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RECENT DEVELOPMENT OF TIME SCALES AND
RELATED TOPICS ON DYNAMIC EQUATIONS

Abstract. Recently, Wang and Agarwal have introduced a series of new concepts of time scales
on which some well-defined functions can be introduced and studied. Based on these new results,
various types of solutions for dynamic equations are studied.
ÒÄÆÉÖÌÄ. ÁÏËÏ áÀÍÄÁÛÉ ÅÀÍÂÌÀ ÃÀ ÀÂÀÒÅÀËÌÀ ÛÄÌÏÂÅÈÀÅÀÆÄÓ ÒÉÂÉ ÀáÀËÉ ÝÍÄÁÀ ÃÒÏÉÈÉ
ÓÊÀËÉÓÀ, ÒÏÌÄËÆÄÝ ÛÄÉÞËÄÁÀ ÛÄÌÏÙÄÁÖË ÉØÍÀÓ ÆÏÂÉÄÒÈÉ ÊÏÒÄØÔÖËÀÃ ÂÀÍÓÀÆÙÅÒÖËÉ
×ÖÍØÝÉÀ. ÀÌ ÀáÀË ÛÄÃÄÂÄÁÆÄ ÃÀÚÒÃÍÏÁÉÈ ÛÄÓßÀÅËÉËÉÀ ÃÉÍÀÌÉÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓ ÓáÅÀÃÀ-
ÓáÅÀ ÔÉÐÉÓ ÀÌÏÍÀáÓÍÄÁÉ.
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1. Periodic Time Scales and Changing-Periodic Time Scales

As everyone knows, periodic time scales have some very nice properties so that we can study various
problems of differential equations on this type of time scales. Traditionally, we define it as follows:

Definition 1.1 ([1]). A time scale T is called a periodic time scale if
Π :=

{
τ ∈ R : Tτ ∪ T−τ ⊂ T

}
̸= {0}, (1.1)

where Tτ = {t+ τ : t ∈ T}.

This type of time scales was first introduced by Kaufmann and Raffoul [1], and was widely adopted
by many researchers to study periodic and almost periodic problems of differential equations on time
scales.

Recently, during 2014–2015, Wang and Agarwal introduced a series of new concepts of discontinuous
functions and dynamic equations on time scales under Definition 1.1, for example, uniformly piecewise
almost periodic functions, weighted piecewise pseudo almost automorphic functions and exponential
dichotomies for discontinuous dynamic equations, etc., and obtained some related properties, then
applied them to study discontinuous dynamic systems on time scales. For more details, one may
consult our recent publications [2–6]. In the paper [5], through introducing the concept of relatively
dense set on time scales, we introduced an accurate concept of almost periodic functions on periodic
time scales under Definition 1.1.

However, in the research, we find that Definition 1.1 is limited. In fact, if a time scale satisfies
(1.1), T must fulfill supT = +∞ and infT = −∞. In other words, if we consider Definition 1.1 from
a rigorous mathematical angle, then the following time scale is not periodic:

T =
+∞∪
k=1

[2k, 2k + 1], (1.2)

only because infT = 2. Hence, the new concept of periodic time scales is introduced by Wang, Agarwal
and O’Regan. We add a “direction” to a time scale translation. See the following new concept:

Definition 1.2. We say T is a periodic time scale if
Π2 :=

{
τ ∈ R : Tτ ⊆ T

}
̸= {0}. (1.3)

Furthermore, we can describe it in detail as follows:
(a) if for any p > 0 there exists a number P > p such that P ∈ Π2, we say T is a positive-direction

periodic time scale;
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(b) if for any q < 0 there exists a number Q < q such that Q ∈ Π2, we say T is a negative-direction
periodic time scale.

(c) if ±τ ∈ Π2, we say T is a bi-direction periodic time scale;
(d) we say T is an oriented-direction periodic time scale if T is a positive-direction periodic time

scale or a negative-direction periodic time scale.
The Definition 1.2 is a new concept of periodic time scales which plays an important role in our

recent works. Under this definition, we can easily observe that Definition 1.1 is just a particular case in
Definition 1.2 because Definition 1.1 is just a bi-direction periodic time scale in Definition 1.2. Hence,
under Definition 1.2, (1.2) turns into an oriented-direction (or a positive-direction) periodic time scale.
We emphasize the importance of Definition 1.2 not only because Definition 1.1 is not general but also
does it mainly contribute to our new concepts and results, for example, changing-periodic time scales,
Decomposition Theorem of Time Scales, and Periodic Coverage Theorem of Time Scales, etc.

Below we will discuss a class of time scales called “changing-periodic time scales” that is a new idea
initiated by Wang and Agarwal (see [7]). Note that the following “periodic time scales” are under the
sense of Definition 1.2, i.e., they are “oriented-direction periodic time scales”.
Definition 1.3. Let T be an infinite time scale. We say T is a changing-periodic or a piecewise-
periodic time scale if the following conditions are fulfilled:

(a) T =
( ∞∪
i=1

Ti

)
∪Tr and {Ti}i∈Z+ is a well connected timescale sequence, where Tr =

k∪
i=1

[αi, βi]

and k is some finite number, and [αi, βi] are closed intervals for i = 1, 2, . . . , k or Tr = ∅;

(b) Si is a nonempty subset of R with 0 ̸∈ Si for each i ∈ Z+ and Π =
( ∞∪
i=1

Si

)
∪ R0, where

R0 = {0} or R0 = ∅;
(c) for all t ∈ Ti and all ω ∈ Si, we have t+ ω ∈ Ti, i.e., Ti is an ω-periodic time scale;
(d) for i ̸= j, for all t ∈ Ti \ {tkij} and all ω ∈ Sj , we have t+ ω ̸∈ T, where {tkij} is the connected

points set of the timescale sequence {Ti}i∈Z+ ;
(e) R0 = {0} if and only if Tr is a zero-periodic time scale and R0 = ∅ if and only if Tr = ∅.

The set Π is called a changing-periods set of T; Ti is called the periodic sub-timescale of T and Si is
called the periods subset of T or the periods set of Ti; Tr is called the remain timescale of T and R0

the remain periods set of T.
Through Definition 1.3, we can obtain a nice result which builds a bridge between periodic time

scales and arbitrary time scales with the bounded graininess function µ(t).
Theorem 1.1. If T is an infinite time scale and the graininess function µ : T → R+ is bounded, then
T is a changing-periodic time scale.

From Theorem 1.1, we can obtain the following two theorems.
Theorem 1.2 (Decomposition Theorem of Time Scales). Let T be an infinite time scale and the
graininess function µ : T → R+ be bounded, then T is a changing-periodic time scale, i.e., there exists
a countable periodic decomposition such that T =

( ∞∪
i=1

Ti

)
∪ Tr and Ti is ω-periodic sub-timescale,

ω ∈ Si, i ∈ Z+, where Ti, Si, Tr satisfy the conditions of Definition 1.3.
Theorem 1.3 (Periodic Coverage Theorem of Time Scales). Let T be an infinite time scale and the
graininess function µ : T → R+ be bounded, then T can be covered by countable periodic time scales.

Note that “periodic time scales” in Theorems 1.2 and 1.3 imply “oriented-direction periodic time
scales”, i.e., the concept of periodic time scales we adopt is Definition 1.2.

It is well known that periodic time scales have some very nice properties, for example, for any
τ ∈ Π2, we have t + τ ∈ T, it reflects that periodic time scales have a very good closedness for
addition operation, which will contribute a lot to functions theory on time scales because we know
that periodic functions, almost periodic functions and almost automorphic functions are described by
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their translations. Hence, it is very necessary to introduce the concept of changing-periodic time scales
because we can introduce some well-defined functions on an arbitrary time scale with the bounded
graininess function µ. We should first introduce the proper definitions of these functions on time
scales, then some related problems of differential equations on time scales can be proposed and solved.
For example, under changing-periodic time scales, we can introduce a new concept of local-almost
periodic functions.

Definition 1.4. Let T be a changing-periodic time scale, i.e., T satisfies Definition 1.3. A function
f ∈ C(T × D,En) is called a local-almost periodic function in t ∈ T uniformly for x ∈ D if the
ε-translation numbers set of f

E{ε, f, S} =
{
τ̃ ∈ Sτt :

∣∣f(t+ τ̃ , x)− f(t, x)
∣∣ < ε for all (t, x) ∈ T× S

}
is a relatively dense set for all ε > 0 and for each compact subset S of D; that is, for any given ε > 0
and each compact subset S of D, there exists a constant l(ε, S) > 0 such that each interval of length
l(ε, S) contains a τ̃(ε, S) ∈ E{ε, f, S} such that∣∣f(t+ τ̃ , x)− f(t, x)

∣∣ < ε for all (t, x) ∈ T× S;

here, τ̃ is called the ε-local translation number of f and l(ε, S) is called the local inclusion length of
E{ε, f, S}.

Under Definition 1.4, we consider the following linear dynamic equation on a changing-periodic
time scale T

x∆(t) = A(t)x(t) + f(t) (1.4)
and its associated homogeneous equation

x∆(t) = A(t)x(t), (1.5)
where A(t) is a local-almost periodic matrix function and f(t) is a local-almost periodic vector function.
Further, we assume that f(t) and A(t) are synchronously local-almost periodic functions.

Then, we can obtain a theorem to guarantee that (1.4) has a local-almost periodic solution on an
arbitrary time scale with the bounded graininess function µ.

Theorem 1.4. Let T be a changing-periodic time scale and τt be an index function. If (1.5) admits
an exponential dichotomy on the local part Tτt and Tτt is a bi-direction periodic time scale for all
t ∈ T, then (1.4) has the following unique local-almost periodic solution on Tτt

x(t) =

t∫
−∞

X(t)PτtX
−1(στt(s))∆τts−

+∞∫
t

X(t)(I − Pτt)X
−1(στt(s))f(s)∆τts, (1.6)

where X(t) is the fundamental solution matrix of (1.5), Pτt , I −Pτt are two projections of exponential
dichotomy on Tτt , στt is the forward jump operator on the periodic sub-timescale Tτt , ∆τt is the
∆-integral on the periodic sub-timescale Tτt .

Similarly, the concept of local-almost automorphic functions can also be introduced on changing-
periodic time scales, one may consult the paper [7] for more details. Hence, Theorems 1.2 and 1.3
initiate a new idea to solve the closedness for addition operation on an arbitrary time scale with the
bounded graininess function µ, which will open an effective avenue to investigate periodic, almost
periodic and almost automorphic problems of differential equations on arbitrary time scales.

2. Almost Periodic Time Scales

Let
Π1 :=

{
τ ∈ R : T ∩ Tτ ̸= ∅

}
̸= {0},

consider a class of time scales satisfying the following definition:

Definition 2.1. Let T be an oriented-direction intersection time scale. We say T is an almost periodic
time scale if for any given ε > 0 there exists a constant l(ε) > 0 such that each interval of length l(ε)
contains τ(ε) ∈ Π1 such that

d(T,Tτ ) < ε,
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i.e., for any ε > 0 the set
E{T, ε} =

{
τ ∈ Π1 : d(Tτ ,T) < ε

}
is relatively dense in Π1. Here τ is called the ε-translation number of T and l(ε) is called the inclusion
length of E{T, ε}, E{T, ε} is called the ε-translation set of T, and for simplicity, we use the notation
E{T, ε} := Πε.

The graininess function µ(t) of this time scale have a very nice property:

Theorem 2.1. If T is an almost periodic time scale, then for any ε > 0 there exists a constant
l(ε) > 0 such that each interval of length l(ε) contains τ(ε) ∈ E{ε, µ} such that

|µ(t+ τ)− µ(t)| < ε for all t ∈ T ∩ T−τ . (2.1)

Note that if T is an oriented-direction periodic time scale, then from Definition 2.1, we have
σ(t+ τ) = σ(t) + τ . Hence, we can see that Definition 2.1 rigorously includes Definition 1.2.

Under Definition 2.1, we introduced a new concept called almost periodic functions on almost
periodic time scales (see [3, 8]) as follows:

Definition 2.2. Let T be an almost periodic time scale, i.e., T satisfies Definition 2.1. A function
f ∈ C(T×D,En) is called an almost periodic function in t ∈ T uniformly for x ∈ D if the ε2-translation
set of f

E{ε2, f, S} =
{
τ ∈ Πε1 :

∣∣f(t+ τ, x)− f(t, x)
∣∣ < ε2 for all (t, x) ∈ (T ∩ T−τ )× S

}
is a relatively dense set in Πε1 for all ε2 > ε1 > 0 and for each compact subset S of D; that is, for
any given ε2 > ε1 > 0 and each compact subset S of D, there exists a constant l(ε2, S) > 0 such that
each interval of length l(ε2, S) contains a τ(ε2, S) ∈ E{ε2, f, S} such that

|f(t+ τ, x)− f(t, x)| < ε2 for all (t, x) ∈ (T ∩ T−τ )× S.

This τ is called the ε2-translation number of f and l(ε2, S) is called the inclusion length of E{ε2, f, S}.

Under Definition 2.2, in the paper [3, 8], we obtained some nice properties of almost periodic time
scales and almost periodic functions, then we applied them to investigate almost periodic solutions
to dynamic equations, and they worked effectively. In the paper [3], we presented five categories of
time scales. Then, on each class we introduced and analyzed delays which lead to new types of delay
systems on time scales. Finally, some interesting open problems of dynamic equations on almost
periodic time scales are proposed.
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