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Abstract. We obtain conditions for the existence and uniqueness of solu-
tions to generalized neural field equations involving parameterized measure.
We study continuous dependence of these solutions on the spatiotemporal
integration kernel, delay effects, firing rate, external input and measure.
We also construct the connection between the delayed Amari and Hopfield
network models.
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ÒÄÆÉÖÌÄ. ÌÉÙÄÁÖËÉÀ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÍÄÉÒÏÍÖËÉ ÅÄËÉÓ ÂÀÍÔÏ-
ËÄÁÄÁÉÓ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÉÓ ÃÀ ÄÒÈÀÃÄÒÈÏÁÉÓ ÐÉÒÏÁÄÁÉ, ÒÏÌ-
ËÄÁÉÝ ÛÄÉÝÀÅÓ ÐÀÒÀÌÄÔÒÉÆÄÁÖË ÆÏÌÀÓ. ÛÄÓßÀÅËÉËÉÀ ÀÌ ÀÌÏÍÀáÓÍÄ-
ÁÉÓ ÖßÚÅÄÔÀÃ ÃÀÌÏÊÉÃÄÁÖËÄÁÀ ÓÉÅÒÝÄ-ÃÒÏÉÓ ÉÍÔÄÂÒÉÒÄÁÉÓ ÂÖËÆÄ,
ÃÀÂÅÉÀÍÄÁÉÓ Ä×ÄØÔÄÁÆÄ, ÓÉÂÍÀËÄÁÉÓ ÂÄÍÄÒÉÒÄÁÉÓ ÓÉáÛÉÒÄÆÄ, ÂÀÒÄ-
ÃÀÍ ÛÄÔÀÍÉË ÌÏÍÀÝÄÌÄÁÆÄ ÃÀ ÆÏÌÀÆÄ. ÜÅÄÍ ÀÓÄÅÄ ÅÀÌÚÀÒÁÈ ÊÀÅÛÉÒÓ
ÃÀ ÃÀÂÅÉÀÍÄÁÖË ÀÌÀÒÉÓÀ ÃÀ äÏÐ×ÖËÉÓ ØÓÄËÉÓ ÌÏÃÄËÄÁÓ ÛÏÒÉÓ.
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Introduction

The main object of our study is the following parameterized integral
equation involving integration with respect to an arbitrary measure:

u(t, x, λ)

=

t∫
−∞

ds

∫
Ω

W (t, s, x, y, λ)f
(
u(s− τ(s, x, y, λ), y, λ), λ

)
ν(dy, λ)

+I(t, x, λ), t > a, x ∈ Ω, λ ∈ Λ (1)

with the initial (prehistory) condition

u(ξ, x, λ) = φ(ξ, x, λ), ξ ≤ a, x ∈ Ω, λ ∈ Λ. (2)

Here, the function u represents the activity of a neural element at time
t and position x. The generalized spatio-temporal connectivity kernel W
determines the time-dependent coupling between elements at positions x
and y. The non-negative activation function f gives the firing rate of a
neuron with activity u. The non-negative function τ represents the time-
dependent axonal delay effects in the neural field, which require a prehistory
condition given by the function φ. The function I(t, x) represents a variable
external input. All the above functions involve a parametrization by the
parameter λ which, as well as introducing of an arbitrary parameterized
measure ν( · , λ), gives us some investigation advantages.

The equation (1) covers a wide variety of neural field models:
The most well-known Amari model [1]

∂tu(t, x) = −u(t, x) +

∫
R

ω(x− y)f(u(t, y))dy + I(t, x), t ≥ 0, x ∈ R,

can be obtained from the equation (1) by taking

W (t, s, x, y, λ) = exp
(
− (t− s)

)
ω(x− y),

τ(t, x, y, λ) = φ(ξ, x, λ) ≡ 0.

The two-population Amari model (see [2], [16])(
∂tue

α∂tui

)
(t, x) =−

(
ue

ui

)
(t, x)

+

∫
R

(
ωee −ωei

ωie −ωii

)
(x− y)

(
fe(ue(t, x))
fi(ui(t, x))

)
dy

+

(
Ie
Ii

)
(t, x), t ≥ 0, x ∈ R,



38 E. Burlakov, E. Zhukovskiy, A. Ponosov, and J. Wyller

can be obtained from the equation (1) by taking

W (t, s, x, y, λ)

= diag
(

exp(−(t− s)), exp
(
− (t− s)/α

)
/α

)(
ωee −ωei

ωie −ωii

)
(x− y),

τ(t, x, y, λ) = φ(ξ, x, λ) ≡ 0.

The delayed Amari model (see e.g. [5])

∂tu(t, x) = −Lu(t, x) +

∫
Ω

ω(t, x, y)f
(
u(t− τ(x, y), y)

)
dy + I(t, x),

t∈
[
− max

x,y∈Ω
τ(x, y),∞

)
, x∈Ω ⊂ BRm(0, r), L=diag(l1, . . . , ln), li>0

with a time-dependent connectivity kernel is also a special case of the model
(1) with

W (t, s, x, y, λ)=diag
(
l1 exp

(
− l1(t−s)

)
, . . . , ln exp

(
− ln(t−s)

))
ω(t, x, y),

τ(t, x, y, λ) = τ(x, y), φ(ξ, x, λ) ≡ 0.

Another special case of the equation (1) arises in models that take into
account the microstructure of the neural field (see [4, 9, 13])

∂tu(t, x) = −u(t, x) +

∫
Rm

ωε(x− y)f(u(t, y)) dy,

ωε(x) = ω(x, x/ε), 0 < ε ≪ 1,

t ≥ 0, x ∈ Rm.

(3)

If the microstructure is periodic, then, as the heterogeneity parameter ε →
0, the above model converges (see e.g. [12]) to the homogenized Amari
model

∂tu(t, xc, xf )

= −u(t, xc, xf ) +

∫
Rm

∫
Y

ω(xc−yc, xf−yf )f
(
u(t, yc, yf )

)
dyc dyf , (4)

t > 0, xc ∈ Rm, xf ∈ Y ⊂ Rk,

where xc and xf are the coarse-scale and fine-scale spatial variables, respec-
tively. Taking

Ω = Rm × Y (Y is some k-dimensional torus [15]),
x = (xc, xf ), y = (yc, yf ),

W (t, s, x, y, λ) = exp
(
− (t− s)

)
ω(xc − yc, xf − yf )

in (1) with
τ(t, x, y, λ) = φ(ξ, x, λ) ≡ 0,
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we get the model (4). It should be pointed out here that the case of
non-periodic microstructure in the model (3) that leads (see [12]) to non-
Lebesgue measure in (4) is also covered by (1). It is more realistic to assume
some small deviations from the periodicity in the neural networks structure
reflected in the properties of the connectivity kernel with respect to the
second argument. Hence, it is natural to ask whether the solution of the
model (3) with a non-periodic perturbation of the periodic connectivity ker-
nel in some sense is “close” to the solution in the non-perturbed case. One
possible answer to this question is suggested in Appendix. The answer is
based on the main result of the paper which is the existence, uniqueness
and continuous dependence of solutions to (1) on the model parameters.

Another application of the main result is the possibility to connect the
models in use in the neural field theory to the well-known Hopfield net-
work model [8] utilizing the parameterized measure involved in (1). As the
network models of the Hopfield type are used for numerical simulations of
the neural fields, our results thus justify implementation of such numerical
schemes.

The paper is organized in the following way. In Section 1 a special case
(that is relevant in the neural field theory) of the general statement on
the solvability and continuous dependence on a parameter of solutions to
the Volterra operator equation from the paper [3] is given. Based on this
theorem, analogous results are obtained in Section 2 for the generalized
neural field model (1). Section 3 is devoted to the connection between the
delayed Amari and Hopfield network models. In addition, a mathematical
justification of the two known numerical schemes is offered, which illustrates
a generality of the methods suggested in the paper. Finally, Appendix
contains a short informal description of the homogenization procedure for
the neural field equations with non-periodic microstructure based on the
convergence of Banach algebras with mean value.

1. Preliminaries

In this section we provide an overview of the notation used in the pa-
per, introduce the main definitions and formulate a fixed point theorem for
locally contracting Volterra operators.

Let us introduce the following notations:
– Rm is the m-dimensional real vector space with the norm | · |;
– Λ is some metric space;
– BΛ(λ0, r) is the ball in the space Λ of the radius r > 0 centered at

the point λ0 ∈ Λ;
– Ω is a closed subset of Rm;
– ∂Ω is the boundary of the Ω;
– Ωr = Ω ∩BRm(0, r);



40 E. Burlakov, E. Zhukovskiy, A. Ponosov, and J. Wyller

– BC(Ω, Rn) is the space of bounded continuous functions ϑ : Ω →
Rn with the norm ∥ϑ∥BC(Ω,Rn) = sup

x∈Ω
|ϑ(x)|;

– Ccomp(Ω, R
n) is the locally convex space of continuous functions

ϑ : Ω → Rn, with a compact support, equipped with the topology
of uniform convergence on compact subsets;

– Y (I) = C(I, BC(Ω, Rn)) consists of all continuous functions υ :
I → BC(Ω, Rn), with the norm ∥υ∥Y (I) = max

t∈I
∥υ(t)∥BC(Ω,Rn) if

I is compact; if I is not compact, then Y (I) is a locally convex
linear space equipped with the topology of uniform convergence on
compact subsets of I;

Let [a, b] be a compact subinterval of the real line. In the three forth-
coming definitions we use the following notation: Y = Y ([a, b]), Yξ =
Y ([a, a+ ξ]) for any ξ ∈ (0, b−a).

Definition 1. An operator Ψ : Y → Y is said to be a Volterra operator
if for any ξ ∈ (0, b−a) and any y1, y2 ∈ Y the equality y1(t) = y2(t) on
[a, a+ξ] implies that (Ψy1)(t) = (Ψy2)(t) on [a, a+ξ].

Choosing an arbitrary ξ ∈ (0, b−a), we introduce the following three
important operators. Let Eξ : Y → Yξ be defined as (Eξy)(t) = yξ(t),
t ∈ [a, a+ξ], where yξ(t) is a restriction of the function y(t) to the subinterval
[a, a+ ξ]; conversely, to each yξ ∈ Yξ the operator Pξ : Yξ → Y assigns one
of the extensions y ∈ Y of the element yξ (Pξ may not be uniquely defined);
the operator Ψξ : Yξ → Yξ is given by Ψξyξ = EξΨPξyξ. Note that for any
Volterra operator Ψ : Y → Y the operator Ψξ : Yξ → Yξ is also a Volterra
operator and is independent of the choice of Pξ.

Definition 2. A Volterra operator Ψ : Y → Y is called locally contracting
if there exist q < 1, θ > 0, such that for all elements y1, y2 ∈ Y the following
two conditions are satisfied:

q1) ∥EθΨy1 − EθΨy2∥Yθ
≤ q∥Eθy1 − Eθy2∥Yθ

,
q2) for any γ ∈ [0, b−a−θ], the equality Eγy1 = Eγy2 implies that∥∥Eγ+θΨy1 − Eγ+θΨy2

∥∥
Yγ+θ

≤ q
∥∥Eγ+θy1 − Eγ+θy1

∥∥
Yγ+θ

. (5)

Definition 3. If there exists γ ∈ (0, b−a] and a function yγ ∈ Yγ , which
satisfies the equation Ψγyγ = yγ , then we call yγ a local solution of the
Volterra equation

y(t) = (Ψy)(t), t ∈ [a, b]. (6)
In the case if γ = b− a, we call this solution global (relative to the interval
[a, b]).

To study continuous dependence on a parameter, we need some more
definitions.
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Definition 4. Let F ( · , · ) : Y × Λ → Y be a family of Volterra operators
depending on a parameter λ ∈ Λ. This family is called uniformly locally
contracting if for each λ ∈ Λ the operator F ( · , λ) is locally contracting and
the constants q ≥ 0 and θ > 0 from Definition 3, are independent of λ ∈ Λ.

The following theorem concerning the well-posedness of the operator
equation

y(t) = (F (y, λ))(t), t ∈ [a, b], λ ∈ Λ, (7)

is a special case of Theorem 1 in Burlakov, et al [3]. It represents the main
theoretical tool for the problems to be studied in this paper.

Theorem 1. Assume that for some λ0 ∈ Λ and r0 > 0, the family of
Volterra operators F ( · , λ) : Y → Y (λ ∈ BΛ(λ0, r0)) is uniformly locally
contracting and the mapping F ( · , · ) : Y × Λ → Y is continuous at (y, λ0)
for all y ∈ Y .

Then there exists r > 0, such that the equation (7) has a unique global
solution y(t, λ) for all λ ∈ BΛ(λ0, r), and

∥y( · , λ)− y( · , λ0)∥Y → 0 as λ → λ0.

Moreover, for each λ ∈ BΛ(λ0, r), any local solution of the equation (7) is
also unique and is a restriction of the corresponding global solution.

2. The Main Result

In this section we justify the property of well-posedness for the general-
ized neural field equation (1).

The following assumptions will be imposed on the functions involved:
(A1) The function f : Rn×Λ → Rn is continuous, bounded and Lipschitz

one in the first variable uniformly with respect to λ ∈ Λ.
(A2) For any b ∈ R and r > 0, the delay function τ : (−∞, b]×Ω×Ωr ×

Λc → [0,∞) is uniformly continuous, where Λc is some compact
subset of Λ.

(A3) The initial (prehistory) function φ : (−∞, a] × Ω × Λc → Rn is
uniformly continuous.

(A4) The external input function I : [a,∞) × Ω × Λ → Rn generates a
continuous mapping λ 7→ I( · , · , λ) from Λ to the space Y [a,∞).

(A5) For any b > a and r > 0, the kernel function W : [a, b] × [−r, r] ×
Ω× Ωr × Λc → Rn is uniformly continuous.

(A6) The complete σ-additive measures ν( · , λ) (λ ∈ Λ) are finite on
compact subsets of Ω and weakly continuous with respect to λ ∈ Λ
i.e. the measures can be interpreted as linear functionals on the
separable locally convex space Ccomp(Ω, R

n).
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(A7) For any b > a,

max
t∈[a,b]

( t∫
−∞

ds sup
x∈Ω,λ∈Λ

∫
Ω

∣∣W (t, s, x, y, λ)
∣∣ν(dy, λ)) < ∞.

(A8) For any b > a,

lim
r→∞

sup
t∈[a,b], x∈Ω, λ∈Λ

t∫
−∞

ds

∫
Ω−Ωr

∣∣W (t, s, x, y, λ)
∣∣ν(dy, λ) = 0.

Definition 5. Let λ ∈ Λ. We define a local solution to the problem (1), (2)
on [a, a+γ]×Rn, γ ∈ (0,∞), to be a function uγ ∈ Y ([a, a+γ]) that satisfies
the equation (1) on [a, a+γ] and the prehistory condition (2). We define
a global solution to the problem (1), (2) to be a function u ∈ Y ([a,∞)),
whose restriction uγ to [a, a+γ] is its local solution for any γ ∈ (0,∞).
Theorem 2. Suppose that the assumptions (A1)–(A8) are fulfilled. Then
the initial value problem (1), (2) has a unique continuous solution u( · , · , λ)∈
Y ([a,∞)) for any λ ∈ Λ, and the correspondence λ 7→ u( · , · , λ) is a con-
tinuous mapping from Λ to Y ([a,∞)). Moreover, for each λ ∈ Λ, any local
solution of the problem (1), (2) is also unique and it is a restriction of the
corresponding global solution.
Proof. Due to the definition of the topology in Y ([a,∞)), it suffices to prove
this result for the case of an arbitrary compact interval [a, b] ⊂ [a,∞). In
what follows we therefore keep fixed an arbitrary b > a and keep the notation
Y for the space Y ([a, b]).

For each λ ∈ Λ and φ(ξ, x, λ) satisfying the assumption (A3) we define
the following integral operator

(F (u, λ))(t, x) = I1(t, x, λ) + I2(t, x, λ)

+

t∫
a

ds

∫
Ω

W (t, s, x, y, λ)f
(
(S(u, λ))(t, s, x, y, λ), λ

)
ν(dy, λ), (8)

where

(S(u, λ))(t, x, y, λ)

=

{
φ(t− τ(t, x, y, λ), x, λ) if t− τ(t, x, y, λ) < a,

u(t− τ(t, x, y, λ), y, λ) if t− τ(t, x, y, λ) ≥ a,
(9)

and
I1(t, x, λ) = φ(a, x, λ) + I(t, x, λ),

I2(t, x, λ) =

a∫
−∞

ds

∫
Ω

W (t, s, x, y, λ)f
(
φ(s− τ(s, x, y, λ), x, λ), λ

)
ν(dy, λ).
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Below we assume that |f(u)| ≤ M for all u ∈ Rn.
We have to apply Theorem 1. Towards this end, we need to show that the

operator family F ( · , λ) (λ ∈ Λ) satisfies the assumptions of this theorem.
At the first step of the proof we will show that F (u, λ) ∈ Y for each

u ∈ Y , λ ∈ Λ. Applying the assumption (A8) for the given ε > 0, we find
r > 0 such that

sup
t∈[a,b], x∈Ω, λ∈Λ

t∫
−∞

ds

∫
Ω−Ωr

∣∣W (t, s, x, y, λ)
∣∣ν(dy, λ) < ε

M
. (10)

For this r and a fixed λ ∈ Λ, we find a positive δ = δ(λ) (u is kept fixed)
such that∣∣∣W (t, s, x, y, λ)f

(
(S(u, λ))(s, x, y, λ), λ

)
−W (t0, s0, x0, y0, λ)f

(
(S(u, λ))(s0, x0, y0, λ), λ

)∣∣∣
<

ε

((b− a)ν(Ωr, λ))
(11)

for all t, t0, s, s0 ∈ [a, b], x, x0 ∈ Ω, y, y0 ∈ Ωr, satisfying
|t− t0| < δ, |s− s0| < δ, |x− x0| < δ, |y − y0| < δ.

We show first that F ( · , λ) : Y → Y for each λ ∈ Λ. In other words, we
have to prove that the mapping t 7→ (F (u, λ))(t, · ) is a continuous function
from [a, b] to BC(Ω, Rn).

As the assumptions (A3), (A4) imply φ(a, · , λ) ∈ BC(Ω, Rn) and
I( · , · , λ) ∈ Y (λ ∈ Λ), we only need to check that I2( · , · , λ) ∈ Y and
F0(u, λ) ∈ Y for all u ∈ Y and λ ∈ Λ, where

(F0(u, λ))(t, x)=

t∫
a

ds

∫
Ω

W (t, s, x, y, λ)f
(
(S(u, λ))(s, x, y, λ), λ

)
ν(dy, λ).

The proofs are similar, so we concentrate on the more involved case of F0.
For any t ∈ [a, b], we have∣∣(F0(u, λ))(t, x)− (F0(u, λ))(t, x0)

∣∣
≤

t∫
a

ds

∫
Ωr

∣∣∣W (t, s, x, y, λ)f
(
(S(u, λ))(s, x, y, λ), λ

)
−W (t, s, x0, y, λ)f

(
(S(u, λ))(s, x0, y, λ), λ

)∣∣∣ν(dy, λ)
+

b∫
a

ds

∫
Ω−Ωr

(∣∣W (t, s, x, y, λ)
∣∣+ ∣∣W (t, s, x0, y, λ)

∣∣)ν(dy, λ) < 3ε

as long as |x − x0| < δ = δ(λ) due to the estimates (10) and (11). This
proves the continuity of (F0(u, λ))(t, x) in x.



44 E. Burlakov, E. Zhukovskiy, A. Ponosov, and J. Wyller

The boundedness of this function for each t ∈ [a, b] follows from the
assumption (A7) and boundedness of the function f : Rn → Rn.

Finally, we check that t 7→ (F0(u, λ))(t, · ) is a continuous mapping from
[a, b] to BC(Ω, Rn) if u ∈ Y :

sup
x∈Ω

∣∣(F0(u, λ))(t, x)− (F0(u, λ))(t0, x)
∣∣

≤ sup
x∈Ω

∣∣∣ t∫
a

ds

∫
Ω

W (t, s, x, y, λ)f
(
(S(u, λ))(s, x, y, λ), λ

)

−
t0∫
a

ds

∫
Ω

W (t0, s, x, y, λ)f
(
(S(u, λ))(s, x, y, λ), λ

)∣∣∣ν(dy, λ)
≤

t∫
t0

ds sup
x∈Ω

∫
Ω

∣∣W (t, s, x, y, λ)
∣∣Mν(dy, λ) < ε

as long as t− t0 < δ. (Here we have assumed that t > t0 and again used the
assumption (A7).) We have therefore proved that F0( · , λ), F ( · , λ) : Y → Y
for each λ ∈ Λ.

At the second step of the proof we show that the Volterra operator (8)
is a local contraction in the first variable, uniformly with respect to the
parameter λ.

We choose arbitrary constants q < 1, γ ∈ [0, b − a) and λ ∈ Λ. Let f̃
be the Lipschitz constant for the function f . Since the space Y consists
of continuous functions, we can unify the two properties from Definition 2
into a single one and prove that u1(t, · ) = u2(t, · ), t ∈ [a, a+γ), where
u1, u2 ∈ Y , implies the inequality (5) for the chosen q < 1 and some θ > 0.
Indeed, ∥∥F (u1, λ)− F (u2, λ)

∥∥
Y

= sup
t∈[a,a+γ+θ], x∈Ω

∣∣∣∣
t∫

a

ds

∫
Ω

W (t, s, x, y, λ)f
(
(S(u1, λ))(s, x, y, λ)

)
ν(dy, λ)

−
t∫

a

ds

∫
Ω

W (t, s, x, y, λ)f
(
(S(u2, λ))(s, x, y, λ)

)
ν(dy, λ)

∣∣∣∣
≤ sup

t∈[a+γ,a+γ+θ], x∈Ω

∣∣∣∣
t∫

a+γ

ds

∫
Ω

W (t, s, x, y, λ)
(
f
(
(S(u1, λ))(s, x, y, λ)

)
−f

(
(S(u2, λ))(s, x, y, λ)

))
ν(dy, λ)

∣∣∣∣
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≤ sup
t∈[a+γ,a+γ+θ], x∈Ω

t∫
a+γ

ds

∫
Ω

∣∣W (t, s, x, y, λ)
∣∣f̃ν(dy, λ)∥u1 − u2∥Y

≤ q̃∥u1 − u2∥Y ,
where

q̃ = f̃ sup
t∈[a+γ,a+γ+θ], x∈Ω

t∫
a+γ

ds

∫
Ω

∣∣W (t, s, x, y, λ)
∣∣ν(dy, λ).

Using the assumption (A7), we can always find a θ > 0 such that q̃ ≤ q < 1.
This proves the property of local contractivity of the operator F ( · , λ) : Y →
Y for any λ ∈ Λ. Moreover, we easily obtain from γ ∈ [0, b−a) the estimate
on q̃ that this property is uniform with respect to γ and λ, i.e. θ > 0 and
q < 1 can be chosen to be independent of γ∈ [0, b− a) and λ ∈ Λ.

At the third and final step of the proof we show the continuity of the
mapping F : Y × Λ → Y . We pick arbitrary λ0 ∈ Λ, u0 ∈ Y , where
continuity will be examined, and arbitrary sequences λN → λ0, uN → u0

(N → ∞).
We start with estimation of the following difference:∣∣(S(uN , λN ))(s, x, y, λN )− (S(u0, λ0))(s, x, y, λ0)

∣∣
≤

∣∣(S(uN , λN ))(s, x, y, λN )− (S(u0, λN )
)
(s, x, y, λ0)

∣∣
+

∣∣(S(u0, λN )
)
(s, x, y, λ0)− (S(u0, λ0)

)
(s, x, y, λ0)

∣∣.
The first term on the right-hand side of this inequality is less than ε/2 for
all s ∈ (−∞, b], x, y ∈ Ω, N ≥ N1 as uN → u0 (N → ∞). By virtue of
the assumptions (A2) and (A3), the second term on the right-hand side is
less than ε/2 for all s ∈ (−∞, b], x ∈ Ω, y ∈ Ωr, N ≥ N2(r). Thus, for any
r > 0, we have∣∣(S(uN , λN ))(s, x, y, λN )− (S(u0, λ0))(s, x, y, λ0)

∣∣ ≤ ε (12)
for all s ∈ (−∞, b], x ∈ Ω, y ∈ Ωr, N ≥ N3(r).

Then, choosing ε > 0, we find a number r0 > 0 such that the estimate
(10) holds true. Increasing, if necessary, the value of r0, we may, in addition,
assume without loss of generality that ν(Ωr0 , λ0) > 0 and ν(∂Ωr0 , λ0) = 0,
so that

lim
N→∞

ν(Ωr0 , λN ) = ν(Ωr0 , λ0)

(see e.g. [7, Chapter VI, Theorem 2]).
Using this r0, we estimate the following difference:∣∣∣f((S(uN , λN ))(s, x, y, λN ), λN

)
− f

(
(S(u0, λ0))(s, x, y, λ0), λ0

)∣∣∣
≤

∣∣∣f((S(uN , λN ))(s, x, y, λN ), λN

)
− f

(
(S(uN , λN ))(s, x, y, λN ), λN

)∣∣∣
+
∣∣∣f((S(uN , λN ))(s, x, y, λN ), λ0

)
− f

(
(S(u0, λ0))(s, x, y, λ0), λ0

)∣∣∣.
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By virtue of the assumption (A1), the first term on the right-hand side of
the inequality is less than ε for all s ∈ (−∞, b], x ∈ Ω, y ∈ Ωr0 , N ≥ N4(r0).
Using the assumption (A1) and the estimate (12), we get that the second
term on the right-hand side of the inequality is less than ε for all s ∈ (−∞, b],
x ∈ Ω, y ∈ Ωr0 , N ≥ N3(r0). Thus, taking into account (A1) and (A7), we
obtain the inequality

∣∣∣∣
t∫

−∞

ds

∫
Ωr0

W (t, s, x, y, λN )
(
f
(
(S(uN , λN ))(s, x, y, λN ), λN

)
− f

(
(S(u0, λ0))(s, x, y, λ0), λ0

))
ν(dy, λN )

∣∣∣∣ < ε (13)

for all t ∈ [a, b], s ∈ (−∞, b], x ∈ Ω, y ∈ Ωr0 , N ≥ N5(r0).
The assumption (A5) yields∣∣W (t, s, x, y, λN )−W (t, s, x, y, λ0)

∣∣ < ε

M((b− a)ν(Ωr, λ))
(14)

for all t ∈ [a, b], s ∈ (−∞, b], x ∈ Ω, y ∈ Ωr0 , N ≥ N6(r0).
Using the assumptions (A3), (A4), and (A6), we find a natural number

N7(r0) such that

sup
t∈[a,b], x∈Ω

∣∣∣∣ ∫
Ωr0

Φ(t, x, y)
(
ν(dy, λN )− ν(dy, λ0)

)∣∣∣∣ < ε,

ν(Ωr0 , λN ) ≤ 2ν(Ωr0 , λ0),

sup
x∈Ω

∣∣φ(a, x, λN )− φ(a, x, λ0)
∣∣ < ε,

sup
t∈[a,b], x∈Ω

∣∣I(t, x, λN )− I(t, x, λ0)
∣∣ < ε, |λN − λ0| < δ

(15)

for all N ≥ N7(r0). Here, the function

Φ(t, x, y) =

t∫
−∞

W (t, s, x, y, λ0)f
(
(S(u0, λ0))(s, x, y, λ0), λ0

)
ds

is uniformly continuous on the set [a, b]× Ω× Ωr0 , so that∫
Ωr0

Φ(t, x, y)ν(dy, λN ) −→
∫

Ωr0

Φ(t, x, y)ν(dy, λ0)

as n → ∞ uniformly with respect to the variables t ∈ [a, b], x ∈ Ω.
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Next, we estimate

sup
t∈[a,b], x∈Ω

∣∣I2(t, x, λN )− I2(t, x, λ0)
∣∣

≤ sup
t∈[a,b], x∈Ω

∣∣∣∣
t∫

−∞

ds

∫
Ω

W (t, s, x, y, λN )

× f
(
φ
(
s− τ(s, x, y, λN ), x, λN

)
, λN

)
ν(dy, λN )

−
t∫

−∞

ds

∫
Ω

W (t, s, x, y, λ0)f
(
φ(s− τ(s, x, y, λ0), x, λ0), λ0

)
ν(dy, λ0)

∣∣∣∣
≤ sup

t∈[a,b], x∈Ω

∣∣∣∣
t∫

−∞

ds

∫
Ω−Ωr0

W (t, s, x, y, λN )

× f
(
φ(s− τ(s, x, y, λN ), x, λN ), λN

)
ν(dy, λN )

−
t∫

−∞

ds

∫
Ω−Ωr0

W (t, s, x, y, λ0)f
(
φ(s− τ(s, x, y, λ0), x, λ0), λ0

)
ν(dy, λ0)

∣∣∣∣
+ sup

t∈[a,b], x∈Ω

∣∣∣∣
t∫

−∞

ds

∫
Ωr0

W (t, s, x, y, λN )
(
f
(
φ(s−τ(s, x, y, λN ), x, λN

)
, λN

)
− f

(
φ(s− τ(s, x, y, λ0), x, λ0), λ0

))
ν(dy, λN )

∣∣∣∣
+ sup

t∈[a,b], x∈Ω

∣∣∣∣
t∫

−∞

ds

∫
Ωr0

(
W (t, s, x, y, λN )−W (t, s, x, y, λ0)

)
× f

(
φ(s− τ(s, x, y, λ0), x, λ0), λ0

)
ν(dy, λN )

∣∣∣∣
+ sup

t∈[a,b], x∈Ω

∣∣∣∣
t∫

−∞

ds

∫
Ωr0

W (t, s, x, y, λ0)

× f
(
φ(s− τ(s, x, y, λ0), x, λ0), λ0

)
ν(dy, λN )

−
t∫

−∞

ds

∫
Ωr0

W (t, s, x, y, λ0)f
(
φ(s− τ(s, x, y, λ0), x, λ0), λ0

)
ν(dy, λ0)

∣∣∣∣.
The first term on the right-hand side of the inequality is less than 2ε as
the estimate (10) and the assumption (A1) hold true. Each of the second
and the third terms on the right-hand side of the inequality is less than
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ε due to (13) and (A1), (A7), (14), respectively, for all N > N8(r0) =
max{N5(r0), N6(r0)}. The estimate (15) yields the last term on the right-
hand side of the inequality is less than ε for all N > N7(r0).

Thus, we get that

sup
t∈[a,b], x∈Ω

∣∣I2(t, x, λN )− I2(t, x, λ0)
∣∣ < 5ε (16)

for all N ≥ N9(r0) = max{N7(r0), N8(r0)}.
Finally, taking into account the estimates (10), (11), (13)–(16) and the

assumption (A7), we obtain∥∥F (uN , λN )− F (u0, λ0)
∥∥
Y
≤ sup

x∈Ω

∣∣φ(a, x, λN )− φ(a, x, λ0)
∣∣

+ sup
t∈[a,b], x∈Ω

∣∣I(t, x, λN )− I(t, x, λ0)
∣∣

+ sup
t∈[a,b], x∈Ω

∣∣I2(t, x, λN )− I2(t, x, λ0)
∣∣

+ sup
t∈[a,b], x∈Ω

∣∣∣∣
t∫

a

ds

∫
Ω

W (t, s, x, y, λN )

× f
(
(S(uN , λN ))(s, x, y, λN ), λN

)
ν(dy, λN )

−
t∫

a

ds

∫
Ω

W (t, s, x, y, λ0)f
(
(S(u0, λ0))(s, x, y, λ0), λ0

)
ν(dy, λ0)

∣∣∣∣
≤ 7ε+ sup

t∈[a,b], x∈Ω

∣∣∣∣
t∫

a

ds

∫
Ωr0

W (t, s, x, y, λN )

× f
(
(S(uN , λN ))(s, x, y, λN ), λN

)
ν(dy, λN )

−
t∫

a

ds

∫
Ωr0

W (t, s, x, y, λ0)f
(
(S(u0, λ0))(s, x, y, λ0), λ0

)
ν(dy, λ0)

∣∣∣∣+2ε

≤ 9ε+ sup
t∈[a,b], x∈Ω

∣∣∣∣
t∫

a

ds

∫
Ωr0

W (t, s, x, y, λN )

×
(
f
(
(S(uN , λN ))(s, x, y, λN ), λN

)
− f

(
(S(u0, λ0))(s, x, y, λ0), λ0

))
ν(dy, λN )

∣∣∣∣
+ sup

t∈[a,b], x∈Ω

∣∣∣∣
t∫

a

ds

∫
Ωr0

(
W (t, s, x, y, λN )−W (t, s, x, y, λ0)

)
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× f
(
(S(u0, λ0))(s, x, y, λ0), λ0

)
ν(dy, λN )

∣∣∣∣
+ sup

t∈[a,b],x∈Ω

∣∣∣∣
t∫

a

ds

∫
Ωr0

W (t, s, x, y, λ0)

× f
(
(S(u0, λ0))(s, x, y, λ0), λ0

)
ν(dy, λN )

−
t∫

a

ds

∫
Ωr0

W (t, s, x, y, λ0)f
(
(S(u0, λ0))(s, x, y, λ0), λ0

)
ν(dy, λ0)

∣∣∣∣
≤ 10ε+ (b− a)ν(Ωr0 , λN )

ε

((b− a)ν(Ωr0 , λ0))

+ sup
t∈[a,b], x∈Ω

∣∣∣∣ ∫
Ωr0

Φ(t, x, y)(ν(dy, λN )− ν(dy, λ0))

∣∣∣∣ < 13ε

for all N ≥ N9(r0).
The proof is complete. �

Remark 1. If Ω is compact, then the assumption (A8) is fulfilled automati-
cally and can therefore be omitted, while the assumptions (A2)–(A5) only
require continuity of the corresponding functions instead of their uniform
continuity in the variable x.

3. The Hopfield Model with Delay

In this section we prove convergence of the generalized Hopfield network
to the Amari neural field equation.

Consider the following delayed Hopfield network model (see e.g. [14])

żi(t,N) = −αzi(t,N) +

N∑
j=1

ωij(N)f
(
zj(t− τij(t,N), N)

)
+ Ji(t,N), (17)

t > a, i = 1, . . . , N,

parameterized by a natural parameter N . Here at each natural N , zi( · , N)
are n-dimensional vector functions, ωij(N) are real n×n-matrices (connec-
tivities), τij( · , N) are nonnegative real-valued continuous functions (axonal
delays), f : Rn → Rn are firing rate functions which are Lipschitz and
bounded and Ji( · , N) are continuous external input n-dimensional vector
functions.

The initial conditions for (17) are given as

zi(ξ,N) = φi(ξ,N), ξ ≤ a, i = 1, . . . , N. (18)

We use the general well-posedness result from the previous section to
justify the convergence of a sequence of the delayed Hopfield equations (17)
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(with the initial conditions (18)) to the Amari equation involving a spatio-
temporal delay

∂tu(t, x)=−αu(t, x)+

∫
Ω

ω(x, y)f(u(s−τ(t, x, y), y))ν(dy)+J(t, x), (19)

t > a, x ∈ Ω,

with the initial (prehistory) condition
u(ξ, x) = φ(ξ, x), ξ ≤ a, x ∈ Ω. (20)

On the above functions we impose the following assumptions:
(B1) The function f : Rn → Rn is continuous, bounded and Lipschitz

one.
(B2) The spatio-temporal delay τ : R× Ω× Ω → [0,∞) is continuous.
(B3) The initial (prehistory) function φ : (−∞, a]× Ω → Rn is continu-

ous.
(B4) For any b > a, the external input function J : [a, b] × Ω → Rn

is uniformly continuous and bounded with respect to the second
variable.

(B5) The kernel function ω : Ω× Ω → Rn is continuous.
(B6) ν( · ) is the Lebesgue measure on Ω.
(B7) For any b > a,

sup
x∈Ω

∫
Ω

|ω(x, y)|ν(dy) < ∞.

(B8) For any b > a,

lim
r→∞

sup
x∈Ω

∫
Ω−Ωr

|ω(x, y)|ν(dy) = 0.

The following theorem represents the main result of this section.

Theorem 3. For each natural number N let {∆i(N), i = 1, . . . , N} be a
finite family of open subsets of Ω satisfying the conditions

N∪
i=1

∆i(N) = ΩN and lim
N→∞

mesh
{
∆i(N), i = 1, . . . , N

}
= 0.

Let yi(N) (i = 1, . . . , N) be arbitrary points in ∆i(N). Finally, let the
assumptions (B1)–(B8) be fulfilled. Then the sequence of the solutions
zi(t,N) (t ∈ R) of the initial value problem (17), (18), where the coefficients
are defined by

ωij(N) = βi(N)ω(yi(N), yj(N)), where βi(N) = ν(∆i(N)),

τij(t,N) = τ(t, yi(N), yj(N)), Ji(t,N) = J(t, yi(N)),
(21)
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converges for any b > a to the solution u(t, x) (t ∈ R, x ∈ Ω) of the initial
value problem (19), (20) as N → ∞, in the following sense:

lim
N→∞

sup
t∈[a,b]

(
sup

1≤i≤N

(
sup

x∈∆i(N)

|u(t, x)− zi(t,N)|
))

= 0. (22)

In order to prove this theorem, we will need to use the following state-
ment.

Lemma 1. Assume that for each natural number N we have a finite family
of open subsets {∆i(N), i = 1, . . . , N} of Ω satisfying the conditions

N∪
i=1

∆i(N) = ΩN and lim
N→∞

mesh
{
∆i(N), i = 1, . . . , N

}
= 0.

Let yi(N) (i = 1, . . . , N) be arbitrary points in ∆i(N), Di(N) be the Dirac
measures at yi(N) and βi(N) = ν(∆i(N)). Then the sequence of the discrete
weighted measures

νN =
N∑
i=1

βi(N)Di(N) (23)

weakly converges (in the sense of the weak topology on the dual space to
Ccomp(Ω)) to the Lebesgue measure on Ω.

Proof. We simply observe that for any continuous and compactly supported
function Φ(x), x ∈ Ω, we get∫

Ω

Φ(x)νN (dx) =
N∑
i=1

Φ
(
yi(N)

)
βi(N)

=

N∑
i=1

Φ
(
yi(N)

)
ν
(
∆i(N)

)
−→

∫
Ω

Φ(x)ν(dx), (24)

as N → ∞, due to the properties of the Riemann–Stiltjes integrals (see e.g.
Chapter 2 in [11]). �

Proof of the Theorem 3. In order to apply Theorem 2, we first of all define
the metric space Λ = {λN , N = 0, 1, 2, . . . }, where λ0 = ∞, λN = N for
natural numbers N , and the distance is given by d(λN , λM ) = |1/N −1/M |
(N,M ̸= 0) and d(λN , λ0) = 1/N (N ̸= 0), so that λN → λ0 sim-
ply means that N → ∞. Multiplication by the function η(t − s), where
η(σ) = exp(−ασ), followed by integration, converts the equation (19) into
the equation (1), where f , τ ,

W (t, s, x, y) = exp(−α(t− s))ω(x, y),

I(t, x) =

t∫
a

exp(−α(t− s))J(s, x) ds
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are all independent of λ, and the measures are defined as ν( · , λN ) = νN
(see (23)) and ν( · , λ0) = ν, respectively.

The assumptions (A1)–(A5) of Theorem 2 are trivial, the assumption
(A6) is fulfilled due to Lemma 1 and the above definition of convergence
in Λ.

Taking into account that

max
t∈[a,b]

t∫
−∞

exp(−α(t− s)) ds =
1

α
,

it is straightforward to check the assumptions (A7) and (A8).
From Theorem 2 it now follows that the solutions u(t, x,N) of the initial

boundary value problems

∂tu(t, x,N) = −αu(t, x,N)

+

∫
Ω

ω(x, y)f
(
u(s− τ(t, x, y), y,N)

)
νN (dy) + J(t, x), t > a, x ∈ Ω, (25)

with the initial (prehistory) condition

u(ξ, x,N) = φ(ξ, x), ξ ≤ a, x ∈ Ω, (26)

converge to the solution u(t, x) (t ∈ R, x ∈ Ω) of the initial value problem
(19), (20), as N → ∞, uniformly on [a, b] × Ω for any b > a. Evidently,
replacing x by yi(N) in the equation (25) and in the initial condition (26)
yields the initial value problem (17), (18). It remains therefore to notice
that the set zi(t,N) = u(t, yi(N), N) (i = 1, . . . , N) is a (unique) solution
of the latter problem. �

The theoretical results of this section can be applied to justify numerical
integration schemes. For example, Faye et al [5] considered discretization
of the following delayed Amari model

∂tu(t, x) = −αu(t, x) +

∫
Ω

ω
(
|x− y|

)
f
(
u
(
t− |x− y|

v
, y
))

dy (27)

in the cases
I. u(t, x) ∈ R, Ω = [−L,L],

II. u(t, x) ∈ R2, Ω = [−L,L],
III. u(t, x) ∈ R, Ω = [−L,L]2.

Faye et al have justified their numerical schemes using convergence of the
trapezoidal integration rule and the rectangular method to the correspond-
ing integrals. We will show how our results can be applied for the more
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involved case III:

∂tuij(t) = −αuij(t) +
M∑
k=1

M∑
l=1

ω
(
|(x1

i , x
2
j )− (x1

k, x
2
l )|

)
× f

(
ukl

(
t−

|(x1
i , x

2
j )− (x1

k, x
2
l )|

v

))
dy. (28)

Here,
x = (x1, x2), uij(t) = u

(
t, (x1

i , x
2
j )
)
, i, j = 1, . . . ,M.

Denoting
zi(t) = uij(t), ωij = ω

(
|(x1

i , x
2
j )− (x1

k, x
2
l )|

)
,

τij(t) =
|(x1

i , x
2
j )− (x1

k, x
2
l )|

v
,

i = iM + j, j = kM + l, N = M2,

in (28), we get the Hopfield network model (17). Applying Theorem 3, we
prove convergence of the numerical scheme (28) to the equation (27).

Rankin et al [10] discretize the Amari model (27) for
u(t, x) ∈ R, Ω = [−L,L]2, v = ∞,

also by substituting Ω with the grid {(x1
i , x

2
j ), i, j = 1, . . . ,M} and then use

a combination of the Fourier transform and the inverse Fourier transform
to obtain the solution numerically. Discretization of the Amari model on
a hyperbolic disc Ω = {x = (r, θ), r ∈ [0, r0], r0 ∈ R, θ ∈ [0, 2π)} using
the rectangular rule for the quadrature {(ri, θj), i = 1, . . . ,M , j = i =
1, . . . , N} was implemented in [6] to study of the localized solutions. As it
easy to conclude from Theorem 3, the solutions obtained in both these cases
converge to the corresponding analytical solutions as M → ∞ and N → ∞.

We emphasize here that Theorem 3 also allows one to justify discretiza-
tion schemes on unbounded domains for equations involving spatio-temporal-
dependent delay as well.

Appendix

In this section we consider the following neural field model with a general
(i.e. non-periodic) microstructure:

∂tu(t, x) = −u(t, x) +

∫
Rm

ωε
i (x− y)f(u(t, y)) dy,

ωε
i (x) = ωi(x, x/ε), 0 < ε ≪ 1,

t ≥ 0, x ∈ Rm.

(29)

which is a parametrized version of (3).
Question: What can we say about behavior of the solutions un to the

equation (29) as ωε
i → ωε

0 uniformly (i → ∞), where ωε
0 is periodic with

respect to the second argument?
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Following the idea of homogenization of the equation (3) (see [12])), we
first look at the family of homogenized problems

∂tu(t, xc, xf ) = −u(t, xc, xf )

+

∫
Rm

∫
Kn

ωi(xc − yc, xf − yf )f(u(t, yc, yf )) dyc νn(dyf ), (30)

t > 0, xc ∈ Rm, xf ∈ Ki ⊂ Rk

and the corresponding limit problem as i → ∞

∂tu(t, xc, xf ) = −u(t, xc, xf )

+

∫
Rm

∫
K0

ω0(xc − yc, xf − yf )f(u(t, yc, yf )) dyc ν0(dyf ), (31)

t > 0, xc ∈ Rm, xf ∈ K0 ⊂ Rk.

As in [12], we assume that for each i = 0, 1, 2, . . . , the connectivity kernel
ωi(x, · ) (x ∈ Rm) belongs to Ai, where Ai = C(Ki) are some Banach
algebras of continuous functions defined on the compact sets Ki ⊂ Rk and
equipped with the mean values Mi (which give rise to the finite measure νi
defined on Ki). Further, we assume that there is a compact K such that
∞∪
i=0

Ki ⊆ K, so we can extend the measures νi corresponding to the mean

values Mi (i = 0, 1, 2, . . . ), to the compact K by putting νi(K \ Ki) =
0. Finally, we assume that convergence of the connectivity kernels is a
consequence of a convergence of the associated Banach algebras with mean.
More precisely, we suppose that:

1) the compacts Ki converge to the compact K0 in the Hausdorff met-
ric;

2) Mn(χ
∣∣
Kn

) → M0(χ
∣∣
K0

) for any function χ ∈ C(K) (here χ
∣∣
Ki

denotes the restriction of the function χ ∈ C(K) to the set Ki).
Thus, we get ∫

Kn

χ(x)νn(dx) −→
∫
K0

χ(x)ν0(dx)

for any χ ∈ C(K), which means that the sequence of measures νn weakly
converges to the measure ν0. Hence, we can apply Theorem 2 to the prob-
lems (30) and (31) and get uniform convergence of the corresponding solu-
tions. This approach can serve as a possible answer to the above-formulated
question.
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