the set V*(w) is unbounded. More precisely, the following proposition holds.
Proposition 10.7. For any ¢ > 0 there is a p € V1 (w) such that [ p(s)ds > c.
0

Proof. Let ¢ > 0. Choose g € L, such that

w

/ / 2dt > ctw (10.16)
0

0

and introduce the notation pg(t) %ef g(t) + (£(g)(t))?, where ¢ is the operator defined by (0.14). In
view of Remark 0.7, we have pg € Vy(w). By virtue of Proposition 0.8, po € D as well. In view of
Proposition 2.2, we have D C Int D(w). Hence, there is a € €]0, 1] such that pg — e € D(w). On the
other hand, since py € Vy(w) the problem

Y =po(t)y; (0) =7(w), ¥'(0)=7"(w)
has a positive solution 7. Let now p(¢) def po(t)—e. Then, by virtue of Theorem 9.1, we get p € VT (w).
On the other hand, on account of (10.16), it is clear that fp )ds = fpo )ds — ew > c. O
0

Proposition 10.8. If peV~ (w), then [p(s)ds>0 while if pe VT (w), then [p(s)ds> —%2.
0 0

Proof. Let p € V™ (w) and u be a solution of the problem
T=pt)u—1; w(0) = u(w), v'(0)=u'(w).

((t)) for ¢ € [0,w]. It is clear that

In view of Remark 8.2, we have u(t) > 0 for ¢ € [0,w]. Put p(t)
p(0) = p(w) and

§(t) = plt) - ﬁ — () for te[0,w]
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The integration of the latter equality yields

w w

/ / —+p )ds>o.

0

Let now p € V' (w). By virtue of Theorem 9.1, the inclusion p € D(w) holds. It follows from
Corollary 2 of [17] that, for any a € [0,w][, the inequality

a-+w 9

2 @p(s) ds > —;Lw (10.17)

sin
a

w

holds. The latter inequality with a = 0 and a = 3 implies that

w
2 2
. o TS T 9 TS T
sin® — p(s)ds > —— and cos® — p(s)ds > ——,
/ o P(s) 55 / = p(s) 50
0 0

w
respectively, and, consequently, we have [ p(s)ds > —%2. O
0

Remark 10.9. Let w = 27, ¢ > 0, and p(t) Lef —c(1 — cost). As it was mentioned in the proof of

Proposition 10.8, if p € V' (w) then (10.17) holds for any a € [0,w[. Taking a = 0 in (10.17), we get

c< %. Thus the condition ¢ € ]07 %[ is necessary for the inclusion p € V't (w).

Proposition 10.10. Letp € L, and p ¢ V™ (w). Then there is a p € Vo(w) such that p(t) > p(t) for
teR.

Proof. If p € Vy(w) then the assertion of the proposition holds with p = p.
Suppose that p € V™ (w) U Vy(w). Introduce the notation

() L p6) + A(p(t)| + 1) for t€R, A >0,

AL IS0: prev (W)

Since the inequality
pa(t) >1 for teR

holds for A > 1, it follows from Remark 8.4 that py € V™ (w) for A > 1. Hence, [1,4+00[C A and,
consequently, A # @&. On the other hand, it is clear that 0 ¢ A.

Let now

def
A = infA.

First we will show that
A & A (10.18)
Indeed, if Ax € A then p), € V™ (w). However, A\, # 0 and, consequently, A\, > 0. By virtue of
Proposition 10.1, the set V™ (w) is open. Hence, there is an ¢ €]0, A,[ such that py € V™ (w) for
A €]A« — &, [ which contradicts the definition of the number .. Thus we have proved that (10.18)
holds.
Let now {\,}> C A is such that

Ak41 < A for keN, lm A = M.

k—+oo
Denote by uy the solution of the problem
up = (Wue — 15 wk(0) = up(w), up(0) = g (w). (10.19)
By virtue of Remark 8.2, we have
up(t) >0 for t€[0,w], keN. (10.20)

It is clear that,
Paes (1) <pa, (t) for t€[0,w], k€N,
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Taking, moreover, in to account (10.20), it follows from (10.19) that, for any k£ € N, we have
up (t) > P, (Huk(t) =1 for ¢ € [0,w],
ue(0) = uk(w), . (0) = wp(w).
Hence, in view of (10.19), it follows from Remark 0.6 that

U1 (t) > ug(t) for ¢t €[0,w], keN. (10.21)
Now we will show that
lim ||ugllc = +oo. (10.22)
k— 400

Suppose the contrary, let i lim |Jug||c = ¢. Then, in view of Proposition 3.3, we can assume without
—+00

loss of generality that
lim u,(j) (t) = u((f) uniformly on [0,w], i =0,1, (10.23)

k— 400

where ug is a solution of the problem
ug =pxr, (Huo —1;  up(0) = ug(w), ug(0) = ug(w). (10.24)

However, in view of (10.20), (10.21), and (10.23), we have ug(t) > u1(t) > 0 for ¢t € [0,w]. Hence, it
follows from Theorem 8.3 (with v = ug) that p), € V™ (w) which contradicts (10.18). Thus we have
proved that (10.22) is fulfilled.

Let now

of 1 o 1
vg(t) &of up(t), qr(t) Lef_ for t € [0,w], k€ N.
l[ullc [ukllc

It is clear that,

lvgllc =1 for k€N, (10.25)
Jm gl =0, (10.26)

and vy is a solution of the problem
v =pac (o + au(t); ve(0) = vp(w), v3(0) = vp(w).
By virtue of Proposition 3.3 and (10.26) we can assume without loss of generality that

lim U,(:) (t) = v(()i) uniformly on [0,w], i=0,1, (10.27)

k—+o00

where v is a solution of the problem
vg = pa.(Hvo; vo(0) = vo(w), v5(0) = vo(w). (10.28)
On the other hand, in view of (10.20), (10.25), and (10.27), it is clear that
vo(t) >0 for t € [0,w], ||vollc=1.

Hence, vo(t) > 0 for t € [0,w] and, consequently, px, € Vo(w). Thus the assertion of the proposition
holds for p(t) def pa, (t) for t € R. O

Proposition 10.11. Let py € Vo(w). Then there is an €9 > 0 such that for any € €]0,&¢[, the
inclusion pp — € € Int V1 (w) holds.

Proof. In view of Sturm’s (separation) theorem and Proposition 2.2, the inclusion Vy(w) C Int D(w)
holds. Then there is an g > 0 such that pg —e € Int D(w) for every ¢ €]0,e¢[. Denote by v a positive
solution of the problem

Y =po(t)r; 7(0) =v(w), 7(0)=7"(w).
It is clear that, ~y satisfies (9.1)—(9.4), where p = pg—e, € €]0,e0[. Therefore, by virtue of Theorem 9.1/,
we get that pg — e € Int V't (w) for every e €]0,0]. O
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11. EFFICIENT CONDITIONS FOR THE INCLUSION p € V™ (w)
Theorem 11.1. Letp € L,, p Z0,

||[Pf||L<*+ HLPfHL’ (11.1)
and
~1
Nl 2 -1 (1 + B el I = S - 1,) (11.2)
where the number p* is defined by (0.16). Thenp € V™ (w).

Proof. Tt follows from assumptions of the theorem that [p]; # 0. Then, in view of Remark 8.4, we
have [p];+ € V™ (w). Assume, moreover, that [p]_ # 0 because otherwise the theorem is trivial. By
virtue of Remark 8.2, the problem

V' =y — [p()]-; 7(0) =7(w), ¥'(0) =7"(w) (11.3)

has a unique solution v and

v() >0 for teR. (11.4)
Set
m < min {v@t): telo,w]} (11.5)
and choose a € [0,w] such that
v(a) = m. (11.6)

It follows from (11.3) that

/W[P(S)MV(S) ds = /w[p(s)]ds.
0 0

Hence, on account of (11.5), we get

- [Pl (11.7)
)+l
By direct calculations one can easily verify that
1O =m+ ~(atw 1) [ @) (ipE)- - b)) ds
1 a+wa
+—(t-a) / (a+w—s) ([p(s)], - [p(s)m(s)) ds for t € [a,a+wl.
The latter equality, together with (11.4), imply
~(t) <m+%[(t) for t € [a,a + w, (11.8)
where
t a+w
I(t) e (a—l—w—t)/(s—a)[p(s)], ds+(t—a) /(a—l—w—s)[p(s)], ds.

Now we estimate the function I. First of all mention that
I(t) = (t—a)(a+w—1)||[p)- || ,— ((a+w—t) Fi (t)+ (t—a) F(t))
<(t—a)a+w— t)(H[p],HL - é (Fi(t) + Fg(t))> for ¢ € [a,a + w,

where the functions F; and Fj are defined by (4.1). Hence, by virtue of Proposition 4.1, we get that
the inequality

2 *
S%(H[p]_HLifTuH —|| ) for t € [a,a + w]
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holds. Taking, moreover, into account (11.7), we get from (11.8) that

-l P 2
~v(t) < H[P HL ZH[p],HL—l—fjH[p],HL for t € [a,a+ w].
Hence, on account of (11.1), (11.2), and periodicity of the function v we get
v(t) <1 for t€[0,w]. (11.9)
Now, it follows from Theorem 8.3, by virtue of (11.3), (11.4), (11.9), and the assumption [p]_ # 0,
that p € V™ (w). O

Remark 11.2. Let pg,g € L, and
g(t) >0 for t€[0,w], mes{te[0,w]: g(t)=0}=0. (11.10)
Then there is a ¢ > 0 such that po + cg € V™ (w). Indeed, it is clear that,
cEI-Poo ||[P0 + cg]+||L = too.

On the other hand, by virtue of (11.10), one can easily show that
Jim[po + cg]—IIL =0.

Hence, there is a ¢ > 0 such that the function p(¢ ) po(t) + cg(t) for t € [0,w] satisfies (11.1) and
(11.2) and, consequently, by virtue of Theorem 11.1, p € V™ (w).
Theorem 11.3. Letp € L, [p]>2 € Lo, p £ 0,
W)l |, <1, (11.11)
and
w
elll, = M-l + < - 12 (1 = @2, ) (11.12)

where k*(w) is the number appearing in Remark 5.1. Then p € Vf(w).

Proof. Tt follows from assumptions of the theorem that [p]; # 0. Assume, moreover, that [p]_ # 0
because otherwise the theorem is trivial (see Remark 8.4). By virtue of Proposition 5.2 and (11.11),
the inclusion —[p]_ € D(w) holds. Then, on account of Theorem 9.3, we have —[p]— € V*(w). Thus,
in view of Remark 9.2, the problem

7" ==[p@®)]-7 + P14+ (11.13)
7(0) = y(w), 7'(0) =+'(w) (11.14)
has a unique solution v and (¢) > 0 for t € R. Set
M % max () : tel0,w]}, m L min {(@): teo,w]} (11.15)
and choose a € [0,w[ and b €]a, a + w] such that

v(a)=m, ~(b) =M. (11.16)
In view of (11.13) and (11.14), it is clear that

Js)sds = [ip(s))-r(s) ds. (11.17)
0 0
Hence,
M > el ], (>m). (11.18)
][,

Multiplying both sides of (11.13) by v and integrating it on [a, a + w] we get
a+tw atw atw

[ o) as= [peie - [ e (11.19)



Theorems on Differential Inequalities and Periodic BVP for Second-Order ODEs 47

Evidently,
a-+w a+w

/ [p($)]~*(s) ds — / [p(3)]+7(s) ds

atw atw a+tw a+tw

- / ()] (4(5) — m)* ds —m? / [p(s)]_ ds + 2m / [p(5)]-(s) ds — / [p(s)]47(s) ds.

Taking, moreover, into account (11.15) and (11.17), we easily conclude from (11.19) that
a+w a+w a+w a+w

/ (v (s))ds < /[p(s)],(y(s)—m)Qde/[p(s)]+ds—m2 /[p(s)],ds. (11.20)

On the other hand, by virtue of Holder’s inequality and (5.1), we have
a+tw 2 atw a+tw

([ b6 -mras) < [peras [ 6o -m'e

a+w a+w

<k (w) /[p(s)}2d3</ (y’(‘s))2d3>2

a

which, together with (11.11) and (11.20), results in
a+w 1
) _
[ ey as <m(iphell, = mllp-1,) (1= e @lb2l,) (11.21)
Since v’ # Const. we get, by virtue of Holder’s inequality, that
b 9 b

= mp? = [ras) <o-a [ ()" as

and
(M —m)? = ( 7w’y’(s) ds)2 < (w—(b—a)) 7w(v’(s))2ds
Therefore, b b
b atw , , otw 5
(M —m)* < (b— a)(w—(b—a)) / (7'(5))2d5 / (7’(5))2 ds < T—G ( / (7'(8))2(15) .
a b a
Thus
a+tw

(M —m)? < ¥ / (v (5))? ds.

a

Hence, in view of (11.18), we get
a+w

el =0 e,

11,

The latter inequality, together with (11.21), implies

I, <o (-, + 161 (1= e @lBEL) )

which, together with (11.12), yields

a

m > 1.
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Taking now into account (11.13), (11.14), and the condition [p];+ # 0, we get from Theorem 8.3 that

pEV (w). O
Theorem 11.4. Let p € L, and there exist a ¢ > 0 such that
9 e —1
||[pic }—HLSQC ecw +1 ' (1122)
Thenp € V™ (w).
Proof. Assume that
[p(t) — - #0 (11.23)

because otherwise p(t) > ¢? for t € R and, in view of Remark 8.4 we get p € V~(w). By virtue of
Remarks 8.2 and 8.4 and (11.23), the problem

¥ = ety = [p(t) — ], (11.24)
7(0) =y(w), 7'(0) =" (w) (11.25)
has a unique solution v and
v(#) >0 for teR. (11.26)
Set
M % max v(t): t€[0,w]} (11.27)

and choose a € [0,w[ such that v(a) = M. It is clear that the function v is a unique solution of
Dirichlet problem

V' =y =) =Pl va) =M, yatw)=M
as well. Hence, by virtue of Green’s formula (for Dirichlet problem), we get

t a+w
M 1
t) = —— (u1(t) +ua(t)) + —— | ua(t ushsds+ut/u shsds) 11.28
) = s (00 +1a(0) + s (1) [ (s 0 [ mtncras) )
a
for t € [a,a + w], where
ht) L pt) — 2 for teR (11.29)
and u1 and ug are solutions of the initial value problems
uf = ctuy;  ui(a) =0, ui(a) =1, (11.30)
uy = uy;  us(a+w) =0, uh(a+w)=—1. (11.31)
It follows from (11.28), in view of (11.30) and (11.31), that
M 1 atw
"(a) = ——(1+ubh(a —l—i/u s)h(s)ds,
7( ) ’LLQ((I)( 2( )) ’LLQ((I) 2( ) ( )
a
M 1
"a+w) = ui(a+w)—1 —7/u s)h(s)ds.
’Y( ) UQ(Cl)( 1( ) ) Ug(@) 1( ) ( )
However +/(a) = v'(a + w) and thus
a+w
M (uf(a+w) — uh(a) — 2) = / (u1(s) + ua(s))h(s) ds. (11.32)
Solving (11.30) and (11.31) one can easily verify that
cw ] 2
uy(a+w) —uh(a) —2 = (GGT) (11.33)
and
ech -1

(11.34)
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On the other hand, in view of (11.30) and (11.31), the function v(¢) def uy(t) + ua(t) satisfies v”(t) =
v(t) >0 for t € [a,a + w], v(a) = v(a +w), and v(a) = u1(a + w). Hence, on account of (11.34), we
get

2cw __

ur(t) +u2(t) =v(t) <v(a) = cheC“’ for t €la,a + w]. (11.35)
Now it follows from (11.32), in view of (11.23), (11.29), (11.33), and (11.35), that

e 41
see ) 1P =<1l

M <

Hence, on account of (11.22) and (11.27), we get
v(t) <1 for t e [0,w].

The latter inequality, together with (11.23)-(11.26), implies (8.11)—(8.14). Therefore, by virtue of
Theorem 8.3, we get p € V" (w). O

Theorem 11.5. Letp € L,, p > 0, and
(L)) < /P for t€[0,u], (11.36)
where p and ¢(p) are defined by (0.11) and (0.14), respectively. Then p € V™ (w).

Proof. Assume that
p(t) #p (11.37)
because otherwise the theorem is trivial (see Remark 8.4). Let
p(t) & —t(p)(t) for te[0,w)].
It is clear that

p'(t)=p(t)—p for te|0,uw] (11.38)
In view of (11.37), evidently p’(t) # 0. Hence, ¢(p)(t) Z Const. Thus it follows from (11.36) that
mes{t e [0,0] : 1Ep)()] < \/73} > 0. (11.39)
Now we get from (11.38), in view of (11.36) and (11.39), that
p(t) <p(t) = p*(t) for t€[0,u], (11.40)
mes {t € [0,w]: p(t) < plt) — p2(t)} > 0. (11.41)
Integrating (11.38) from 0 to ¢ we get
¢
o) = p(0) — / (p(s) —P)ds for t € [0, (11.42)
0
In particular,
p(0) = plw). (11.43)

Integration of (11.42) over [0,w] implies

fm¢w=wmm—f(

t

~(t) 2f exp </p(s) ds) for t € [0,w].
0
Then (11.40), (11.41), (11.43), and (11.44) imply (8.11)—(8.14). Hence, by virtue of Theorem 8.3, we
get p e V™ (w). O

Example 11.6. Let w = 27, p(t) = ¢+ Acost, A # 0. Then p = ¢ and £(p)(t) = Asint. It follows
from Theorem 11.5 that if ¢ > A% then p € V™~ (w).

(»(€) D) df) ds = 0. (11.44)

o,

Let now
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12. EFFICIENT CONDITIONS FOR THE INCLUSION p € VT (w)
Next two theorems immediately follows from Theorem 9.3 and Propositions 5.2 and 5.3

Theorem 12.1. Letpe€ L,, p#Z 0, p <0, and

w) /[p(s)]g ds < 1.
0
Then p € Int VT (w).

Theorem 12.2. Letpe L,, p#0, p <0, and
II[P—IIL_*+*||EP—||L (12.1)

Then p € Int VT (w).
The next theorem, in spite of previous ones, does not exclude the case when p > 0

Theorem 12.3. Let p € L, p #Z Const., and
|d5) , (12.2)

I

where the number ¢ and the function £(p) are defined by (0.15) and (0.14), respectively. Then p €
Int VT (w).

Proof. Introduce the notations

dcf 1 B
) = exp /£ ) )\:71'(/ ds)
( ug(s)
0
Oa ()d—Cf)\ ctg (A/lds) for t €la,a+wl, a€l0,w]
J u(Q)(S) I’ b 9’ )
and
def Ua(t)
pa(t) = L(p)(t) + — for t €la,a+wl, a€l0,w].
uj(t)
Since o, (t) = _u21(t) (A2 + 02(t)) one can easily verify that
0
)\2
() = pl0) =5+ @) — o — A0 Tor tElovatl. (123)
0
By virtue of Proposition 4.2, we have
[l evf —1
2
t ds < . 12.4
B0) [ s ds <5 (12.4)
0
Hence,
22 242
i (12.5)

>
A0 w12
Since p # Const. we have |{(p)| # Const. and hence £2?(p)(t) < ¢? for t € R and ¢*(p)(t) # (? on
[, & + w]. Taking, moreover, into account the first inequality in (12.2), we get

)\2
+p for teR
ug(t)

Cp)(t) <

and
2
mes {t € la,a+w]: Pp)(t) < ui\(t) +p} > 0.
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Hence, it follows from (12.3) that
oolt) <plt) — p2() for tElaa+wl, ae 0w, (126)
mes {t € la,a+wl: ph(t) <p(t) — pi(t)} > 0. (12.7)

Set
¢
Yo (t) 4ef oxp [ / Pa(8) ds} for t €lo, a4 wl. (12.8)
a+%

By direct calculation one can easily verify that

Yalt) = sin ()\ j u(%l(s) ds) exp[ /1t (p)(s) ds] _ f
-

[e3%

Hence, 74 € AC ([, @ + w)), Ya(a) = 0, Ya(a+w) = 0, and v, (t) > 0 for t €]a, a+w[. On the other
hand, in view of (12.6)—(12.8), we get that

V) < p(t)ya(t) for t € [a,a+ w],
mes {t € la,a+w]: YI(t) < p(t)%é(t)} > 0.

Therefore, by virtue of Proposition 2.6, the inclusion

p € Int D(w) (12.9)
holds.
Let now
h(t) = ul(t) (5 - C(p)(1) for tER,
ca ([ 1 N R
" <O/u3<s>d> O/ua<s> -
e [ ! s - wu_Q tu_Qs s) —h)ds
= (0/“3<8>d> 0/o<t>0/ 52(5) (hs) — ) ds
and

/p(t) dt = 0. (12.10)
0

p(0) = plw). (12.11)
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By direct calculation one can easily verify that

) =9(0) -2 5 (e [1%(6) (his) = 7) ds ) = )0 -
0

= p(t) — P2(1) + — (c+/u52(s)(h(s) —E) ds)2 - ; (12.12)
0

for t € [0,w]. By virtue of (12.5) and the second inequality in (12.2), we get

ey 2= ( [woias)”
0 0 0

On the other hand, by virtue of Holder’s inequality

w

(Z|€(P)(3)|ds>2 <O/u(2)1(s) dso/wug(s)(f(p)(s)fd&

The latter two inequalities yield that

w

[ ) s <o

0

and therefore h < 0. As it was mentioned above |¢(p)(t)| Z Const. Hence h # 0 as well. Therefore,
either h < 0 or h = 0 and

c+/u52(s)(h(s)—ﬁ) ds#0 on [0,w].
0

Now, it follows from (12.12) that
p(t) = p(t) = p*(t) for te€[0,w], (12.13)
mes {t e[0,w]: p(t) > plt) — pQ(t)} > 0. (12.14)
Let now

~(t) def exp </tp(s) ds) for t € [0, w].

0

In view of (12.10), (12.11), (12.13), and (12.14), one can easily verify that (9.1)—(9.4) are fulfilled.
Taking, moreover, into account (12.9), we get from Theorem 9.1’ that p € Int VT (w). O

Corollary 12.4. Letp € L, p # Const., p <0, and

% (e —1)\/Ip| + €2 < 7.
Then p € Int VT (w).

Corollary 12.5. Let p € L, p # Const.,

0 < % In(1 + 7) (12.15)
and
0<p< U lenas) (12.16)

Then p € Int VT (w).
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Proof. In view of (12.15) and the first inequality in (12.16) we get that the first inequality in (12.2)
holds. Taking now into account that the function z — I (e*® —1) is increasing on ]0, +oo[, we get
from the second inequality in (12.16) that the second 1nequahty in (12.2) is fulfilled. O

Example 12.6. Let w = 27, p(t) = ¢+ Acost, A # 0. Then p = ¢, £(p)(t)

f [¢(p)(s)| ds = 4|A|. Tt follows from Corollary 12.4 that if
2
2 2 4
T

then p € Int V*(w). On the other hand, Corollary 12.5 implies that if
1
A < py In(1+ )

and
2

41
Ogcéﬁln(lﬁ-w)
then p € Int V+(w).

13. CONNECTION WITH LYAPUNOV STABILITY

Consider the equation

where p € L.

= Asint, £ = |),

(13.1)

Definition 13.1. We say that the equation (13.1) is strongly exponentially dichotomic (SED) if there
are 1 > 0 and linearly independent solutions u and v of the equation (13.1) such that the functions

u(t)e ™ and wv(t)e!t

are w-periodic and do not change their signs.

Remark 13.2. It is clear that if the equation (13.1) is SED then it is unstable.

Theorem 13.3. Equation (13.1) is SED if and only if p € V" (w).
Proof. Let p € V™ (w). Then, in view of Remark 0.6, the problem
B =pt)B - Ip(t)] -1,
B(0) = Bw), B'(0) = p'(w)

(13.2)

has a unique solution 5 and 3(t) > 1 for t € R. On account of Lemma 1.2, there is a solution v of the

equation (13.1) such that
0<w(t) <pB(t) for t>0,

By virtue of (13.3) and Lemma 1.4, we get
v(t+w)=Xv(t) for ¢t >0,

where

It easily follows from (13.5) that
v(kw) = A*v(0) for k € N.
On the other hand, (13.2), (13.3), and (13.4) imply
v(kw) < B(kw) = (0) =v(0) for ke N.

(13.3)
(13.4)

(13.5)

(13.6)

(13.7)
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Hence, in view of (13.7), we get A < 1. However, A # 1 because otherwise, in view of (13.5) and the
first inequality in (13.3), we get p € Vy(w), which contradicts our assumption. Therefore,

0<A<l. (13.8)
Denote by u a solution of the initial value problem

u’ =p()u;  u(0) = c1, W'(0) = ez

where
L a2(0) [ 1 1460/ (0)
€1=13 /vz(s) ds, c2= ) (13.9)
0
Clearly,
o (t)v(t) — u(t)v' (t) = cov(0) — ¢10'(0) = 1. (13.10)

Therefore, u and v are linearly independent. Moreover, it follows from (13.10) that (%)’ = U%(t) pro

t > 0 and thus
t

ut) _ a1 g
vt)U(O)JrO/vQ(s)d for 120,

Hence, in view of (13.5) and (13.9), we get

(ot ) ity o0

Thus 1
u(t+w) = X u(t) for t>0. (13.11)

Now let def —L InX. In view of (13.8), clearly p > 0. Let, moreover,

p(t)
In view of (13.6), we have
(t+w) =v(t+w) e T = \u(t) et e’ =v(t) e’ = p(t) for teR.

Analogously, on account of (13.11), we get that (¢t + w) = ¥(t) for ¢ € R. On the other hand, it is
clear that the functions ¢ and v are continuously differentiable. Mention also that since p € V™ (w) we
get from Theorem 8.1 that p € D. Hence, the functions ¢ and 1) do not change their signs. Therefore,
the equation (13.1) is SED.

Suppose now that the equation (13.1) is SED. Let v is a solution of the equation (13.1) such that

v(t) = p(t)e ™ for t € R, (13.12)

def

Lroiyert, vit) Lu@)e ™ for teR.

where 1 > 0 and ¢ is an w-periodic and sign-constant. Assume without loss of generality that ¢(¢) > 0
for t € R. Clearly, there is a number a € [0,w] such that

¢'(a) = 0.
Then we get from (13.12) that
v'(a) <0. (13.13)
On the other hand, (13.12) implies
v(t+w)=Av(t) for teR, (13.14)
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where
1
A= — < 1. (13.15)
eHw
Introduce the notations

¥(t) vt +a), pat) Ep(t+a) for teR.

On account of (13.13)—(13.15), we have
Y(w) =v(a+w) = Av(a) < v(a) =~(0)

and
V(W) =v'(a+w) = \'(a) > v/(a) = 7'(0).

It is clear that +"(t) = pu(t)y(¢) for ¢ € R. Hence, by virtue of Theorem 8.3, we get p, € V™ (w)
which, in view of Remark 8.6 implies that p € V™ (w). O

Theorem 13.4. Let p € Int V' (w). Then the equation (13.1) is stable.

Proof. In view of Theorem 7.1, it is sufficient to show that Floquet multipliers of equation (13.1) are
complex valued. Suppose the contrary, let 1 € R be a Floquet multiplier of equation (13.1). Then,
by virtue of Theorem 7.2, there is a nontrivial solution ug of the equation (13.1) satisfying

uo(t +w) = pug(t) for ¢t € R. (13.16)

Since p € Int VT (w), in view of Theorem 8.1, we have p ¢ D. Hence, any solution of the equation
(13.1) has at least one zero in R. Taking, moreover, into account (13.16) we get that there is an
a € [0,w| such that
ug(a) =0, wo(a+w)=0.
Thus the function ug is a nontrivial solution of the problem
v =p(t)u; wu(a) =0, ula+w)=0.

On the other hand, by virtue of Theorem 9.1’, the inclusion p € Int D(w) holds as well. Hence, in
view of Proposition 2.2, we get the contradiction ug = 0. 0

Remark 13.5. The assumption p € Int VT (w) in Theorem 13.4 cannot weakened to the assumption
p € VT (w). As it was mentioned above (see Proposition 10.5), VT (w) \ Int V1 (w) = dD(w). By virtue
of Proposition 14.1 below there is a p € 0D (w) such that the equation (13.1) is unstable. Mention also

that the constant function p(t) Lef —(5)2 also belongs to VT (w), while the corresponding equation

(13.1) is stable. Thus if p € VT (w) \ Int VT (w) then the equation (13.1) may be either stable or
unstable.

Remark 13.6. It follows from Theorem 7.1, Theorem 7.2, Proposition 0.8, and Proposition 1.1 that
if p € Vy(w) then the equation (13.1) is unstable.

14. ON MATHIEU EQUATION

On R consider the equation
u’ = pe(t)u, (14.1)

where p.(t) def —c¢(1 —cost) for t € R, ¢ € R. Tt is clear that py € Vy(27) and, for any ¢ < 0, the

inclusion p. € V~(27) holds (see Remark 8.4). Hence, we will be interested in the case ¢ > 0. Recall
that the number k*(27) is introduced in Remark 5.1.

Proposition 14.1. Thereis a ¢, € [#(2)7 %[ such that p. € Int VT (27) if and only if ¢ €]0, c.| .
Moreover, p., € OD(2w) (and, consequently, p., € V1 (2m)) and the equation (14.1) with ¢ = ¢, is
unstable.
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Proof. For any a € [0, 2x] put

A(a) &' {c >0: we(t)>0fort E]a,a+27r]},

where w, is solution of the initial value problem
w” =p(Hw; w(a) =0, w'(a)=1.
By virtue of Proposition 5.2, if ¢ > 0 and
k*(2m) 12|22 < 1

then p. € Int D(27). Taking, moreover, into account Proposition 2.2, we get

1
}O, o { C A(a) for a € 0,27]. (14.2)
\/3mk*(2m)
In particular, A(a) # @ for a € [0,2x]. On the other hand, by virtue of Corollary 2 of [17], if
a+2m
- / sin? ~ 5 % pes) ds > %

a

then ¢ € A(a). Consequently, the sets A(a) are bounded from above.

Put
c(a) T sup A(a). (14.3)
In view of (14.2), it is clear that
1
c(a) > \/W (14.4)
Now we will show that
c(a) & A(a). (14.5)

Suppose the contrary, let c(a) € A(a). Then, in view of Fredholm’s first theorem (for Dirichlet
problem), the problem
Uy = pe(a)(t)uo;  ugla) =1, ugla+2m) =1
possesses a unique solution ug and ug(t) > 0 for ¢ € [a,a + 27]. It is clear that there are g > 0 and
€1 > 0 such that
0<wup(t)—eg<er for t€la,a+2n].
Put v(t) = ug(t) —eo for t € [a,a + 27] and ¢; = ¢(a)(1 + i—‘;) One can easily verify that

0" (t) = Pe(ay (1)v(t) + €0Pe(a) ()
< Pe(a)(B)v(t) + gpda) (t)v(t) = pe, (t)v(t) for t € [a,a + 27]. (14.6)

Let now w be a solution of the problem
w” = pe, Ow;  w(a) =0, w'(a)=1.

In view (14.6) and Sturm’s comparison theorem one can easily verify that w(t) > 0 fro ¢t € ]a, a + 27].
Consequently, ¢; € A(a). However, ¢; > c¢(a) which contradicts (14.3). Therefore, we have proved
that (14.5) holds.

Let now {cy}/2] C A(a) be such that

lim ¢ = ¢(a). (14.7)

k—+oco

For any k € N, denote by wy, the solution of the problem
wy = pe, (Dwy;  wi(a) =0, wi(a) = 1.
Let, moreover, wg be a solution of the problem
Wy = Pe(a)(Hwo;  wo(a) =0, wy(a) = 1.
In view of (14.7) and well-posedness of the Cauchy problem it is clear that
lim wy(t) = we(t) uniformly on [a,a + 27]. (14.8)

k—+oco
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On the other hand, since ¢, € A(a), we have wg(t) > 0 for ¢t €]a,a + 27|, k € N. Hence, on account
of (14.8), we get wo(t) > 0 for ¢ € [a,a + 27]. Since wy is a nontrivial solution of the linear equation
we get from the previous inequality that wo(t) > 0 for ¢ €]a,a+27[. Taking now into account (14.5),
we conclude that wg(a 4 27) = 0. Thus we have proved that, for any a € [0, 27], the problem

u" = peyu;  u(a) =0, u(a+2m) =0, (14.9)
where c(a) is defined by (14.3), possesses a solution u such that
u(t) >0 for t€la,a+ 2n]. (14.10)
Mention that, by virtue of Corollary 2 of [17], if
27
- /sin2 %pc(o)(s) ds > %
0

then the problem (14.9) with a = 0 has no solution satisfying (14.10) with a = 0. Hence, we get

c(0) < %- (14.11)
Now let
. ©inf{c(a): a € [0,2q]}. (14.12)

. 1 1 . .
In view of (14.4) and (14.11), clearly ¢, € %/W’ §[- Let ¢ €]0,¢.[. Then, in view of (14.12),
we have that ¢ < ¢(a) for any a € [0, 27]. Hence, by virtue of Sturm’s comparison theorem, ¢ € A(a)
for any a € [0, 27] and, consequently, in view of Proposition 2.2, we get

pe € It D(27w) for ¢ €]0,cl. (14.13)
Hence, by virtue of Theorem 9.3, for every ¢ €0, ¢,[, we have
pe € Int VT (27). (14.14)

Taking, moreover, into account Proposition 2.1, we obtain from (14.13) that p., € D(2w) (and,
consequently, by virtue of Theorem 9.3, p., € V*(27)).
Now we will show that
De, € OD(27). (14.15)

Since p., € D(2w) and D(2r) = D(27) (see Proposition 2.1), it is sufficient to show that p., ¢
Int D(27). Suppose the contrary, let p., € Int D(27). Then there is a ¢ > ¢, such that pz € Int D(27)
and, consequently, by virtue of Proposition 2.2, ¢ € A(a) for any a € [0, 27]. Hence, in view of (14.3),
we get that c¢(a) > ¢ > ¢, for any a € [0,2n] which contradicts (14.12). Thus we have proved that
(14.15) is fulfilled.

By virtue of Sturm’s comparison theorem and (14.15), we have that if ¢ > ¢, then p. & D(2)
and, consequently, in view of Theorem 9.3, p. & V¥ (27). Theorem 9.3 and (14.15) yield that p., €
Int V*(27). Thus the inclusion (14.14) holds if and only if ¢ €]0, ¢, .

Now we will show that the equation

u' = pe, (t)u (14.16)
is unstable. First of all we mention that, by virtue of [10, § 11, Theorem 5.1], if
3
/(sfw)(37rfs)\pc(t)|ds <27 (14.17)

T

then ¢ € A(m). By direct calculations one can easily verify that the inequality (14.17) is equivalent to
¢ < 5—3—. Hence, in view of (14.3), we have

212 —6"
3
> —.
e(m) 2 212 —6
However, 7—#— > 1 and, consequently, (14.11) and (14.18) imply that ¢(0) < ¢(x). Taking now into
account (14.12), we get

(14.18)

cs < ). (14.19)
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Hence, by virtue of Sturm’s comparison theorem, we obtain that
¢y € A(m). (14.20)

To prove that the equation (14.16) is unstable we first show that the Floquet multipliers pq and
o of the equation (14.16) are real valued.

Suppose that the Floquet multipliers are complex valued. Then, by virtue of Theorem 7.3, there
are «, 3 € R and linearly independent solutions v and v of the equation (14.16) such that

u(t +27) = au(t) — po(t), v(t+27) = Pu(t) + av(t) for t € R. (14.21)
On the other hand, by virtue of (14.15) and Proposition 2.3, there is an a € [0,27] such that the
problem
uy = pe, (H)ug;  uo(a) =0, wupa+2m)=0
possesses a nontrivial solution ug. Hence, there are constants ¢y, c2 € R such that |c;| + |ez| # 0 and
ug(t) = cru(t) + cav(t) for t € [a, a+ 27]. Consequently, the pair (¢, ¢2) is a nontrivial solution of the
system of algebraic equations
cru(a) + cav(a) = 0,
au(a+ 27) + cov(a + 27) = 0.
However, this system possesses a nontrivial solution if and only if u(a)v(a + 27) — u(a + 27)v(a) = 0.
Hence, in view of (14.21), we get 3(u*(a)+v*(a)) = 0 and, consequently, u(a) = 0 and v(a) = 0 which
contradicts the linear independence of u and v. Thus we have proved that the Floquet multipliers are
real valued.

In this case, by virtue of Floquet theory, the equation (14.16) is stable if and only if uy = po,
|#1] = 1 and any solution u of the equation (14.16) satisfies

u(t+2m) = pyu(t) for t € R. (14.22)
In view of (14.20), the solution u of the problem
W' =pe, (Hu; w(m) =0, u(7m)=1

satisfies u(t) > 0 for ¢ €]m, 3w|. Hence, (14.22) does not hold for ¢t = 7 and thus, the equation (14.16)
is unstable. O

Remark 14.2. Mention that

15. APPENDIX

Definition 15.1. We say that the function p € L,, belongs to that set V= (w) (respectively, VT (w))
if for any function u € AC([0,w]) satisfying

u’(t) > p(t)u(t) for t €[0,w], (15.1)
uw(0) = u(w), u'(0) > u'(w), (15.2)

the inequality

u(t) <0 for ¢t €[0,w] (respectively, u(t) >0 for ¢ € [0,w])
is fulfilled.
Proposition 15.2. ﬁf(w) =V (w).
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~

Proof. Clearly, 9*(w) C V= (w). Show that V™ (w) € V™~ (w). Let p € V™ (w) and a function u €
AC([0,w]) satisfy (15.1) and (15.2). Suppose that

u'(0) > u'(w) (15.3)
because otherwise the inclusion p € V™ (w) implies
u(t) <0 for t e [0,w]. (15.4)
In view of (15.1), clearly
u”’(t) = p(t)u(t) + q(t) for t € [0,w], (15.5)
where
at) L' () — pityu(t) for t € [0,w), (15.6)
q(t) >0 for te[0,w]. (15.7)

Since p € V™ (w), the problem

"

o = pt)o +q(t); v(0) = v(w), v(0) = v/(w) (15.8)

possesses a unique solution v and

v(t) <0 for te[0,w]. (15.9)
Put w(t) d:du(t) —o(t) for t € [0,w]. Tt follows from (15.1), (15.2), (15.3), and (15.8) that
w”(t) = p(t)w(t) for t € [0,w], (15.10)
w(0) = ww), w'(0)>w'(w). (15.11)
In particular, w # 0. Taking, moreover, into account that p € D (see Theorem 8.1), we get that either
w(t) >0 for t € [0,w], (15.12)
or
w(t) <0 for te0,w]. (15.13)

If (15.12) holds then, in view of (15.10), (15.11), and the condition p € D, it follows from Theorem 9.1
(with v = w) that p € V*(w) which contradicts our assumption. Therefore, we have proved that

(15.13) is fulfilled. Inequality (15.4) now follows from (15.9) and (15.13). O
Remark 15.3. Let p € V™ (w), g € L, ¢ € R, and the functions v and v are solutions of the problems
v =pt)u+q(t); u(0) =u(w), v (0)=1u(w)+c, (15.14)
v =p(t)v+q(t); v(0) =v(w), v (0) =1 (w). (15.15)

During the proof of Proposition 15.2, it was shown that if ¢ > 0 then
u(t) <wv(t) for te0,w].
Consequently, if
q(t)>0 for te€[0,w], ¢>0, (15.16)
c+mes{t € [0,w]: ¢(t) >0} >0, (15.17)
then the unique solution u of the problem (15.14) satisfies
u(t) <0 for ¢ e [0,w].

) =VH(w).

(w
Proof. Show that V(w) C V*(w). Let p € V(w) and a function u € AC'([0,w]) satisfy (15.1) and
(15.2). If v/(0) = u/(w) then, in view of the inclusion p € VT (w), we have that

w(t) >0 for te[0,w). (15.18)

Suppose that (15.3) holds. In view of (15.1), clearly (15.5) holds, where the function g¢ is defined by
(15.6) and satisfies (15.7). Since p € V*(w), the problem (15.8) possesses a unique solution v and

v(t) >0 for te[0,w]. (15.19)

Proposition 15.4. V*
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Put w(t) ef u(t) —v(t) for t € [0,w]. In view of (15.1), (15.2), (15.3), and (15.8), we get that (15.10)

is fulfilled and

w(0) = ww), w'(0) <w'(w). (15.20)
Taking, moreover, into account that p € D(w) (see Theorem 9.1), we get that either
w(t) >0 for t€]0,w|, (15.21)
or
w(t) <0 for t€]0,w]. (15.22)

Now we will show that (15.22) holds. For this first let us show that w(0) < 0. Indeed, if w(0) > 0
then clearly

w(t) >0 for t e [0,w].
Taking, moreover, into account (15.10) and (15.20), it follows from Theorem 8.3 (with v = w) that
p € V™ (w) which contradicts our assumption. Thus we have proved that

w(0) <0.

If w(0) = 0 then, in view of (15.20), clearly (15.22) is fulfilled, while if w(0) < 0 then the validity
of (15.22) is evident. Thus we have proved that (15.22) holds. Inequality (15.18) now follows from
(15.19) and (15.22). O

Remark 15.5. During the proof of Proposition 15.4 it was shown that if p € VT (w), ¢ € L, ¢ > 0,
and u and v solutions of the problems (15.14) and (15.15), respectively, then

u(t) > v(t) for t e 0,w].
Taking, moreover, into account Remark 9.2, we get that if (15.16) and (15.17) are fulfilled then
u(t) >0 for ¢t €]0,w|.
Remark 15.6. Let p € V™ (w) (respectively, p € V1 (w)), q € L, and the functions u,v € AC'([0,w])
satisfy
W(1) > pltyult) + q(t), "(t) < pt)o(t) + qlt) for t e [0,],
uw(0) = u(w), u'(0) > (w), v(0)=0vw), v(0)<v(w).

Then, by virtue of Proposition 15.2 (respectively, Proposition 15.4), the inequality

u(t)<v(t) for t€[0,w] (respectively, wu(t)>wv(t) for te[0,w])
holds.



CHAPTER 3

Periodic Boundary Value Problem

16. POSITIVE SOLUTIONS OF LINEAR PROBLEM

Consider the problem
v =pt)u+q(t); u(0)=uw), v'(0)=1u(w), (16.1)

where p,q € L,. Recall that under a solution of the problem (16.1) we understand a function u €
AC([0,w]) satisfying given equation almost everywhere in [0,w] and boundary conditions. In this
chapter, we will deal with the existence of a positive solution of the problem (16.1). Introduce the
definition

Definition 16.1. We say that the vector function (p,q): [0,w] — R? belongs to the set U(w) if the
problem (16.1) is uniquely solvable and its solution is positive.

As it was mentioned in Remark 8.2 and Remark 9.2 if ¢ Z 0 then each of the conditions
q(t) <0 for te€0,w], pEV (W)
and
q(t) >0 for t€[0,w], pe V(W)

guarantee the inclusion (p, q) € U(w). Results stated below cover also the case when the function g is
not of a constant sign.
Recall that the numbers Q1 , Q_ and p(p) are defined by (0.13) and (0.12), respectively.

Theorem 16.2. Let p € V™ (w), ¢ Z 0, and

Q> p(0)Qs- (16.2)
Then (p,q) € U(w). Moreover, the unique solution u of the problem (16.1) satisfies the estimate
~1
u(t) > (Q- = p)Q+) (PPl ~ lipl-[l,) — for ¢ € [0,]. (16.3)

Proof. In view of Proposition 10.8 we have that |Hp]+HL > H[p],HL Consequently, p(p)H[p}JrHL—

H[p],HL > 0 and [p]; # 0. Hence, in view of Remark 8.4 we have [p]y € V™ (w). Introduce the
notation

(@ - p0@) (pllie ], 16-1,) (16.4
Clearly, ¢ > 0. Since [p]+ € V™ (w) the problem
o = [p(t)]ya = c[p(t)]- +q(t);  a(0) = aw), o(0)=a'(w) (16.5)

possesses a unique solution a. Suppose that
m =min{a(t): t €[0,w]}
and choose a € [0,w] such that
ala) =m. (16.6)
Denote by v the solution of the problem

" = [pt)]+v; wv(a) =1, via+w)=1. (16.7)

61
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By virtue of Proposition 6.11, v satisfies the inequalities

w w
—— <v(t) < —— for t €la,a+ wl, 16.8
i <0 < o) Jo,a+ o (16.8)
where vy is a solution of the problem
o = [p(t)]svai vala+w) =0, vhlatw)=—1.
It follows from (16.7), in view of (16.8), that
a+w

0 < v/(a+w)—v'(a) = /[p(s)] o(s)ds < - p(p)[Ip+ ] (16.9)

On the other hand, it is clear that
(v’(t)oz(t)—v(t)a’(t))l:c[p(t)]_v(t)—q(t)v(t) for t€(a,a+w].
Integration of this equality on [a,a + w] yields
a+w a-+w

m(v'(a +w) —v'( —c/[p s)ds — / q(s)v(s)ds.

Hence, on account of (16.8) and the condition [¢]— # 0, we get
(CH[p]— |, +Q- - p(p)Q+)

m(v'(a+w) —v'(a)) > (@)

which, together with (16.9), results in

a(t) >c for te0,w]. (16.10)
In view of (16.10), it follows from (16.5) that
a'(t) = p(t)a(t) +q(t) for t € [0,w],
0(0) = a(e), o/(0) = o'(0). 1oty

(

Let now u be a solution of the problem (16.1). Since p € V~(w) and (16.11) holds we get, by
virtue of Remark 0.6, that u(¢) > «(t) for ¢ € [0, w] which, together with (16.10), implies the desired
estimate (16.3). O

Remark 16.3. Condition (16.2) in Theorem 16.2 is optimal and cannot be weaken to the inequality
Q- = (1-)p(p) Qs (16.12)
no matter how small € €]0, 1] is. Indeed, let € €]0,1[ and § > 0 be such that

25 1
€ —1_6.

Put w = 2,
def def
p(t) =94, q(t) = (1+0)cost— (1—¢)d.
Since § > 0, in view of Remark 8.4, we have p € V™ (w). By direct calculation one can easily verify
that (16.12) holds. On the other hand, the function u(t) ) c—costforte [0,w] is a solution of
the problem (16.1) and its minimum is negative. Consequently, (p,q) € U(w).

Before the formulation of the next result we mention that if p € Int V' (w) then, in view of Theo-
rem 9.1, p € Int D(w) as well. It allows us to use the number v*(p) defined by (6.22) in formulation
of the next result.

Theorem 16.4. Let p € Int V¥ (w), ¢ Z0, and

Q+ = v (p)p(p)Q-. (16.13)
Then (p,q) € U(w). Moreover,
e[l > [lp-+ I, (16.14)
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and the unique solution u of the problem (16.1) satisfies the estimate

—1
u(t)> (@4 = )p@)Q-) (v @pwIIpl- |~ e ],) — for t € 0,0 (16.15)
Proof. Let u be a solution of the problem (16.1) and
m % min {u(t): t€[0,w]}.
Choose a € [0,w[ such that
u(a) =m.
Since p € IntV*(w), we have that [p]- # 0 (because otherwise, in view of Remark 8.4, we get

p € V™ (w) UVy(w)). Moreover, in view of Theorem 9.1', p € Int D(w) as well. Hence, by virtue of
Proposition 6.12 (and (6.22)), the unique solution v of the problem

vV =pt)v; wv(a)=1, ve+w)=1 (16.16)
satisfies the estimates
<wv(t) <v*(p) for t € [a,a+ w]. (16.17
) (t) <v*(p) [ ] )
It is clear that v'(a) # v'(a + w) (because otherwise p € Vy(w)). Moreover,
v'(a) > v'(a+w), (16.18)

because otherwise, in view of Theorem 8.3 (with v = v), we get p € V™ (w). On the other hand, it
follows from (16.16) that

a+w a+w

o (a) = v'(a+w) = / [p(s)] - v(s) ds — / [p(s)]0(s) ds

a

which, together with (16.17) and (16.18) imply

0 < va) = v'(a+w) < v @)l ~ o el (16.19)

Consequently, the inequality (16.14) holds.
It follows from (16.1) and (16.16) that

(v (t)v(t) — u(t)v’(t))/ =q(t)v(t) for t € [a,a + w].

The integration of this equality on [a, a + w] results in

atw atw
m(v'(a) —v'(a 4+ w)) = / [q(s)]4v(s)ds — / [q(s)]-v(s)ds. (16.20)

Since ¢ #Z 0 and (16.13) holds, we have [¢]+ # 0 as well. Hence, in view of (16.17), it follows from
(16.20) that
1
m(v'(a) —v'(a +w)) > — Q4 — v (p)Q_,
( ( ) ( )) p(p) + ( )
which, together with (16.19), yields the desired estimate (16.15). O

Remark 16.5. As it is clear from the proof of Theorem 16.4, the inclusion p € Int V¥ (w) implies the
validity of (16.14).

The next assertion follows immediately from Theorem 16.4.

Proposition 16.6. Let p € Int VT (w). Then there is a ¢ > 0 such that, for any nontrivial function
q € L, satisfying Q+ > cQ_, the unique solution u of the problem (16.1) is positive (and, consequently
(p,q) € U(w)).

Mention that the assumption p € Int V*(w) in Proposition 16.6 is optimal and cannot be weaken.
More precisely
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Proposition 16.7. Let p € VT (w) \ Int VT (w). Then, for any r > 0, there exists a function q € L,
such that

Qs >rQ_ (16.21)
and the unique solution u of the problem (16.1) satisfies
min {u(t) : ¢ € [0,w]} <0. (16.22)

Proof. In view of Proposition 10.5, the inclusion p € D(w) holds. Hence, by virtue of Proposition 2.3,
there is an a € [0,w[ such that the problem

v =p(t)v; wv(a) =0, via+w)=0 (16.23)

possesses a solution v such that

v(t) >0 for t€la,a+wl. (16.24)
Clearly,
v'(a) > v'(a+w). (16.25)
Let r > 0 be fixed. Since
a+x
. 1
£1—1>r(r)1+ p / v(s)ds =0, (16.26)
a
there is a xy €]0,w| such that
a+xo a+w
"o ue)yds < X / (s)ds (16.27)
— — v . .
Zo w
a a+xo

Set .
— for t € [a,a+ xo],
To
q(t) =

1
- for t €la+ x0,a + w]
and extend it periodically. Clearly, (16.21) holds. Moreover, in view of (16.27), we have

a+w

[ aonisas <o, (16.28)

a

Let now u be a solution of the problem (16.1). Then, in view of (16.1) and (16.23), we get
(u' ()o(t) — u(t)' (t)) = q(t)o(t) for t € [a,a+ w)]. (16.29)

The integration of this equality on [a, a 4+ w] results in
a-+w

u(a)(v'(a) —v'(a+w)) = / q(s)v(s)ds. (16.30)
a
Hence, in view of (16.25) and (16.28) we get that u(a) < 0 and, consequently, (16.22) is fulfilled. O

The next assertion also follows from Theorem 16.4.

Proposition 16.8. Let p € Int V¥ (w). Then there is a co > 0 such that, for any nontrivial function
q € Ly, satisfying q(t) > 0 fort € [0,w], the unique solution u of the problem (16.1) admits the estimate

u(t) > collgllr  for t € [0,w].
Mention that the assumption p € Int V¥ (w) in Proposition 16.8 is optimal and cannot be weaken.

More precisely

Proposition 16.9. Let p € V' (w) \ Int V¥ (w). Then, for any e > 0, there exists a function q € L,
such that
q(t) 20 for t €[0,w], [lqllr =1, (16.31)

and the unique solution u of the problem (16.1) satisfies
min {u(t) : ¢t € [0,w]} <e. (16.32)
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Proof. In view of Proposition 10.5, we have p € 9D(w). Hence, there is an a € [0,w| such that the
problem (16.23) possesses a solution v satisfying (16.24). Clearly, (16.25) and (16.26) hold. Put

d=1v'(a) —v'(a+w) (16.33)
and fix £ > 0. In view of (16.26), there is a 2y € ]0,w[ such that

1 a+xo
— / v(s)ds < €6. (16.34)
Zo

Set
L for t € [a,a + xo[
— for a,a+ xol,
q(t) = 4 o ’ (16.35)
0 for t€la+xp,a+w

and extend it periodically. It is clear that (16.31) holds.
Let now u be a solution of the problem (16.1). Then (16.29) is fulfilled and, consequently, (16.30)
holds as well. Hence, in view of (16.33)—(16.35) we get

a+xo

du(a) = — / v(s)ds < &d

which implies (16.32). O
Corollary 16.10. Let p € Int V' (w), —[p]- € Int D(w), ¢ # 0 and
Qv 2 v (=[p]-)Q-. (16.36)
Then (p,q) € U(w). Moreover, the unique solution u of the problem (16.1) admits the estimate
u(t) > 9= (=[p]-)p(P)Q-
v (=[pl-)pm)||lpl- |,

Proof. On account of Theorem 9.3, we have —[p]_ € Int VT (w). Hence, by virtue of Theorem 16.4,
the unique solution ug of the problem

ug = —[p(t)]-uo + q(t);  uo(0) = uo(w), up(0) = up(w) (16.38)
(is positive and) satisfies the estimate

Q+—V (— [P} )p(p)Q— fo
e ||pl-]],

for t € 0,w]. (16.37)

uo(t) > r t€[0,w]. (16.39)

Since ug is positive, we get from (16.38) that
ug(t) < p(t)uo(t) +q(t) for ¢ € [0,0];  uo(0) = uo(w), up(0) = up(w). (16.40)

Let now u be a solution of the problem (16.1). By virtue of (16.1) and (16.40), it follows from
Remark 0.6 that

u(t) > up(t) for t € [0,w]
which, together with (16.39), yields the desired estimate (16.37). O

Next corollary follows from Corollary 16.10, Proposition 6.5, and Proposition 6.8.
Corollary 16.11. Letp € L,,pZ0,p <0, ¢ #0,
4
Il < *+* eI, (16.41)

and

Qy > coQ-, (16.42)

where
o =1+ [l (5 + -1 - ol )
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Then (p,q) € U(w). Moreover, the unique solution w of the problem (16.1) admits the estimate

SR EE (Q+ —cQ-) for t€[0,w]. (16.43)
cofllpl- |l

Next assertion follows from Corollary 16.10, Proposition 6.6, and Proposition 6.8.

Corollary 16.12. Letpe€ L, p#£0,p <0, [p|> € L,, ¢ Z0,

u(t) >

W2, <1, (16.44)
and
R+ > aQ-, (16.45)
where
er =1+ % [lpl- ], (1 = o) 2 ||L)
Then (p,q) € U(w). Moreover, the unique solution u of the problem (16.1) admits the estimate
W) > —— Qs —e1Q_) for t € [0,u]. (16.46)
e[l

Remark 16.13. Conditions (16.42) and (16.45) in Corollaries 16.11 and 16.12 are optimal and cannot
be weaken to the conditions

Qi > (1—e)Q_, resp. Q4 > (1-e)rQ, (16.47)

no matter how small € €]0,1[ is. Indeed, let w > 0 and € €]0, 1] be fixed. Put p(t) L5 for t € R.

By direct calculation one can easily verify that there is a § > 0, small enough, such that (16.41) and
(16.44) are fulfilled and

(I—g)ep<l, (1—-¢e)y <1 (16.48)

Let now g € L, be such that ¢ £ 0 and Q4 = Q_. In view of (16.48), the inequalities (16.47) are

fulfilled. Finally, let u be a solution of the problem (16.1). Clearly, u # 0 (because otherwise ¢ = 0)

and
5/ /()dS—Q+—Q—

Hence, min{u(t) : t € [0,w]} < 0 and, consequently, (p,q) € U(w).

Next assertion follows from Proposition 6.9, Theorem 12.3 and Theorem 16.4. Mention that, in
contrast to the previous assertions, it does not exclude the case when p > 0.

Corollary 16.14. Let p,q€ L,, p#0, ¢ £0,

§ < @<]|e<p><s>|ds)27
0

2 m -
(- (ot —1)2) <P
and
Q+ > cp(p)Q-,
where , ,
e « e “ _]- —
C d:f € , Co :f € \/m
1—c 194

Then (p,q) € U(w).

Before the formulation of the next result introduce the notations. Let p € D(w) and a € [0,w].
Denote by v1, and vy, solutions of the problems

v, = p(t)via; via(a) =0, vi,(a) =1, (16.49)
vhy = p(t)vaa;  vau(a+w) =0, vh,(a+w)=—1, (16.50)

respectively. Since p € D(w) it is clear that
v1a(t) >0, v2e(t) >0 for t€la,a+w|. (16.51)
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Let now v €]0,1/2[. Then it is clear that v,," " € L([a,a +w]), i = 1,2. Put

a-+tw 1—v

def 1 v
oy, (p) = sup ||Uia|‘c([a,a+w]) W

It is not difficult to verify that p(p) is a finite number.
As it was mentioned above (see Proposition 16.7) if p € V1 (w) \ Int V*(w) then the assumption
like (16.21) does not guarantee the inclusion (p, ¢) € U(w). However, the following theorem is true.

:ae 0wl ¢:1,2}. (16.52)

Theorem 16.15. Let p € VT (w), v €]0,1/2[, and the function q € L,, satisfy the inequality

g+l > e @)lal-1l,- (16.53)
Then (p,q) € U(w). Moreover, the unique solution u of the problem (16.1) admits the estimate
u(t) > W< a4l = i (®)]|lal- | ) for t €[0,w]. (16.54)
-z

Proof. Let a € [0,w]. If v14(a +w) = 0 then v, (a + w) = 0 as well and, in view of (16.51),
vi,(a+w) —vi,(a) <0 and v),(a+ w) — vh,(a) < 0.
On the other hand, if v1,(a + w) # 0 then, in view of the equality

V], (£)v2q (t) — v14(t)0h, (t) = Const.

we get that vig(a + w) = vae(a). Put v(t) def V1a(t) + v2u(t) for t € [a,a + w]. It is clear that

7' (t) = p(t)y(t), ~({#)>0 for t € [a,a+w], ~(a)=r~(a+w),

and 7/(a) # 7'(a + w) (since otherwise p € Vy(w)). Hence, in view of Theorem 8.3 and Remark 8.6,
we get that 7'(a + w) < 7/(a) (since otherwise p € V™ (w)). Therefore, v}, (a + w) — vi,(a) <
vh,(a) — vh,(a + w). Consequently, either

v, (a+w) —vi,(a) <0, (16.55)
or

vh, (a+ w) — vh,(a) < 0. (16.56)
Thus we have proved that for any a € [0, w], either (16.55) or (16.56) holds.

Let now u be a solution of the problem (16.1), where ¢ € L, satisfies (16.53). Put m def min{u(t) :
t € [0,w]} and choose a € [0,w[ such that

u(a) =m. (16.57)
Clearly,
u'(a) = 0. (16.58)
Suppose without loss of generality that (16.55) holds. It is clear that,
(u' (t)v1a(t) — u(t)},(8) = q(t)via(t) for t € a,a +w].
Integration of this equality on [a, a + w], together with (16.57) and (16.58), yields
atw atw

“m(ely(a+w) = i (@) = [ laeea()ds— [ la)]-on(s)ds (16.59)
a a
By virtue of Holder’s inequality we have
a+w
la ""HL'/ <A )] +v1a(s) ds,
where
atw 1—v
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On the other hand,
a-t+w

[ la(6))-v1a5)ds < [lal-] loral o

a

Taking, moreover, into account (16.55), we get from (16.59) that

1
m’via(a + w) - vlla(a’)| > Z(H[q]JFHL" - AH[q]*HL”vlaHC([a,a+w])>' (1660)

On the other hand, in view of (16.51) and (16.55), it follows from (16.49) that
a+w a+w

e +©) = vha@)] = = [ p(s)ora(s)ds < [ p(5)]-v1a(6)ds < -] Boralltiaare
Taking, moreover, into account (16.52) and (16.53), we get from (16.60) that (16.54) holds and,
consequently, (p,q) € U(w). O

Theorem 16.15, together with Proposition 4.3, implies

Corollary 16.16. Let p € V' (w), v €]0,1/2[, and

(1—-v)(1-2v)
wH[p}JrHL < 2 :
Let, moreover,

1-v
o> (wr)

[q]-|

H[CI]+‘ L

where

P =) (@0 /=0 e = oelblel,)
Then (p,q) € U(w).

Remark 16.17. Let p(t) ef 72—2. Then p € VT (w), v1a(t) = v2q(t), and v14(t) = £ sin(Z (t — a)) for
t € R. One can easily verify that
1-0 F( 1—2v ) 1;“
\ N A (=)
py(p) = 72 (*) <_y> ,
T F(Qg(léy))

where I' is the Gamma function of Euler.
In particular, for v = 1/3 we get

Therefore, Theorem 16.15 implies
Corollary 16.18. Let

)l

w2 /T
a2 (3
Then (—g—z,q) e Uw).
Remark 16.19. Consider the problem
W = p(tu+g(t); u(0) = uw), W(0) = ') +e. (16.61)

In view of Remark 15.3 (respectively, Remark 15.5), it is clear that if p € V™ (w) (respectively,
p € VT (w)), (p,q) € U(w), and ¢ < 0 (respectively, ¢ > 0), then the unique solution of the problem
(16.61) is positive.

Definition 16.20. We say that the vector function (p, q): [0,w] — R? belongs to the set Uy (w) if the
problem (16.1) is uniquely solvable and its solution is nonnegative.
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Remark 16.21. It is clear that U(w) C Up(w). Let the problem
v =pt)u; uw(0) =uw), v (0) =14 (w), (16.62)
has no nontrivial solution, go € L, qo # Const. Denote by ug and vy solutions of the problems
ug = p(thuo +1; uo(0) = uo(w), uy(0) = ug(w),
vg = p(t)vo +qo(t);  vo(0) =vo(w), v5(0) = vh(w).

Put m & min{ug(t) : t € [0,w]},
e t
A € min _w® s te0,w] p,
up(t) —m+1
and .
w(t) E vg(t) = Aluo(t) —m +1) € [0,u].
It is clear that, w(t) > 0 for ¢ € [0,w], w # 0, and there is a ¢ty € [0,w] such that w(ty) = 0. On the
other hand, by direct calculation one can easily verify that the function w is a solution of the problem
(16.1) with ¢(t) Lof qo(t) — AM(m — D)p(t) + A. Clearly, ¢ #Z 0 because otherwise we get that w = 0.
Thus we have shown that if the problem (16.62) has no nontrivial solution then there exists a function
q € L, such that ¢ # 0 and (p,q) € Up(w) \ U(w).

Proposition 16.22. The inclusion (p,q) € Uy(w) holds if and only if there exists a sequence {g, },;125 C
L, such that (p,qn,) € U(w) for n € N and

i lgn —gllz = 0. (16.63)
Proof. Let (p,q) € Up(w) and u be a solution of the problem (16.1). Put g, (¢) 2 q(t) — L p(t) for
def

t € [0,w], n € N. Clearly, (16.63) holds. On the other hand, since the function v(t) = u(t) + % for
t € [0,w] is a solution of the problem

v =pt)v+ g, (t); v(0) =v(w), v'(0) =" (w)
and v(t) > 0 for ¢t € [0,w], we get (p,q) € U(w) for n € N as well.

Let now {q,}, > C Ly, (p,qn) € U(w) for n € N, and (16.63) hold. Denote by u and u,, solutions
of the problems

v =p(tu+qt); u(0) =u(w), v'(0)=1u(w),

Uy = p)n + qn(t); un(0) = un(w), u,(0) = uy (w),
respectively. Since u,(t) > 0 for ¢ € [0,w], n € N, and nEI-Ts-loo l|un, — ullc = 0 (see Lemma 3.1) we get
that u(t) > 0 for ¢ € [0,w] and, consequently, (p,q) € Up(w). O

17. SOLVABILITY OF NONLINEAR PROBLEM

Consider the problem
u’ = f(t,u);  u(0) =u(w), u'(0)=1u(w), (17.1)

where f € K([0,w] x R;R). Under a solution of the problem (17.1) we understand a function u €
AC([0,w]) satisfying given equation for almost all ¢ € [0,w] and boundary conditions.

Theorem 17.1. Let the inequality

f(t,x)sgna > p(t)|x| —q(t, |z]) for t€[0,w], z€R (17.2)
be fulfilled, where q € Kq([0,w] x R;Ry). If, moreover,
peV (w), (17.3)

then the problem (17.1) has at least one solution.

Before proving of Theorem 17.1 recall two well-known results from the theory of periodic boundary
value problems (see, e.g., [4]).
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Proposition 17.2. Let there exist a, 3 € AC ([0,w]) such that
a(t) < B(t)  for t €[0,w], (17.4)

a’(t) > f(t,at)) for te[0,w], a(0)=alw), a'(0)>dad(w), (17.5)
BI(t) < f(t,B(1) for te[0,w], B(0)=pB(w), B(0)<p(w) (17.6)

Then the problem (17.1) has at least one solution u satisfying
a(t) <u(t) < B(t) for t € [0,w]. (17.7)

Proposition 17.3. Let the problem
W =pt)u;  u(0) =u(w), u'(0)=1u(w)
have no nontrivial solution and q € Kq([0,w] x R;R). Then the problem
v =pt)u+q(t,u); w0)=u(w), u'(0)=1u'(w)
is solvable.

Proof of Theorem 17.1. By virtue of (17.3), Remark 0.5, and Proposition 17.3, the problems

" =pt)a+q(t,|al); a0)=a(w), o'(0)=a(w), (17.8)
B =pt)B —q(t,18]); B(0) = B(w), B(0)=p5(w) (17.9)

possess solutions « and (3, respectively. Since p € V™ (w) and ¢ > 0 we have
a(t) <0< B(t) for te[0,w]. (17.10)
On the other hand, in view of (17.2) and (17.8)—(17.10), clearly (17.4)—(17.6) are fulfilled. Conse-
quently, by virtue of Proposition 17.2, the problem (17.1) has at least one solution. O

Remark 17.4. Condition (17.3) in Theorem 17.1 is optimal and cannot be weakened (even to p €
V~(w)). Indeed, let p € V™ (w). Then, by virtue of Proposition 10.10, there is a p € Vy(w) such that
5(0)

P(t) > p(t) for t € [0,w]. Let f(t,2) < 5(t)z + 1 for t € [0,w], x € R. Clearly, (17.2) is fulfilled (with
q(t,x) Lef 1). However, by virtue of Fredholm’s third theorem, the problem (17.1) has no solution.

Remark 17.5. Theorem 17.1 together with the results of Section 11 implies several efficient conditions
for solvability of the problem (17.1), which generalize and make more complete previously known ones.
For example, Theorem 17.1 and Remark 8.4 imply Theorem VII-1.1 in [4] which in its turn improves
results of Mawhin [19], while Theorems 17.1 and 11.1 improve results of [8] (see also Theorem VII-1.2
in [4]).

Consider again the problem (17.1) and suppose that
[ € Kioe([0,w]x 10, +00[; R). (17.11)

Recall that under a solution of (17.1) now we understand a positive function u € AC'([0,w]) satisfying
the given equation for almost all ¢ € [0,w] and the boundary conditions. The setting of the problem
does not exclude the case when the function f has a singularity in the second variable (for u = 0). In
this case the problem (17.1) is called phase singular.

Proposition 17.6. Let (17.11) hold and there ezist o, 3 € AC ([0,w]) such that a(t) > 0 fort € [0,w]
and (17.4)—(17.6) are satisfied. Then the problem (17.1) has at least one solution u satisfying (17.7).

Proof. Let

X(t,z) % % (|x —a(t)| - |z — B)| + alt) + B(t)) for ¢t € [0,w], z€R, (17.12)

[e}
=

Ft,2) ¥ ft, x(t,2)) for te[0,w], z€R. (17.13)

Since 0 < a(t) < B(t) for t € [0,w], we have that a(t) < x(¢t,z) < B(t) for ¢t € [0,w] and = € R. Hence,

the function f is correctly defined and, moreover, f € K([0,w] x R;R). Mention also that, in view of
(17.4)~(17.6), (17.12), and (17.13), the inequalities

o(t) = f(t,a(t), B"(t) < f(t.B(t) for t€[0,w]
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are fulfilled. Hence, by virtue of Proposition 17.2, the problem

u' = f(t,u);  u(0) =wu(w), u'(0)=1u(w)

has at least one solution u satisfying (17.7). On account of (17.7), (17.12), and (17.13) we get that
the function wu is a solution of the problem (17.1) as well. O

18. SOME AUXILIARY HYPOTHESES

In this chapter we will state some hypotheses guaranteeing the existence of the functions « and
satisfying (17.5) and (17.6), respectively.
Below we suppose that

f € Kipe([0,w] % 0, +00[; R).
Proposition 18.1. Let there exist o > 0 and py € L,, such that
flt,x)<po(t)x for t€[0,w], £€]0,d], and po&V ™ (w). (18.1)
Then, for any ¢ > 0, there is a € AC ([0,w]) satisfying
0<a(t)<c forte|0,w] (18.2)
and (17.5).

Proof. In view of Proposition 10.10, there is a py > po such that pg € Vo(w). Let ug(t) > 0 for
t € [0,w] is a solution of the problem

ug = po(t)uo;  uo(0) = up(w), uH(0) = up(w).

For given ¢ > 0 choose € > 0 such that ¢||up||c < min{c,do} and set «a(t) Lef eug(t). In view of (18.1)
clearly (17.5) holds. It is also evident that (18.2) is fulfilled as well. O

Let now the function f satisfy the inequality
ft,z) <pt)r+ h(t,z) for te€[0,w], >0, (18.3)
where
p € Ly, h€ Kie([0,w]x]0,400[;R). (18.4)
Suppose that
h(t,z) < —ho(t)p(z) for t€[0,w], 2 €]0,r],
ho € L,, ¢ € C(]0,r0]; ]0,400[),
ho(t) Z 0 for te [O,W], h() i 0, (Hl)

1 w
lim inf () > /p(s)ds.

r—0+ x HhO”L
0

Then there are 09 > 0 and py € L, such that (18.1) holds. Indeed, choose §p €]0, 7] and ¢ > 0 such
that

1 w
#() >c> /p(s) ds for x €]0,do) (18.5)
x 1hollz )

w

and put po(t) d:efp(t) — chy(t) for ¢ € [0,w]. Since [ po(s)ds < 0 we get from Proposition 10.8 that
0

po € V™ (w). On the other hand, by virtue of (18.5) and the first inequality in (H;) we have

F(t.2) < p(t)z — ho(D)p(a) < (p(t) — cho()z = po(t)x for t € [0,w], @ €]0, 0]
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By the same arguments one can easily verify that the hypothesis (H3) below implies (18.1).
h(t,z) < ho(t,z) for t € [0,w], = €]0,7r0], ho € Kipe([0,w]Xx ]0, +o0[;R),

1
the function z — — ho(t,z) is nondecreasing on |0, ro],
x

w w (HQ)
1
w1_1>r61+ E/ho(s,x) ds < f/p(s) ds.
0 0
In particular, if
the function h(t, - ) is nondecreasing in ]0, o[ for ¢ € [0, w], "
h(t,r9) <0 for t €[0,w], mes{t e [0,w]: h(t,rg) <0} >0, (H)

then (Hs) is fulfilled as well.
Therefore, the following proposition takes place

Proposition 18.2. Let the function f satisfy (18.3) and (18.4). Let, moreover, k € {1,2,3} and the
hypothesis (Hy) is fulfilled. Then there are 6o > 0 and py € L, such that (18.1) holds. Consequently,
for any ¢ > 0, there is « € AC'([0,w)]) satisfying (18.2) and (17.5).

Recall that the set U (w) appearing in the formulation of the next hypothesis is defined in Section 16
(see Definition 16.1).
Introduce the hypothesis

(p,q) € U(w). (Ha)

Proposition 18.3. Let the function [ satisfy (18.3) and (18.4). Let, moreover, the hypothesis (Hy)
hold. Then there exists a € AC ([0,w]), a(t) >0 fort € [0,w], satisfying (17.5).

{h(t,l‘) <q(t) for te[0,w], x>0,

Proof. Let a be a solution of the problem
o =p(t)a+q(t); a(0) =a(w), o(0)=a ().

=a
On account of (Hy), we have that a(t) > 0 for ¢t € [0,w]. Taking, moreover, into account (18.3) clearly
o satisfies (17.5). O
Introduce the hypothesis
h(t,x) <q(t) for te€[0,w], = >0, "
{ [pl+ Z0, ¢#0, Q- = p(P)Q+, (Hs)
where Q_, Q4, and p(p) are defined by (0.13) and (0.12).

Proposition 18.4. Let the function f satisfy (18.3) and (18.4). Let, moreover, the hypothesis (Hs)
hold. Then there exists « € AC ([0,w]), a(t) > 0 for t € [0,w], satisfying (17.5).

Proof. By virtue of Theorem 16.2, Remark 8.4, and (Hj), the problem
o = [pt)]ra+q(t); a0) =aw), o(0)=a ().
has a positive solution «. Taking, moreover, into account (18.3), it is clear that (17.5) is fulfilled. O

Recall that the function H is defined by (0.17) and the numbers p(p) and @4, Q_ are given by
(0.12) and (0.13).

Proposition 18.5. Let p,q € Ly, h € Kj,:([0,w]x 0, +00[; R), and

ft,z) <pt)x+h(t,x) for te0,w], z>0. (18.6)
Let, moreover, h(t, -) is nondecreasing, there exists ¢ € Ly, such that [q]+ # 0,
h(t,z) <q(t) for te[0,w], = >0, (18.7)
and
Jim H(@)>(1=pp)Q+, H (T pp)Q+ ) <(1=p(p) Q- (18.8)
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Then there exists a € AC ([0,w]), a(t) > 0 for t € [0,w], satisfying (17.5).
Proof. First suppose that [p]+ #Z 0. In view of (18.8) there is a number A such that

4= 2 m)Q, (18.9)
and
H(A) = (1 - p(p)Q;. (18.10)
Denote by «ag solution of the problem
ag = [p(t)+ao + h(t, A);  ag(0) = ap(w), ap(0) = ag(w). (18.11)
Suppose that
m=min {ag(t) : t€[0,w]}, M=max{a(t): t€[0,w]}, (18.12)
and choose a € [0,w] and b €]a, a + w| such that
ap(a) =m, ap(b) = M. (18.13)

In view of (18.7), clearly f[h(s, A)]+ ds < Q4. Taking, moreover, into account (18.10), we get that

[ A

:/[h(sA)] ds + (p(p) — 1)Q4 > plp /
0 0

Consequently, by virtue of Theorem 16.2, we have that

m > 0.
Now we will estimate M — m. It is clear that
b b b
M—m:/ag(s)dsz—/(s—a)ozo( )ds < ( —a/ h(s, A)) ds,
a+tw a+tw
M—m=— / ap(s)ds = — /(a+w—s)a6’(s) ds (18.14)
b b
a+w

<Gtw-b) [ (o)~ hls, ) ds
b

and at least one of these two inequalities is strict (because otherwise we get [p(¢)]+ao(¢) + [¢(t)]+ =0
and, consequently, [¢]; = 0). Hence, on account of the inequality 4zy < (x + y)? we get

b atw

(M = m)? < (b= a)(a+w=8) [ (lals)ls — hls. ) ds [ (lalo) — his, ) ds

a
a+tw

b
sjﬁ(/(M@M—Mamwgg=ﬁ(]ﬁ«ﬂ+—Mamwﬁé

Therefore, we have proved that

M—m< %(@ — H(A)). (18.15)
The latter inequality together with (18.9) and (18.10) implies that there is a £ €]0, m[ such that
M—-—m+e <A (18.16)
Let now «(t) &t ap(t) —m+ ¢ for t € [0,w]. Then, it is clear that,

0<at)<A for tel0,w]. (18.17)
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Taking, moreover, into account that the function A(t, -) is nondecreasing and (18.6) is fulfilled we
easily conclude that

o(t) = [p(t)]+a(t) + h(t, A) + (m —€)[p(t)]+
> p(t)a(t) + hit,a(t)) > f(t,at)) for t € [0,w]. (18.18)

Now let [p]+ = 0. Choose A > 0 such that (18.9) and (18.10) are satisfied. Then, by virtue
Fredholm’s third theorem, the problem

ag = h(t,A);  ap(0) = ap(w), ay(0) = ag(w) (18.19)

has at least one solution . Extend the functions p, h, ¢, and o periodically and denote it again by the
same letters. Introduce the numbers m and M by (18.12) and choose a € [0,w[ and b € |a, a +w[ such
that (18.13) holds. Clearly, inequalities (18.14) are fulfilled and at least one of them is strict (because
otherwise we get [¢(t)]+ = 0). By the same arguments as above we get (18.15). Inequalities (18.9),

€

(18.10), and (18.15) imply that there is a € > 0 such that (18.16) is fulfilled. Let «(t) def ap(t)—m+e for
t € [0,w]. Clearly, (18.17) holds as well. Taking, moreover, into account that A(t, -) is nonincreasing,
(18.6) is fulfilled, and [p]+ = 0, we get (18.18). O

Introduce the hypothesis

h € Kjoe([0,w]x ]0, +00[; R), h(t, -) is nonincreasing,
there is a x¢ > 0 such that
p(0) o (20)+ (p(0) | [p)+ | , = [ 1P)- ], )20 < H- (wo),
where (H)
— [0l ds. H-(a0)= [in(s,m0))-
0 0
Proposition 18.6. Let p € V™ (w) and (Hs) hold. Let, moreover,
ft,z) <pt)x+ h(t,x) for t€[0,w], x> x, (18.20)

where o is the number appearing in (Hg). Then there exists « € AC'([0,w]), a(t) > xq for t € [0,w],
satisfying (17.5).

Proof. Since p € V™ (w), the problem
o =pt)a+ h(t,zo); «a0) =a(w), o'(0)=a(w) (18.21)

possesses a unique solution a. It follows from (Hg) that H_(zg) > p(p)H;(zo). Hence, by virtue of
Theorem 16.2, we get

—1
a(t) > (H- (o) = p(p) Ho (0)) (p®) |4, — [19)-],})  for ¢ € [0,
which, together with (Hg), implies that
a(t) >z for t € 0,w].

Taking now into account that the function h(t, -) is nonincreasing and (18.20) holds, we get from
(18.21) that the function « satisfies (17.5). O

Proposition 18.7. Let there exist 61 > 0 and p1 € L, such that
ft,x) > p1(t)x —q(t,z) for t €[0,w], &> 61, and p1 € V™ (w), (18.22)

where q € Kq([0,w] x R;Ry). Then, for any ¢ > 0, there is § € AC([0,w]) satisfying inequalities
B(t) > ¢ fort € [0,w] and (17.6).
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Proof. By virtue of Remark 8.2, the problem
uf =pi(tur — 1 wi(0) = wi(w), ui(0) = u(w)

has a (unique) solution w; and wui(¢t) > 0 for ¢ € [0,w]. For given ¢ > 0 choose € > 0 such that
euq (t) > max{c, 1} for t € [0,w] and consider the problem

B =p(t)B—q(t,B) —e; B(0)=Bw), B(0)=p(w) (18.23)
By virtue of Proposition 17.3, the problem (18.23) has a solution §. Taking into account that p;
V™ (w), ¢ > 0, and € > 0 one can easily verify that S(t) > euq(t) for t € [0,w] (see Remark 0.6).
Consequently, 5(t) > max{c,d1} for t € [0,w]. On the other hand, in view of (18.22) and (18.23),
clearly (17.6) holds as well. O
Let now the function f satisfy
ft,z) > pt)x+ h(t,z) for t €[0,w], = >, (18.24)

where 71 > 0 and the functions p and h satisfy (18.4).
Suppose that p € V™ (w) and

{h(t,x) > —qo(t,z) for t€[0,w], x>,

q0 € Ksl([o,w} X R, R+) (H7)

Then it is clear that (18.22) holds with 0, = ry, p1(t) d:efp(t), and q(t, x) def qo(t, ).
In particular, if p € V™ (w) and

the function h(t, -) is nondecreasing in |ry, +oo[, (Hg)

then (Hr) holds with qo(¢, z) €of |h(t,r1)| for ¢t € [0,w], x € R.
Observe also that the conditions p € V~(w) and

also imply (18.22) with 6; =1, p1(¢t) def p(t), and ¢(t, ) &f |h(t, [z — 1]+ + 1)|.
Suppose now that p € V= (w) UVy(w), ¢ € Kq([0,w] x R; R, ), and

h(t7$) Z gO(t>g(x) - Q(ta CL’) for t € [

go € va gO(t) Z 0 for te [O,UJ], 9o ?_é 07 (HlO)

. . 9T
g € Ofr+ooli Ry, limint 27 5 g

0,w], =>mr,

Then there are 6; > 0 and p; € L, such that (18.22) holds. Indeed, choose ¢ > 0 and d; > r1 such

that % > ¢ for x > 41 and put p;(t) def p(t) + cgo(t) for t € [0,w]. In view of Remarks 8.4 and 8.5
clearly p; € V™ (w). It is also evident that

F(t.x) = (o) + a0t) X0 ) — g(t.)
> (p(t) + cgo(t))z — q(t,z) = p1(t)z — q(t,z) for t € [0,w], x> ;. (18.25)
At last suppose that p € L, ¢ € Kg([0,w] x R;R,), and
h(t,z) > go(t)g(x) — q(t,x) for t €[0,w], = >ry,
go € Ly, go(t) >0 for t € [0,w],
mes {t € [0,w] : go(t) =0} =0, (H11)
g(x)

g € C(Jr1,+oo[;Ry), lim = = 4o0.

rx—+oco X

Then there are §; > 0 and p; € L, such that (18.22) holds. Indeed, by virtue of Remark 11.2, there
is a ¢ > 0 such that p + cgo € V™ (w). Choose d; > 71 such that %z) > ¢ for x > §; and put

p1(t) def p(t) + cgo(t) for t € [0,w]. Clearly, (18.25) is fulfilled.
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Summarizing the above-said we have

Proposition 18.8. Let the function f satisfy (18.24). Let, moreover, one of the following items be
fulfilled:

(1) peV(w), k€{7,8,9}, and (Hy) holds,

(2) pe V™ (w) UWVo(w) and (Hyg) holds, where q € Kg([0,w] x R;R,),

(3) (Hi1) holds, where q € Kq([0,w] x R;R,).
Then there are 5y > 0 and p1 € L, such that (18.22) holds. Consequently, for any ¢ > 0, there is
B e AC([0,w]) satisfying inequalities B(t) > c for t € [0,w] and (17.6).

Introduce the hypothesis
p € Int VT (w),
h € Kioe([0,w]x ]0,+00[; R), h(t, -) is nondecreasing,

there is a 2y > 0 such that

v (p)p(p)H_(x0) + (V*(p)p(p)H[p]—HL - H[p]JrHL)xo < H. (x0),

where (H12)
Hileo) = [(s.o0)eds, H-(w0) = [[h(s,mo)]- ds
0 0
and v*(p) is the number defined by (6.22).
Proposition 18.9. Let (Hyz) hold and
ft,z) > pl)z+ h(t,z) for te€0,w], = > xo, (18.26)

where xq is the number appearing in (Hy2). Then there exists f € AC'([0,w]) such that B(t) > x¢ for
t € 0,w],

B7(t) < p(t)B(t) + h(t, B(t)) for t € [0,u],
B(0) = Bw), B'(0) = B'(w),
and B satisfies (17.6).
Proof. Denote by S a solution of the problem
B" =p(t)B+h(t,z0); B(0) = Bw), B(0)=p'(w). (18.27)
It follows from (Hi2) that Hy (xg) > v*(p)p(p)H—_(x0). Hence, by virtue of Theorem 16.4, we get that

81) > (He(x0) — v* 0)p®) H-(20)) (v @@, ~ lIpd]l,) for ¢ € (0.6
which, together with (Hiz), implies that
B(t) > xzy for t €[0,w].

Taking now into account that the function h(¢, -) is nondecreasing and (18.26) holds, we get from
(18.27) that the function § satisfies all assertion of the proposition. O

Suppose now that
ft,z) > p)x+ h(t,z) +q) for t €[0,w], x>, (18.28)
where
p € Vo(w), h € Kpe([0,w]x]0,400[;R), ¢q€ Ly. (18.29)

Below by ug we denote a positive solution of the problem

u =pt)u;  w(0) =u(w), v(0)=1u'(w). (18.30)
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Introduce the hypothesis
h(t,z) > ho(t,z) for t € [0,w], >, ho € Ki([0,w]x]0,+00[;R),
the function hg(t, - ) is nondecreasing on 0, +o0[,
w w (Hi3)
lim /ho(s,x)uo(s) ds > —/q(s)uo(s) ds

T——+00
0 0
and
h(t,z) > —ho(t)g(z) for t € [0,w], x>,
ho € L,, ho(t) >0 for ¢t € [0,w], ho#0,

g € C(]0,+09[; ]0, +00[),

fq(s)uo(s) ds
limsup g(z) < ——n——.
potee ghdgudgds
Proposition 18.10. Let the function f satisfy (18.28) and (18.29). Let, moreover, (H13) be fulfilled
(where ug is a positive solution of the problem (18.30)). Then for any ¢ > 0, there is a function
B e AC([0,w]) satisfying B(t) > ¢ for t € [0,w] and (17.6).

(Hia)

Proof. On account of the last condition in (Hi3), there is an xy > 0 such that

w

/ (ho(s, o) + q(s))uo(s)ds > 0. (18.31)

4 def </wu0(s)ds>1/w(ho(s,xo) + q(s))uo(s) ds
0 0

and consider the problem

(=)

Put

B" = p(t)B + ho(t, o) + q(t) — A;
B(0) = Bw), B'(0) = F'(w).
By virtue of Fredholm’s third theorem, the problem (18.32) possesses at least one solution fy. For
given ¢ > 0 choose A > 0 such that

(18.32)

Bo(t) + Aup(t) > xg+ 1 +c¢ for t €[0,w] (18.33)
and put
B(t) L Bo(t) + Mug(t) for t € [0,w]. (18.34)
It is clear that, S is a solution of the problem (18.32) and
B(t) > xzo+r+c for te0,w]. (18.35)

Taking now into account monotonicity of the function hg(¢, - ), first condition in (Hy3), (18.28), and
(18.31), we get from (18.32) that the function [ satisfies the assertion of the proposition.

Proposition 18.11. Let the function f satisfy (18.28) and (18.29). Let, moreover, (Hy4) holds
(where uy is a positive solution of the problem (18.30)). Then for any ¢ > 0, there is a function
B e AC([0,w]) satisfying B(t) > ¢ for t € [0,w] and (17.6).
Proof. Clearly, there is a o > 0 such that

gx) < A for x> xg, (18.36)

where
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By virtue of Fredholm’s third theorem, the problem
B =p(t)B — Aho(t) +q(t); B(0) = B(w), B'(0) =B (w) (18.37)

possesses at least one solution fJy. For given ¢ > 0 choose A > 0 such that (18.33) is fulfilled and
introduce the function 8 by (18.34). Taking now into account first condition in (Hy4), (18.28), (18.35),
and (18.36), we get from (18.37) that the function § satisfies the assertion of the proposition. O

19. EXISTENCE OF POSITIVE SOLUTIONS

In this section we consider the problem
u’ = f(t,u);  w(0) =u(w), v(0)=1u(w), (19.1)
where f € Kj,.([0,w]x ]0, +00[; R). Recall that under a solution of (19.1) we understand a positive
function u € AC'([0,w]) satisfying the given equation for almost all ¢ € [0,w] and boundary condi-
tions. Below we will establish theorems on the solvability of the problem (19.1) and also derive their
corollaries for the problem
u =pt)u+ h(t,u); u(0)=u(w), v (0)=1u'(w), (19.2)

where p € L, and h € Kj,([0,w] X ]0, +00[; R).

Next theorem immediately follows from Proposition 17.6 and Propositions 18.1 and 18.7 (with
c=1).
Theorem 19.1. Let there exist 6; > 0 and p; € L,,, i = 0,1, such that (18.1) and (18.22) are fulfilled,
where ¢ € Kq([0,w] x R;R). Then the problem (19.1) has at least one solution.

Corollaries 19.2, 19.3, 19.7, 19.8, 19.11, and 19.13 below follow from Theorem 19.1 and Proposi-
tions 18.2 and 18.8. Recall that the hypotheses (Hj) are introduced in the previous chapter.

Corollary 19.2. Let p € V™ (w) and either (Hy) or (Hz) hold. Let, moreover, either (Hz7) or (Hy)
be fulfilled. Then the problem (19.2) has at least one solution.

Taking into account that (Hg) implies (Hs) and (Hg) yields (Hr), we get from Corollary 19.2 that
Corollary 19.3. Let the function h(t, -) be nondecreasing in 10, +oo[ and there is a ro> 0 such that
h(t,m0) <0 for t€[0,w], mes{te[0,w]: h(t,ro)<0}>0. (19.3)
Then the problem (19.2) is uniquely solvable provided p € V~(w). If, moreover,
h(t,z) <0 for t €[0,w], x>0,
mes {t (E [O?w] 2 h(t,z) < ([)} >]0 for x>0, (10.4)

then the condition p € V™~ (w) is necessary for the solvability of the problem (19.2).

Proof. Solvability of (19.2) follows immediately from Corollary 19.2. Let us prove the uniqueness.
Suppose that u; and ug are solutions of the problem (19.2) and for a certain to € [0,w][, u1(to) > ua(to)-

€

Let v(t) L u1(t) — ua(t) for t € [0,w]. Then either

v(t) >0 for t€[0,w], vZ#0, (19.5)
or there are 0 < a < b < w such that b —a < w and
v(t) >0 for t€la,b[, wv(a)=0, v(b)=0. (19.6)

If (19.5) is fulfilled then, in view of the monotonicity of the function h we get
o (£) =p(E)0()+ (bt w1 (1)) — h(t, ua (1)) = p(E)u(t) for te(0,w].
However v (0) = v (w), i = 0,1, and p € V™ (w). Hence, the latter inequality implies that v(t) <0

for ¢ € [0, w] which contradicts (19.5).
Analogously, if (19.6) is fulfilled then we get

V"(t) > pt)v(t) for t € [a,b], wv(a)=0, v(b)=0. (19.7)
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Since p € V™ (w) it follows from Theorems 8.1 and Proposition 0.8 that p € D(w). Hence, by virtue of
(19.7) and Proposition 2.5 we get v(t) < 0 for ¢ € [a,b], which contradicts (19.6). Thus the problem
(19.2) is uniquely solvable.

Now suppose that the function h(t, -) is nonincreasing and (19.4) holds. Let, moreover, u be
a solution of the problem (19.2) and M = max{u(t) : ¢t € [0,w]}. then we have

h(t,u(t)) < h(t,M) <0 for t€[0,w], h(-,M)=£0.
Hence, by virtue of Theorem 8.3 (with v = u) we get p € V™ (w). O

Remark 19.4. Assumption (19.3) in Corollary 19.3 is essential and cannot be omitted. Indeed, let

p € V™ (w) and h(t,x) defy, Clearly, all the conditions of Corollary 19.3 are fulfilled except of (19.3).
On the other hand, the problem

' =pt)u+ 1l u(0)=uw), v(0)=1u(w)
has no positive solution (in fact, a unique solution of this problem is negative).

Remark 19.5. Mention also that the assumption about monotonicity of the function % is essential

for the second part of Corollary 19.3 and cannot be omitted. Indeed, let w = 27, p(t) = 72_7_‘21:1 7, and
h(t,z) = fﬁ |z —2—sint|. Clearly, (19.4) holds and the function u(t) = 2+sint is a solution of the
problem (19.2). However, h(t,u(t)) = 0 and therefore the function w is a solution of the homogeneous

problem

u =pt)u, u(0)=u(w), v'(0)=1u'(w)
as well. Thus p € Vy(w) and, consequently, p & V™ (w).

Remark 19.6. During the proof of Corollary 19.3 it was shown that if p € V™ (w) and the function
h(t, -) is nondecreasing then the problem (19.2) has at most one solution.

Corollary 19.7. Let p € V™~ (w) U Vy(w) and either (Hy) or (Hz) hold. Let, moreover, (Hig) is
fulfilled, where g € Kg([0,w] x R;R,). Then the problem (19.2) has at least one solution.

Corollary 19.8. Let (Hy1) hold, where ¢ € Kq([0,w] x R;R.). Let, moreover, either (Hy) or (Hz)
be fulfilled. Then the problem (19.2) has at least one solution.

Return again to the problem (19.1). In the formulation of the next result we will need the following
hypothesis
fo € Kioe([0,w]x ]0,+00[;R;), v>1

the function fy(¢, - ) is nonincreasing in |0, +oo[ for t € [0, w],

w (His)
/fo (s,c\s—a|Lv_l> ds =400 for a € [0,w[, ¢>0.
0
Remark 19.9. Hypothesis (Hys) implies that for any a € [0,w[ and b €]a,w],
b
lim /fo(s,a:) ds = +o0. (19.8)
z—0+

2v—1

Indeed, let 0 < z < (b—a)™» . Then it is clear that
b

b b
/fo(s,@dsz / fo(s.a)ds > / fo(s,|s —al ™) ds

2v—1 v
at+x v at+x v

and, consequently, (19.8) holds.
Theorem 19.10. Let the inequality
ft,z) <po(t)x — fo(t,z) + qo(t,x) for t €[0,w], >0 (19.9)

hold, where py € Ly, po(t) > 0 fort € [0,w], po Z0, v > 1, ¢f € K([0,w] xR;R,) and the function fy
satisfies hypothesis (Hys). Let, moreover, there exist 3 € AC ([0,w]) such that B(t) > 0 fort € [0,w]
and (17.6) holds. Then the problem (19.1) has at least one solution.
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Proof. First of all mention that py € V™~ (w) (see Remark 8.4). Put
def

g(t,z) = f(t,z) —po(t)x for t € [0,w], = > 0. (19.10)
Clearly, g € Kjoc([0,w]x ]0, +00[; R) and, in view of (19.9), we have
g(t,x) < —fo(t,x) + qo(t,z) for t€[0,w], > 0. (19.11)

Let ng € N be such that ng > 1/ min{5(¢) : t € [0,w]}. For any n > ng introduce the notations

Xo(@)= 4 o= 1/n],,

Xulti2) = = + [z —1/n], — [¢ - AR)],

(19.12)

3

and consider the problem
u’ = po(t)u+g(t, X, (tw);  u(0) = u(w), v'(0)=1u'(w). (19.13)

By virtue of Proposition 17.3, the problem (19.13) has, for any n > ng, at least one solution u,,. Now
we will show that
un(t) < B(t) for t € [0,w], n > ng. (19.14)
def

Indeed, let wy,(t) = un(t) — B(¢) for t € [0,w], n > ng, and suppose that (19.14) is violated. Then
either

wp(t) >0 for t€0,w], w, £0, (19.15)
or there are 0 < a < b < w such that b — a < w and
wy(t) >0 for t€la, b, wpy(a)=0, wy(b)=0. (19.16)

If (19.15) holds then, on account of (17.6), (19.10), and (19.12), we get
(1) > poltywn(t) for t € [0,w),
wn(0) = wn(w), wy,(0) = wy,(w).
Since py € V™ (w), the latter inequality implies that w,, () < 0 for ¢t € [0, w], which contradicts (19.15).
Analogously, if (19.16) holds then
wl(t) > po(t)w,(t) for t € [a,b], wy(a) =0, w,(b)=0.

Taking now into account that py € D(w) and b—a < w we get, in view of Proposition 2.5, the relation
wy (t) <0 for t € [a,b], which contradicts (19.16).
Thus we have proved that (19.14) is fulfilled. Taking now into account (19.12) we get that the
function wu,, satisfies
U (t) = po()un(t) + g(t X, (un(t)));

19.17
0 (0) = 1), 0,(0) = ). oD
To finish the proof it is sufficient to show that, for a certain n > ng, the inequality
1
un(t) > = for t €0,w] (19.18)
n
holds. For this effort first we establish certain estimates of the functions |u,| and |u/,|.
By virtue of (19.11) and (19.12) clearly
g(t,x, (un(®)) < qo(t, x, (un(t))) for t € [0,w], n>ng. (19.19)
On the other hand, in view of (19.12) and (19.14)
0<x, (u,(t)) <B* for te€[0,w], n>ng, (19.20)

where §* = max{f5(t) : t € [0,w]}.
Since gf is a Carathéodory function, there exists ¢ € L, such that ¢(t) > 0 for ¢ € [0,w] and

q(t,z) <q(t) for tel0,w], |z| <p" (19.21)
Now it follows from (19.19)—(19.21) that
g(t. X, (un (1)) < q(t) for t €[0,w], n>ng. (19.22)
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Let now v be a solution of the problem
" =po(t)v —q(t); v(0)=v(w), v'(0)=1"(w) (19.23)
and v* = max{v(t) : t € [0,w]}. In view of (19.17), (19.22), and (19.23) clearly
(un(t) +v(t))" < po(t) (un(t) +v(t)) for t € [0,w].
Hence, in view of py € V™ (w), we get that u,(t) + v(t) > 0 for ¢ € [0,w] and, consequently,
up(t) > —v* for t € [0,w], n > ngp.
The latter inequality, together with (19.14), results in
lun(t)] < B* 4+ 0" for t€[0,w], n>no. (19.24)
It follows from (19.17), by virtue of (19.22), that

OS/(q(s)—g(s,Xn( ds —/ +q(s)) ds. (19.25)
0 0
Hence, on account of (19.24), we get
0< / (q(s) —g(s, x.. (un(s)))) ds < (B 4+ v)|pollz + lgll  for n > ng. (19.26)
0

On account of (19.17), (19.22), (19.24), (19.25), and (19.26) it is clear that

/|u;§(3)|d8 =/ Do (8)un(s) +g(s,x”(un(s)))‘ds

w

IN
Ot —— —

Po()un(s) + a(s) = (a(s) = 95, X, (ua(s))) ) | ds

w

po(s)un(s) + q(s)‘ ds + / (q(s) —g(s,x. (un(s)))) ds < ¢y for n>mng, (19.27)

0

where co = 2[(8* +v*)|[poll + llall ]
Since u,, is a periodic function there is a ¢,, € [0,w[ such that u, (¢,) = 0. Taking now into account
(19.27) we get

t w
[ul, ()] = ’/u%(s) ds| < /|uZ(s)\ds <c¢y for te0,w], n>ng. (19.28)
tn
Thus we have proved that
[un ()] + |ul, ()] < A for t € [0,w], n > ng, (19.29)
where A4 & B* +v* + cg.
Now we will show that
v—1
lur, )] < B(Jun(t)| + |my|)*=" for t € [0,w], n > n, (19.30)
where
def . def -1, v T
My min {u, (£) : t€0,0]}, B [ (A% ol + ||qHLV)}2

Indeed, let n > ng be fixed and ¢ € [0,w[ be such that w) (t) # 0. If «/ (¢) > O then there is
at, €]t —w,t] such that

u,(s) >0 for s €ty t], ul,(ts) =0, (19.31)
while if u/, (t) < 0 then there is a t* €|t,t + w| such that

u,(s) <0 for se[t,t*], wu,(t*)=0. (19.32)
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Multiplying both sides of equation in (19.17) by |u§l(t)|;1, integrating it in on [t.,t] respectively on
[t,t*], and taking into account (19.22), one gets

t2 t2
v 201 vt vt
s 077 < o un(s) ()| T st [l F ds for nzma. (1933)
tl tl
def def def

where t; ¢, £, ©tif u/ () > 0 and t; ©t, £ € if o/ (£) < 0. In view of (19.31), resp. (19.32),
and (19.29) it is clear that for n > ng we have
t2 t2
v—1 v—1
[l (o)1 ds < unt) [ po(o)lu (6)]°F ds < w(6)4

tl tl

v—

1
7 lpllz-

On the other hand, by virtue of Holder’s inequality, for n > ny we get

ta

‘/q@nuusn“‘dssﬂuu(/nmx@vh)y” < Nl (fea ()] +

The latter two inequalities together with (19.33) imply (19.30).
Next we will show that there is an n; > ng such that

v—1
v

1
M, > — for n>nq, (19.34)
n

where
de

M, % max un(t): t€[0,w]}.

Indeed, let there is an increasing sequence {nj};>; C N such that

1
M,, < — for ke N.
ng

Then, in view of (19.11), (19.12), (19.22), and (19.26), we get that

w

A 2/<q(s) - g(s, Xo, (Un,, (s)))) ds z/fo (s, Xon, (unk(s))) ds :/fo (5, i) ds for ke N
0 0

which contradicts (19.8).
Since the sequences {u, },;:>5 and {u},} ;7> are uniformly bounded (see (19.29)), by virtue of Arzela-
Ascoli lemma we can assume without loss of generality that

Eg_l Un(t) =vo(t) uniformly on [0,w], (19.35)
where vy € C([0,w]; R). Show that
vo(t) >0 for t € [0,w]. (19.36)

Indeed, let there is a tg €]0,w[ such that vy(tp) < 0. Then, in view of (19.35), there are ng > nq,
ap €10,w], and by € ]a,w| such that

1
Un(t) < 5110(25) for t € [a,b], n > na.

It follows from (19.17), by virtue of (19.11), (19.22), and (19.29), that

bo
—2A <l (by) —ul,(ap) < / {po(s)un(s) — fo (s, %) + q(s)} ds

bo
1
< Alpoll + Nl = [ o(5:3) ds tor 0> n

ao

which contradicts (19.8). Consequently, (19.36) is fulfilled.
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Summarizing above-proved we have that (19.29), (1.21), and (19.34) hold, (19.35) is fulfilled, where
v € C([0,w]; R) satisfies (19.36).

Now we are able to show that for a certain n > ng, the inequality (19.18) is fulfilled. Suppose the
contrary, let m,, < % for n > ng. Then, in view of (19.34), there is a,, € [0,w[ such that

1
un(an) = — for n > ng. (19.37)
n
Assume without loss of generality that
lim a, = a, (19.38)
n—-+o0o

where a € [0,w[. It follows from (19.30) that

t t
i (8) — ()| < ‘/|u;(s)|ds SB'/(|un(s)|+mn|);”‘ll ds| for te[0,w], n> no.

n

Hence, on account of (19.35), (19.36), and (19.38),

for t € [0, w].

0 < v(t) < B‘ j (vo(s)) 7 ds

Consequently, by virtue of Proposition 4.4, there is a ¢ > 0 such that
0 <w(t) <clt— a|2V;1 for t € [0, w].

On the other hand, in view of (19.35), for any £ > 0 there is n. > % such that u,(t) < € 4 vo(t) for
t € [0,w], n > n.. Therefore,

2v—1
un(t) <etclt—al » for t€[0,w], n>n.
which together with (19.12) and assumption n. > % imply that

X, (un(t)) <e+clt — a\# for t € [0,w], n > ne. (19.39)
It follows from (19.26), by virtue of (19.11) and (19.22), that
w w
A> / (q(s) —g(s,x, (un(s)))) ds > /fo (5,x, (un(s)))ds for n > n..
0 0
Taking now into account (19.39) and the monotonicity of the function fy(¢, - ), we get

2v—1

Az/fo(s,s—l—c\s—cd v ) ds.
0

However, the latter inequality contradicts (His). O
For the problem (19.2) we get the following
Corollary 19.11. Let
h(t,x) < —fo(t,x) + qo(t,z) for t € [0,w], = >0, (19.40)

where qo is the same as in Theorem 19.10 and fy satisfies hypothesis (Hys). Let, moreover, at least
one of the items (1)~(3) of Proposition 18.8 be fulfilled. Then the problem (19.2) has at least one
solution.

Proof. Put f(t,x) d§fp(t)x+h(t,x). By virtue of Proposition 18.8, there isa 8 € AC'([0,w]), B(t) > 0

for ¢ € [0,w], satisfying (17.6). On the other hand, in view of (19.40), inequality (19.9) holds with

Do Lef |p| + 1. Hence, all the conditions of Theorem 19.10 are fulfilled. O

Return again to the problem (19.1).

Theorem 19.12. Let (18.22) hold, where ¢ € Kq([0,w] x R;Ry). Let, moreover, there exist o €
AC([0,w)]), a(t) > 0 fort € [0,w], satisfying (17.5). Then the problem (19.1) has at least one solution.



84 Alexander Lomtatidze

Proof. Let ¢ 4 ax {a(t) : t € [0,w]}. By virtue of Proposition 18.7 there is a 8 € AC([0,w]),

B(t) > c for t € [0,w], satisfying (17.6). Hence, in view of Proposition 17.6, the problem (19.1) is
solvable. O

Corollary 19.13. Let (18.22) holds, where g € Kq([0,w]x;Ry). If, moreover, k € {3,4,5,6} and
conditions of Proposition 18.k are fulfilled, then the problem (19.1) has at least one solution.

For the problem (19.2), Corollary 19.13 implies
Corollary 19.14. Let p € V™ (w), (Hy) holds and
h(t,xz) <q(t) for te[0,w], x>0, (19.41)

where ¢ € L, and q Z 0. Let, moreover, at least one of the following items be fulfilled:

(2) Q- < p(p)Q+, the function h(t, -) is nondecreasing, and

lim H(w) > (1= p(p)Q+: H(% p(p)Q+) < (1= p(p) Qs

T—+00

(3) the function h(t, -) is nonincreasing and there is an xo > 0 such that

H(wo) + (p@) 1)+, = P ,) 0 < (1 = pp))Q+- (19.42)
Then the problem (19.2) is solvable.

Proof. Put f(t,z) &f p(t)z + h(t,z) for t € [0,w], £ > 0. On account of (Hy), clearly (18.22) holds

with §; = 1, p1(¢) def p(t), and q(t, =) ef [h(t,[x — 1]+ 4+ 1)] _. Suppose that item (1), resp. (2), is

fulfilled. Then it is clear that conditions of Proposition 18.4, resp. Proposition 18.5 hold.
Now suppose that item (3) is fulfilled. We will show that the conditions of Proposition 18.6 (i.e.,
the hypothesis (Hg)) hold. Indeed, in view of (19.41), we have H (z) < Q4 for > 0. Hence,

p(p)Hy () — H-(x) < H(z) + (p(p) — 1)Q4 for z>0.

In view of (19.42), it is now clear that the hypothesis (Hg) holds.
Thus we have shown that conditions of Corollary 19.14 imply that conditions of Corollary 19.13
are fulfilled. 0

Corollary 19.15. Let p € V™ (w), the function h(t, -) is nonincreasing and
h(t,x) > q(t) for t€[0,w], = >0, (19.43)

where q € L, and q Z 0. Let, moreover, there exists xq > 0 such that

o) H (o) + (o[l ~ -], )0 < (1 — s (19.44)
Then the problem (19.2) is solvable.

Proof. As in the proof of Corollary 19.14 it is sufficient to show that the hypothesis (Hg) holds. In
view of (19.43), clearly H_(z) < Q_ for > 0 and, consequently,

p(p)H(x) — H_(z) < p(p)H(z) + (p(p) — 1)Q- for x> 0.

Now, in view of (19.44), it is clear that the hypothesis (Hg) holds. O
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20. COROLLARIES

In this section we will apply results of Section 19 to some particular types of equation each of them

contains either the term “+228” or the term “th—(f)”. So we will suppose that hg € L,

uN

ho(t) >0 for t € [0,w], ho #£0 and A #0.

Recall that under a solution we understand a positive function u € AC'([0,w]) satisfying given
equation.
Consider the problem

i u(0) =u(w), u'(0)=1u(w). (20.1)

Theorem 20.1. Let A\ > —1. Then the problem (20.1) is solvable if and only if p € V™ (w). If
p €V~ (w) and A > 0 then the problem (20.1) is uniquely solvable.

Proof. For A\ > 0, the assertion immediately follows from Corollary 19.3. Suppose that p € V™ (w),

A €] —1,0[, and put h(t,z) &f —ho(t)zM. Then clearly (H;) holds (with ¢(x) = z*l). Tt is also
evident that (Hy) is fulfilled as well. Hence, by virtue of Corollary 19.2, the problem (20.1) is solvable.
Necessity of the inclusion p € V™ (w) follows from Theorem 8.3. O
Consider the problem
" __ hO (t) . _ / o
u’ = p(t)u — " +q(t); u(0) =u(w), u'(0)=1u'(w), (20.2)

where g € L, and ¢ #Z 0. In formulation of the next result we use notations (0.13) and (0.12).

Theorem 20.2. Let p € V™ (w) and at least one of the following items be fulfilled:
(i) A>—1 and

p(P)Q+ < Q—; (20.3)
(ii) A €] —=1,0] and
a1 A N
holl;* > —Q.):
|| OHL “Nr1 (p(p)||[p]+HL H[p]_HL) (p(p)Q-‘r Q )
(i) A >0 and
w A
Iholle = (5 p0)@+) (p)Q+ — Q-); (20.4)
(iv) A > 0 and there is a ¢ > 0 such that
ho(t) = coq(t)  for t € [0,w]; (20.5)

(v) A= 5, € 1/\2], [df" € Lo, and

h
|3_0(as|)>\n ds =400 for a € [0,w]. (20.6)
Then the problem (20.2) is solvable. Moreover, if q(t) <0 for t € [0,w] then the inclusion p € V™ (w)
is necessary for solvability of (20.2), while if either (iii) or (iv) or (v) holds then the problem (20.2)
is uniquely solvable.

Proof. Put h(t,z) = —h;;’) + q(t). If either (i) or (iii) holds then the problem (20.2) is solvable by

virtue of Corollary 19.14, while if (iv) holds then the solvability of (20.2) follows from Corollary 19.3.
If (ii) holds then one can easily verify that condition (3) of Corollary 19.14 is fulfilled with

e IAll[holl A
0 <p(p)l|[P]+||L—||[P]HL> '
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Let now (v) be fulfilled. Then (19.40) holds with fo(t,z) = hg—(f) and qo(t,x) = [q(t)]+. Clearly, (Hy)
is fulfilled as well. Therefore, by virtue of Corollary 19.11, the problem (20.2) is solvable. Necessity of
the inclusion p € V™ (w) follows from Theorem 8.3, while the uniqueness follows from Remark 19.6. [

Remark 20.3. Condition (20.3) is optimal and cannot be weakened neither to p(p)Q+ < (1+§)Q—
nor to p(p)Q+ < Q— + §, no matter how small § > 0 would be (see Examples 20.9-20.11 below).
Similarly, condition (20.4) cannot be weakened to

lhollz > (1= 8)( p0)2) (p0)Qs — Q).

no matter how small § €]0, 1] would be (see Example 20.12). Mention also that Example 20.11 below
shows that the conditions (20.5) and (20.6) are essential and cannot be omitted.

Consider the problem

'’ = p(t)u+ o +q(t); u(0) =u(w), ¥(0)=1u(w), (20.7)
where
A>0, hoq€ Ly, ho(t)>0 for tel0,w], ho0. (20.8)
Theorem 20.4. Let p € V™ (w) and (20.8) hold. Let, moreover,
Q- > p(p)Q+
and
A (Q- = p()Q+)*""

lholl < (20.9)

A1 X
A DX o) (o)) ||, — [l1e)=11,)
Then the problem (20.7) is solvable.
Proof. Put h(t,z) %ef hz(;’) +q(t) for t € [0,w], x > 0. Clearly, h(t, -) is nonincreasing and (19.43)
holds. Let now

y ot (Aol )
p@)||P+ ]|, = P11,

In view of (20.9), one can easily verify that (19.44) is fulfilled. Consequently, the problem (20.7) is
solvable by virtue of Corollary 19.15. 0

Consider the problem

o = pltyu— " g+ ) () = ute), o(0) = u/(w), (20.10)

where gg € Ly, go Z0, p # 0, and pu # 1.
Theorem 20.5. Let p € V™~ (w), u €10,1], and at least one of the following items be fulfilled:
(a) either item (i), or (ii), or (iii) of Theorem 20.2 holds and
go(t) <0 for t € [0,w];

(b) dtem (iv) of Theorem 20.2 holds and there is a ¢ > 0 such that
ho(t) > cgo(t) for t € [0,w];

(c) item (v) of Theorem 20.2 holds and [go]7 " € L.

Then the problem (20.10) has at least one solution. If, moreover,
go(t) <0, ¢(t) <0 for te0,w], (20.11)

then the inclusion p € V~(w) is necessary for solvability of (20.10).
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Proof. Suppose that (a) holds. Put
ho(t
f(t.) = plt)e — "2

Then clearly (18.22) is fulfilled with

+ go(t)2" +4q(t), h(t,z)=— h;g\t) +q(t).

Pl =00, a(t.0) = s+ ool + g0

and d; = 1. On the other hand, if item (i), resp. item (ii), resp. item (iii) of Theorem 20.2 is fulfilled
then the conditions of Proposition 18.3, resp. Proposition 18.6, resp. Proposition 18.5 hold as well.
Therefore, by virtue of Corollary 19.13, the problem (20.10) is solvable.

Let now either (b) or (c) holds. Put

(e ) = "0 1 o0y + g(1).

Clearly, (Hg) holds. On the other hand, if (b) is fulfilled then
h(t,xz) < ho(t,xz) for te€[0,w], = >0,
where ho(t,z) = —ho(t)(& — 2% _ 1) Hence, for sufficiently small ry > 0 the hypothesis (Hs) holds.

Therefore, by virtue of Corollary 190.2, the problem (20.10) has at least one solution. Suppose now
that (c) is fulfilled. Then (19.40) holds with

folta) = "0 and g1(t,2) = loo(0) ke + la(o).

Therefore, by virtue of Corollary 19.11, the problem (20.10) is solvable.

If (20.11) holds then necessity of the inclusion p € V= (w) follows from Theorem 8.3. O
Theorem 20.6. Let p € V™ (w) UVy(w), > 1, and
go(t) >0 for t €[0,w]. (20.12)
Let, moreover, either
A> =1, ¢q(t) <0 fortel0,w], (20.13)

or item (iv) of Theorem 20.2, or item (c) of Theorem 20.5 is fulfilled. Then the problem (20.10) is
solvable. Moreover, if A > 0 then the problem (20.10) is uniquely solvable.

Proof. Put
ho(t
h(t,z) = — (;(A) + go(t)a + q(t).
Then (Hjg) is fulfilled with r; =1,
hol(t
o) =", alt) = e ()

On the other hand, condition (20.13), resp. item (iv) of Theorem 20.2 implies (Hs). Therefore, by
virtue of Corollary 19.7, the problem (20.10) has at least one solution.
Let now item (v) of Theorem 20.2 holds. Then (19.40) holds with

fottsz) = "8 and. qu(t,) = go(o)el + )]

Hence, the problem (20.10) is solvable by virtue of Corollary 19.11. Assertion about uniqueness follows
from Remark 19.6. g

Theorem 20.7. Let p > 1, (20.12) hold, and either (20.13) or item (iv) of Theorem 20.2, or item (c)
of Theorem 20.5 be fulfilled. Let, moreover,

mes {t € [0,w] : go(t) =0} = 0. (20.14)
Then the problem (20.10) has at least one solution (for any p € L,,).

Proof. Tt is analogous as the proof of Theorem 20.6. Only a difference is that (Hi;) is fulfilled instead
of (Hyp). Therefore, if either (20.13) or item (iv) of Theorem 20.2 holds then solvability follows from
Corollary 19.8, while if item (c) of Theorem 20.5 holds then solvability follows from Corollary 19.11. O
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Remark 20.8. Condition (20.14) in Theorem 20.7 is essential and cannot be omitted. Indeed, let
O0<a<b<w, A=1, h(t) =1, q,90 € L, and ¢(t) <0 for t € R, and

do(t) = {1 for ¢t €[0,a[U]b,w],

0 for t € [a,b)].

Let, moreover, p € L, be such that the equation v’ = p(t)u is conjugate on [a,b], i.e., its every
nontrivial solution has at least one zero in ]a, b[ (for example, let p(t) = —(1+¢) (%) for t € [a, D]
with € > 0 and p(t) = 0 for ¢ € [0,a[U]b,w]). Then it is clear that the conditions Theorem 20.7 are
fulfilled except of the condition (20.14). Suppose that u is a solution of the problem (20.10). Then it

is clear that u(t) > 0 for ¢ € [a,b] and

u’(t) < p(t)u(t) for t € [a,b].

Hence, by virtue of Sturm’s comparison theorem, any nontrivial solution of the equation v’ = p(t)u
has at most one zero in [a, b] which contradicts the setting of the function p.

Example 20.9. Let A €]0,1[ and ¢ > 0. Consider the problem

Ao w(0) = u(w), u'(0) = (w). (20.15)

"
U =u—

Then we have
1,2
o) =t Qi =, Q=0
For given 6 > 0 choose ¢ > 0 such that ¢ < % e~ 1w’ Clearly, the inequality p(p)Q+ < Q— + 4 is

fulfilled. However, the problem (20.15) has no solution because x — c!~*z* + ¢ > 0 for x > 0.
Example 20.10. Let A €]0,1[ and ¢ €]0, 1[. Consider the problem

u// _ 82

1
u—2ut + 2+ — cost; u(0) = u(2m), u'(0) = o/ (27). (20.16)
Then p(p) = e52”, Q=221 QL =221+ Q_, and

Q_ = S\/l — €6 — 2¢%(m — ),

where z € |r/2, 7| is such that cosz = —&%. Since lir&_ Q- = +oo, for any § > 0, thereisa e > 0
e—
such that
2 26271'
es T (1 + ) <149,
Q_

i.e., the inequality p(p)Q+ < (1+§)Q_ is fulfilled. However, the problem (20.16) has no solution (for
any € > 0). Indeed, if u is a solution of this problem then, in view of the inequality = —z* 4+ 1 > 0 for
x > 0, we get the contradiction

2m 2m
0= /u”(s) ds = ¢? / (u(s) —ut(s) + 1) ds > 0.
0 0

Example 20.11. Let A > 0 and € > 0. Consider the problem

' =eu— E(I—Zﬂ —(1+¢e)cost; u(0) =u(2m), u'(0)=1u'(2n). (20.17)
Then
pp) =€, Qp=2(1+e), Q=2(1+¢).

For given 6 > 0 choose € > 0 such that
™ <146, 2(1 +5)(e”2 -1) <.

Then clearly the inequalities p(p)Q+ < (1 +0)Q— and p(p)Q+ < Q_ + J are fulfilled. Mention also
that (20.5) and (20.6) are violated. Now we will show that the problem (20.17) has no solution for
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any € > 0. Suppose the contrary, let u be a solution of this problem and put w(t) = u(t) — 1 — cost.
By direct calculations one can easily verify that

€
u(t)
w(0) = w(2r), w'(0)=w'(27).

w’(t) = ew(t) + (uM(t) — (L +cost)*) for t € [0,2n],

Introduce the notation

=1 f 1
pa() Gy e #l (20.18)
A for z =1.

It is clear that, ¢y € C(R) and @y (z) > 0 for z € R. Moreover,
14 cost

wMt) — (1 + cost) = uH(tm( e

)w(t) for ¢ € [0, 2n].

Therefore, the function w is a solution of the problem

W' = po(Bw;  w(0) = w(2r), w'(0) = w'(2m), (20.19)

where po(t) = e(1+ % 4,0,\(12‘(:?)5’5)) for t € [0,27]. Since po(t) > 0 for t € [0, 27], we have py € V™ (w)

(see Remark 8.4) and, consequently, w = 0. Hence, we get the contradiction 0 = w(w) = u(w) # 0.
Example 20.12. Let € > 0 and A > 0. Consider the problem

(1 + cost)?

" +1—e—(1+e¢)cost; u(0)=u(2m), u'(0)=1u'(2n). (20.20)

v =ecu—

2m
Then p(p) = ™, Q = 27(1 — &), and |[ho| = [ (14 coss)*ds. Since
0

lim (p(p)Q4+ —Q-) =2

e—0+

for given 6 > 0 we can choose € > 0 such that

p(p)Q+ — Q— < 2m(1+9). (20.21)
On the other hand, since

. . w A _
Jim ol =27 and lim (5 p(p)Qs) =1
we can choose A > 0 such that
w >\
Ihollz > 27(1 = 63)(5 p(p)@+)

The latter inequality, together with (20.21), implies that

lhollz > (1= 0)(£ o092 ) (o)~ @)

holds. Now we will show that the problem (20.20) has no solution for any A > 0 and € > 0. Indeed,
let u be a solution of this problem and put w(t) = u(t) — 1 — cost. By the same arguments as in
Example 20.11 one can verify that w is a solution of the problem (20.19), where

1 1+ cost
po(t) =e+ 0] %(W) for ¢ € [0, 27]

and the function ¢ is defined by (20.18). Since py € V™ (w) we get w = 0, which yields the contra-
diction 0 = w(w) = u(n) # 0.
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21. RESONANCE LIKE CASE

In this section we will consider the problem
' =pt)u+ h(t,u) +q(t); u(0) =u(w), u'(0)=1u'(w), (21.1)

where h € Kjpc([0,w]x ]0,+00[;R) and p,q € L,. Recall that under a solution of the problem (21.1)
we understand a positive function u € AC'([0,w]) satisfying the given equation almost everywhere
and boundary conditions.

In some cases (wee, for example, Corollary 19.3), the inclusion p € V™ (w) is necessary for the
solvability of (21.1). However, we deal in what follows with the case p € Vp(w). Mention that
the problem (21.1) with p € Vy(w) cover by Corollaries 19.7 and 19.8 (see also Corollary 19.11 and
Theorems 20.6 and 20.7). In spite of them in the main results of this chapter we does not require
neither hypothesis (Hyp) nor hypothesis (Hy;). Below we denote by ug a positive solution of the
problem

ug = p(t)ug;  uo(0) = up(w), u,(0) = ugy(w).

Theorem 21.1. Let p € Vo(w) and either (Hi3) or (His) hold. Let, moreover, there exist o €
AC([0,w]) such that a(t) > 0 fort € [0,w] and

a”(t) = p(t)a(t) + h(t,alt)) +q(t) for t € [0,w], -
a(0) = a(w), a'(0) = () -

Then the problem (21.1) is solvable.

Proof. Put f(t,x) d:efp(t)x—i-h(t,x)—i—q(t) fort € [0,w], z > 0 and o* = max{a(t) : ¢t € [0,w]}. Suppose
that (Hy3) (resp., (Hy4)) holds. Then, by virtue of Proposition 18.10 (resp., Proposition 18.11), there
exists a function 3 € AC([0,w]) such that 5(t) > a* for t € [0,w] satisfying (17.6). Hence, by virtue
of Proposition 17.6, the problem (21.1) has at least one solution. O
Observe that the hypothesis
h(t,z) <0 for t € [0,w], = >0,

the function h(t, -) is nondecreasing on ]0, +o0[,

w (H1e)
lim h(s,z)ds =0
r—r+00
0
together with the condition
/q(s)uo(s) ds >0 (21.3)
0

implies (Hi3) as well as the condition (21.3) together with the hypothesis
h(t,x) > —ho(t)g(x) for te€[0,w], = >r,
ho € Ly, ho(t)zo for tE[O,w], h();_éo,

g € C(]0, +00[; 10, +00[ ), (Hu7)
limsupg(z) =0

implies (H14). Hence, it follows from Theorem 21.1 that

Corollary 21.2. Let p € Vo(w), (21.3) hold and either (Hyg) or (Hyz) be fulfilled. Let, moreover,
there exists a € AC'([0,w]) such that a(t) > 0 fort € [0,w] satisfying (21.2). Then the problem (21.1)
is solvable.

Mention that condition (21.3) is necessary, in some sense, for the solvability of (21.1). More precisely
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Proposition 21.3. Let p € Vy(w) and the problem (21.1) is solvable. Let, moreover, either
h(t,xz) < hi(t,x) for t €[0,w], x>0,
where hy € Ko ([0, w]x 10, +00[;R), hi(t,z) <0 fort € [0,w], z > 0, hi(t, -) is nondecreasing and
mes{t € [0,w] : hy(t,z) <0} >0 for z >0,
or
h(t,z) < —hi1(t)g(z) for t €[0,w], = >0,
where hy € Ly, h1(t) > 0 fort € [0,w], hy £ 0, and g € C(]0,+o0[; ]0,+0o0]).
Then inequality (21.3) holds.

Proof. Let u be a solution of the problem (21.1). Then, by virtue of Fredholm’s third theorem, we
have that

w w

/q(s)uo(s) ds =— / h(s,u(s))uo(s)ds.
0 0
One can easily verify that the conditions of the proposition guarantee that

/h(s,u(s))uo(s) ds < 0.

Hence, (21.3) holds as well. O

Corollary 21.4. Let p € Vy(w), hypothesis (Hig) holds and
mes{t € [0,w] : h(t,x) <0} >0 for x> 0.
Let, moreover, at least one of the following items be fulfilled:
(1) there exists ro > 0 such that
h(t,ro) < —q(t) for t € [0,w];

(2) H(p(P)Q1) < Q- = p(p)Q+-
Then the problem (21.1) is solvable if and only if (21.3) holds.

Proof. In view of Corollary 21.2, it is sufficient to show that there exists a positive function a €
AC([0,w]) satisfying (21.2). Let the item (1) hold. Then the existence of the function a follows from
Proposition 18.2 with k£ = 3. Let now the item (2) be fulfilled. If @_ > p(p)Q4+ then the existence of
the function « follows from Propositions 18.4 while if Q_ < p(p)Q+ then the existence of the function
« follows from Proposition 18.5.

Necessity of the condition (21.3) follows from Proposition 21.3. O

Analogously one can prove that

Corollary 21.5. Let p € Vy(w), the hypothesis (Hy4) hold, (21.3) be fulfilled, and
h(t,z) <0 for t € [0,w].

Let, moreover, either the item (1) of Corollary 21.4 hold, or the function h(t, -) is nondecreasing and
the item (2) of Corollary 21.4 hold. Then the problem (21.1) is solvable.

Proof. In view of Corollary 21.2, it is sufficient to show that there exists a positive function a €
AC([0,w)) satisfying (21.2). If the item (1) of Corollary 21.4 holds then the existence of the function
« follows from Proposition 18.2 with & = 3.
Let now the function h(¢, -) be nondecreasing and the item (2) of Corollary 21.4 be fulfilled. It is
clear that, there exist a finite limit
lim H(z)=H".

r——+00
If H* > Q- — p(p)Q+ then the existence of the function « follows from Proposition 18.5. Suppose
that H* < Q_ — p(p)Q+. Then, clearly,

H(z) <Q- —p(p)Qy for z>0. (21.4)
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Denote by v a solution of the problem
v = [p(®)]4v+ k(1) +q(t); v(0) =v(w), v'(0) =v'(w)
and choose n € N such that ||v||c < n. Let, moreover, a be a solution of the problem
" =[pt)]+a+ h(t,n)+q(t); a(0)=a(w), ' (0)=dad(w). (21.5)
By virtue of (21.4) and Theorem 16.2, we get that
v(t) >0, a(t)>0 for tel0,w)].

On the other hand, since [p]4+ € V™ (w) and the function h(¢, -) is nondecreasing we get that a(t) < v(t)
for ¢t € [0,w] (see Remark 0.6) and, consequently, a(t) < n for ¢ € [0,w]. Now it follows from (21.5)
that the function « satisfies (21.2). O

Now we reformulate Theorem 19.10 in a suitable for us form.
Theorem 21.6. Let p € Vy(w) and
h(t,z) < hi(t,z) for t €[0,w], x>0, (21.6)
where hy € Kloe([(l),w]x 10, +00[;R), hi(t, -) is nonincreasing on |0,4o00[, hi(t,z) <0 fort € [0,w],

x>0,n>1, ¢ € Ly, and

/‘hl(s,c\s—ar’)‘ds =400 for ¢>0, a€[0,w].
0
Let, moreover, there exist 3 € AC ([0,w]) such that B(t) >0 for t € [0,w]
B"(t) < p(t)B(t) + h(t, B(t) + q(t) for t €[0,w],
B(0) = Bw), B'(0) = p'(w).
Then the problem (21.1) has at least one solution.

(21.7)

Corollary 21.7. Let p € Vo(w) and (21.6) hold, where hy satisfies conditions stated in Theorem 21.6.
Let, moreover, either (Hy3), or (Hy4) hold. Then the problem (21.1) has at least one solution.

Proof. By virtue of Proposition 18.10, resp. Proposition 18.11, hypothesis (H13), resp. (Hi4), implies
the existence of a positive function 8 € AC'([0,w]) satisfying (21.7). Hence, solvability of the problem
(21.1) follows from Theorem 21.6. O
As an example, consider the problem
u’ = p(t)u—ho(t)g(u) +q(t);  w(0) = u(w), ' (0)=u'(w), (21.8)
where hg,q € L, ho(t) > 0 for t € [0,w], hg # 0, and g € C(]0, +o0]; ]0, +00[).
Corollary 21.8. Let p € Vo(w) and
Ja
limsup g(x) <

(s)uo(s)ds
s
peo tho(s)uo(s) d

(21.9)

Let, moreover, at least one of the following items be fulfilled:

(1) lir&_g(az) = +oo and there is a ¢ > 0 such that ho(t) > cq(t) for t € [0,w];
T—
(2) g is nonincreasing and there exists r > 0 such that ho(t)g(r) > q(t) fort € [0,w];

o
(3) g is nonincreasing, n > 1, [q|1"" € Ly, and

w
/ho(s)g(c|s —al")ds =400 for ¢>0, a€[0,w[;
0
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(4) g is nonincreasing and

w
IIholng(Z p(p)Q+) > p(p)Qy — Q-
Then the problem (21.1) is solvable if and only if (21.3) holds.
Proof. Let (21.3) hold. Put hq(t,x) %ef —ho(t)g(z) for t € [0,w], x > 0. Clearly, (Hi4) is fulfilled.

Suppose that the item (1) holds. Put f(t,2) % p(t)z —ho(t)g(z)+q(t) and h(t, z) = —ho(t)(g(z) —

1) for t € [0,w], > 0. Clearly, there is an 79 > 0 such that g(z) > 2 for « €]0,7]. Hence, the
hypothesis (H;) holds with ¢(x) & g(z) — 1 for x €]0,ro]. Therefore, by virtue of Proposition 18.2,
there exists a positive function @ € AC'([0,w]) satisfying (21.2). Consequently, the solvability of the
problem (21.8) follows from Theorem 21.1.

If either the item (2), or the item (4) is fulfilled that the solvability of the problem (21.8) follows
from Corollary 21.5.

Let now the item (3) be fulfilled. Then the solvability of the problem (21.8) follows from Corol-

lary 21.7 (with hy (¢, x) def —ho(t)g(z)).

Necessity of the condition (21.3) follows from Proposition 21.3. O

Remark 21.9. It is clear that Corollary 21.8 remains true if, instead of (21.9), the condition
limsup g(x) =0

T—+00

holds.

Proposition 21.10. Let p € Vy(w) and for any ¢ > 0, a > 0, and b > a, there exists Qape € Ly such
that
Cabe(t) >0 for t € [0,w], @apbe Z 0, (21.10)
h(t,z 4+ c) — h(t,x) > @abe(t) for t € [0,w], x € [a,b]. (21.11)
Then the problem (21.1) has at most one solution.

Proof. Let u and v be solutions of the problem (21.1) and there is a ty € [0,w][, such that u(to) > v(to).

Put w(t) & u(t) —v(t) for t € [0,w]. It is clear that, either there exist t; € [0,w]| and t2 € |¢1,w] such

that

w(t) >0 for t €ty ta], w(t1) =0, w(tz)=0, (21.12)
or
w(t) >0 for te0,w]. (21.13)
First, suppose that (21.12) holds. Since the function h(t, -) is nondecreasing we get
w”(t) > p(t)w(t) for t € [t1,t2], w(t1) =0, w(tz)=0.

Hence, by virtue of Proposition 0.8 and Proposition 2.5, we get the contradiction w(t) < 0 for t €

[t1, ta].
Now let (21.13) hold. It is clear that the function w is a solution of the problem

w’ =pt)w+¥(t); w(0) =ww), w'(0)=uw'(w),
where ¥(t) ef h(t,u(t)) — h(t,v(t)) and ¥ (t) > 0 for t € [0,w]. Hence, by virtue of Fredholm’s third
theorem we get that
=0 (21.14)
and there is a ¢g > 0 such that w(t) = coup(t) for ¢ € [0,w]. Put @ = min{v(t) : ¢t € [0,w]},
b=max{v(t): t € [0,w]}, and ¢ = ¢o min{up(t) : t € [0,w]}. Clearly,

u(t)=v(t)+couo(t) >v(t)+e, a<v(t)<b for t€[0,w]. (21.15)

By virtue of the assumption of the proposition, there exists a function @upe € Ly, such that (21.10)
and (21.11) are fulfilled. Hence, on account of (21.15), we get

$(t) = h(t,u(t)) = h(t, v(t)) = h(t,v(t) + ¢) = h(t,v(t)) = pape(t) for ¢ € [0,w]
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which, together with (21.10), contradicts (21.14). O

Remark 21.11. Let h(t, x) & —ho(t)g(x) for ¢t € [0,w], & > 0, where hg € L, hg # 0, ho(t) > 0 for
t € [0,w], and g € C(]0,+oo[; ]0,+00[) is decreasing. Then it is clear that the function h satisfies
assumptions of Proposition 21.10. Consequently, in this case the problem (21.8) possesses at most

one solution.

As a particular case of the problem (21.8) consider the problem

o = plty— " g g0 u(0) = u(w), w(0) = v (w) (21.16)

where ho,q € Ly, ho(t) > 0 for ¢ € [0,w], and hg # 0. Next corollary follows immediately from
Corollary 21.8, Remark 21.9, and Remark 21.11.

Corollary 21.12. Let p € Vy(w) and the item (iii), or the item (iv), or the item (v) of Theorem 20.2
be fulfilled. Then the problem (21.16) is solvable if and only if (21.3) holds. Moreover, if (21.3) holds
then the problem (21.16) is uniquely solvable.

Remark 21.13. Condition (20.5), resp. (20.6), in Corollary 21.12 is essential and cannot be omitted.
Indeed, consider the problem

A
= TEOSOT ) oty u(0)=u(2m), o (0) = (20). (21.17)
u

Then p = 0 and we can suppose that ug = 1. Clearly, ¢(t) = 1 — cost for ¢t € [0,27] and that (21.3)
holds. By the same arguments as in Example 20.11 one can show that the problem (21.17) has no
solution for any A > 0.

Mention also that the condition (20.4) is optimal and cannot be weakened to the condition

[[hollz = (1 - 5)(% p(p)Q+)A(p(p)Q+ -Q-) (21.18)

no matter how small § €]0,1[ is. Indeed, consider again the problem (21.17). Clearly, (21.3) holds,
2

Q4+ =2m, Q- =0, and ||ho||, = [ (1 + coss)*ds. Since
0

I i o im (TQ,)"
Ji, @ eosotds=2m i (5Q4) =1
0
for given § €10, 1] there is a A > 0 such that (21.18) holds. However, as it was mentioned above the
problem (21.17) has no solution for any A > 0.

As it was mentioned in Introduction, the study of phase singular periodic problems was initiated
in [16] by Lazer and Solimini. Theorem 2.1 of [16] concerns the solvability of the problem

o' = —g(u) +q(t), u(0) = u(w), o(0) =u'(w) (21.19)
and reads as follows.

Theorem 21.14 (Lazer and Solimini). Let ¢ € C([0,w];R) and the function g € C(]0,+oo[; |0, 400[)
be such that

lim g(z) = +o0, lim g(z)=0. (21.20)
z—0+4

r—+o0

Then the problem (21.19) is solvable if and only if the inequality

/q(S) ds >0 (21.21)
0

holds.
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Theorem 21.14 now follows from Corollary 21.8(1) (and Remark 21.9). Mention that the condition
g € C([0,w];R) in Theorem 21.14 is essential and cannot be omitted. Indeed, let A €]0,1[ and
e €]— 1,52 Put vt % (1 + cost)* for t € [0,2n]. It is clear that vj € AC(]0,2n]) and
vy, U% € Lar. Let now ¢(t) Lof vyl (t) + —%= for t € [0,2n]. Then (21.21) holds because
0

vp (t)

However, in this case the problem (21.19), where g(z) def x% for z > 0, has no solution. If we suppose

that u is a solution of the problem (21.19) and put w(t) def u(t) — vo(t) for t € [0,27], then by direct

calculations we get that
w”(t) = po(t)w(t) for t €[0,2n], w(0)=ww), w(0)=w(w),

where

po(t) o u(t)ié‘(t) ‘PA(?((;))) for t € [0, 2]

and the function ¢, is defined by (20.18). Since po(t) > 0 for t € [0,27] we have that pg € V™ (w)
(see Remark 8.4) and, consequently, w = 0. However, the latter identity leads to the contradiction
0 = w(mw) = u(w) # 0. Therefore, we have shown that for any A €]0,1[, there is a ¢ € L, satisfying
(21.21) such that the problem

W= gl u(0) = u(w), W(0) = W),

has no solution. In other words, if ¢ € L, but ¢ ¢ C([0,w];R), conditions (21.20) and (21.21) does
not guarantee solvability of the problem (21.19). However, Corollary 21.8(3) implies

1—p
Corollary 21.15. Let g € L., g € C(]0,+00[; |0, +00[), g is nonincreasing, pu € [0, 1[, [¢]17*" € L,
and

xr——+00

1
glz) . . B
/:7 dz =400, lim g(z)=0.

0

Then the problem (21.19) is solvable if and only if (21.21) holds. Moreover, if (21.21) holds and the
function g is decreasing then the problem (21.19) is uniquely solvable.

Example constructed above shows that the condition fl %—f) dx = 400 in Corollary 21.15 is essential
and cannot be weakened to the condition ml_i>m+0 glx) = E)I—oo. However, from Corollary 21.8(4) we get
the following
Corollary 21.16. Let g € C(]0,+400[; ]0,400]) is nonincreasing and

Jim o) = +05,_lim_oe) =0
Let, moreover,

wg(% p(p)Q+) > p(P)Qy —Q-.

Then the problem (21.19) is solvable if and only if (21.21) holds. Moreover, if (21.21) holds and the
function g is decreasing then the problem (21.19) is uniquely solvable.

To be more specific consider the problem

W=ty u(0) = u(w), W(0) = (). (21.22)

It follows from Corollary 21.12 that

Corollary 21.17. Let at least one of the following items be fulfilled:
(1) A >0 and esssup{q(t) : t € [0,w]} < +o0;
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(2) A€]0,1] and w > (4 Q)MNQ+ — Q-);

A
(3) A€} 1] and [P € Ly;
4) A>1.

Then the problem (21.22) is solvable if and only if (21.21) holds. Moreover, if (21.21) holds then the
problem (21.22) is uniquely solvable.

22. EXISTENCE OF POSITIVE SOLUTIONS (CONTINUATION)

In this paragraph we again consider the problem
u' = f(tu); u(0) =u(w), v'(0)=1u'(w) (22.1)
and its particular case
" =pt)u+ h(t,u); u(0)=u(w), v (0)=1u'(w), (22.2)
where p € L, and f,h € Kj,.([0,w]x ]0, +00[; R). Recall that under a solution of the problem (22.1),
respectively (22.2), we understand a positive function u € AC'([0,w]) satisfying given equation almost

everywhere and boundary conditions.
Introduce the hypotheses

ft,z) > pt)x + ho(t,z) for t €[0,w], = >0,
p €V (W), ho € Kioe([0,w] x Ry;R), hg(t, ) is nondecreasing,
BeAC((0,w]), B(0)=Bw), B'(0)<p (W),
B'(t) < p(t)B(t) + ho(t, (1), B(t) >0 for t € [0,w],
ft,z) <po(t)x + qo(t,x) for te€[0,w], x>rg, ro>0,
{ po € VT(w), qo € Ky([0,w] x R;R,),

(His)

(Hio)

ft,z) < po(t)x + qo(t) for te€[0,w], x>rg, ro>0,
po € Vo(w) and /qo(s)uo(s) ds <0,

0
where ug is a positive solution of the problem

(H2o)

ug = po(t)uo; uo(0) = up(w), up(0) = ugp(w).
Theorem 22.1. Let (Hig) hold and either (Hyg) or (Hag) be satisfied. Let, moreover

p(t) <po(t) for t € [0,w]. (22.3)
Then the problem (22.1) has at least one solution.

Proof. Choose ng € N such that (t) < ng for t € [0,w] and for any n > ng introduce the notations

X (t,2) B + [z~ BE)]4 — [z —n]y for te[0,w], zER, o)
hn(t, ) d:lafh(t,xn (t,z)) for te[0,w], z €R, .
where
ht,z) € f(t,2) — p(t)z for te[0,w], z> 0. (22.5)
Clearly, h,, € Kq([0,w] x R;R). For any n > ng consider the problem
u =pt)u+ hn(t,u); u(0) =u(w), u'(0)=u(w). (22.6)

In view of Proposition 17.3, the problem (22.6) has at least one solution wu,,.
We first show that
un(t) > p(t) for t€[0,w], n>ng. (22.7)
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Indeed, in view of (Hig), (22.4), and (22.5), we have that
X, (t,x) > B(t) for t€[0,w], z€R, n>ng,
ho(t,z)>ho(t, x, (t,2)) > ho(t, B(t)) for t€[0,w], z€R, n>ng.
Taking, moreover, into account that the function w, is a solution of the problem (22.6), we get
Uy (1) = p(t)un(t) + ho(t, B(t)) for t € [0,u],

22.8
0 (0) = (), 1 (0) = (). 22
Now it follows Remark 0.6, by virtue of (22.8) and (His), that (22.7) holds.
Introduce the notation
my=min {u, (t) : t€[0,w]}, M,=max {u,(t): t€[0,w]}. (22.9)
To finish the proof it is sufficient to show that for some n > ng, the inequality
M, <n (22.10)
holds. Suppose the contrary, let
M, >n for n>mnyg. (22.11)

First assume that (Hig) is satisfied. It is clear that without loss of generality we can assume that
the function gy (¢, - ) is nondecreasing on |0, +o00] .

Put )
~ def
Up (t) :e m

Clearly, for any n > ng the equalities

un(t) for t € [0,w], n>ng.

(1) = PO (1) + 7 bl (1)) for € [0, (22.12)
Ui (0) = T (w), 1y, (0) = 1, (w).

are fulfilled. Since h € Kjpc(]0,w]x |0, +00[; R) there is a function h* € L, such that

|h(t,z)| < h*(t) for t € [0,w], € [Bs,Bx +7T0), (22.13)
where
B, Cmin {B(t) : t € [0,0]}. (22.14)
Hence, in view of (Hig), (22.4), and (22.5), we get that
hn(t,x) < (po(t) —p(t))z+¢*(t,x) for t€[0,w], x>0, (22.15)
where
¢ tz) ¥ qo(t,x) + h*(t) for t€[0,w], z>0. (22.16)

Taking now into account (22.3), (22.4), (22.7), and (22.15), we get from (22.12) that

un(t) < p(t)n(t) + — (po(t) — ()X, (t un(t)) + Ly (t, X, (£, un(t)))

M, My,
< po(t)un(t) + Min q*(t,M,) for t e [0,w]. (22.17)
Denote by v,,, where n > ng, the solution of the problem
o= o0 + 5 0 M) 0n(0) = 0a(), 01 (0) = vl w). (22.18)

Since py € VT (w) it follows from Remark 0.6, in view of (22.17) and (22.18), that
Un(t) <w,(t) for te[0,w],n>mng
and thus (since @, (t) > 0 for t € [0,w]) we have
lonlle > 1 for n>mng. (22.19)
On the other hand, since ¢* € Kq([0,w] x R;Ry) it follows from Lemma 3.1 that

timJoallo =0,
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which contradicts (22.19). Therefore, we have proved that if (Hyg) holds then for some n > ng, the
inequality (22.10) is fulfilled.

Suppose now that (Hag) holds. Extend the functions p, po, qgo, hn, and u, w-periodically and
denote them by the same letters. In view of (Hag), (22.3), (22.7), and (22.13), one can easily verify
that

h(t, un (t)) < (po(t) — p(t))un(t) + |go(t)| + R*(t) for teR, n>mng. (22.20)
Let now n > ng be fixed and tg € [0,w| be such that ul,(to) # 0. If u) (tp) > O then there is
aty € [to — w, to[ such that

u,(t) >0 for t €ty to], ul,(ts)=0. (22.21)
In view of (22.20) and (22.21), we obtain
to
ul, (to) = / (p(s)un(s) + hn(s,un(s))> ds
ta
to
< / (po(s)un(s) + |qo(s)] + h*(s)) ds < Au,(to) + B,
t
where A & llpollz and B def llgollz + ||P*|| L. Analogously, if u] (t9) < 0 then there is a t* € Jtg, tg + w]
such that
u, (t) <0 for t € [to,t*[, u,(t)=0
and
o
—ul, (to) < / (po(s)un(s) + lgo(s)| + h*(s)) ds < Au,(to) + B.
to
Therefore, we have proved that for any n > ng, the inequality
lul, (t)] < Au,(t)+ B for t € [0,w] (22.22)
holds. Taking now into account (22.7), we easily get from (22.22) that

Bw

B
where , is defined by (22.14). Hence, on account of (22.11), there is a n; > ng such that

M, < m,exp [Aw—F } for n > ng,

My, > T0-
Consequently, by virtue of (Hag), (22.3)-(22.5), and (22.7), we get that
han, (t, un, (£)) < (po(t) = p(t))un, (t) + qo(t) for ¢ € [0,w].

Therefore,

Up, () < po(t)un, (t) + qo(t) for t € [0,w].
Now it is clear that

U, (£) = Po(t)un, (t) + qo(t) — qu(t) for ¢ € [0,w],
Un,y (O) = Un, (w)v u/nl (O) = u/nl (w)a

where
1 () & po (£, () + qo(t) — ul (£) > 0 for t € [0,w]. (22.23)
However, by virtue of Fredholm’s third theorem, we get that
/ (q0(s) — q1(s))uo(s)ds = 0,
0

where ug is a function appearing in the hypothesis (Hyg). The latter equality, together with (Hsg)
and (22.23), yields the contradiction 0 < 0. Therefore, we have proved that if (Hzg) holds then for
some n > ng, the inequality (22.10) is fulfilled. O



Theorems on Differential Inequalities and Periodic BVP for Second-Order ODEs 99

Introduce the hypothesis
flt,z) > pt)x +q(t) for t€[0,w], z>0,
{ pEViW), (p,g) €UWw),
where U(w) is defined by Definition 16.1.
Proposition 22.2. Hypothesis (Ha1) implies (Hig).

Proof. Clearly, (Hs) is fulfilled, where ho(t, z) % ¢(t) for t € [0,w], 2 € R and  is a positive solution
of the problem

B =pt)B+aq(t); B0) =Bw), B(0)=p(w) =
Introduce the hypothesis
ft,z) > p)x + ho(t)p(z) for t€[0,w], = >0,
peEVT (W), ho€ Ly, ho(t)>0 for t€[0,w], ho#0,

(Ha2)
v € C(R4;R,), ¢ is nondecreasing, zli%l+ @ = +4-00.
Proposition 22.3. Hypothesis (Haz) implies (Hig).
Proof. Let (Haz2) holds. Denote by v the solution of the problem
v =p(t)v + ho(t); v(0) =v(w), v'(0) =v'(w). (22.24)
By virtue of Remark 9.2, there is a ¢ > 0 such that
v(t) >c¢ for t € [0,w]. (22.25)
Choose € > 0 such that
9 > (22.26)

—~ O |+

and put 5(t) def p(e)v(t) for t € [0,w]. Tt follows from (22.25) and (22.26) that B(t) > e pro t € [0, w].
Hence, in view of (22.24) and the monotonicity of the function ¢, we get
B7(t) < p(t)B(t) + ho(t)p(B(t)) for t € [0,u],
B(0) = B(w), B'(0) =p'(w).

Now it is clear that (Hys) holds with ho(t, z) % ho(t)p(). O

Introduce the hypothesis
f(t,x) > pt)x + hy(t,z) +q(t) for t € [0,w], = >0,
p€IntVT(w), (p,q) € Up(w), h1 € Kioe([0,w]x]0, +oo[; R, ),
(Has)
hi(t, -) is nondecreasing on [0, +oo[, lim — /h1 s,x)ds = +o0.
x—0+ 2
0

where Up(w) is define in Definition 16.20.
Proposition 22.4. Hypothesis (Ha3) implies (Hig).

Proof. Let the hypothesis (Ha3) holds. Let, moreover, ¢y > 0 be the number appearing in Proposi-
tion 16.8. Choose xg > 0 such that

w

1
. /hl(s,xo)ds > . (22.27)
0

and denote by §y the solution of the problem
o0 =pt)Bo+hi(t,z0);  Bo(0) = fo(w), By(0) = By(w). (22.28)
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By virtue of (22.27) and Proposition 16.8, we get that
Bo(t) > xo for t € [0,w]. (22.29)
Denote by v the solution of the problem
v =pt)v+q(t); v(0) =v(w), v'(0) =" (w). (22.30)

Since (p, q) € Up(w) we get
v(t) >0 for te[0,w]. (22.31)

Let now B(t) & Bo(t) + v(t) for t € [0,w]. In view of (22.28)—(22.31) and the monotonicity of the
function hq(t, -) we get that

B(t) >0 for te[0,w], B(0)=pBw), A(0)=7sWw),
B"(t) < p(t)B(t) + ha(t, B(t)) + q(t) for t € [0,w].

Now it is clear that (Hys) holds with hg(¢, z) L, (t,z) + q(t). O

Introduce the hypothesis
ft,z) > pi(t)xr for t € [0,w], = >0,
f(t,x) > pi(t)x + ho(t,z) for t€[0,w], z€]0,8], § >0, p; € IntVH(w),
ha € Kipe([0,w]x ]0,+00[;R,), ha(t, -) is nondecreasing, (Hay)

z—0+ o

1 w
lim — /hg(s,m) ds = +o0.
0

Proposition 22.5. Hypothesis (Ha4) implies (Hig).

Proof. Let the hypothesis (Ha4) holds. Since p; € Int VT (w) there is an € > 0 such that the function

p(t) 2ef p1(t) — %hg(t, §) for t€[0,w]

satisfies the inclusion p € V¥ (w). It is clear that
Ft,x) > pr(D)a = p(t)a + % ho(t,8)z for t€[0,w], x>0,
ft,x) > p1(t)x + ha(t,z) = p(t)x + hao(t,z) + %hg(t, d)x for t €[0,w], x€]0,d].

and thus we have
flt,z) > pt)x + hi(t,z) for ¢t €[0,w], x>0,
where
hi(t,z) < ehy(t,x — [z —8]4) for t€[0,w], > 0.
Clearly, hy € K([0,w] x Ry;Ry), hi(t, -) is nondecreasing, and

1 w
lim — /hl(s,x) ds = 4o0.
x—0+ 21

0

Consequently, the hypothesis (Ha3) holds (with ¢ = 0). Taking now into account Proposition 22.4, it
is clear that hypothesis (H;g) holds as well. O

Introduce the hypothesis
flt,x) > p(t)x + h(t,z) for t€[0,w], = >0, (H
{ the hypothesis (Hi2) holds. )
The next assertion follows from Proposition 18.9.
Proposition 22.6. Hypothesis (Has) implies (Hyg).

The next corollary immediately follows from Theorem 22.1 and Propositions 22.2-22.6.
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Corollary 22.7. Let k € {21,22,23,24,25} and the hypothesis (Hy) hold. Let, moreover, either
(Hyg) or (Hag) be fulfilled and p(t) < po(t) for t € [0,w] if k € {21,22,23,25} and p1(t) < po(t) for
t € [0,w] if k =24. Then the problem (22.1) has at least one solution.

For the problem (22.2), Theorem 22.1 implies the following assertion.
Corollary 22.8. Let p € VT (w), the function h(t, -) is nondecreasing (on ]0,+oo[ ), and

. 1
lim —
r——400 I

/|h(s,x)|ds 0. (22.32)
0

Then the problem (22.2) is solvable if and only if there is a function f € AC' ([0,w]) satisfying B(t) > 0
fort € [0,w], B(0) = B(w), B'(0) = B'(w), and
B7(t) < p(t)B(t) + h(t, B(t)) for t € [0,w].

Proof. If u is a solution of the problem (22.2) then clearly 5(t) def u(t) for ¢ € [0, w] satisfies conditions

of the corollary. Suppose that there exists a function  satisfying the conditions of the corollary. Put

Ft,z) € pt)z + h(t,z) for t € [0,w], z > 0. Tt is clear that (Hys) holds with ho(t, z) % h(t,z). On

the other hand, in view of (22.32), (Hyg) is fulfilled with po(#) Lof p(t), qo(t,x) Lof [h(t, 1+ [z —1]4)],
and ro = 1. Therefore, by virtue of Theorem 22.1, the problem (22.2) has at least one solution. [
The next assertion follows from Corollary 22.7 with k = 21.

Corollary 22.9. Let p € VT (w), (p,q) € U(w),

h(t,z) > q(t) for t € [0,w], = >0,
and (22.32) holds. Then the problem (22.2) is solvable.
Remark 22.10. Let p € V*(w), h(t,z) &f q(t), where ¢ £ 0, and (p,q) € Up(w) \ U(w) (see
Remark 16.21). Then it is clear that the problem (22.2) has no (positive) solution. Therefore,
the condition (p,q) € U(w) in Corollary 22.9 is optimal and cannot be weakened to the condition
(p,q) € Up(w). However, the following assertion holds.

Corollary 22.11. Let p € Int V' (w), (p,q) € Up(w),
h(t,z) > q(t) for t€[0,w], = >0,
and the function h(t, -) is nondecreasing on |0,+o00[. If, moreover, the condition (22.32) holds then
the problem (22.2) is solvable.
Proof. Put f(t,x) def p(t)z+ h(t,x). It is clear that (Hag) holds with hq (¢, x) 2ef h(t,z) —q(t). On the

other hand, (Hyg) is fulfilled with po(¢) &t p(t), qo(t, x) ef |h(t, 1+ [z — 1]4+)|, and 79 = 1. Therefore,
by virtue of Corollary 22.7, the problem (22.2) is solvable. O

The next assertion follows from Corollary 22.8 and Proposition 18.9.

Corollary 22.12. Let p € Int VT (w), h(t, -) is nondecreasing, and the hypothesis (H2) holds. Then
the problem (22.2) has at least one solution.

Corollary 22.13. Let p € V*(w), q € Ly, ¢ Z0, q(t) >0 fort € [0,w], 7 >0, u € [0,1], and
h(t,x) > q(t)z" for t € [0,w], = >r.

Let, moreover, the mapping x — x% h(t,x) is nonincreasing in |0,+oo[. Then the problem (22.2) has
at least one solution.

Proof. Put f(t,x) d:efp(t)x + h(t,x). Tt is clear that

ilh(t,x)z h(t,r+1)>q(t) for te[0,w], z€]0,r+1]
xl

1
and thus
h(t,z) > q(t)z" for t € [0,w], = > 0.
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On the other hand,

1 1 h(t@) _ h(t1)

T Wt @) = xl-n = glon

for t € [0,w], z>1.
TH T

Now it is clear that (Hag) holds with hg(?) 2ef q(t) and ¢(x) L 24 as well as (Hyg) is fulfilled with

po(t) def p(t), qo(t,x) def h(t,1)|x|*, and ro = 1. Therefore, by virtue of Corollary 22.7, the problem
(22.2) is solvable. O
Remark 22.14. For p = 0, Corollary 22.13 reads as follows.
Let p € VT (w), h(t, -) is nonincreasing, and
h(t,x) > q(t) for t € [0,w], x>0, (22.33)
where q € Ly, ¢ £ 0, and q(t) > 0 for t € [0,w]. Then the problem (22.2) has at least one solution.
Observe, that the assumption (22.33) is essential and cannot be weakened to the assumption
h(t,z) >0 for ¢t €[0,w], x>0,
(22.34)
mes {t € [0,w] : h(t,z) >0} >0 for z>0.

Indeed, in view of Proposition 14.1 and Proposition 7.4, there is a p € V*(w) such that the problem

W = p(t)u + % w(0) = u(w), ¥(0) =1 (w)

has no solution. Hence, the problem (22.2) with h(¢, x) def 2 has no solution while the function A(t, -)

is nonincreasing and (22.34) holds.
However the following assertion is fulfilled.

Corollary 22.15. Let p € Int V' (w), h(t, -) is nonincreasing (on ]0,+00[),
h(t,z) >0 for t € [0,w], x>0,

and there is a 6 > 0 such that
mes {t € [0,w] : h(t,6) > 0} #0.

Then the problem (22.2) has at least one solution.

Proof. Put f(t,z) def p(t)x + h(t,z). It is clear that (Ha4) holds with pi(t) oo p(t) and ha(t, x) 2o
h(t,8) as well as (Hyo) is fulfilled with po(t) % p(t), go(t, ) < h(t, 1+[z—1]4), and ro = 1. Therefore,

by virtue of Corollary 22.7, the problem (22.2) is solvable. O

Return again to the problem (22.1). Before the formulation of the next theorem introduce the
hypothesis
hi(t) ha(t)
P (x) Pa(z)
hl,hQ € L, hl(t) >0, hg(t) >0 for t e [O,W], h1 ;é 0,
P1,D2 S V+(w)7 q* S Ksl([oaw} X R+;R+)7 (HQG)

1,12 € C(]0,400[; ]0,+00[) are nondecreasing,

lim sup 9 (L> > 0 for every ¢ > 0.

T—+00 Y1 (z)

Theorem 22.16. Let the hypothesis (Hag) hold. Then the problem (22.1) has at least one solution.

< f(t,z) <p2(t)2 +

p1(t)x + +q¢*(t,x) for t € [0,w], x>0,

Proof. First of all mention that it follows from (Hag) that
p1(t) <p2(t) for t e [0,w]. (22.35)

Further, it is clear that without loss of generality we can assume that the function ¢*(¢, - ) is nonde-
creasing (on ]0,+oo[). Denote by vy the solution of the problem

vy = p1(t)vo + hi(t);  vo(0) = vo(w), v (0) = vh(w).
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By virtue of Remark 9.2, there is a v > 0 such that
vo(t) > v for t € [0,w]. (22.36)

It follows from the assumptions imposed on the functions ¢; and 5 in (Hag) that there is an increasing
sequence {x, };7> C [1,+oo[ such that lirf Zp = +oo and
n—-+oo

v
where )
v v
— limsupx —— ] if limsupx < +o0,
d_cf 2 z~>+o£) w2 (¢1 (x)) :v—)Jrog w2<¢1 ($)>
0 =
v
1 if limsupzx = +o00.
s (55)
Introduce the notations
X, (x) Ly [ —z,]4 for z€R, neN, (22.38)
Falt,2) € pr(Oz+ 1 (X, (@) =i (D, (@) for t€[0,w], (22.39)
x>0, neN,
and for any n € N, consider the problem
v = fu(t,u); u(0) =u(w), u(0)=1u(w). (22.40)

It is clear that, the function f,, satisfies hypotheses (Haz) (with p(t) e (t), o(x) 41 and ho(t) 2o

S5 ha(t)) and (Hio) (with po(t) = pa(t), qo(t,z) = b ha(t) +q* (£, ) + xalps (£)] and 1o = 1),

Therefore, by virtue of Corollary 22.7, the problem (22.40) possesses a solution u,, and
up(t) >0 for ¢t € [0,w], neN.

Put M, & max{un(t) : t € [0,w]}. In view of (22.38) and (22.39), to finish the proof it is sufficient
to show that for some n € N, the inequality M,, < z,, is fulfilled. Suppose the contrary, let

M, >z, for neN. (22.41)
Then, it is clear that,
" hy (t)
walt) 2 PO+ 50 @)
> p1(t)un(t) + 1;11((;2) for t € [0,w], n€N. (22.42)

In view of (22.42) and the condition p € V1 (w), it follows from Remark 0.6 that 11 (xy, )un(t) > vo(t)
for ¢ € [0, w]. Hence, on account of (22.36), we get

Un (t) > ) for t € [0,w], neN. (22.43)
Consequently,
X, (un(t)) > x,, (¢1(yxn)) = " (Va:n) for ne N (22.44)
and
Yo (X, (un(t))) > s (m) for n € N. (22.45)

Mention also that, in view of (Hag) and (22.35), the inequalities
upy (t) < pa(t)un (t) + fu (8, X, (Un (1) = p2(t)x,, (un(t)) + (p1(t) — p2())[un(t) — 2]+
ha(t)
P2(x, (un(t)))

hold. Introduce the notations

Un(t) =

< pa(t)un(t) + +q¢*(t,x,) for t€[0,w], neN (22.46)

1

un(t) for t€[0,w], neN.

n
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Then, in view of (22.41), (22.42), (22.37), and (22 46), we get that
~ ~ 1
1)U, (t) < Ul (t) < pa(t)un(t) + )\— ha(t) + . q (t,x,) for te0,w], neN.
0 n
Consequently,
. 1 L,
[, (1)] < [pa ()] + [p2(8)] + 3 W)+ (tzn) for te[0,u], neEN. (22.47)
n
Taking now into account that @y is a periodic function and ¢* € Kq([0,w] X R;Ry), we easily get
that the sequence {@/,}2] is uniformly bounded. On the other hand, (22.47) implies that for any
s € [0,w[ and t €]s, w], the inequality
¢
~ ~ 1
hmwﬂmms/@mm+mwwxﬁmn%+% fr neN  (2245)

S

holds, where §,, = fq (&, z,,)dE. Since ¢* € Kq([0,w] x R;R,) it follows from (22.48) that the

Tn

sequence {u/, },;125 is equlcontlnuous

We have proved that the sequences {u,}; > and {u,}> are uniformly bounded and equicon-
tinuous and thus, by virtue of the Arzela—Ascoli lemma, we can assume without loss of generality
that

lim u(z) =u
n—+oo

where ug € AC([0,w]). Tt is clear that,
’U,O(t) >0 for te [va]v ||UO||C =1,

é) uniformly on [0,w], i=0,1, (22.49)

00(0) = wp(w), uh(0) = (). (2250)
Therefore, either
up(t) >0 for ¢ € [0,w], (22.51)
or there are o € [0,w[ and f € ]a,w] such that
up(t) >0 for t €la, B], wo(a) =0, wugy(a)=0. (22.52)

Suppose first that (22.51) holds. Then, in view of (22.49), there are po €]0,1[ and ny € N such
that @, (t) > po for t € [0,w], n > ng. Taking, moreover, into account (22.41), we get that

Un(t) > poxy, for t€[0,w], n>ng.
Consequently, x, (un(t)) > pox, and

Vo (X, (un(t))) = va(pozy) for t €[0,w], n>ng. (22.53)
Hence, in view of (22.41) and (22.46), we get that
1
un(t) < pa(t)un(t) + hat) +—q"(t,x,) for te€[0,w], n>ng. (22.54)

TpY2(foTn)  Tn
Let now v,, be a solution of the problem
ho(t 1
:cm(xxn) T
In view of (22.54) and the condition py € V*(w), it follows from Remark 0.6 that
Un(t) > w,(t) for t€[0,w], n>ng. (22.55)
On the other hand, since ¢* € K([0,w] x R;R;) and

w

lim /hg
n—r+oo xn¢2 MOxn
0

"

v = pa(t)vy, +

we get from Lemma 3.1 that

lim v,(t) =0 uniformly on [0, w]
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which, together with (22.49) and (22.55), contradicts (22.50).

Now suppose that (22.52) is fulfilled. Let 7 €]a, 8] and t €]r, 8] be arbitrary. On account of
(22.49) and (22.52), there are 1 €10,1] and ny € N such that u,(s) > p1 for s € [1,t], n > ny.
Consequently, in view of (22.41), we get that u,(s) > piz, for s € [1,t], n > ny and therefore

P (Xn (un(s))) > o(pzy) for s€[rt], n>ng. (22.56)
The latter inequality, together with (22.41) and (22.46), implies that

t t t

u u U _ s)ds 1 *(s,2,)ds
Bl) = T0(1) < [ pala)in(s)ds + s /h2< st [ (s

n
T

T

for n > ny and thus, by virtue of (22.49) and the condition ¢* € Kq([0,w] x R;R,), we get that

t

ug(t) — ug(r) < /pg(s)uo(s) ds. (22.57)

T

We have proved that for any 7 € |a, B[ and t €], 8], the inequality (22.57) holds. Therefore, in view
of the condition ug(«) = 0, we get from (22.57) that

t

ug(t) < /pg(s)uo(s) ds for t € [a,f]

«

which, together with the condition ug(a) = 0, yields

uo(t) < /t (/sz(f)uo(ﬁ)dﬁ) ds <w/tP2(5)|Uo(5)d3 for t € [a, B].

Hence, by virtue of the Gronwall-Belman lemma, we get that ug(t) < 0 for ¢ € [«, 8] which contradicts
(22.52). O

As an example consider the problem

uw(0) = u(w), u(0)=u'(w), (22.58)

where the functions hg and ¥ satisfy the following hypothesis

ho € L, ho(t)>0 for t€R, ho#0,
{ (Har)

¥ € C(]0,+00[; ]0,4+00[) is nondecreasing.

It follows from Corollary 22.15 that if, in addition, p € Int VT (w) then the problem (22.58) is solvable.
Moreover, if p € VT (w) \ Int VT (w), i.e., if p € ID(w) then none of the results stated above can
be applied. Moreover, the example given in Remark 22.14 shows that the sole condition (Ha7) is
insufficient for the solvability of the problem (22.58) in that case (i.e., when p € 9D(w)). However,
Theorem 22.16 implies that

Corollary 22.17. Let p € V' (w) and (Hay) hold. Let, moreover,

T—r+00

lim sup x1) (%) >0

for any ¢ > 0. Then the problem (22.58) has at least one solution.
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Before formulation the next result introduce the hypothesis
ft,z) >pi(t)r —q(t,z) for t€[0,w], >0,
ft,z) > pt)x + hi(t,z) — q(t,z) for t € [0,w], = €]0,d], >0,
q,q1 € Kgi([0,w] X R;R4), Ay € Kjoe([0,w] % ]0, +00[; R),

the function h. (¢, -) is nonincreasing, (Has)

/h*(s,c|s—a|)ds:+oo for ¢>0, a€[0,w],
0

p1(t) <p(t) for t€[0,w], p1 € ntD(w), peIntVt(w).

Theorem 22.18. Let the hypothesis (Hag) hold. Let moreover, either (Hig) or (Hao) be fulfilled and
p(t) < po(t) fort € [0,w]. Then the problem (22.1) has at least one solution.

Proof. First of all mention that without loss of generality we can assume that § < 1 and the functions
qo, q1, and g are nondecreasing in the second variable on Ry. It is easily follows from hypothesis

imposed on the function h, that
w

Jim h.(s,2) ds = 4o0. (22.59)
Introduce the notation ’
h(t,z) = f(t, @) = p(t)z +q(t, @),
ht,z) Y ht, e — [z —0y), h(t,z) Lh(tz—[z—6]y),

Gt x) Ch(t, 5+ [z — 8]4) — h(t,8) — q(t, ).

It is clear that, h € Kjoe([0,w]x ]0,+00[; R), § € K([0,w] x R;R),

h(t,z) >0 for t € [0,w], = >0, (22.60)
h(t,z) > hy(t,z) for t€[0,w], z >0, (22.61)
w
/ﬁ*(s,c\s —al)ds =400 for ¢>0, a€[0,w]. (22.62)
0
Moreover, one can easily verify that
p(t)z + h(t,z) + q(t, ) = f(t,z) for t€[0,w], >0 (22.63)
and
q(t,z) > pt)r — q2(t,z) for t € [0,w], = >0, (22.64)
where

~ def def
p(t) = pi(t) —p@t), a2t 2) = q(t.z) + a(t, 2).
Clearly, ¢2 € Kq([0,w] x R;Ry) and the function go is nondecreasing in the second variable on R..
Further, for any n € N, put

Gn(t,7) € (8 [2]+ — [[2l+ —n],). (22.65)
One can easily verify that g, € K([0,w] x R;R,) and
p(t)x + h(t,z) + Gn(t,z) = p(t)[x —n]y + f(t,z — [z —n]y) for t€[0,w], z>0. (22.66)

Moreover, for any n € N, there is a ¢} € K([0,w] x R;R.) such that ¢ (¢, -) is nondecreasing on R
and

Gt 2)| < Gt aly) for t€ 0w, v ER, (22.67)
lgn(t,2)| < g (t,n) for t€[0,w], z€R. (22.68)

n
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Consider the problem
u” = p(t)u+ h(t,u) + Ga(t,u); u(0) = u(w), u'(0)=1u'(w). (22.69)

First we will show that for any n € N, the problem (22.69) possesses at least one (positive) solution.
Indeed, let n € N be fixed. For any k£ € N put

i i 1))
One can easily verify that hy, € K([0,w] x R;R),

hi(t,z) >0 for te[0,w], z€R, keN (22.70)
and for any k € N, there is a h} € L, such that

hi(t,z) < hi(t) for te€[0,w], z€R. (22.71)

By virtue of (22.68), (22.70), (22.71), and the condition p € Int V*(w), it follows from Proposition 17.3
that for any k£ € N, the problem

v = p(t)or + it o) + Gu(t,on); - 0k (0) = vr(w), v4(0) = vj,(w) (22.72)

possesses a solution vy. In view of (22.67), (22.68), and (22.70), clearly
o) > ptyn(t) — gi(t [n()]5) for 1€ [0,u], KEN, (22.73)
v (t) > p(t)ve(t) — qi(t,n) for t € [0,w], ke N. (22.74)

Now, we will show that there is a kg € N such that
1
max {vi(t) : t € [0,w]} > . for k> k. (22.75)
0

Indeed, let v be a solution of the problem
o = p(o+ g1 v(0) = v(w), v(0) = /(). (22.76)
In view of (22.59), there is a ko € N such that kg > $ and

w
1 *
/ (s ) ds > Il + lolle) + (- 1), (22.77)
0
Suppose that for a certain k > ko, the inequality (22.75) is violated, i.e.,
1
max {vy,(t) : t € [0,w]} < . (22.78)
0
holds and, consequently,
()] <1 for t € [0,w). (22.79)

In view of (22.73), (22.76), (22.79), the condition p € Int VT (w), and the monotonicity of the function
q: (¢, -), it follows from Remark 0.6 that vi(t) +v(t) > 0 for ¢ € [0,w]. Taking, moreover, into account
(22.79), we get that

oklle < 1+ ||v]le- (22.80)
Since vy, is a solution of the problem (22.72) we have
/Ek(s,vk(s)) ds = — / (p(s)vr(s) + Gn (s, vi(s))) ds. (22.81)
0 0

The latter equality, together with (22.67), (22.79), and (22.80), implies that

/ ok (s, va(5)) ds < [lpll (1+ lolle) + (-, Dl (22.82)
0
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On the other hand, in view of (22.61), we have

w

/Ek(s,vk(s)) ds > /ﬁ* (8, % + [vk(s) - %Lr) ds. (22.83)
0

0

Taking now into account that the function E*(t, -) is nondecreasing and

1
— - — < —
+ [vk(t) Lr < <4 for te0,w],
we get from (22.83) that

w w

/ﬁk(smk(s))ds > /h* (5, kio) ds

0 0
which, together with (22.82), contradicts (22.77). Thus, we have proved that for a certain ky € N, the
inequality (22.75) holds.
Now, we will show that for a certain k > kg, the inequality

v (t) > % for ¢t € [0,w] (22.84)

is satisfied. Extend the functions p, Ek, and ¢,, and v, periodically and denote them by the same
letters. Suppose that the relation (22.84) is violated for every k > ko. Then, in view of (22.75), for
any k > ko there is an aj € [0,w[ such that

1 1
T vg(ag +w) = T (22.85)
Since p € Int V*(w) we have p € Int D(w) as well (see Theorem 9.1"). Denote by wy and wq the
solutions of the problems

Uk(ak) =

wy = p(t)wr, — g (t,n);  wi(ag) =1, wilap +w) =1,
and
wy = p(t)wo + gy (t,n);  wo(0) = wo(w), wy(0) = wy(w).
In view of (22.74), it follows from Proposition 2.5 and Remark 0.6 that
v (t) <wg(t) for t € [ag,ar +w], k€N,
vp(t) > —wo(t) for t € [0,w], ke€N.
By virtue of Remark 6.4 and Proposition 6.8, there is a v > 0 such that
wg(t) < V(l + g (- 7n)||L) for t € [ag,ar +w], k€N

Consequently,
loglle < ep for k €N, (22.86)

def .
where co = v(1+ g5 (-, )] L) + [lwollc-
In view of (22.68) and (22.86), it follows from (22.81) that

for k € N, (22.87)

N O

/%k(s,vk(s)) ds <
0

where ¢ = 2(collpllz + ¢ (-,n)||L)). Taking now into account (22.68), (22.70), (22.86), and (22.87),
we get from (22.72) that

/|v,’;(s)\ ds<c for keN. (22.88)
0

Since vg(0) = vi(w) there is a t; € [0,w[ such that v} (tx) = 0. Hence, in view of (22.88), we get

i w

(1)) = ’/ug(s)ds g/|v;;(s)|dsgc for te[0,w], keN.

tr 0




Theorems on Differential Inequalities and Periodic BVP for Second-Order ODEs 109

Consequently,
log(t) —vk(s)| < clt —s| for t,s €[0,w], keN. (22.89)

In view of (22.86) and (22.89), the sequence {vj};>; is uniformly bounded and equicontinuous on
[0, 2w]. Hence, by virtue of the Arzeld—Ascoli lemma, we can assume without loss of generality that

kgrfoo ar = ag (22.90)
and
lim wvg(t) = vo(t) uniformly on [0,2w], (22.91)
k— 400

where ap € [0,w] and vy € C([0,2w];R). It follows from (22.89), in view of (22.85), (22.90), and
(22.91), that |vg(t)| < c|t — ag| for ¢t € [0, 2w]. Since vg(t) = vo(t + w) for ¢ € [0,w] we get from the
latter inequality that

lvo()| < ¢|t —a] for t € 0,w], (22.92)

where a & ag if ag € [0,w[, and a dfy if ag = w.
Moreover, in view of (22.91), for any € > 0 there is a k. > 1 + } such that

lvp ()] < |vo(t)| +e for t€[0,w], k> k..

Consequently,
1 1
2+ [vk(t) - ﬂ < lvo(t)| +e for te0,w], k> k.. (22.93)
+
In view of (22.61), (22.92), (22.93), and the monotonicity of the function h.(t, ), we get that

w

/Ek(s,vk(s))ds > /E* (s, % + [vk(s) - %Lr) ds > /E*(s,c\s —a|+e)ds for k> k.
0 0 0

/ﬁ*(s,ds—a\ —l—s) ds < C.
0
However, ¢ > 0 was arbitrary and thus, the latter inequality contradicts (22.62). Hence, we have
proved that there is a k > ko such that (22.84) holds, whence we get hie(t, () = E(t,vk(t)) for
t € [0,w]. Consequently, in view of (22.72), the function vy is a (positive) solution of the problem
(22.69) as well.
Therefore, we have proved that for any n € N the problem (22.69) possesses a solution u,, and

un(t) >0 for ¢ € [0,w]. (22.94)
In view of (22.66), to finish the proof it is sufficient to show that for a certain n € N, the inequality
[unllc <n (22.95)
holds. Assume the contrary, let
lunllc >n for neN. (22.96)

!

First, suppose that (Hyo) holds. We will estimate |[u),[|c. Extend the functions p, h, G,, and
u,, periodically and denote them by the same letters. Let n € N and ¢ € [0,w][ be fixed such that
ul, (t) # 0. Suppose that u],(¢t) > 0. Since w,, is a periodic function there is a t* €]¢,¢ + w[ such that
ul (t*) = 0. In view of (22.60), (22.64), (22.65), and (22.94), we have

—ul(t) = / (p(s)un(s) +E(s,un(s)) + q~n(s,un(s))) ds

t
t* t*

2 */(\p(S)IJrIﬁ(S)I)un(S) dsf/qQ(s,n) ds>—([lpll L +1PN L) lunllc = la2(-,n)ll -

t t
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Analogously, if ul,(t) < 0 then there is a ¢, €]t — w, [ such that u,(t.) = 0 and
t
()= [ (p5)n ) 5.0 60) 05 (5)) s = (Il 1712) o~ ) .
ta

Therefore,
lunlle < (llplle + 1Pz) lunlle + llg2(-,n)llz - for neN. (22.97)
Introduce the notation

def 1

) =
[unllc
In view of (22.97), (22.96), and the condition g2 € Kq([0,w] x R;R,), there is an n > 0 such that

U (t up(t) for t€[0,2w], neN.

c<n for neN.

|

Hence,the sequence {,}5%; is uniformly bounded and equicontinuous (on [0, 2w]). By virtue of the
Arzeld—Ascoli lemma we can assume without loss of generality that

lirf Un(t) = up(t) uniformly on [0, 2w], (22.98)
n—-+0o0
where ug € C([0, 2w]). In view of (22.94), clearly

up(t) >0 for t €[0,2w], |uollc=1.

Consequently, either

ug(t) >0 for t € [0,w], (22.99)
or there are o € [0,w[ and § € ]a, a 4+ w] such that
uop(t) >0 for t €la, B[, wuo(a) =0, wue(B)=0. (22.100)

First, assume that (22.99) is fulfilled. Then, in view of (22.96) and (22.98), there is a ng > 7o such
that
up (£) > max{rg,d0} for ¢t € [0,w], n>ng. (22.101)
Taking into account (22.66), (22.101), and the hypothesis (H1g), we get
U (8) = p()[un(t) = nls + f(t un(t) = [un(t) —nl+)
< po(t)un(t) + (P(t) = Po (1)) [n (t) — nl4 + qo (t, un(t) — [un(t) — n]4)
< po(t)un(t) + go(t,n) for t € [0,w], n>ng. (22.102)

Denote by w,, the solution of the problem

Wl = po(tun + - aolt, )i wa(0) = wa ), w(0) = uiy(w).
In view of (22.96), (22.102), and Remark 0.6, we get that
Un(t) <wy(t) for t€[0,w], n>mng. (22.103)
However, since py € VT (w) and qo € Kq([0,w] x R;R,) it follows from Lemma 3.1 that

which, together with (22.103) and (22.98), contradicts (22.99).
Suppose now that (22.100) holds. In view of (22.66), (22.94), and the first assumption in (Has),
we get that

U (t) = p()[un (t) — nlt + f(t un(t) = [un(t) —nly)
> p1()un(t) + (p(t) = p1(t)) [un(t) — nl4 — g1 (t ua(t) — [un(t) —nl+)
> p1(t)un(t) — qi(t,n) for t € [0,w], neN. (22.104)
Denote by v, the solution of the problem

o= (Oon — () vn(a) = n(0), va(B) = i (5).
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It follows from Proposition 2.5, in view of (22.96) and (22.104), that
Un(t) <wp(t) for t€la,f], neN. (22.105)
On the other hand, since ¢; € Kq([0,w] x R;R,) and
lim @,(a)=0, lim u,(8)=0

n—-+o0o n—-+oo
we get from Remark 6.4 and Proposition 6.8 that
lim_[fenle =0
which, together with (22.98) and (22.105), contradicts (22.100). Therefore, we have proved that for
a certain n € N, the inequality (22.95) is satisfied.

Suppose now that (Hag) holds. Extend the functions appearing in (22.69) periodically and denote
them by the same letters. Put

my, =min {u,(t) : t € [0,w]}, nEN,

and choose t,, € [0,w[ such that u,(t,) = m,. Consequently,

Un(tn) = My, Up(ty, +w) =my for neN. (22.106)
In view of (22.66), (22.94), and the first inequality in (Hag), we get that
up (t) > p1(t)un(t) — qi(t,n) for t € [ty t, +w], n €N, (22.107)

Denote by v,, a solution of the problem
vl =p1()vn — q(t,n);  vp(tn) = My, vp(t, +w) = my,. (22.108)
By virtue of (22.106)—(22.108), it follows from Proposition 2.5 that
un(t) <wy(t) for t € [ty,t, +w], neN.
On the other hand, it is clear (see Definition 6.2, Remark 6.4, and (6.22)) that

vp(t) <muv*(p1) + po(pl)/ql(s,n) ds for neN.
0

Taking now into account (22.96) and the condition ¢; € Kq([0,w] x R;R;), we get that there is
a ni € N such that

mpy >19 for n > nq,

where 7( is the number appearing in (Hzg). Consequently, the inequality
Un(t) — [un(t) —n]y >re for t €[0,w], n>mny (22.109)
holds. On account of (22.66), (22.69), (Hag), and (22.109), we have that
up (t) < po(t)un(t) + qo(t) for t € [0,w], n>ny.
Therefore, for any n > nq, the function u,, is a solution of the problem
" =po(t)utgn(t);  w(0) =u(w), u'(0)="1u(w),

where gy, (t) = Lot ult (¢) — po(t)un(t) pro t € [0,w], n > ny, and

an(t) < qo(t) for te[0,w], n>mn;. (22.110)
However, by virtue of Fredholm’s third theorem, (22.110) and (Hap), we get the contradiction
0= /qn /qo s)ds <0 for n>mng.
0 0
Thus we have proved that the inequality (22.95) holds for a certain n € N. O

For the problem (22.2), Theorem 22.18 implies the following assertion.
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Corollary 22.19. Let p € Int VT (w), § > 0, and
h(t,x) > h(t,x) — q(t,x) for t € [0,w], x€]0,4],
where ¢ € Kg([0,w] X R;RY), ha € Kioe([0,w]x ]0, +00[; Ry ), hy(t, -) is nonincreasing, and
/h*(s,c|s —al)ds =+oc0 for ¢>0, a€0,w].
0
If, moreover,

Tr—r—+00

1 w
lim E/\h(s,mﬂds:o
0

then the problem (22.2) has at least one solution.

Proof. Tt is not difficult to verify that the assumptions of the corollary imply the validity of hypotheses

(Hao) and (Has) with f(t,2) % p(t)z + h(t, z),

i) = p(), po(t) Ep(t), o=
and
ar(t,2) = gt 2) + [h(t,6 + o = 814)], qolt,2) < (L6 + [ - 3]4)].
Therefore, by virtue of Theorem 22.18, the problem (22.2) has at least one solution. d

Recall that the numbers p(p) and Q. , @Q_ are defined by (0.12) and (0.13), respectively, and the
function H is given by formula (0.17). Recall also that for p € Int V' (w), the numbers po(p) and
v*(p) are defined in Definition 6.2 and by the formula (6.22), respectively.

Introduce the hypothesis

ft,z) = p)xr+ h(t,z) for ¢t €[0,w], >0,
h € Kjoe([0,w]x ]0,+00[;R), h(t, -) is nonincreasing in 0, +oo[,
h(t,xz) > q(t) for t€[0,w], = >0, (Hag)
pentVt(w), g€ L,, Q_#0,

H(po(p)Q-) > (v*(p)plp) —1)Q- .
Theorem 22.20. Let the hypothesis (Hag) hold and either (Hig) or (Hag) be fulfilled. Then the
problem (22.1) has at least one solution.
Proof. First of all mention that the inequality

p(t) < po(t) for t € [0,w] (22.111)

holds. Assume without loss of generality that the function g¢o(t, -) is nondecreasing on 0, +o0].
Mention also that, by virtue of Remark 16.5, the inequality (16.14) is fulfilled. In view of the last
condition in (Hag), there is a 0 < ¢ < min{1, po(p)Q—} such that

H(ev*(p) + po(0)Q-) + (1 = v*(0)p(p)) Q- > e(v*(0)||[p]- ||, — [|P)+]],)- (22.112)

Introduce the notation

h(t, ) def ft,z) —pt)r for te[0,w], x>0, (22.113)
and for any n > ng, where ng > v*(p) + po(p)@—, put
T (t, ) d:efﬁ(t,e +lz—ely —[w—n]ly) for t€[0,w], z€R. (22.114)
It is clear that, h € Kjoe([0,w]x ]0,400[; R), hy, € Kg([0,w] X R;R), and
h(t,z) > h(t,z) for t € [0,w], = >0, (22.115)
h(t,z) > q(t) for te[0,w], z>0. (22.116)

For any n > ng, consider the problem

u = p(tyu+ ha(tw); w(0) = u(w), «(0)=1u'(w). (22.117)
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By virtue of Proposition 17.3, for any n > ng the problem (22.117) has at least one solution .
Extend the functions p, h,,, ¢, and u,, periodically and denote them by the same letters. Now we will
show that
un(t) > ¢ for t €[0,w], n> no. (22.118)
Introduce the notation
mn < min {un(t) : te0,w]}, M, 4 max {un(t) : t€0,w]},
and choose t,, € [0,w[ such that u,(t,) = my,, ie.,
Un(tn) = My, Up(ty +w) = my. (22.119)
Denote by « the solution of the problem
o = p(t)a+ h(t,ev* (p) + po(p)Q-); (22.120)
a(0) = a(w), (0) =« )

and by (3, the solution of the problem
BZ = p(t)ﬁn - [Q(t)]—; Bn(tn) - [mn]-i-v ﬁn(tn =+ w) = [mn]+ (22121)
In view of (22.116) and (22.117), clearly
W) > p(tyun(t) — [g(B)] for t € [0,].

Since p € Int VT (w), on account of Theorem 9.1’, we have that p € Int D(w) as well. Taking, moreover,
into account (22.119), (22.121), and Proposition 2.5, we get that

un () < Bn(t) for t € [tn,t, + wl. (22.122)
On the other hand, by virtue of Remark 6.4 and (6.22), the inequality
Bn(t) < mal4v™(p) + po(p)Q-  for t € [tn, tn + w]
holds which, together with (22.122), results in
Un (£) <[mp]+v* (p)+po(p)Q—  for tE€[ty, trn+w], n>no. (22.123)

Let now for a certain n > ng, the inequality (22.118) be violated, i.e., [m,]+ < e. In view of (22.123),
one can easily verify that

et [un(t) —ely —[un(t) —n]y <ev™(p)+po(p)Q-  for t€[0,w].

Taking, moreover, into account (22.114), (22.115), and the monotonicity of the function h(t, -), we
get from (22.117) that

un(t) > p(tyun(t) + h(t,ev*(p) + po(p)Q-) for t € [0,w],
un(0) = up(w), 1y, (0) = uy, (w).
Now, it follows from Remark 0.6, in view of (22.120), that
un(t) > at) for t e [0,w]. (22.124)
However, by virtue of (22.112), it follows from Theorem 16.4 that
a(t) >e for t € [0,w]

which, together with (22.124), contradicts the assumption [m,]; < €. Thus, we have proved that
(22.118) is fulfilled.
Therefore, the function u,, is a solution of the problem

Wl = p(un + Al — [ = 0]1); 4 (0) = (@), 1(0) = () (22.125)
as well. In view of (22.113), to finish the proof it is sufficient to show that for some n > ng, the
inequality

M, <n (22.126)
holds. Suppose the contrary, let
M, >n for n>ng. (22.127)
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First, assume that (Hyg) holds. By virtue of (22.118) and (22.123), clearly
M, <muv*(p) + po(p)Q- for n > ny. (22.128)
Hence, in view of (22.127), there is an n; > ng such that
my > 19 for n>ng, (22.129)

where 7 is the number appearing in the hypothesis (Hig). On account of the latter inequality, one
can easily verify that

Un(t) — [un(t) —n]y > 19 for t €[0,w], n>mn;. (22.130)
Hence, by virtue of (Hig) and (22.111), we have
p(t)un(t) + h(t, un(t) [un(t) = nl+)

) —
< po(t)un(t) + (p(t) — po(t)) [un(t) — 1]+ + qo (t, un(t) — [un(t) — 1)
< po(t)un(t) + qo(t,n) for t€[0,w], n>ny.

Consequently,
ul (t) < po(t)un(t) + qo(t,n) for t €[0,w], n>ny.
Denote by v, the solution of the problem

0 = poO)en + - aolt,m); n(0) = vale), ,(0) = v},(@).

Since pg € VT (w), in view of Remark 0.6, the inequality

un () < nu,(t) for t€0,w], n>n
holds which, together with (22.127), implies
lopllc =1 for n > ng.

On the other hand, since qp € Kq([0,w] x R;R,), it follows from Lemma 3.1 that

lim ||lvpllc =0

——+00
which contradicts the previous inequality. Thus we have proved that for a certain n € N, the inequality
(22.126) holds.

Now, suppose that (Hag) holds. By virtue of (22.118) and (22.123), clearly (22.128) is fulfilled.

Hence, in view of (22.127), there is a ny > ng such that (22.129) holds, where 7 is the number

appearing in (Hyg). On account of (22.129) one can easily verify that (22.130) is fulfilled as well.
Hence, by virtue of (Hgp) and (22.111), we have

P(t)un(t) + Bt un(t) = [un(t) = nl+) < po(t)un() + a0 (t)

for t € [0,w], n > ny. Consequently,

un (t) < po(t)un(t) + qo(t) for t €[0,w], n>ny. (22.131)
Now, it is clear that, for any n > n;, the function w, is a solution of the problem

u =po(t)u+gn(t); u(0) =u(w), v (0) =1 (w),
where g, (¢) fu”(t) po(t)un (t) pro t € [0,w], n > ny. In view of (22.131), we get that
gn(t) < qo(t) for t € [0,w], n>n;. (22.132)

However, by virtue of Fredholm’s third theorem, (22.132) and (Hag), we get the contradiction

w

0= /Zjn(s)uo(s) ds < /qo(s)uo(s) ds <0 for n>mn;.
0 0
Thus we have proved that for a certain n € N, the inequality (22.126) holds. 0
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Corollary 22.21. Let p € Int V*(w), the function h(t, -) is nonincreasing in ]0,+o00[, and
h(t,z) > —ho(t) for t€[0,w], >0,
where hg € Ly, ho(t) > 0 for t € [0,w], and hg £ 0. Let, moreover,
H (po(p)llhollz) > (v*(p)p(p) — 1)l hollL-
Then the problem (22.2) has at least one solution.
Theorem 22.22. Let
ft,x) > pt)x+ g(x) +q(t) for t€[0,w], = >0, (22.133)

where g € L,,, g € C(]0,4+00[;R,), and

SN

1

/g(x) dz = 400, liminfg(z) > —
x—0+

0

/q(s) ds. (22.134)
0

Let, moreover, p € Int V¥ (w) and either (Hyg) or (Hag) hold. Then the problem (22.1) has at least
one solution.

Proof. Introduce the notations

def
Q& O/ a(s)ds,
ht,z) & f(t,2) — p(t)x — g(z) — q(t) for t € [0,w], = >0,
x. () Lot [x—¢]ly for xeR, €>0,
he(t,z) € h(t, x.(z)) for te[0,w], z€R, £>0,
ge(z) & (1 + E - 1]+)g(xg (2)) for >0, >0, (22.135)
Ad:ef{5>0: g(e) #0}.

It is clear that A # @, h. € K([0,w] x R;R),

he(t,z) >0 for t € [0,w], z €R, (22.136)
p()a+ge(x)+q(t)+he(t,x)=f(t,x) for te[0,w], z>e. (22.137)

For any € € A consider the problem

W = p(t)u + ge(u) + he(t,u) + q(t);  u(0) = u(w), v (0)=u'(w). (22.138)

By virtue of (22.136), (22.137), and Theorem 22.18 (with p; =p, § = ¢, H(t,z) = sgags), a(t,r) =|q,

q(t,z) = |q(t)]), the problem (22.138) possesses a (positive) solution u.. Extend the functions h. and
ue periodically and denote them by the letters. Put

me =min {u.(t) : t € [0,w]}, M. =max{u(t): t€[0,w]}.
In view of (22.137), to prove theorem it is sufficient to show that there is an € € A such that
me > €. (22.139)

To this effort first we will estimate u.. Let ¢ € [0,w[ be such that u(¢) # 0. Then either u.(t) > 0 or
ul(t) < 0. If ul(t) > 0 then there is t* €]t,t + w|[ such that u.(¢*) = 0. Integrating (22.138) on [t,t*]
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and taking into account (22.136), we get

2t = [ () + 900-(5)) + e (5, :(5)) + a(s)) s

~ [ (1) ue(s) + o)) s

t

Y

Consequently,
c(®) < P, M=+ llallo-
Analogously, if u.(t) < 0 then there is ¢, €|t — w,t[ such that u.(¢.) = 0 and
¢

0(®) = [ (pels) + 9-(0c(5)) + Bus,0:() + 0(5)) d

12

>~ [ (b0 + o)) ds

—u(t) < |[lp)- |, Mz + llall o

and, consequently,

Thus, we have proved that

lulll e < ||[p],HLME + gl for € € A. (22.140)
By virtue of (22.134) and (22.135), there exists 6 > 0 such that
slipl_ 1l —
ge(z) > H[p]c!LQ for x €]0,6], € € A. (22.141)
Now, we will show that
M, >§ for e € A (22.142)
Suppose the contrary, let there is an € € A such that
M. < 6. (22.143)

In view of (22.136), (22.138), (22.141), and (22.143), it is clear that

= [ pts)uc(s)ds = [ (92 (ues)) +he s, ue(9) as)) ds> -],
0 0

and

w w

—/p(s)ug(s) ds < /[p(s)]_ug(s) ds < MEH[p]_HL.
0
However, the latter two relations contradicts (22.143). Therefore, (22.142) holds. Observe also that,
in view of the first condition in (22.134), clearly AN]0,d[# @.
Now, suppose that

me <e for e € ANJ0,0]. (22.144)
Then, by virtue of (22.142), there is a t. € [0,w[ such that
ue(te) =&, ue(te +w) =e. (22.145)
In view of (22.136), it follows from (22.138) that
u (t) > p(t)ue(t) —|q(t)| for t € [te,t: + w]. (22.146)

By virtue of Theorem 9.1’ we have p € Int D(w). Taking, moreover, into account Proposition 2.2, it
is clear that the problem

of = plt)ae — la(t)l; 0xt) =3, aclte +w) =4 (22.147)
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possesses a unique solution a. € AC ([te,t. +w]). Taking together with (22.145)—(22.147) into account
Proposition 2.5, we get that
ue(t) < ae(t) for t € [te,te +w], €€ ANJ0,4]. (22.148)

On the other hand, by virtue of Remark 6.4 and Proposition 6.8, it is clear that there is a ¢y > 0 such
that
as(t) <c¢o for t e [te,t. +w], € € ANJ0,d][.
Consequently, it follows from (22.140) and (22.148) that
M, < ¢y for e € ANJ0,0[ (22.149)
|lulllc <c for e € AN]0, 4. (22.150)

def
where ¢ = Co”[p]—HL + |lql| -
Let now 7. € Jt.,t. + w[ be such that
ue (1) = Me.
Then, in view of (22.136), (22.138), (22.142), (22.145), and (22.150), we get that
tetw tetw
_ / p(s)ucs(s)ds = / (ge (us(s)) + he (s,ue(s)) + q(s)) ds

tE ta
tetw tetw

>0+ [ o) sz Q[ gofuclo) o) ds

te te

e M. 5
1 1 1
>Q+ p /gs(us(s))u’s(s) ds=Q+ - /g(x) de > Q + - /g(x) da.
te 5 5
Hence, on account of (22.149), we get that
5
/g(:z:) dz < ¢(Q + COH[p]_HL) for e € ANJ0, . (22.151)

€

In view of the first condition in (22.134), it is clear that ANJ0,L[# @ for n € N. Therefore, there is
a sequence {e,},> C ANJ0,d[ such that

lim e, =0. (22.152)

n—-+4oo

On the other hand, it follows from (22.151) that
5

[o@as <@+ alip-l,) for nen

En

which, together with (22.152), contradicts the first condition in (22.134). Thus, we have proved that
(22.139) is fulfilled for some € € A. O

23. COROLLARIES (CONTINUATION)

In this chapter we will apply results of Section 22 to some particular types of equation containing
either the term “—i—h;l#” or the term “—hz#”, where hg € L,, A # 0, and

ho(t) >0 for ¢ € [0,w], ho ZO0. (23.1)

Recall that under a solution we understand a positive function v € AC'([0,w]) satisfying given
equation.
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Consider the problem

v’ = p(t)u+ hz()\t); uw(0) = u(w), v(0)=u'(w). (23.2)

Theorem 23.1. Let A €] — 1,1]. Then the problem (23.2) is solvable for any ho satisfying (23.1) if
and only if the inclusion p € VT (w) holds.

Proof. Let p € V*(w) and hg satisfy (23.1). If A €] — 1, 0] then the solvability of the problem (23.2)
follows from Corollary 22.13 (with h(t,z) % ho(t)z, 1 = |A|, and q(t) % ho(t)). If A €]0,1] then
solvability of the problem (23.2) follows from Corollary 22.17 (with ¢(z) % ).

Let now p € L, and the problem (23.2) is solvable for any hg € L, satisfying (23.1). First, we will
show that p € D(w). Suppose the contrary, let p & D(w). Then there are « € [0,w[ and 8 € Jo, o + W]
such that the problem

v’ = p(t)u, (23.3)
u(la) =0, u(B)=0 (23.4)

has a nontrivial solution. Let hg be an w-periodic function defined by

)0 for t € a,p],
ho(t){l for t €18, a + w].

Denote by u a solution of the problem of the problem (23.2) and extend it w-periodically. It is clear
that, the restriction of the function u on [, 3] is a solution of the equation (23.3) and w(t) > 0
for t € [a, B]. However, by virtue of Sturm’s (separation) theorem, there is a tg €]a, 8] such that
u(tp) = 0 which contradicts previous inequality. Thus we have proved that p € D(w). Hence, in view
of Proposition 10.6, either p € VT (w) or p € V™ (w) U Vy(w).

Now, we will show that p & V™ (w) U Vy(w). Indeed, suppose that p € V~(w) U Vy(w) and hg &ty
Denote by u a solution of the problem (23.2). It is clear that, u”(¢t) > p(t)u(t) for ¢ € [0,w] and
u(t) > 0 for t € [0,w]. Hence, p ¢ V~(w) because otherwise u(¢) < 0 for ¢t € [0,w]. Consequently,
p € Vo(w). Let ug be a positive solution of the problem

ug = p(t)ug;  uo(0) = ug(w), ug(0) = ug(w).

Then, by virtue of Fredholm’s third theorem, we get the contradiction

w

o</“°(3) ds = 0.

ul(s)

0
0

Theorem 23.2. Let A > 1, p € Int V' (w), and ho satisfy (23.1). Then the problem (23.2) has at
least one solution.

Proof. The validity of the theorem follows immediately from Corollary 22.15. g

Remark 23.3. The assumption p € Int VT (w) in Theorem 23.2 is optimal and cannot be weakened
to the assumption p € V*(w). Indeed, in view of Proposition 14.1, there is a p € VT (w) such that the
equation u” = p(t)u is unstable. Hence, by virtue of Proposition 7.4, the problem

1
u" = p(t)u + 35 u0) =uw), u'(0) = u'(w)
has no solution.

Consider the problem

gr(t
o =p(tut 3P 0) = ), w(0) =), (23.5)
k=1
where g € Ly, gr(t) > 0fort € [0,w], gx 20, k=1,...n,and 0 < Ay < -+ < Ap.

Theorem 23.4. Let p € V1 (w) and M\, < 1. Then the problem (23.5) has at least one solution.
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Proof. 1t is clear that,

3
Nt

—|—g() for t € [0,w], = >0,
k=1

where

e}
—~
o~
N2
&
e
M§
Q
x>
—
~
=

k=1

Hence, the function f(t,z) % p(t)z + Z o

) satisfies the hypothesis (Hag) and, consequently, by

k

virtue of Theorem 22.16, the problem (23 5) is solvable. O

Consider the problem

o = plyu+ " g0 () = utw), o/(0) = o), (23.6)

where p,q, hg € L, and hg satisfies (23.1) and ¢ # 0.

Recall that the numbers p(p) and Q4, Q— are defined by (0.12) and (0.13), respectively. Recall
also that for p € Int VT (w), the numbers po(p) and v*(p) are defined in Definition 6.2 and by the
formula (6.22), respectively.

Theorem 23.5. Let at least one of the following items be fulfilled:
(i) A>—1, pe VT (w), and (p,q) € U(w);
(i) A€]—1,0[, p € Int V' (w), and

[A]

B BY =151 T s _ 0. -
(1 |)‘|) (V*(p)p(p)H[p]_HL _ ||[p]+HL> ”hOHL > (p)p(p)Q_ Q+1

(iii) A >0, pe Int V*(w), and
[hollz > (po(P)Q-)*(v*(p)p(P)Q- — Q<)

(iv) A>1,peInt VT (w), and

ho(s)
|s —al

5 ds=+o0  for a € [0,w].

Then the problem (23.6) has at least one solution.

Proof. If (i) holds then solvability of the problem (23.6) follows from Corollary 22.7 with k = 21.
Suppose that (ii) holds. One can easily verify that (H;2) is fulfilled with h(t,z) = Lof ho(t) +¢(t) and

ah:(w@w<ﬂm—h H@+H)1A

IAll[Roll 2

Therefore, solvability of the problem (23.6) follows from Corollary 22.7 with k& = 25.
Let now (iii) is fulfilled. Then solvability of the problem (23.6) follows from Theorem 22.20.
If (iv) is fulfilled then the solvability of the problem (23.6) follows from Corollary 22.19. O

Remark 23.6. Theorem 23.5(i), together with Corollaries 16.11, 16.12, and 16.14, implies efficient
conditions of solvability of the problem (23.2). Recall that in Section 6 the estimates of the numbers
po(p) and v*(p) are established. One can easily verify that Proposition 6.6, 6.8, Theorem 12.1, and
Theorem 23.5(iii) and (iv) imply the following

Corollary 23.7. Let [p|> € L,, p#£ 0, p <0, and

w)||[p* ||, < 1. (23.7)
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Let, moreover,

) def %( ]3||L)_ , (23.8)
c (14 col|lp]-]|,) e* [on H (23.9)
and either N N
_ _ S TR S 0
rel=1.0L (=) (G nT) | Ml 2 e0-—ax

A> 0, lhollz > (c0Q-)*(cQ- — Q4).
Then the problem (23.6) has at least one solution.

As a particular case of the problem (23.6) consider the problem

1
' = —cu+ e q(t);  u(0) =u(w), v (0)=ru'(w). (23.10)
Theorem 23.5, Remark 6.7, and Remark 6.3 imply
Corollary 23.8. Let c€]0, T [ q € L, and at least one of the following items be fulfilled:
(i) A>1;

(if) A €]0,1[ and
2 A 1
(45111(;)[\[) @- ) (COb wyfe @-- Q+);
(iii) A €] —1,0[ and

|)\| 1 m w\/E 171m w\/E
(1- |)\D( ) (cos 5 ) > Q- — Q4 cos 5
Then the problem (23.10) is solvable.

Analogously, Theorem 23.5(i) and Corollary 16.18 imply

Corollary 23.9. The problem
2
T

W =Tk (e u(0) = u(w), W(0) = ')

is solvable provided A > —1, q € L,,, and

lals > (F42) -1,

ho(t)

u’ =p(t)u — =5
where hg satisfy (23.1), ¢ € L, and g # 0.
Theorem 23.10. Let A > 0, p € Int VT (w), and
Q+ 2 v (p)p(P)Q-.

Consider the problem

T u(0) = uw), u'(0) =u'(w), (2.11)

If, moreover,
A

W(ABA) Qs —AQ)
def

where A = v*(p)p(p) and B d:CfAH[P]*HL_HLp]*‘

k+1
lhollz <

1, then the problem (23.11) has at least one solution.

Proof. One can easily verify that the hypothesis (Hiz) is fulfilled with h(t, x) 2ef —h;—(f) +q(t), 2o

(M)HA Therefore, solvability of the problem (23.11) follows from Corollary 22.7 with k =
25. 0
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Analogously as above (see Remark 23.6 and Corollary 23.7) one can easily verify that Theorem 23.10
implies the following

Corollary 23.11. Let A >0, [p]2 € L, p# 0, p <0, and (23.7) hold. Let, moreover,
Qy > cQ-

and )
A (@4 —cQ-)xT
A+ DM e(e|[p]- | , = [Tl [l )*
where the number c is defined by (23.8) and (23.9). Then the problem (23.11) is solvable.

hollz <

Consider the problem
"o ho (t) 7 .
u’ = p(t)u+ =57 + g(t)u” +q(t);

u(0) = u(w), w'(0) =u'(w),

(23.12)

where g € L, and g #Z 0.

Theorem 23.12. Let A > 0, u €]0,1[, p € Vt(w), g(t) > 0 for t € [0,w], and (p,q) € U(w). Then
the problem (23.12) is solvable.

Proof. Theorem 23.12 follows from Corollary 22.9. U
Theorem 23.13. Let A >0, p €]0,1[, p € Int Vt(w), g(t) > 0 for t € [0,w], and

I3

— H gl v — Q. .
=0 GG T i = v ehr)e- - s (23.13)

Then the problem (23.12) is solvable.

def

Proof. Put f(t,z) = p(t)x + h;—(f) + g(t)x* + q(t). It is clear that,

ft,z) > pt)x+ ho(t,z) for te[0,w], x>0,

where hg(t, x) def g(t)z" + q(t). It is also evident that the function hg(t, -) is nondecreasing (on

]0,4+00[). On the other hand, by virtue of (23.13), it follows from Theorem 23.5(iii) (with A = —pu
and ho(t) = g(t)) that the problem

B =pt)B+g(t)B" +q(t); B(0) =Bw), B'(0)=p(w)
possesses a solution §. Thus the hypothesis (Hyg) is fulfilled. Therefore, by virtue of Corollary 22.7,
the problem (23.12) is solvable. O

Theorem 23.14. Let A >0, p €]0,1[, p € Int V*(w), and g(t) > 0 for t € [0,w]. Let, moreover,
A *
[hollz > (po(P)Q-)" [v* (P)p(P)Q- — Q4.
Then the problem (23.12) is solvable.
Proof. Theorem 23.14 follows from Theorem 22.20. O

Analogously as above (see Remark 23.6 and Corollary 23.7) one can easily verify that Theo-
rems 23.13 and 23.14 imply the following

Corollary 23.15. Let A >0, p €]0,1[, g(t) > 0 fort € [0,w], [p]*> € Ly, pZ£ 0, p <0, and

k*(w)H[pEHL <1
Let, moreover, either

. 12
! “)<c||[p1||LHm+||L>

[holl > (c0@-)*(cQ- = Q4),
where the numbers co and ¢ are defined by (23.8) and (23.9). Then the problem (23.12) has at least
one solution.

-

1—p _1
gl " > Q- — Q4+,

or
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Theorem 23.16. Let A > 1, 1 €]0,1[, p € Int V' (w), and

/ho(s) ds =400 for a € [0,w].
|s —al
0

Then the problem (23.12) has at least one solution (for any g,q € Ly,).

Proof. Theorem 23.16 follows from Corollary 22.19 (with H (¢, z) Lef hg(f)7 q(t, z) Lo lg(t)|z* + |q(t)],

5=1). O

24. RESONANCE LIKE CASE (CONTINUATION)

In this chapter we consider the problem
uw’ = po(t)u+ ho(t,u) +q(t); w(0) =u(w), v (0)=1u'(w) (24.1)

where hg € Kjoe([0,w]Xx ]0,+00[; R ) and ¢ € L,,. In spite of the assertions stated in Section 22 now
we will suppose that

po € Vo(w)
and (as above) denote by wug a positive solution of the problem
ug = po(t)uo;  uo(0) = uo(w), up(0) = up(w).

Below we will show that Theorems 22.18, 22.20, and 22.22 imply also the solvability of (24.1).
Before the formulation of main results introduce the hypothesis

for any € > 0 there are r > 0 and ¢, € L, such that
QT(t) 2 0 for t € [va]v ”(ITHL <g, (HSO)
ho(t,z) < gqq(t) for te[0,w], = >r.
It is clear that, each hypotheses (Hs;) and (Hss) below implies (Hsg), where

ho(t, - ) is nonincreasing,

w

mgr}rloo / ho(s,z)ds =0 (Hz1)
0
and
ho(t,x) < ho(t)go(z) for t € [0,w], = >1ry, 10 >0,
{ ho € Ly, go € C(Ry;Ry), and mgr}rloo go(z) = 0. (Hs2)
Further, we will need the following hypotheses
ho(t,x) > h(t,z) for t€[0,w], = >0,
h € Kjpe([0,w]x]0,+00[;R1), h(t, -) is nonincreasing,
(Hss)

/h(s,c|s —al])ds =400 for ¢>0, a € [0,w]
0

and
ho(t,z) > h(t,x) for te€[0,w], = >0,

h € Kjpe([0,w]x]0,+00[;Ry), h(t, -) is nonincreasing, (Hsq)
H (po(po)@-) > v*(po)p(po)Q- — Qy,

where the numbers p(pg), Q+, @+ and the function H are given by (0.12), (0.13), and (0.17), respec-
tively, while the numbers v*(pg) and po(po) are defined by (6.22) and Definition 6.2.
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At last
ho(t,x) > g(x) for t € [0,w], x>0,

1
g € C(]0,4+o00[; Ry), /g(:v) dz = +o0,

- 1
lﬂéﬂfg(m) > /q(s) ds.

Theorem 24.1. Let py € Vo(w), (Hso) hold, k € {33,34,35} , and hypothesis (Hy) be fulfilled. Let,

moreover,
/q(s)uo(s) ds < 0. (24.2)
0

Then the problem (24.1) is solvable.

Proof. Put f(t,x) f po(t)x + ho(t,z) + q(t) for t € [0,w], z > 0. First we will show that hypothesis
(Hsp) and condition (24.2) imply that the function f satisfies hypothesis (Hag). Indeed, by virtue of
(Hsp), there are rg > 0 and g,, € L, such that

ho(t,x) < gp(t) for t €[0,w], = >rg

and
w w

Jantsds <~ [ a(s)un(o) s
0

[[uoll
0

Now it is clear that (Hag) holds with go(¢) def Qro (t) + q(2).
Suppose now that k& € {33,35} and (Hy) is fulfilled. By virtue of Proposition 10.11, there is an
€ > 0 such that the function p &f po — € satisfies inclusion p € Int V*(w). Thus, if k¥ = 33 then (Hag)

holds (with H(t,x) def h(t,z), q(t,x) 2ef —lq(®)|, and p1(t) def p(t)) while if k = 35 then (22.133) and

(22.134) are fulfilled. Thus solvability of the problem (24.1) follows from Theorem 22.18 if k¥ = 33 and
from Theorem 22.22 if k = 35.
Let now (Hsy) hold. By virtue of Proposition 10.11 and Proposition 6.14, there is an € > 0 such

that the function p et po — € satisfies inclusion p € Int V*(w) and

H(po(p)Q-) > v (p)p(p)Q- — Q+.

Hence, the hypothesis (Hag) is fulfilled. Solvability of the problem (24.1) now follows from Theo-
rem 22.20. O

Condition (24.2) is, in some cases, necessary for the solvability of the problem (24.1). More precisely,
Proposition 24.2. Let pg € Vo(w) and the problem (24.1) is solvable. Let, moreover, either
ho(t,x) > h(t,z) for t €[0,w], x>0,
where h(t, -) is nonincreasing and
mes {t € [0,w] : h(t,z) >0} >0 for x>0,
or
ho(t,z) > ho(t)g(z) for t € [0,w], x>0,

where hg € Ly, ho(t) > 0 fort € [0,w], hg Z 0, and g € C(]0,+00]; ]|0,4+00[). Then the inequality
(24.2) holds.

Proof. Let u be a solution of the problem (24.1). Then, by virtue of Fredholm’s third theorem, we
have

/q(s)uo(s) ds = f/ho(s,u(s))UO(s) ds. (24.3)
0 0
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One can easily verify that each of the conditions of the proposition implies that there is a ¢ € L,
such that ¢(t) > 0 for ¢t € [0,w], ¢ # 0, and

ho(t,u(t)) > p(t) for t € [0,w].
However, the latter inequality, together with (24.3), yields (24.2). O

Corollary 24.3. Let py € Vo(w), ho(t, -) is nonincreasing,

Zgrfoo/ho(s,x) ds =
0

and

/hosc\s—a| ds =400 for ¢>0, a€[0,w|.

Then the problem (24.1) is solvable provided (24.2) holds. If, moreover,
mes {t € [0,w] : ho(t,z) >0} >0 for x>0 (24.4)
then the condition (24.2) is necessary for solvability of the problem (24.1).

Proof. Tt is clear that (Hsq) holds as well as (Hsg) is fulfilled (with h(¢,x) Lof ho(t,z)). However,

hypothesis (Hs;) implies (Hsg) and, consequently, solvability of the problem (24.1) follows from The-
orem 24.1. Second part of Corollary 24.3 follows from Proposition 24.2. O

Remark 24.4. Condition (24.4) is essential for the second part of Corollary 24.3 and cannot be
omitted. Indeed, consider the problem

[1 —(U]+

"

" = po(tyu+ Falt): u(0) = uw), W'(0)='(w), (24.5)

where pg € Vo(w) and

0
By virtue of Fredholm’s third theorem, the problem
u” =po(t)u+q(t); u(0)=u(w), v (0)=u'(w), (24.6)

possesses at least one solution u;. Choose ¢ > 0 such that uq(¢) + cug(t) > 1 for ¢ € [0,w] and put

u(t) = u1(t) + cup(t) for ¢ € [0,w]. It is clear that the function u is a solution of the problem (24.5)

and (24.2) is violated. On the other hand, the function hg(t, ) ef [1;‘;”]* satisfies all the conditions

of Corollary 24.3 except of the condition (24.4).

Corollary 24.5. Let pg € Vo(w), ho(t, -) is nonincreasing,

zglfoo/ho(s,x) ds =
0

and

Ho(f

1 VP Q—) > eV p(po) Q- — Q4

where
w

Hy(z) ot /ho(s x)ds for x> 0.
0

Then the problem (24.1) is solvable provided (24.2) holds. If, moreover, (24.4) is fulfilled then the
condition (24.2) is necessary for solvability of the problem (24.1).

[N

Proof. Corollary follows from Theorem 24.1 (with k = 34), Proposition 24.2, and Proposition 6.13. O
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Remark 24.6. Condition (24.4) is essential for the second part of Corollary 24.5 and cannot be
omitted. Indeed, consider the problem

o = poftyu+ P2 o u(0) = ule), w(0) = (), (24.7)

where € # 0, ¢ € L, and

w

/q(s)uo(s) ds = 0.
0

By the same arguments as in Remark 24.4 one can show that for any & # 0, the problem (24.7) is
solvable. Clearly, there is a € > 0 such that

O a(Y Vim0 ) etV _
wli-eS eV Q | >t (5 e Qo) (e p(p0)Q- Qs ).
Consequently, all the conditions of Corollary 24.5 hold except of (24.4).

Corollary 24.7. Let py € Vo(w), ho € Ly, g,90 € C(]0,4+00[R4), 79 > 0,

r——+00 r—0+

w 1
lim go(x) =0, liminfg(z) > 1 /q(s) ds, /g(x) dz = o0,
w
0 0

and
ho(t,z) < ho(t)go(x) for t €[0,w], x> ro,
ho(t,z) > g(x) for t €[0,w], x> 0.
Then the problem (24.1) is solvable provided (24.2) holds. If, moreover,
g(z) >0 for x>0 (24.8)
then the condition (24.2) is necessary for solvability of the problem (24.1).

Proof. Clearly, (Hsz) and (Hss) are fulfilled. However, (Hszz) implies (Hsg) and, consequently, the
solvability of the problem (24.1) follows from Theorem 24.1. As for the necessity of the condition
(24.2), it follows from Proposition 24.2. O

Remark 24.8. Example constructed in Remark 24.4 shows that the assumption (24.8) is essential
for the second part of Corollary 24.7 and cannot be omitted.

As an example consider the problem

ho(t
u’ = po(t)u + Z()\) +q(t);  u(0) =u(w), v(0) =1 (w), (24.9)
where hg,q € L,,, A > 0, and
ho(t) >0 for t € [0,w], ho#D0. (24.10)

Corollary 24.3 implies
Proposition 24.9. Let pg € Vo(w), (24.10) hold, A > 1, and

ho(s)
s — a|*

ds =400 for a € [0,w].

Then the problem (24.9) is solvable if and only if (24.2) holds.

Observe, that Proposition 24.9 does not cover the case when either A\ €10,1[ or mes{t € [0,w] :
ho(t) = 0} > 0. However, Corollary 24.5 implies

Proposition 24.10. Let py € Vo(w), (24.10) hold, A > 0, and

W v g ) (esvi _
[[hollz > <4 e Q—) (62 p(po)Q- Q+>~
Then the problem (24.9) is solvable if and only if (24.2) holds.
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As another example consider the problem

u”" = po(t)u + ho(t)g(u) + q(t);

24.11
u(0) = u(w), W'(0) = (), .
where hy € L, satisfies (24.10) and g € C(]0,+o0[; ]0, +00[).
It follows from Corollary 24.7 that
Proposition 24.11. Let py € Vo(w) and there exist 6o > 0 such that
ho(t) > o for t € [0,w]. (24.12)
Let, moreover, g € C(]0,+o0[; ]0,+00[) and
1
ml—l>%1+ g(x) = 400, .LEI-"IZIOO g(z) =0, /g(x) dz = +o0. (24.13)

Then the problem (24.11) is solvable if and only if (24.2) holds.

The next assertion follows from Corollary 24.5 and covers also the case when (24.12) is violated.

Proposition 24.12. Let py € Vyp(w), (24.10) hold, g € C(]0,+o0[; ]0,400[) be a nonincreasing
function, and
lim g(z)=0.

r— 400

Let, moreover,

w w =
Q(Z ew\/p:(’Q—)HhoHL > VP p(p)Q- — Q4.

Then the problem (24.11) is solvable if and only if (24.2) holds.

As it was mentioned in introduction, studies of the phase singular periodic problem was initiated
in [16] by Lazer and Solimini. Theorem 3.12 of [16] concerns the solvability of the problem

u’ = g(u) +q(t); w(0) =u(w), u'(0)=u(w) (24.14)
and reads as follows.

Theorem 24.13 (Lazer, Solimini). Let g € C(]0,400][; ]0,+00[) and (24.13) hold. Then the problem

w

(24.14) is solvable if and only if [q(s)ds < 0.
0

Theorem 24.13 now follows from Proposition 24.11. In the same paper [16] it is shown that the
1
assumption [ g(z)dz = 400 in Theorem 24.13 is essential and cannot be omitted. More precisely,

0
Theorem 4.1 of [16] states that
Theorem 24.14. For given g € C(]0,+o0[; ]0,+00[) satisfying

x—0+ Tr—400

1
lim g(x) =400, lim g(z) =0, /g(x) dz < 400 (24.15)
0

there exists My > 0 such that for any M > My, there is a q € L,, such that

d(t) <0 for te0,w], /\q(s)ms:M
0
and the problem (24.14) has no solution.
In other words, if (24.15) holds then the problem (24.14) has no solution for a certain ¢ “large

enough”. However, if the function ¢ is “small enough” then the problem (24.14) may have a solution.
More precisely, it follows from Proposition 24.12 that
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Proposition 24.15. Let g € C(]0,+400[; |0, +00[) be nonincreasing and

Let, moreover,

wg(TQ-) > Q- - Qs

Then the problem (24.14) is solvable if and only if

w

/ g(s)ds < 0.

0

To be more specific, consider the particular case of the problem (24.14)
1
u = >t q(t);  u(0) =u(w), u'(0)=1u'(w). (24.16)
By virtue of above-mentioned results by Lazer and Solimini, if A > 1 then the problem (24.16) is
solvable if and only if [ ¢(s)ds < 0. Moreover, if A €]0,1[ then, in general, the condition [ g(s)ds < 0
0

0
does not guarantee solvability of (24.16). However, by virtue of Proposition 24.15, if A €]0, 1] and

(20 ) (@ -~ <w

then the problem (24.16) is solvable if and only if [¢(s)ds < 0.
0
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