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Abstract. We present a detailed study of structural properties for cer-
tain algebraic operators generated by the Fourier transform and a reflec-
tion. First, we focus on the determination of the characteristic polynomials
of such algebraic operators, which, e.g., exhibit structural differences when
compared with those of the Fourier transform. Then, this leads us to the
conditions that allow one to identify the spectrum, eigenfunctions, and the
invertibility of this class of operators. A Parseval type identity is also ob-
tained, as well as the solvability of integral equations generated by those
operators. Moreover, new convolutions are generated and introduced for
the operators under consideration.
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ÒÄÆÉÖÌÄ. ÜÅÄÍ ßÀÒÌÏÂÉÃÂÄÍÈ ×ÖÒÉÄÓ ÂÀÒÃÀØÌÍÉÈÀ ÃÀ ÀÒÄÊÅËÉÓ
ÏÐÄÒÀÔÏÒÄÁÉÈ ßÀÒÌÏØÍÉËÉ ÆÏÂÉÄÒÈÉ ÀËÂÄÁÒÖËÉ ÏÐÄÒÀÔÏÒÉÓ
ÓÔÒÖØÔÖÒÖËÉ ÈÅÉÓÄÁÄÁÉÓ ÃÄÔÀËÖÒ ÊÅËÄÅÀÓ. ÐÉÒÅÄË ÒÉÂÛÉ, ÚÖ-
ÒÀÃÙÄÁÀ ÂÀÌÀáÅÉËÄÁÖËÉÀ ÀÓÄÈÉ ÀËÂÄÁÒÖËÉ ÏÐÄÒÀÔÏÒÄÁÉÓÈÅÉÓ ÌÀ-
áÀÓÉÀÈÄÁÄËÉ ÐÏËÉÍÏÌÄÁÉÓ ÂÀÍÓÀÆÙÅÒÀÆÄ, ÒÏÌÄËÉÝ ÃÀÂÅÀÍÀáÄÁÓ
ÓÔÒÖØÔÖÒÖË ÂÀÍÓáÅÀÅÄÁÄÁÓ ×ÖÒÉÄÓ ÂÀÒÃÀØÌÍÀÓÈÀÍ ÛÄÃÀÒÄÁÉÈ.
ÀÌÀÓ ÌÉÅÚÀÅÀÒÈ ÐÉÒÏÁÄÁÈÀÍ, ÒÏÌËÄÁÉÝ ÓÀÛÖÀËÄÁÀÓ ÌÏÂÅÝÄÌÓ ÌÏÅÀá-
ÃÉÍÏÈ ÓÐÄØÔÒÉÓ, ÓÀÊÖÈÒÉÅÉ ×ÖÍÝÉÄÁÉÓÀ ÃÀ ÀÌ ÊËÀÓÛÉ ÛÄÁÒÖÍÄÁÀÃÉ
ÏÐÄÒÀÔÏÒÄÁÉÓ ÉÃÄÍÔÉ×ÉÝÉÒÄÁÀ. ÌÉÙÄÁÖËÉÀ ÐÀÒÓÄÅÀËÉÓ ÔÉÐÉÓ ÉÂÉ-
ÅÄÏÁÀ ÃÀ ÛÄÓßÀÅËÉËÉÀ ÀÌ ÏÐÄÒÀÔÏÒÄÁÉÈ ßÀÒÌÏØÌÍÉËÉ ÉÍÔÄÂÒÀËÖ-
ÒÉ ÂÀÍÔÏËÄÁÄÁÉÓ ÀÌÏáÓÍÀÃÏÁÀ. ÂÀÍáÉËÖËÉ ÏÐÄÒÀÔÏÒÄÁÉÓÈÅÉÓ
ÛÄÌÏÔÀÍÉËÉÀ ÀáÀËÉ ÍÀáÅÄÅÉÓ ÏÐÄÒÀÔÏÒÉÓ ÝÍÄÁÀ.
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1. Introduction

In several types of mathematical applications it is useful to apply more
than once the Fourier transformation (or its inverse) to the same object, as
well as to use algebraic combinations of the Fourier transform. This is the
case e.g. in wave diffraction problems which – although being initially mod-
eled as boundary value problems – can be translated into single equations
by applying operator theoretical methods and convenient operators upon
the use of algebraic combinations of the Fourier transform (cf. [8–10]). Ad-
ditionally, in such processes it is also useful to construct relations between
convolution type operators [7], generated by the Fourier transform, and
some simpler operators like the reflection operator; cf. [5, 6, 11, 21]. Some
of the most known and studied classes of this type of operators are the
Wiener–Hopf plus Hankel and Toeplitz plus Hankel operators.

It is also well-known that several of the most important integral trans-
forms are involutions when considered in appropriate spaces. For instance,
the Hankel transform J , the Cauchy singular integral operator S on a
closed curve, and the Hartley transforms (typically denoted by H1 and H2,
see [2–4,17]) are involutions of order 2. Moreover, the Fourier transform F
and the Hilbert transform H are involutions of order 4 (i.e. H4 = I, in this
case simply because H is an anti-involution in the sense that H2 = −I).

Those involution operators possess several significant properties that are
useful for solving problems which are somehow characterized by those oper-
ators, as well as several kinds of integral equations, and ordinary and partial
differential equations with transformed argument (see [1, 15, 16, 18, 20, 22–
26]).

Let W : L2(Rn) → L2(Rn) be the reflection operator defined by
(Wφ)(x) := φ(−x),

and let now ⟨ · , · ⟩L2(Rn) denote the usual inner product in L2(Rn). More-
over, let F denote the Fourier integral operator given by

(Ff)(x) :=
1

(2π)
n
2

∫
Rn

e−i⟨x,y⟩f(y) dy.

In view of the above-mentioned interest, in the present work we propose
a detailed study of some of the fundamental properties of the following
operator, generated by the operators I (identity operator), F and W :

T := aI + bF + cW : L2(Rn) → L2(Rn), (1.1)
where a, b, c ∈ C. In very general terms, we can consider the operator T as
a Fourier integral operator with reflection which allows to consider similar
operators to the Cauchy integral operator with reflection (see [12–14, 19]
and the references therein). Anyway, it is also well-known that F 2 = W .
In this paper, the operator T , together with its properties, can be seen as a
starting point to further studies of the Fourier integral operators with more
general shifts that will be addressed in the forthcoming papers.
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The paper is organized as follows. In the next section, we will justify
that T is an algebraic operator and we will deduce their characteristic poly-
nomials for distinct cases of the parameters a, b and c. Then, the conditions
that allow to identify the spectrum, eigenfunctions, and the invertibility of
the operator are obtained. Moreover, Parseval type identities are derived,
and the solvability of integral equations generated by those operators is
described. In addition, new operations for the operators under considera-
tion are introduced such that they satisfy the corresponding property of the
classical convolution.

2. Characteristic Polynomials

In order to have some global view on corresponding linear operators, we
start by recalling the concept of algebraic operators.

An operator L defined on the linear space X is said to be algebraic if
there exists a non-zero polynomial P (t), with variable t and coefficients in
the complex field C, such that P (L) = 0. Moreover, the algebraic operator
L is said be of order N if P (L) = 0 for a polynomial P (t) of degree N , and
Q(L) ̸= 0 for any polynomial Q of degree less than N . In such a case, P
is said to be the characteristic polynomial of L (and its roots are called the
characteristic roots of L). As an example, for the operators J , S, H1, H2

and H, mentioned in the previous section, we may directly identify their
characteristic polynomials in the following corresponding way:

PJ (t) = t2 − 1; PS(t) = t2 − 1;

PH1(t) = t2 − 1; PH2(t) = t2 − 1; PH(t) = t2 + 1.

As above mentioned, it is well-known that the operator F is an involution
of order 4 (thus F 4 = I, where I is the identity operator in L2(Rn)). In other
words, F is an algebraic operator which has a characteristic polynomial
given by PF (t) = t4 − 1. Such polynomial has obviously the following four
characteristic roots: 1, −i, −1, i.

We will consider the following four projectors correspondingly generated
with the help of F :

P0 =
1

4
(I + F + F 2 + F 3),

P1 =
1

4
(I + iF − F 2 − iF 3),

P2 =
1

4
(I − F + F 2 − F 3),

P3 =
1

4
(I − iF − F 2 + iF 3),
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and that satisfy the identities
PjPk = δjkPk for j, k = 0, 1, 2, 3,

P0 + P1 + P2 + P3 = I,

F = P0 − iP1 − P2 + iP3,

(2.1)

where

δjk =

{
0, if j ̸= k,

1, if j = k.

Moreover, we have

F 2 = P0 − P1 + P2 − P3, (2.2)
F 4 = P0 + P1 + P2 + P3 = I. (2.3)

It is also clear that

αP0 + βP1 + γP2 + δP3 = 0

if and only if
α = β = γ = δ = 0.

Having in mind this property, in the sequel, for denoting the operator

A = αP0 + βP1 + γP2 + δP3,

we will use the notation (α;β; γ; δ) = A.
Obviously, An = (αn;βn; γn; δn), for every n ∈ N, where we admit that

A0 = I.

Theorem 2.1. Let us consider the operator

T = aI + bF + cW, a, b, c ∈ C. (2.4)

The characteristic polynomial of this T is:
(i)

PT (t) = t2 − 2at+ (a2 − c2) (2.5)
if and only if

b = 0 and c ̸= 0; (2.6)
(ii)

PT (t) = t3 −
[
(3a+ c) + ib

]
t2 +

[
3(a2 − c2) + 2a(c+ ib)

]
t

+
[
− a3 − ia2b− a2c− 3b2c+ 3ac2 + ibc2 + c3

]
(2.7)

if and only if

bc ̸= 0 and
(
c =

b

2
(1− i) or c = − b

2
(1 + i)

)
; (2.8)
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(iii)

PT (t) = t3 +
[
− (3a+ c) + ib

]
t2 +

[
3(a2 − c2) + 2a(c− ib)

]
t

+
[
− a3 + ia2b− a2c− 3b2c+ 3ac2 − ibc2 + c3

]
(2.9)

if and only if

bc ̸= 0 and
(
c =

b

2
(1 + i) or c = − b

2
(1− i)

)
; (2.10)

(iv)

PT (t) = t4 − 4at3 + (6a2 − 2c2)t2 + (−4a3 − 4b2c+ 4ac2)t

+ (a2 − c2)2 + b2(4ac− b2) (2.11)

if and only if 

c ̸= b

2
(1− i),

c ̸= − b

2
(1 + i),

c ̸= b

2
(1 + i),

c ̸= − b

2
(1− i)

(2.12)

and b ̸= 0.

Proof. We can write the operator T in the following form:

T = a(P0 + P1 + P2 + P3) + b(P0 − iP1 − P2 + iP3)

+ c(P0 − P1 + P2 − P3)

= (a+ c+ b)P0 + (a− c− ib)P1

+ (a+ c− b)P2 + (a− c+ ib)P3

= (a+ c+ b; a− c− ib; a+ c− b; a− c+ ib). (2.13)

In order to determine the characteristic polynomial of the operator T , for
each one of the cases, we may begin by considering a polynomial of order
2, that is, PT (t) = t2 + mt + n. In fact, a polynomial of order 1 is the
characteristic polynomial of the operator T if and only if b = 0 and c = 0,
but in this case, we obtain the trivial operator T = aI. That PT (t) is the
characteristic polynomial of T if and only if PT (T ) = 0 and if there does
not exist any polynomial Q with deg(Q) < 2 such that Q(T ) = 0.

Moreover, the condition PT (T ) = 0 is equivalent to
(a+ c+ b)2 +m(a+ c+ b) + n = 0,

(a− c− ib)2 +m(a− c− ib) + n = 0,

(a+ c− b)2 +m(a+ c− b) + n = 0,

(a− c+ ib)2 +m(a− c+ ib) + n = 0.
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The solution of this system is b = 0 and c = 0 (but in this case, we obtain
the trivial operator T = aI) or that

b = 0,

c ̸= 0,

m = −2a,

n = a2 − c2.

So, if b = 0 and c ̸= 0, then PT (t) = t2 − 2at + a2 − c2. Indeed, by using
the operator T written in the above form (2.13), it is possible to verify that
PT (T ) = 0:

T 2 − 2aT + (a2 − c2)I

=
(
(a+ c)2; (a− c)2; (a+ c)2; (a− c)2

)
− 2a(a+ c; a− c; a+ c; a− c)

+ (a2 − c2)(1; 1; 1; 1) = (0; 0; 0; 0).

Now, we will prove that there does not exist any polynomial Q with
deg(Q) < 2 such that Q(T ) = 0.

Suppose that there exists a polynomial Q, defined by Q(t) = t+m, that
satisfies Q(T ) = 0. In this case, we would have the following system of
equations: {

(a+ c) +m = 0,

(a− c) +m = 0,

which is equivalent to c = 0, but this is not the case under the conditions
imposed before.

Conversely, assume that PT (t) = t2 − 2at+(a2 − c2) is the characteristic
polynomial of T . Thus, PT (T ) = 0, which is equivalent to

0 = T 2 − 2aT + (a2 − c2)I

=
(
(a+ c)2; (a− c)2; (a+ c)2; (a− c)2

)
− 2a(a+ c; a− c; a+ c; a− c) + (a2 − c2)(1; 1; 1; 1).

This implies that b = 0 and c = 0 (which is the case of the trivial
operator) or that b = 0. So, case (i) is proved.

To obtain the characteristic polynomial for the other cases, we have to
consider polynomials with degree greater than 2. So, let us consider a
polynomial PT (t) = t3+mt2+nt+p and repeat the same procedure. Thus,
PT (T ) = 0 is equivalent to

(a+ c+ b)3 +m(a+ c+ b)2 + n(a+ c+ b) + p = 0,

(a− c− ib)3 +m(a− c− ib)2 + n(a− c− ib) + p = 0,

(a+ c− b)3 +m(a+ c− b)2 + n(a+ c− b) + p = 0,

(a− c+ ib)3 +m(a− c+ ib)2 + n(a− c+ ib) + p = 0.
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This system has as solutions b = 0 and c = 0 (in this case, we obtain the
operator T = aI) or b = 0 and c ̸= 0 (but for this case, the characteristic
polynomial is of order 2 – case (i)) or

b ̸= 0,

c =
b

2
(1− i) or c = − b

2
(1 + i),

m = −
[
(3a+ c) + ib

]
,

n = 3(a2 − c2) + 2a(c+ ib),

p = −a3 − ia2b− a2c− 3b2c+ 3ac2 + ibc2 + c3

or 

b ̸= 0,

c =
b

2
(1 + i) or c = − b

2
(1− i),

m =
[
− (3a+ c) + ib

]
,

n = 3(a2 − c2) + 2a(c− ib),

p = −a3 + ia2b− a2c− 3b2c+ 3ac2 − ibc2 + c3.

So,
• if c = b

2 (1− i) or c = − b
2 (1 + i), then

PT (t) = t3 −
[
(3a+ c) + ib

]
t2 +

[
3(a2 − c2) + 2a(c+ ib)

]
t

+
[
− a3 − ia2b− a2c− 3b2c+ 3ac2 + ibc2 + c3

]
;

• If c = b
2 (1 + i) or c = − b

2 (1− i), then

PT (t) = t3
[
− (3a+ c) + ib

]
t2 +

[
3(a2 − c2) + 2a(c− ib)

]
t

+
[
− a3 + ia2b− a2c− 3b2c+ 3ac2 − ibc2 + c3

]
.

If we consider the case c = b
2 (1− i), by using the operator T written in

the above form (2.13), we can prove that PT (T ) = 0. Indeed,

T 3 −
[
(3a+ c) + ib

]
T 2 +

[
3(a2 − c2) + 2a(c+ ib)

]
T

+
[
− a3 − ia2b− a2c− 3b2c+ 3ac2 + ibc2 + c3

]
I

=
(
[a+ c+ b]3; [a− c− ib]3; [a+ c− b]3; [a− c+ ib]3

)
−

[
(3a+ c) + ib

](
[a+ c+ b]2; [a− c− ib]2; [a+ c− b]2; [a− c+ ib]2

)
+

[
3(a2 − c2) + 2a(c+ ib)

]
(a+ c+ b; a− c− ib; a+ c− b; a− c+ ib)

+
[
− a3 − ia2b− a2c− 3b2c+ 3ac2 + ibc2 + c3

]
(1; 1; 1; 1)

= (0; 0; 0; 0).

Now we will prove that there does not exist any polynomial G with
deg(G) < 3 such that G(T ) = 0.

Suppose that there exists a polynomial G, defined by G(t) = t2+mt+n,
that satisfies G(T ) = 0. In this case, we would have the following system of
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equations: 
(a+ c+ b)2 +m(a+ c+ b) + n = 0,

(a− c− ib)2 +m(a− c− ib) + n = 0,

(a+ c− b)2 +m(a+ c− b) + n = 0,

(a− c+ ib)2 +m(a− c+ ib) + n = 0.

For c = b
2 (1−i), we find that the second and third equations are equivalent.

So, the last system is equivalent to
(a+ c+ b)2 +m(a+ c+ b) + n = 0,

(a− c− ib)2 +m(a− c− ib) + n = 0,

(a− c+ ib)2 +m(a− c+ ib) + n = 0,

which is equivalent to b = 0. This is a contradiction under the initial
conditions of the theorem. In this way, we can say that there does not exist
a polynomial G such that deg(G) < 3 and this fulfills G(T ) = 0.

So, we can conclude that under these conditions,

PT (t) = t3 −
[
(3a+ c) + ib

]
t2 +

[
3(a2 − c2) + 2a(c+ ib)

]
t

+
[
− a3 − ia2b− a2c− 3b2c+ 3ac2 + ibc2 + c3

]
.

Conversely, suppose that PT (t) is the characteristic polynomial of T . In
this case, we have PT (T ) = 0, which is equivalent to

0 = T 3 −
[
(3a+ c) + ib

]
T 2 +

[
3(a2 − c2) + 2a(c+ ib)

]
T

+
[
− a3 − ia2b− a2c− 3b2c+ 3ac2 + ibc2 + c3

]
=

(
[a+ c+ b]3; [a− c− ib]3; [a+ c− b]3; [a− c+ ib]3

)
−
[
(3a+ c)+ ib

](
[a+ c+ b]2; [a−c−ib]2; [a+ c− b]2; [a− c+ ib]2

)
+
[
3(a2−c2)+2a(c+ib)

]
(a+ c+ b; a− c− ib; a+ c− b; a− c+ ib)

+
[
− a3 − ia2b− a2c− 3b2c+ 3ac2 + ibc2 + c3

]
(1; 1; 1; 1).

This implies that b = 0 (which is the case (i)), c = b
2 (1−i) or c = − b

2 (1+i).
The remaining conditions in (2.8) and (2.10) can be proved in a similar

way.
If 

c ̸= b

2
(1− i),

c ̸= − b

2
(1 + i),

c ̸= b

2
(1 + i),

c ̸= − b

2
(1− i),

then (2.7) and (2.9) are not anymore characteristic polynomials of T .
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Additionally, if we consider a polynomial PT (t) = t4+mt3+nt2+pt+ q,
such that PT (T ) = 0, we obtain the following system of equations:

(a+ c+ b)4 +m(a+ c+ b)3 + n(a+ c+ b)2 + p(a+ c+ b) + q = 0,

(a− c− ib)4 +m(a− c− ib)3 + n(a− c− ib)2 + p(a+ c+ b) + q = 0,

(a+ c− b)4 +m(a+ c− b)3 + n(a+ c− b)2 + p(a+ c+ b) + q = 0,

(a− c+ ib)4 +m(a− c+ ib)3 + n(a− c+ ib)2 + p(a+ c+ b) + q = 0.

This is equivalent to b = c = 0 (which is the trivial case T = aI) or to
b = 0 and c ̸= 0 (which is the case (i)) or to the cases (ii) and (iii) or

b ̸= 0,

m = −4a,

n = 6a2 − 2c2,

p = −4a3 − 4b2c+ 4ac2,

q = (a2 − c2) + b2(4ac− b2).

In this case, we can say that if b ̸= 0 and if (2.12) holds, then

PT (t) = t4 − 4at3 + (6a2 − 2c2)t2 + (−4a3 − 4b2c+ 4ac2)t

+ (a2 − c2)2 + b2(4ac− b2).

On the other hand, with the use of operator T (written as in (2.13)), we
can directly prove that PT (T ) = 0. Indeed,

T 4 − 4aT 3 + (6a2 − 2c2)T 2 + (−4a3 − 4b2c+ 4ac2)T

+
[
(a2 − c2)2 + b2(4ac− b2)

]
I

=
(
[a+ c+ b]4; [a− c− ib]4; [a+ c− b]4; [a− c+ ib]4

)
− 4a

(
[a+ c+ b]3; [a− c− ib]3; [a+ c− b]3; [a− c+ ib]3

)
+ (6a2 − 2c2)

(
[a+ c+ b]2; [a− c− ib]2; [a+ c− b]2; [a− c+ ib]2

)
+ (−4a3 − 4b2c+ 4ac2)(a+ c+ b; a− c− ib; a+ c− b; a− c+ ib)

+
[
(a2 − c2)2 + b2(4ac− b2)

]
(1; 1; 1; 1) = (0; 0; 0; 0).

Now, we will prove that there does not exist any polynomial G with
deg(G) < 4 that satisfies G(T ) = 0 under these conditions. Towards this
end, suppose that there exists a polynomial G, defined by G(t) = t3+mt2+
nt + p, that satisfies G(T ) = 0. In this case, we would have the following
system of equations:

(a+ c+ b)3 +m(a+ c+ b)2 + n(a+ c+ b) + p = 0,

(a− c− ib)3 +m(a− c− ib)2 + n(a− c− ib) + p = 0,

(a+ c− b)3 +m(a+ c− b)2 + n(a+ c− b) + p = 0,

(a− c+ ib)3 +m(a− c+ ib)2 + n(a− c+ ib) + p = 0,
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which is equivalent to b = 0 or c = b
2 (1− i) or c = − b

2 (1+ i) or c = b
2 (1+ i)

or c = − b
2 (1− i).

This is a contradiction under the conditions of part (iii) of the Theorem.
In this way, we can say that there does not exist a polynomial G with
deg(G) < 4 that satisfies G(T ) = 0.

So, we can conclude that under these conditions

PT (t) = t4 − 4at3 + (6a2 − 2c2)t2 + (−4a3 − 4b2c+ 4ac2)t

+ (a2 − c2)2 + b2(4ac− b2).

Conversely, suppose that PT (t) is the characteristic polynomial of T .
Consequently, we have PT (T ) = 0, which is equivalent to

0 = T 4 − 4aT 3 + (6a2 − 2c2)T 2 + (−4a3 − 4b2c+ 4ac2)T

+ (a2 − c2)2 + b2(4ac− b2)

=
(
[a+ c+ b]4; [a− c− ib]4; [a+ c− b]4; [a− c+ ib]4

)
− 4a

(
[a+ c+ b]3; [a− c− ib]3; [a+ c− b]3; [a− c+ ib]3

)
+ (6a2 − 2c2)

(
[a+ c+ b]2; [a− c− ib]2; [a+ c− b]2; [a− c+ ib]2

)
+ (−4a3 − 4b2c+ 4ac2)(a+ c+ b; a− c− ib; a+ c− b; a− c+ ib)

+
[
(a2 − c2)2 + b2(4ac− b2)

]
(1; 1; 1; 1).

This condition is universal, and hence this case is proved. �

3. Invertibility, Spectrum and Integral Equations

We will now investigate the operator T in view of invertibility, spectrum,
convolutions and associated integral equations. This will be done in the
next subsections, by separating different cases of the parameters a, b and
c, due to their corresponding different nature. The case of b = 0 and c ̸= 0
is here omitted simply because this is the easiest case (in the sense that for
this case we even do not have an integral structure: T is just a combination
of the reflection and the identity operators).

3.1. Case b ̸= 0 and c = b
2 (1 − i). In this subsection we will concentrate

on the properties of the operator T = aI + bF + cW , a, b, c ∈ C, b, c ̸= 0, in
the special case of c = b

2 (1− i) (whose importance is justified by the results
of Section 2).

If we consider the following characteristic polynomial:

PT (t) = t3 −
[
(3a+ c) + ib

]
t2 +

[
3a2 + 2ib(a+ c) + 2ac− (b2 + c2)

]
t

+
[
− a3− ia2b+ ab2+ ib3− a2c−2iabc− b2c+ ac2− ibc2+ c3

]
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and if c := b
2 (1− i), we obtain that this polynomial is equivalent to

PT (t) = t3 −
[
3a+

b

2
(1 + i)

]
t2 +

[
3a2 + ab(1 + i) +

3

2
ib2

]
t

+
[
− a3 − 1

2
a2b(1 + i)− 3

2
iab2 − 5

4
b3(1− i)

]
.

3.1.1. Invertibility and spectrum. We will now present a characterization for
the invertibility and the spectrum of the present T .

Theorem 3.1. The operator T (with c = b
2 (1− i)) is an invertible operator

if and only if

a+
(3
2
− i

2

)
b ̸= 0, a−

(1
2
+

i

2

)
b ̸= 0 and a−

(1
2
− 3i

2

)
b ̸= 0. (3.1)

In this case, the inverse operator is defined by

T−1 =
1

a3 + 1
2 a

2b(1 + i) + 3
2 iab

2 + 5
4 b

3(1− i)

×
[
T 2 −

(
3a+

b

2
(1 + i)

)
T +

(
3a2 + ab(1 + i) +

3

2
ib2

)
I

]
. (3.2)

Proof. Suppose that the operator T is invertible. Choosing the Hermite
functions φk, we have:

• for |k| ≡ 0 (mod 4), (Tφk)(x) = (a+ 3
2 b−

i
2 b)φk(x), which implies

that a+ ( 32 − i
2 )b ̸= 0;

• for |k| ≡ 1, 2 (mod 4), (Tφk)(x) = (a− b
2 − i

2b)φk(x). So, a− ( 12 +
i
2 )b ̸= 0;

• for |k| ≡ 3 (mod 4), (Tφk)(x) = (a− b
2 + 3i

2 b)φk(x), which implies
that a− ( 12 − 3i

2 )b ̸= 0.
Summarizing, we have:

(
Tφk

)
(x) =



(
a+

(3
2
− i

2

)
b
)
φk(x) if |k| ≡ 0 (mod 4),(

a−
(1
2
+

i

2

)
b
)
φk(x) if |k| ≡ 1, 2 (mod 4),(

a−
(1
2
− 3i

2

)
b
)
φk(x) if |k| ≡ 3 (mod 4).

(3.3)

Conversely, suppose that we have (3.1). This implies that

a3 +
1

2
a2b(1 + i) +

3

2
iab2 +

5

4
b3(1− i) ̸= 0.

Hence, it is possible to consider the operator defined in (3.2) and, by a
straightforward computation, verify that this is, indeed, the inverse of T . �
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Remark 3.2.
(1) It is not difficult to see that

t1 := a+
(3
2
− i

2

)
b, t2 := a−

(1
2
+

i

2

)
b, t3 := a−

(1
2
− 3i

2

)
b

are the roots of the polynomial PT (t). Consequently, t1, t2, t3 are
the characteristic roots of PT (t).

(2) T is not a unitary operator, unless b = 0 and a = eiα, α ∈ R, which
is a somehow trivial case and is not under the conditions we have
here imposed to this operator.

Figure 1. The spectrum of the operator T for different
values of the parameters a and b.

Theorem 3.3. The spectrum of the operator T is given by

σ(T ) =

{
a+

(3
2
− i

2

)
b, a−

(1
2
+

i

2

)
b, a−

(1
2
− 3i

2

)
b

}
(see Figure 1).
Proof. For any λ ∈ C, we have

t3 −
[
3a+

b

2
(1 + i)

]
t2 +

[
3a2 + ab(1 + i) +

3

2
ib2

]
t

+
[
− a3 − 1

2
a2b(1 + i)− 3

2
iab2 − 5

4
b3(1− i)

]
= (t− λ)

[
t2 +

(
λ− 3a− b

2
(1 + i)

)
t

+
(
λ2 − 3aλ− b

2
(1 + i) + 3a2 + ab(1 + i) +

3

2
ib2

)]
+ PT (λ).
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Suppose that

λ ̸∈
{
a+

(3
2
− i

2

)
b, a−

(1
2
+

i

2

)
b, a−

(1
2
− 3i

2

)
b

}
.

This implies that

PT (λ) = λ3 −
[
3a+

b

2
(1 + i)

]
λ2 +

[
3a2 + ab(1 + i) +

3

2
ib2

]
λ

+
[
− a3 − 1

2
a2b(1 + i)− 3

2
iab2 − 5

4
b3(1− i)

]
̸= 0.

Then the operator T −λI is invertible, and its inverse operator is defined by

(T − λI)−1 =− 1

PT (λ)

[
T 2 +

(
λ− 3a− b

2
(1 + i)

)
T

+
(
λ2 − 3aλ− b

2
(1 + i) + 3a2 + ab(1 + i) +

3

2
ib2

)
I

]
.

So, we have proved that if T − λI is not invertible, then λ ∈ σ(T ).
Conversely, if we choose λ = t1, we obtain:[
T −

(
a+

(3
2
− i

2

)
b
)
I

][
T 2 + (−2a+ b(1− i))T

+
(
a2 − ab

2
(1− 3i) + 2b2 − b

2
(1 + i)

)
I

]
= −PT (λ)I.

As λ = a+( 32 −
i
2 )b, then PT (λ) = 0. So, if T − (a+( 32 −

i
2 )b)I is invertible,

then

T 2 +
(
− 2a+ b(1− i)

)
T +

(
a2 − ab

2
(1− 3i) + 2b2 − b

2
(1 + i)

)
I = 0,

which implies that b = 0 and this is a contradiction. So, T − (a+( 32 −
i
2 )b)I

is not invertible.
The same procedure can be repeated for λ = t2, t3, in which cases we

obtain the same desired conclusion. �

Thanks to the identity (3.3), we obtain three types of eigenfunctions of T ,
represented as follows:

ΦI(x) =

K∑
|k|=0 (mod 4)

αkφk(x), k ∈ C, (3.4)

ΦII(x) =

K∑
|k|=1,2 (mod 4)

αkφk(x), k ∈ C, (3.5)

ΦIII(x) =

K∑
|k|=3 (mod 4)

αkφk(x), k ∈ C. (3.6)
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3.1.2. Parseval type identity.

Theorem 3.4. A Parseval type identity for T is given by

⟨Tf, Tg⟩L2(Rn) =
[
|a|2 + 3

2
|b|2

]
⟨f, g⟩L2(Rn) + 2ℜ{ab}⟨f, Fg⟩L2(Rn)

+ ℜ
{
b(1− i)a

}
⟨f,Wg⟩L2(Rn) + |b|2⟨f, F−1g⟩L2(Rn), (3.7)

for any f, g ∈ L2(Rn).

Proof. For any f, g ∈ L2(Rn), it is straightforward to verify the following
identities:

⟨Wf,Wg⟩L2(Rn) = ⟨f, g⟩L2(Rn), (3.8)
⟨f,Wg⟩L2(Rn) = ⟨Wf, g⟩L2(Rn). (3.9)

If we have in mind (3.8)–(3.9) and as well that for any f, g ∈ L2(Rn):

⟨Wf,Fg⟩L2(Rn) = ⟨f, F−1g⟩L2(Rn),

⟨Ff,Wg⟩L2(Rn) = ⟨f, F−1g⟩L2(Rn),

⟨Ff, Fg⟩L2(Rn) = ⟨f, g⟩L2(Rn),

⟨Ff, g⟩L2(Rn) = ⟨f, Fg⟩L2(Rn),

(3.10)

then (3.7) directly appears by using (1.1). �

3.1.3. Integral equations generated by T . Now we will consider the operator
equation, generated by the operator T (on L2(Rn)), of the following form

mφ+ nTφ+ pT 2φ = f, (3.11)

where m,n, p ∈ C are given, |m|+ |n|+ |p| ̸= 0, and f is predetermined.
As we proved previously, the polynomial PT (t) has the single roots t1 =

a+( 32−
i
2 )b, t2 = a−( 12+

i
2 )b and t3 = a−( 12−

3i
2 )b. The projectors induced

by T , in the sense of the Lagrange interpolation formula, are given by

P1 =
(T − t2I)(T − t3I)

(t1 − t2)(t1 − t3)
=

T 2 − (t2 + t3)T + t2t3
(t1 − t2)(t1 − t3)

, (3.12)

P2 =
(T − t1I)(T − t3I)

(t2 − t1)(t2 − t3)
=

T 2 − (t1 + t3)T + t1t3
(t2 − t1)(t2 − t3)

, (3.13)

P3 =
(T − t1I)(T − t2I)

(t3 − t1)(t3 − t2)
=

T 2 − (t1 + t2)T + t1t2
(t3 − t1)(t3 − t2)

. (3.14)

Then we have

PjPk = δjkPk, T ℓ = tℓ1P1 + tℓ2P2 + tℓ3P3, (3.15)

for any j, k = 1, 2, 3, and ℓ = 0, 1, 2. The equation (3.11) is equivalent to
the equation

a1P1φ+ a2P2φ+ a3P3φ = f, (3.16)
where aj = m+ ntj + pt2j , j = 1, 2, 3.
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Theorem 3.5.
(i) The equation (3.11) has a unique solution for every f if and only if

a1a2a3 ̸= 0. In this case, the solution of (3.11) is given by

φ = a−1
1 P1f + a−1

2 P2f + a−1
3 P3f. (3.17)

(ii) If aj = 0, for some j = 1, 2, 3, then the equation (3.11) has a
solution if and only if Pjf = 0. If this condition is satisfied, then
the equation (3.11) has an infinite number of solutions given by

φ =
∑
j≤3
aj ̸=0

a−1
j Pjf + z, where z ∈ ker

( ∑
j≤3
aj ̸=0

Pj

)
. (3.18)

Proof. Suppose that the equation (3.11) has a solution φ ∈ L2(Rn). Ap-
plying Pj to both sides of the equation (3.16), we obtain a system of three
equations:

ajPjφ = Pjf, j = 1, 2, 3.

In this way, if a1a2a3 ̸= 0, then we have the following system of equations:
P1φ = a−1

1 P1f,

P2φ = a−1
2 P2f,

P3φ = a−1
3 P3f.

(3.19)

Using the identity
P1 + P2 + P3 = I,

we obtain (3.17). Conversely, we can verify that φ fulfills (3.16).
If a1a2a3 = 0, then aj = 0, for some j ∈ {1, 2, 3}. Therefore, it follows

that Pjf = 0. Then, we have∑
j≤3
aj ̸=0

Pjφ =
∑
j≤3
aj ̸=0

a−1
j Pjf.

Using the fact that PjPk = δjkPk, we get( ∑
j≤3
aj ̸=0

Pj

)
φ =

( ∑
j≤3
aj ̸=0

Pj

)[ ∑
j≤3
aj ̸=0

a−1
j Pjf

]

or, equivalently, ( ∑
j≤3
aj ̸=0

Pj

)[
φ−

∑
j≤3
aj ̸=0

a−1
j Pjf

]
= 0.

Therefore, we can obtain the solution (3.18).
Conversely, we can verify that φ fulfills (3.16). As the Hermite functions

are the eigenfunctions of T , we can say that the cardinality of all functions
φ in (3.18) is infinite. �
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3.1.4. Convolution. In this subsection we will focus on obtaining a new
convolution T∗ for the operator T . We will perform it for the case b ̸= 0 and
c = b

2 (1 − i), although the same procedure can be implemented for other
cases of the parameters.

This means that we are identifying the operations that have a correspon-
dent multiplication property for the operator T as the usual convolution has
for the Fourier transform (Tf)(Tg) = T (f

T∗ g).

Theorem 3.6. For the operator T = aI + bF + cW , with a, b, c ∈ C, b ̸= 0
and c = b

2 (1− i), and f, g ∈ L2(Rn), we have the following convolution:

f
T∗ g =C

[
A1fg +A2(Wf)(Wg) +A3(f Wg + gWf)

+A4(f Fg + g Ff) +A5

(
(Wf)(F−1g) + (F−1f)(Wg)

)
+A6

(
(Wf)(Fg) + (Ff)(Wg)

)
+A7(g F

−1f + f F−1g)

+A8((Ff)(Fg)) +A9

(
(F−1f)(F−1g)

)
+A10(F (fg))

+A11

(
F (f Wg) + F (gWf)

)
+A12(F

−1(fg))

+A13

(
F (f Fg) + F (g Ff)

)
+A14

(
F−1(f Fg) + F−1(g Ff)

)
+A15

(
F ((Ff)(Wg)) + F ((Wf)(Fg))

)
+A16

(
F−1((Ff)(Wg)) + F−1((Wf)(Fg))

)
+A17F ((Ff)(Fg)) +A18F

−1((Ff)(Fg))
]
, (3.20)

where

C =
1

a3 + 1
2 a

2b(1 + i) + 3
2 iab

2 + 5
4 b

3(1− i)
,

A1 = a4 +
a3b

2
(1 + i) + ia2b2 +

ab3

4
(1 + i) +

ib4

4
,

A2 = −a2b2

2
(1 + i)− ab3

2
(1− i) +

b4

2
− a3b

2
(1− i),

A3 =
a3b

2
(1 + i) +

a2b2

2
(1 + i) +

ab3

2
(1 + i)− ab3

4
(1− i),

A4 = a3b+
a2b2

2
(1 + i) + iab3, A5 = −a2b2

2
(1− i)− ab3

2
,

A6 =
a2b2

2
(1− i) +

ab3

2
+

b4

2
(1 + i), A7 = i

ab3

2
− b4

4
(1− i),

A8 = a2b2 +
ab3

2
(1 + i) + ib4, A9 = −ab3

2
(1− i)− b4

2
,

A10 = −a3b− a2b2

2
(1 + i)− b4

2
(1 + i),

A11 = −a2b2

2
(1− i)− ab3

2
− iab3,
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A12 = i
ab3

2
− b4

4
(1− i) + a2b2(1− i), A13 = −a2b2 − ab3

2
(1 + i),

A14 = ab3(1− i), A15 = −ab3

2
(1− i)− b4

2
,

A16 = −ib4, A17 = −ab3 − b4

2
(1 + i), A18 = b4(1− i).

Proof. Using the definition of T and a direct (but long) computation, we
obtain the equivalence between (3.20) and

f
T∗ g =

1

a3 + 1
2 a

2b(1 + i) + 3
2 iab

2 + 5
4 b

3(1− i)

×
[
T 2 −

(
3a+

b

2
(1 + i)

)
T +

(
3a2 + ab(1 + i) +

3

2
ib2

)
I

] [
(Tf)(Tg)

]
.

Thus, having in mind (3.2), we identify the last identity with

f
T∗ g = T−1

[
(Tf)(Tg)

]
,

which is equivalent to
(Tf)(Tg) = T

(
f

T∗ g
)
,

as desired. �
3.2. Case b ̸= 0 and c ̸= ± b

2 (1 ± i). In the case of the operator T :=

aI + bF + cW , a, b, c ∈ C, b ̸= 0 and c ̸= ± b
2 (1 ± i), whose characteristic

polynomial is
PT (t) = t4 − 4at3 + (6a2 − 2c2)t2 + (−4a3 − 4b2c+ 4ac2)t

+ (a2 − c2)2 + b2(4ac− b2),

we have the following properties.

3.2.1. Invertibility and spectrum.
Theorem 3.7. T is an invertible operator if and only if

a+ c+ b ̸= 0, a− c− ib ̸= 0, a+ c− b ̸= 0, a− c+ ib ̸= 0. (3.21)
In this case, the inverse operator is defined by the formula

T−1 = − 1

(a2 − c2)2 + b2(4ac− b2)

×
[
T 3 − 4aT 2 + (6a2 − 2c2)T − (−4a3 − 4b2c+ 4ac2)I

]
. (3.22)

Proof. Suppose that the operator T is invertible. Using the Hermite fun-
ctions φk, we have:

(Tφk)(x) =


(a+ c+ b)φk(x) if |k| ≡ 0 (mod 4),

(a− c− ib)φk(x) if |k| ≡ 1 (mod 4),

(a+ c− b)φk(x) if |k| ≡ 2 (mod 4),

(a− c+ ib)φk(x) if |k| ≡ 3 (mod 4).

(3.23)
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Therefore,
• for |k| ≡ 0 (mod 4), (Tφk)(x) = (a + b + c)φk(x), which implies

that a+ c+ b ̸= 0;
• for |k| ≡ 1 (mod 4), (Tφk)(x) = (a − ib − c)φk(x), which implies

that a− c− ib ̸= 0;
• for |k| ≡ 2 (mod 4), (Tφk)(x) = (a − b + c)φk(x), which implies

that a+ c− b ̸= 0;
• for |k| ≡ 3 (mod 4), (Tφk)(x) = (a + ib − c)φk(x), which implies

that a− c+ ib ̸= 0.
Conversely, suppose that (3.21) holds. So,

(a2 − c2)2 + b2(4ac− b2) ̸= 0.

Hence, it is easy to verify that the operator defined in (3.22) is the inverse
of the operator T . �
Remark 3.8.

(1) The characteristic roots of the polynomial PT (t) are
t1 = a+ c+ b, t2 = a− c− ib, t3 = a+ c− b, t4 = a− c+ ib.

(2) T is not a unitary operator, unless a = 0, b = eiβ , c = 0, β ∈ R,
(which is the operator T = bF , with b ∈ C \ {0}) or a = eiα, b = 0,
c = 0 or a = 0, b = 0, c = eiγ , α, φ ∈ R, which are not under the
conditions here considered for this operator.

Theorem 3.9. The spectrum of the operator T is defined by
σ(T ) =

{
a+ c+ b, a− c− ib, a+ c− b, a− c+ ib

}
.

Proof. For any λ ∈ C, we have

t4−4at3+(6a2−2c2)t2+
[
− 4a3−4b2c+4ac2

]
t+(a2−c2)2+b2(4ac−b2)

= (t− λ)
[
t3 + (λ− 4a)t2 + (λ2 − 4aλ+ 6a2 − 2c2)t

+
(
λ3 − 4aλ2 + (6a2 − 2c2)λ− 4a3 − 4b2c+ 4ac2

)]
+ PT (λ).

If λ ̸∈ {a+ c+ b, a− c− ib, a+ c− b, a− c+ ib}, then

PT (λ) = λ4 − 4aλ3 + (6a2 − 2c2)λ2

+ [−4a3 − 4b2c+ 4ac2]λ+ (a2 − c2)2 + b2(4ac− b2) ̸= 0.

In this way, the operator T − λI is invertible, and its inverse operator is
defined by the following formula:

(T − λI)−1 = − 1

PT (λ)

[
T 3 + (λ− 4a)T 2 + (λ2 − 4aλ+ 6a2 − 2c2)T

+
(
λ3 − 4aλ2 + (6a2 − 2c2)λ− 4a3 − 4b2c+ 4ac2

)
I
]
.
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In this way, we have proved that if T − λI is not invertible, then λ ∈ σ(T ).
Conversely, if we choose λ = t1, we obtain:(
T − (a+ c+ b)I

)[
T 3 + (−3a+ b+ c)T 2

+ (3a2 − 2ab+ b2 − 2ac+ 2bc− c2)T + (−a3 + a2b− ab2 + b3 + 4ac

+ a2c− 2abc− b2c− 3ac2 + bc2 − c3)I
]
= −PT (λ)I.

As λ = a+ c+ b, PT (λ) = 0. So, if T − (a+ c+ b)I is invertible, then

T 3 + (−3a+ b+ c)T 2 + (3a2 − 2ab+ b2 − 2ac+ 2bc− c2)T

+ (−a3 + a2b− ab2 + b3 +4ac+ a2c− 2abc− b2c− 3ac2 + bc2 − c3)I = 0,

which implies that a = 0 and b = 0 or that b = 0 and c = 0, which
is not under the conditions imposed for this operator. So, we reach to a
contradiction. Hence, T − (a− c− b(1 + i))I is not invertible.

Arguing in the same way for λ = t2, t3, t4, we obtain a very similar
conclusion. �

Thanks to the identity (3.23), we obtain four types of eigenfunctions of T ,
represented as follows:

ΦI(x) =
K∑

|k|≡0 (mod 4)

αkφk(x), k ∈ C, (3.24)

ΦII(x) =
K∑

|k|≡1 (mod 4)

αkφk(x), k ∈ C, (3.25)

ΦIII(x) =
K∑

|k|≡2 (mod 4)

αkφk(x), k ∈ C, (3.26)

ΦIV (x) =
K∑

|k|≡3 (mod 4)

αkφk(x), k ∈ C. (3.27)

3.2.2. Parseval type identity. In the present case, a Parseval type identity
takes the following form.

Theorem 3.10. In the present case, a Parseval type identity for T is
given by

⟨Tf, Tg⟩L2(Rn) =
[
|a|2 + |b|2 + |c|2

]
⟨f, g⟩L2(Rn) + 2ℜ{ab}⟨f, Fg⟩L2(Rn)

+ 2ℜ{ac}⟨f,Wg⟩L2(Rn) + 2ℜ{bc}⟨f, F−1g⟩L2(Rn) (3.28)

for any f, g ∈ L2(Rn).

Proof. The formula (3.28) is a direct consequence of (1.1), (3.8), (3.9) and
(3.10). �
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3.2.3. Integral equations generated by T . As before, we will now consider in
the present case the following operator equation generated by the operator
T , on L2(Rn),

mφ+ nTφ+ pT 2φ = f, (3.29)

where m,n, p ∈ C are given, |m|+ |n|+ |p| ̸= 0, and f is predetermined.
The polynomial PT (t) has the single roots: t1 = a+ c+ b, t2 = a− c− ib,

t3 = a+ c− b, t4 = a− c+ ib. Using the Lagrange interpolation structure,
we construct the projectors induced by T :

P1 =
(T − t2I)(T − t3I)(T − t4I)

(t1 − t2)(t1 − t3)(t1 − t4)

=
T 3 − (t2 + t3 + t4)T

2 + (t2t3 + t2t4 + t3t4)T − t2t3t4I

(t1 − t2)(t1 − t3)(t1 − t4)
, (3.30)

P2 =
(T − t1I)(T − t3I)(T − t4I)

(t2 − t1)(t2 − t3)(t2 − t4)

=
T 3 − (t1 + t3 + t4)T

2 + (t1t3 + t1t4 + t3t4)T − t1t3t4I

(t2 − t1)(t2 − t3)(t1 − t4)
, (3.31)

P3 =
(T − t1I)(T − t2I)(T − t4I)

(t3 − t1)(t3 − t2)(t3 − t4)

=
T 3 − (t1 + t2 + t4)T

2 + (t1t2 + t1t4 + t2t4)T − t1t2t4I

(t3 − t1)(t3 − t2)(t3 − t4)
, (3.32)

P4 =
(T − t1I)(T − t2I)(T − t3I)

(t4 − t1)(t4 − t2)(t4 − t3)

=
T 3 − (t1 + t2 + t3)T

2 + (t1t2 + t1t3 + t2t3)T − t1t2t3I

(t4 − t1)(t4 − t2)(t4 − t3)
. (3.33)

Then, we have

PjPk = δjkPk; T ℓ = tℓ1P1 + tℓ2P2 + tℓ3P3 + tℓ4P4, (3.34)

for any j, k = 1, 2, 3, 4, and ℓ = 0, 1, 2. The equation (3.29) is equivalent to
the equation

a1P1φ+ a2P2φ+ a3P3φ+ a4P4φ = f, (3.35)

where aj = m+ ntj + pt2j , j = 1, 2, 3, 4.

Theorem 3.11.
(i) Equation (3.29) has a unique solution for every f if and only if

a1a2a3a4 ̸= 0. In this case, the solution is given by

φ = a−1
1 P1f + a−1

2 P2f + a−1
3 P3f + a−1

4 P4f. (3.36)

(ii) If aj = 0, for some j = 1, 2, 3, 4, then the equation (3.11) has a
solution if and only if Pjf = 0. If we have this, then the equation
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(3.11) has an infinite number of solutions given by

φ =
∑
j≤4
aj ̸=0

a−1
j Pjf + z, where z ∈ ker

( ∑
j≤4
aj ̸=0

Pj

)
. (3.37)

Proof. Suppose that the equation (3.29) has a solution φ ∈ L2(Rn). Ap-
plying Pj to both sides of the equation (3.35), we obtain the system of four
equations: ajPjφ = Pjf, j = 1, 2, 3, 4.

If a1a2a3a4 ̸= 0, then we have the following system of equations:
P1φ = a−1

1 P1f,

P2φ = a−1
2 P2f,

P3φ = a−1
3 P3f,

P4φ = a−1
4 P4f.

(3.38)

Using the identity
P1 + P2 + P3 + P4 = I,

we obtain (3.36). Conversely, we can verify that φ fulfills (3.35).
If a1a2a3a4 = 0, then aj = 0 for some j ∈ {1, 2, 3, 4}. It follows that

Pjf = 0. Then, we have ∑
j≤4
aj ̸=0

Pjφ =
∑
j≤4
aj ̸=0

a−1
j Pjf.

Using PjPk = δjkPk, we obtain( ∑
j≤4
aj ̸=0

Pj

)
φ =

( ∑
j≤4
aj ̸=0

Pj

)[ ∑
j≤4
aj ̸=0

a−1
j Pjf

]
.

Equivalently, ( ∑
j≤4
aj ̸=0

Pj

)[
φ−

∑
j≤4
aj ̸=0

a−1
j Pjf

]
= 0.

So, we obtain the solution (3.37).
Conversely, we can verify that φ fulfills (3.35). As the Hermite functions

are the eigenfunctions of T , we can say that the cardinality of all functions
φ in (3.37) is infinite. �

3.2.4. Convolution. In this subsection we will present a new convolution T∗
for the operator T . We will perform it for the case b ̸= 0 and c ̸= ± b

2 (1± i).
This means that we are identifying the operations that have a correspondent
multiplication property for the operator T as the usual convolution has for
the Fourier transform (Tf)(Tg) = T (f

T∗ g).
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Theorem 3.12. For the operator T = aI+bF +cW , with a, b, c ∈ C, b ̸= 0
and c ̸= ± b

2 (1± i), and f, g ∈ L2(Rn), we have the following convolution:

f
T∗ g =C

[
A1fg +A2(Wf)(Wg) +A3(f Wg + gWf)

+A4(f Fg + g Ff) +A5

(
(Wf)(F−1g) + (F−1f)(Wg)

)
+A6

(
(Wf)(Fg) + (Ff)(Wg)

)
+A7(g F

−1f + f F−1g)

+A8((Ff)(Fg)) +A9

(
(F−1f)(F−1g)

)
+A10(F (fg)) +A11

(
F (f Wg) + F (gWf)

)
+A12(F

−1(fg))

+A13

(
F (f Fg) + F (g Ff)

)
+A14

(
F−1(f Fg) + F−1(g Ff)

)
+A15

(
F
(
(Ff)(Wg)

)
+ F

(
(Wf)(Fg)

))
+A16

(
F−1

(
(Ff)(Wg)

)
+ F−1

(
(Wf)(Fg)

))
+A17F

(
(Ff)(Fg)

)
+A18F

−1
(
(Ff)(Fg)

)]
, (3.39)

where

C = − 1

(a2 − c2)2 + b2(4ac− b2)
,

A1 = 7a5 − 7a3c2 + 7a2b2c− ab2c2 + a2c3 − c5,

A2 = 7a3c2 − 7ac4 + 7b2c3 − a3b2 + a4c− a2c3,

A3 = 7a4c− 7a2c3 + 7ab2c2 − a2b2c+ a3c2 − ac4,

A4 = 7a4b− 7a2bc2 + 7ab3c, A5 = −a2b3 + a3bc− abc3,

A6 = 7a3bc− 7abc3 + 7b3c2, A7 = −ab3c+ a2bc2 − bc4,

A8 = 7a3b2 − 7ab2c2 + 7b4c, A9 = −ab4 + a2b2c− b2c3,

A10 = a4b+ a2bc2 + b3c− 2abc3,

A11 = a3bc+ abc3 + ab3c− 2a2bc2,

A12 = a2bc2 + bc4 + a2b3 − 2a3bc, A13 = a3b2 + ab2c2,

A14 = ab4 − 2a2b2c, A15 = a2b2c+ b2c3,

A16 = b4c− 2ab2c2, A17 = a2b3 + b3c2, A18 = b5 − 2ab3c.

Proof. Using the definition of T , by computation we obtain the equivalence
between (3.39) and

f
T∗ g = − 1

(a2 − c2)2 + b2(4ac− b2)

×
[
T 3 − 4aT 2 + (6a2 − 2c2)T − (−4a3 − 4b2c+ 4ac2)I

] [
(Tf)(Tg)

]
.

Consequently, having in mind (3.22), we identify the last identity with

f
T∗ g = T−1

[
(Tf)(Tg)

]
,
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which is equivalent to
(Tf)(Tg) = T

(
f

T∗ g
)
,

as desired. �
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