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Abstract. In the work the boundary value problems of the theory
of analytic functions with displacement are considered, namely: Carle-
man type problems with continuous and unbounded coefficients for strip
and circular ring, the Riemann–Hilbert problems for doubly connected do-
mains and discontinuous coefficients for ring. The contact problems of
the elasticity theory for unbounded (isotropic, anisotropic and piecewise-
homogeneous) domains with rectilinear boundaries with elastic fastening
are investigated. The boundary value problems of plane theory of elasticity
for anisotropic domains with cracks and inclusions are studied as well as
the third basic and mixed boundary value problems for doubly-connected
domains. The methods of analytic functions, integral transformations and
theory of integral equations are applied. The solvability conditions of prob-
lems are formulated and proved. New methods of factorization are devel-
oped and the solutions of problems are represented in explicit form.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÂÀÍáÉËÖËÉÀ ÀÍÀËÉÆÖÒ ×ÖÍØÝÉÀÈÀ ÈÄÏÒÉÉÓ
ÂÀÃÀÀÃÂÉËÄÁÉÀÍÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉ, ÊÄÒÞÏÃ, ÊÀÒËÄÌÀÍÉÓ ÔÉÐÉÓ
ÀÌÏÝÀÍÄÁÉ ÖßÚÅÄÔÉ ÃÀ ÛÄÌÏÖÓÀÆÙÅÒÄËÉ ÊÏÄ×ÉÝÉÄÍÔÄÁÉÈ ÆÏËÉÓÀ
ÃÀ ÒÂÏËÉÓÈÅÉÓ, ÒÉÌÀÍ-äÉËÁÄÒÔÉÓ ÀÌÏÝÀÍÄÁÉ ÏÒÀÃÁÌÖËÉ ÀÒÉÓÈÅÉÓ
ÃÀ ßÚÅÄÔÉËÉ ÊÏÄ×ÉÝÉÄÍÔÄÁÉÈ ÒÂÏËÉÓÈÅÉÓ. ÂÀÌÏÊÅËÄÖËÉÀ
ÃÒÄÊÀÃÏÁÉÓ ÈÄÏÒÉÉÓ ÓÀÊÏÍÔÀØÔÏ ÀÌÏÝÀÍÄÁÉ ßÒ×ÉÅÉ ÓÀÆÙÅÒÉÓ
ÌØÏÍÄ ÛÄÌÏÖÓÀÆÙÅÒÄËÉ ÉÆÏÔÒÏÐÖËÉ, ÀÍÉÆÏÔÒÏÐÖËÉ ÃÀ ÖÁÀÍ-
ÖÁÀÍ ÄÒÈÂÅÀÒÏÅÀÍÉ ÓáÄÖËÄÁÉÓÈÅÉÓ ÃÒÄÊÀÃÉ ÂÀÌÀÂÒÄÁÄÁÉÈ.
ÛÄÓßÀÅËÉËÉÀ ÃÒÄÊÀÃÏÁÉÓ ÁÒÔÚÄËÉ ÈÄÏÒÉÉÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉ
àÒÉËÄÁÉÓÀ Ã ÜÀÒÈÅÄÁÉÓ ÌØÏÍÄ ÀÍÉÆÏÔÒÏÐÖËÉ ÓáÄÖËÄÁÉÓÈÅÉÓ,
ÀÂÒÄÈÅÄ ÃÒÄÊÀÃÏÁÉÓ ÈÄÏÒÉÉÓ ÌÄÓÀÌÄ ÞÉÒÉÈÀÃÉ ÃÀ ÛÄÒÄÖËÉ
ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉ ÏÒÀÃÁÌÖËÉ ÀÒÄÄÁÉÓÈÅÉÓ. ÂÀÌÏÚÄÍÄÁÖËÉÀ
ÀÍÀËÉÆÖÒ ×ÖÍØÝÉÀÈÀ ÈÄÏÒÉÉÓ, ÉÍÔÄÂÒÀËÖÒÉ ÂÀÒÃÀØÌÍÄÁÉÓÀ ÃÀ
ÉÍÔÄÂÒÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÈÄÏÒÉÉÓ ÌÄÈÏÃÄÁÉ, ÜÀÌÏÚÀËÉÁÄÁÖËÉÀ ÃÀ
ÃÀÌÔÊÉÝÄÁÖËÉÀ ÀÌÏÝÀÍÀÈÀ ÀÌÏáÓÍÀÃÏÁÉÓ ÐÉÒÏÁÄÁÉ, ÃÀÌÖÛÀÅÄÁÖËÉÀ
×ÀØÔÏÒÉÆÀÝÉÉÓ ÀáÀËÉ ÌÄÈÏÃÄÁÉ ÃÀ ÀÌÏÍÀáÓÍÄÁÉ ßÀÒÌÏÃÂÄÍÉËÉÀ
ÝáÀÃÉ ÓÀáÉÈ.



Introduction

One of the important areas of the elasticity theory, which studies con-
tact problems of the interaction of thin-walled elements such as stringers
with massive elastic bodies of various shapes, cracks propagating onto the
body surface, and also problems with partly unknown boundaries, has been
steadily developing since the 60s of the last century. The interest shown
in these problems is due to their use for the solution of many serious prob-
lems related to engineering structures and machine-building. A fundamental
work in this area belongs to E. Meland [70] who obtained an exact solution
for a half-plane and the whole plane stiffened with an infinite stringer to
which concentrated force is applied along its axis.

In the subsequent works [35], [33], [46], [60], [123], the problem was
studied in the case where a semi-infinite stringer is fixed to an elastic plane
or to the edge of an elastic half-plane.

Various problems for a half-plane stiffened with one or several stringers
of finite length are considered in the works of many authors. Among them
special mention should be made of E. Reissner [97], E. V. Benscoter [32],
H. Bufler [36], N. Arutunyan [7], N. Arutunyan and S. Mkhitaryan [8],
[9], B. Abramyan [1], where the problems are reduced to singular integro-
differential equations and approximate solutions are obtained by different
methods.

Detailed results for stringers and the bibliography are presented in
F. Muki and E. Sternberg [72], [73], E. Sternberg [115] and in the sur-
vey paper by B. Abramyan [2].

Various contact problems are solved by the Wiener–Hopf method in the
works of B. Lebedev and B. Nuller [64], B. Nuller [80], [82].

Problems of cracks propagating onto the body surface and the problem
of a crack propagating to the interface of a piecewise-homogenous plane
were also investigated by the Wiener–Hopf method (R. Bantsuri [12], H.
Bueckner [34], G. R. Irwin [45], W. T. Koiter [59], A. Khrapkov [54]–
[57], B. Smetanin [111], [112], R. Srivastavnazian Prom. [114], V. A.
Wigglesworth [125], V. S. Tonoyan, S. A. Melkumyan [117]–[119]).

There exist a lot of contact problems of important applied character
that cannot be solved effectively by the commonly used methods. Among
these problems are the problem for a wedge with elastic stiffener, the third
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basic problem for a doubly connected domain bounded by broken lines and
problems with a partly unknown boundary.

The contact problems considered in the present monograph can be at-
tributed to three types depending on a mathematical method used to solve
them. Problems of the first type are reduced by means of the Fourier
transform to a Carleman type problem for a strip. Problems of the sec-
ond type are reduced by the Fourier transform to the Riemann problem
(Wiener–Hopf problem) (see N. Wiener and E. Hopf [124], N. I. Muskhel-
ishvili [76], F. D. Gakhov [42]). Problems of the third type are reduced by
the conformal mapping to the Riemann–Hilbert problem for a circular ring.

Examples of problems of the first and third types are contact problems
for a wedge and for a doubly connected domain bounded by broken lines.

Carleman type problems for a strip and a circular ring are studied in
the monograph in the most comprehensive way. Their effective solutions
and some of their applications are the subject of Chapter 1.

In our opinion, Carleman type problems, which arose naturally when
studying the contact problems, are of independent mathematical interest
and their application area is much wider than that indicated in the works D.
Lebedev and I. Skalskaya [65], B. Nuller [81], [83], B. Nuller and L. Stsep-
neva [84], G. Vasilyev [120], A. Krasnov and L. Tikhonenko [58].

The monograph consists of four chapters.
In Chapter 1, the Carleman type boundary value problems are solved

for a strip and a circular ring. Their solutions are obtained in effective
form and the Noether theorems as to their solvability are proved. The
Riemann–Hilbert problem for a circular ring is also solved in effective form.

We introduce the class of functions Aβ
0 (µ) that are analytic in a strip

0 < Im z < β, continuously extendable on the boundary and satisfy the
condition Φ(z)e−µ|z| → 0 for |z| → ∞, µ ≥ 0.

For functions of the class Aβ
0 (µ) we obtain formulas analogous to the

Cauchy integral formula, where instead of the usual Cauchy kernel (t −
z)−1 we introduce the kernel [sh p(t − z)]−1. The properties of functions
represented by integrals analogous to Cauchy type integrals are studied.
These formulas and integrals used to solve the boundary value problems of
the analytic function theory considered in Chapter 1 play the same role as
the Cauchy formula and a Cauchy type integral used in solving the Riemann
linear conjugation problem.

In the first chapter, we consider the following Carleman problem for a
strip: Find a function φ(x) ∈ Aβ

0 (µ) by the boundary condition
φ(x) = λG(x)φ(x+ a) + F (x), −∞ < x <∞, (1)

where G(x), F (x) are given functions. Also,
a = α+ iβ, G(x) ̸= 0, −∞ < x <∞,

and
G(∞) = G(−∞) = 1, λ = ±1.
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The problem is solved by the factorization method.
The solvability conditions and solution of problem (1) are obtained in

explicit form.
Problem (1) is considered for α = 0 when G(x) = G0(x)Pn(x), where

G0(x) ̸= 0, −∞ < x < ∞, is a nonzero function of the class H (Hölder)
including the point x = ±∞, and Pn(x) is a polynomial having no real
roots.

As different from our previous approach, here we also use factorization
of a function of the form ix±2β. This factorization is carried out using the
Fourier integral transform. In that case, too, the solution of the problem
is derived in explicit form and Noether type theorems are formulated. For
λ = −1, G(x) ∈ R (R is the Wiener class), F (x) ∈ L2, problem (1) is
reduced by the conformal mapping to the Riemann problem. The same
technique is used to solve the problem in Yu. Cherski [40].

It should be said that in the above setting the solution of problem (1)
by the method of reduction is less effective because of a difficulty associated
with canonical factorization of functions of the form{

Pn[ln t] if t > 0,

1 if t < 0.

The homogeneous problem

φ(t+ 1) = G(t)φ(t), t = α+ iy, −∞ < y <∞,

was considered under the assumption that G(t) is a meromorphic function
by E. Barnes [31] in 1904.

The Carleman type boundary value problem of the analytic function
theory for a circular ring which we investigate here is formulated as follows:
Find a function φ(z), that is holomorphic in the ring D = {1 < |z| < R} and
continuously extendable on the boundary, using the boundary condition

φ(at) = G(t)φ(t) + f(t), t ∈ γ = {t : |t| = 1}, (2)

where a is a fixed point of the circumference |t| = R, G(t) and f(t) are
functions of the class H given on γ, and G(t) ̸= 0 almost everywhere on γ.
The problem is solved in effective form and the Noether theorem is proved.

Furthermore, problem (2) is studied under the assumption that the
functions G(t) and f(t) have first kind discontinuities at a finite number of
points of γ. A solution is found in the effective form.

The Riemann–Hilbert problem considered in Chapter 1 is formulated as
follows: Find a holomorphic function φ(z) in the ring D = {z : 1 < |z| < R}
by the boundary condition

Re[a(t)φ(t)] = C(t), t ∈ γ0 ∪ γ1,

where γ0 and γ1 are respectively the circumferences |t| = R and |t| = 1,
a(t) ̸= 0 almost everywhere. a(t) is a given complex function, and C(t) is
also a given real-valued function. It is assumed that the functions a(t) and
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C(t) satisfy the Hölder condition. The problem is solved effectively and the
Noether theorem is proved.

The Riemann–Hilbert problem is also investigated in the case where
a(t) and C(t) have a finite number of points of first kind discontinuities.
The problem is reduced to the Carleman type problem for a circular ring.
The solution is constructed in the effective form and the Noether theorem
is proved.

We give one more application of the solution of the Carleman type
problem for a circular ring in solving an infinite system of linear equations

anφn =
∞∑

m=−∞
Kn−mφm = fn,

where {Kn}∞−∞, {fn}∞−∞ are given vectors and {φn}∞−∞ the sought vectors
from ℓ1, |a| ̸= 1 is the known constant.

By means of the discrete Fourier transform, this system is reduced to
the Carleman type problem for a circular ring where it is assumed that its
coefficient and free term belong to the Wiener ring and a solution is sought
also in this same ring. Using the Wiener–Levy theorem (see [44]) and the
well-known theorem on conjugate functions (see [126]) we prove that the
boundary values of the solution of the Carleman type problem for a circular
ring are functions of the Wiener ring.

Chapter 2 of the monograph is dedicated to the investigation of contact
problems of the plane elasticity theory of isotropic and anisotropic bodies
when the problems are reduced to a Carleman type problem for a strip.

Contact problems are investigated for an elastic wedge-shaped plate
when one of the wedge faces is stifferened with a semi-infinite stringer, and
the concentrated force acting along the stringer is applied to its tip.

Using the Kolosov–Muskhelishvili formulas and the Fourier transform,
the formulated problem is reduced to the Carleman type problem for a
strip which is studied in Chapter 1. We construct the exact solution and
study the behavior of tangential contact stresses at the wedge vertex and
at infinity. For 0 ≤ α ≤ π, the problem is considered in J. Alblas and W.
Kuypers [3].

The problem is also considered in the case of an anisotropic plate when
the stringer stiffness is constant or variable. Using S. Lekhnitski’s formulas
and the Fourier transform, the problem is also reduced to the Carleman
type problem for a strip and its exact solution is constructed. The behavior
of tangential contact stresses at the wedge vertex and at infinity is studied.

The contact problem is studied for an anisotropic elastic wedge when
one of the faces is supported by a semi-infinite beam and the beam stiffness
is assumed to be constant or variable; the other wedge face is free. The
tangential contact stress between the beam and the wedge is assumed to
be equal to zero. It is required to find a distribution of stresses in the
wedge and beam deflections when the beam is under the action of normally
distributed or concentrated forces. The problem is reduced to the Carleman
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type problem for a strip. The exact solution of the contact problem is
obtained by solving the problem by means of the inverse Fourier transform.
The behavior of tangential contact stress at the wedge vertex and at infinity
is studied.

A great number of works are dedicated to the investigation of static
contact problems for various domains stiffened with elastic supports or in-
clusions in the form of plates of small thickness – see e.g. V. Aleksandrov
and S. Mkhitaryan [5], V. Aleksandrov and Ye. Kovalenko [4], G. Popov and
L. Tikhonenko [95], [96], G. Popov [94], V. Reut and L. Tikhonenko [98],
N. Shavlakadze [101]–[106], V. Sitnik and L. Tikhonenko [110], V. Sitnik
[109].

Chapter 3 deals with problems for an anisotropic wedge with a finite
cut running from the wedge vertex along the bisectrix. It is assumed that
the cut is under the action of stresses.

We also study the problem of an orthotropic wedge having a cut of
finite length along the bisectrix that runs from the wedge vertex. It is
assumed that the wedge faces are free from external stresses, while arbitrary
stresses are applied to the cut banks. Using S. Lekhnitski’s formulas [66],
[67] and applying the Fourier transform , the problem reduces to three
linear conjugation problems for a half-plane. The behavior at the cut end
is studied. The stress intensity coefficient is defined in terms of an integral.

We consider the problem for a piecewise-homogeneous plane consist-
ing of two orthotropic half-planes with, generally speaking, different elastic
constants when one of the half-planes has a cut perpendicular to the in-
terface straight line, and symmetric normal stresses are applied to the cut
banks. The problem is solved using methods of the analytic function the-
ory. Integral representations are obtained for unknown complex potentials,
where the derivative of normal displacement of points of the cut edge serves
as density. Using these integral representations, from the boundary con-
ditions at the cut edges we obtain a singular integral equation having a
fixed singularity at the cut edge lying on the interface line. The equation is
solved by the Wiener–Hopf method. The exact solution of the equation is
constructed, by means of which complex potentials are written in explicit
form. The behavior of stresses near the cut ends is studied. It is established
that near the end of the cut located on the interface line the stress may
have – depending on a material – a singularity of any order less than one,
whereas near the other cut end the order of a stress singularity is equal to
1
2 independently of a material. Moreover, the intensity coefficient value is
defined explicitly by means of integrals.

We consider a piecewise-homogeneous elastic plate stiffened with a semi-
infinite inclusion intersecting the interface at the straight angle and loaded
by tangential forces. The problem consists in defining contact stresses in
the neighborhood of singular points. Applying the analytic function theory,
the problem is reduced to a system of integro-differential equations on the
semi-axis. The solution is obtained in explicit form.
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Problems for a plane weakened by a finite system of rectilinear cuts
located along one straight line are studied in N. Muskhelishvili [75], D.
Sherman [107], G. Cherepanov [37], [39] and other works. All of these
problems are reduced to problems of linear conjugation with respect to
complex potentials.

In Chapter 4 we investigate problems for doubly-connected domains.
These problems are solved using the results obtained in Chapter 1. In
this chapter, we give an effective solution of the third basic problem of the
elasticity theory for an isotropic body occupying a doubly-connected domain
bounded by convex closed broken lines.

For the sake of definiteness, we consider the case of a finite domain. For
the case of an infinite domain the problem is solved in G. A. Kapanadze
[50].

Using the Kolosov–Muskhelishvili formulas and the conformal map-
ping, the considered problem reduces to a successive solution of two Rie-
mann–Hilbert problems for a circular ring with piecewise-constant coeffi-
cients. For a simply connected domain bounded by the closed broken line,
the third basic boundary value problem of the elasticity theory is solved
in G. N. Polozhii [89]–[93]. By a technique different from ours, G. N.
Polozhii reduces the problem to successive solutions of the Dirichlet and
Riemann–Hilbert problems for a circle.

We use the results obtained in Chapter 1 to solve the following contact
problem of new type: Given an elastic isotropic homogeneous plate shaped
as a polygon weakened by some curvilinear hole, it is required to define the
shape and location of the hole and also the stressed state of the plate assum-
ing that on the external boundary of the plate the tangential stress is equal
to zero, the normal displacement takes a constant value on every side of the
polygon, and on the boundary of the hole free from external stresses the tan-
gential normal stress takes the constant value σθ = K. Using the methods of
the analytic function theory and the Kolosov–Muskhelishvili formulas, the
finding of the hole boundary reduces to the solution of the Riemann–Hilbert
problem for a circular ring 1 < |ζ| < R with piecewise-constant coefficients
with respect to a function conformally mapping the domain occupied by
the plate onto the circular ring. We seek the coefficient discontinuity points
which under the conformal mapping are the images of the polygon vertices.
The necessary and sufficient conditions for the problem to be solvable are
obtained. Using these conditions we define the discontinuity points of co-
efficients. The discontinuity points of the coefficients are defined when the
polygon is regular and the principal vectors of external forces applied to
every point of the polygon side have one and the same value; the solvability
condition reduces to one equation with respect to R and K. It is shown
that then the problem is always solvable and the formula is obtained by
means of which K is expressed through R. According to this formula, to
various values of K there correspond various holes and the hole narrows as
K decreases.
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In the fourth chapter we also study the plate bending problem for the
square weakened by five unknown equistable holes, of which four are identi-
cal, equidistant from the center of the square, symmetric with respect to the
segments connecting the midpoints of the opposite sides of the square, and
intersecting them. The fifth hole, symmetric with respect to the diagonals,
contains the center of the square. The neighborhoods of the square vertices
are cut out by regular unknown equistable arcs, symmetric with respect to
the diagonals. Rigid strips are glued to the linear parts of the boundary.
The plate is bent by concentrated moments applied to the midpoints of the
strips.

We investigate the axially symmetric problem for a rectangle weakened
by a finite number of unknown equistable holes. On the boundary of the
rectangle, normal displacements have constant values, the tangential stress
is equal to zero.

Problems for an infinite homogeneous isotropic plate weakened by curvi-
linear holes are studied in N. B. Banichuk [10], [11], O. G. Kosmodamianski
and G. M. Ivanov [61], S. B. Vigdergauz [122], G.P. Cherepanov [39] when
the stresses σ∞

x , σ∞
y and σ∞

xy are given at infinity and it is required to find eq-
uistable holes; axially symmetric problems of the plane elasticity theory and
bending problems for a plate with a partly unknown boundary were stud-
ied in G. A. Kapanadze [48]–[50], N. Odishelidze, F. Criado-Aldeanueva
[86]–[88], R. D. Bantsuri [23], [26].

Some of our results obtained in the monograph are announced for the
first time. The works [22]–[30] of the author were published in complete
form, while other works of the author in the abridged form.



CHAPTER 1

Boundary Value Problems of the Theory of
Analytic Functions with Displacements

1.1. Integral Representations of Holomorphic Functions in a
Strip

Let the function Φ(z), z = x+ iy, be holomorphic in a strip {a<y<b,
−∞ < x < ∞}, continuous in a closed strip {a ≤ y ≤ b,−∞ < x < ∞}
and satisfy the condition Φ(z)eµ|z| → 0 for |z| → ∞, µ ≥ 0. The class of
functions satisfying these conditions will be denoted by Ab

a(µ).
Let

Φk(z) ∈ Aβ
0 (µk

), µ
k
<
πβ[3 + (−1)k]

2(α2 + β2)
, k = 1, 2, (1.1.1)

where α and β are real numbers, β > 0. Then the following formulas are
valid:

Φ1(z) =
1

2a

+∞∫
−∞

Φ1(t) + Φ1(t+ a)

sinh p(t− z)
dt, 0 < Imz < β, (1.1.2)

Φ2(z)=
cosh pz

2a

+∞∫
−∞

Φ2(t)−Φ2(t+a)

cosh pt sinh p(t−z) dt+Φ2

(a
2

)
, 0<Imz<β, (1.1.3)

where p = πi
a , a = α+ iβ.

The above formulas are obtained using the theorem on residues.
If Φk(z) has the form

Φk(z) = Ψk(z) +
n∑

j=1

Aj

(
z − a

2

)−j

, Ψk(z) ∈ Aβ
0 (µk

), k = 1, 2,

then we have

Φ1(z)=
1

2a

+∞∫
−∞

Φ1(t)+Φ1(t+a)

sinh p(t−z) dt

−
n∑

j=1

(−p)jAj

j!

(
1

cosh pz

)(j−1)

, 0 < Imz < β, (1.1.4)

10
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Φ2(z) =
cosh pz

2a

+∞∫
−∞

Φ2(t)− Φ2(t+ a)

cosh pt sinh p(t− z)
dt

−
n∑

j=1

Aj(−p)j

j!
(tanh pz)(j−1) +Φ2

(a
2

)
, 0 < Imz < β. (1.1.5)

Let further Fk(t), k = 1, 2, be the functions given on the real axis L
and having the form Fk(x) = fk(x)e

µ
k
|x|, fk(±∞) = 0, where fk(t) are

the functions satisfying the Hölder condition everywhere on L, µ
k

are the
numbers satisfying inequality (1.1.1).

Consider the integrals

Φ1(z) =
1

2a

+∞∫
−∞

F1(t)

sinh p(t− z)
dt, 0 < Imz < β, (1.1.6)

Φ2(z) =
cosh pz

2a

+∞∫
−∞

F2(t)

cosh pt sinh p(t− z)
dt, 0<Imz<β. (1.1.7)

It is obvious that these functions are holomorphic in a strip 0 < y < β.
Using the Sohotski–Plemelj formulas we can show that the boundary

values of Φ1 and Φ2 are expressed by the formulas

Φ1(t0) =
F1(t0)

2
+

1

2a

+∞∫
−∞

F1(t)

sinh p(t− t0)
dt,

Φ1(t0 + a) =
F1(t0)

2
− 1

2a

+∞∫
−∞

F1(t)

sinh p(t− t0)
dt;

(1.1.8)

Φ2(t0) =
F2(t0)

2
+

cosh pz
2a

+∞∫
−∞

F2(t)

cosh pt sinh p(t− t0)
dt,

Φ2(t0 + a) = −F2(t0)

2
+

cosh pt0
2a

+∞∫
−∞

F2(t)

cosh pt sinh p(t− t0)
dt.

(1.1.9)

From Plemelj–Privalov’s theorem it follows that that the boundary val-
ues of Φ1 and Φ2 satisfy the Hölder condition on the finite part of the
boundary.

Let us investigate the behavior of these functions in the neighborhood
of a point at infinity. First we consider the case with µ

k
= 0, k = 1, 2.
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Rewrite formula (1.1.6) as

Φ1(z) =
1

2a

+∞∫
−∞

[
1

sinh p(t− z)
− a

p

1

(t− z)(t+ a− z)

]
F1(t) dt

+
1

2ap

+∞∫
−∞

F1(t)

t− z
dt− 1

2ap

+∞∫
−∞

F1(t)

t+ a− z
dt, 0 < Imz < β.

Here the first term is holomorphic in the closed strip 0 ≤ Imz ≤ β and
tends to zero at infinity. The second and the third term are analytic in the
strip 0 < Imz < β, vanish at infinity and their boundary values satisfy the
Hölder condition, including points at infinity [76].

Therefore Φ1(z) ∈ Aβ
0 (0).

Now let us consider the function Φ2(z). Rewrite formula (1.1.7) as

Φ2(z) =
1

2a

+∞∫
−∞

(cosh pz − cosh pt)F2(t)

cosh pt sinh p(t− z)
dt+

1

2a

+∞∫
−∞

F2(t)

sinh p(t− z)
dt.

As we have shown, the second term here belongs to the class Aβ
0 (0).

Denote the first term by I and rewrite it as

I = − 1

2a

+∞∫
−∞

sinh p
2 (t+ z)F2(t)

cosh pt sinh p
2 (t− z)

dt

= − 1

2a

+∞∫
−∞

sinh p
2 (2x− τ + iy)F2(x− τ)

cosh p(x− τ) cosh p
2 (τ + iy)

dτ

= − 1

2a

( 0∫
−∞

+

+∞∫
0

) sinh p
2 (2x− τ + iy)F2(x− τ)

cosh p(x− τ) cosh p
2 (τ + iy)

dτ.

Let x > 0. Then the first integral will be bounded in the strip 0 ≤
Imz < β, since 2x− τ < 2(x− τ).

Rewrite the second integral as

1

2a

+∞∫
0

sinh p
2 (2x− τ + iy)F2(x− τ)

cosh p(x− τ) cosh p
2 (τ + iy)

dτ

=

(
1

2a

0∫
−∞

+
1

2a

x∫
0

) sinh p
2 (x+ t+ iy)F2(t)

cosh pt cosh p
2 (x− t+ iy)

dt.
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The first term is bounded since x+ t < x− t. The second term can be
written in the form

1

2a

x∫
0

sinh p
2 ([(x− t+ iy) + 2t]F2(t)

cosh pt cosh p
2 (x− t+ iy)

dt

=
1

2a

x∫
0

tanh p
2
(x− t+ iy)F2(t) dt+

1

2a

x∫
0

tanh ptF2(t) dt. (1.1.10)

Since the function tanh p
2z = tanh |p|2

2π (β + αi)z is holomorphic in the strip
0 ≤ Imz ≤ δ < β and | tanh p

2z| → 1, the estimate

|Φ2(z)| < |Φ0(x)|+ ε|x| (1.1.11)

holds for the function Φ2 when x are large in the closed strip 0 ≤ Imz ≤ δ,
Φ0(x) is bounded for x > 0 and ε < 0 is an arbitrarily small number. A
similar estimate is also true for the case x < 0. In the same manner we can
obtain an estimate of form (1.1.11) in the strip 0 < δ ≤ Imz ≤ β provided
that the function Φ2(z) is represented as

Φ2(z) =
1

2a

+∞∫
−∞

cosh pz + cosh pt
cosh pt sinh p(t− z)

F2(t) dt−
1

2a

+∞∫
−∞

F2(t)

sinh p(t− z)
dt.

Now let us consider the case with µ
k
> 0, k = 1, 2. Rewrite (1.1.6) as

follows:

Φ1(z) =
1

2a

+∞∫
−∞

coshµ1tφ1(t)

sinh p(t− z)
dt, φ1(t) ≡ f1(t)e

µ1|t|/ coshµ1t.

It is obvious that φ1(t) satisfies the Hölder condition in the neighbourhood
of a point at infinity.

We write the function Φ1(z) in the form

Φ1(z) =
1

2a

+∞∫
−∞

φ1(t) cosh[µ1(t− z) + µ1z]

sinh p(t− z)
dt

=
coshµ1z

2a

+∞∫
−∞

coshµ1(t− z)

sinh p(t− z)
φ1(t) dt+

sinhµ1z

2a

+∞∫
−∞

sinh(t− z)µ1

sinh p(t− z)
φ1(t) dt.

Since µ1 < πβ/(α2 + β2) = Re p, we have Φ1(z) ∈ Aβ
0 (µ1). Taking

this into account and applying the arguments used when investigating the
behavior of the function Φ2(z) in the case with F2(±∞) = 0, we show that

Φ2(z) ∈ Aβ
0 (β2).

Let us formulate the results obtained above as the following statement.
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Theorem 1. If the functions Fk(x)e
−µ

k
|x| (k = 1, 2) satisfy the Hölder

condition everywhere on L and Fk(x)e
−µ

k
|x| → 0 for |x| → +∞, where

µ
k

are some numbers satisfying inequality (1.1.1), then Φk ∈ Aβ
0 (µk

) for
µ1 ≥ 0, µ2 > 0, expΦ2 ∈ Aβ

0 (ε) for µ2 = 0, where ε is an arbitrarily small
positive number.

Formulas (1.1.8) and (1.1.9) imply

Φ1(t) + Φ1(t+ a) = F1(t), t ∈ (−∞,∞), (1.1.12)
Φ2(t)− Φ2(t+ a) = F2(t), t ∈ (−∞,∞), (1.1.13)

i.e., Φ1(z) and Φ2(z) defined by (1.1.6) and (1.1.7) are solutions of boundary
value problems (1.1.12) and (1.1.13) of the class Aβ

0 (µk
), k = 1, 2.

Clearly, if the function Φ2(z) is a solution of problem (1.1.13), then the
function W (z) = c+Φ2(z) will also be a solution. We will show that prob-
lems (1.1.12) and (1.1.13) do not have other solutions of the class Aβ

0 (µk
),

k = 1, 2. For this we should prove

Theorem 2. If F2(t) ∈ L(−∞,∞), then for a solution of problem
(1.1.13) of the class Aβ

0 (0) to exist it is necessary and sufficient that the
condition

∞∫
−∞

F2(t) dt = 0

be fulfilled.

Proof. We can rewrite formula (1.1.7) as

Φ2(z) =
1

2a

∞∫
−∞

coth p(t− z)F2(t) dt−
1

2a

∞∫
−∞

tanh ptF2(t) dt. (1.1.14)

It is obvious that the limits of Φ2(z) exist for x→ ±∞, 0 ≤ y ≤ β, and

C+Φ2(±∞+ iy) = ± 1

2a

∞∫
−∞

F2(t) dt−
1

2a

∞∫
−∞

tanh ptF2(t) dt+C. (1.1.15)

Taking

C =
1

2a

∞∫
−∞

F2(t) tanh pt dt

and setting
∞∫

−∞

F2(t) dt = 0, (1.1.16)
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we find by virtue of (1.1.15) and (1.1.16) that a solution of problem (1.1.13)
has the form

Φ2(z) =
1

2a

∞∫
−∞

coth p(t− z)F2(t) dt (1.1.17)

and belongs to the class Aβ
0 (0).

The necessity is proved by integrating equality (1.1.13) and applying
the Cauchy theorem. �

It remains to prove

Theorem 3. If the function φ ∈ Aβ
0

( πβ(3+λ)
2(α2+β2)

)
, λ = ±1, and satisfies

the condition φ(z) = λφ(x+a), then it is constant and, for λ = −1, is equal
to zero.

Proof. Let λ = −1 and

Ψ(z) =
φ(z)

cosh pz + φ
(a
2

) a

π(z − a
2 )
. (1.1.18)

The function Ψ(z) ∈ Aβ
0 (0) and satisfies the condition

Ψ(x)−Ψ(x+ a) =
2a2

π
φ
(a
2

) 1

x2 − a2/4
. (1.1.19)

Since Ψ(z) is a solution of problem (1.1.19) of the class Aβ
0 (0), the condition

2a2

π
φ
(a
2

) ∞∫
−∞

dx

x2 − a2/4
= 4aiφ

(a
2

)
= 0

is fulfilled on account of Theorem 2. Thus Ψ(z) is a solution of the homo-
geneous problem

Ψ(x)−Ψ(x+ a) = 0, −∞ < x < +∞.

If we introduce the function

Ψ1(z) =
Ψ(z)−Ψ

(
a
2

)
cosh pz ,

then we have

Ψ1(x) + Ψ1(x+ a) = 0, −∞ < x < +∞.

By applying the Fourier transform to the latter equality we obtain

Ψ̂1(1 + eiαt) ≡ 0.

Hence we have Ψ̂1(t) ≡ 0, Ψ1(z) = 0. Therefore by (1.1.18) φ(z) = 0. We
have thereby proved the theorem for λ = −1.

Let λ = 1. Then φ(x)− φ(x+ a) = 0.
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The function
Ψ(z) = φ(z)− φ

(
3

4
a

)
(1.1.20)

also satisfies this condition and φ
(
3
4 a
)
= 0.

We introduce the notation

Ψ0(z) =
Ψ(z)

cosh 2pz
+

a

2π

Ψ
(
a
4

)
z − a

4

.

Now, repeating the above arguments, we find that Ψ
(
a
4

)
= 0, i.e., Ψ0(z) ∈

Aβ
0 (0) and satisfies the condition

Ψ0(x)−Ψ0(x+ a) = 0.

But, as shown above, in that case Ψ0(z) = Ψ(z) = 0 and therefore equality
(1.1.20) implies

φ(z) = φ

(
3

4
a

)
,

which proves the theorem. �

1.2. A Carleman Type Problem with a Continuous Coefficient
for a Strip

Let us consider the following problem: find a function Φ of the class
Aβ

0 (µ) by the boundary condition
Φ(x) = λG(x)Φ(x+ a) + F (x), −∞ < x < +∞, (1.2.1)

where a = α+ iβ, β > 0, µ < πβ(3+ λ)/2(α2 + β2), F and G are the given
functions satisfying the Hölder condition including a point at infinity, G ̸= 0
and F (±∞) = 0, G(−∞) = G(∞) = 1, the constant λ takes the value 1 or
−1.

The integer number κ = 1
2π [argG(x)]+∞

−∞, where [argG(x)]+∞
−∞ denotes

an increment of the function argG(x) when x runs over the entire real axis
from −∞ to ∞, is called the index of the function G(x). The index of
G0(x) = G(x)[(x − a/2)/(x + a/2)]κ is equal to zero and therefore any
branch of the function lnG0(x) is continuous all over the real axis. We
choose a branch that vanishes at infinity. By formulas (1.1.7) and (1.1.9),
G(x) can be represented as

G(x) =
X(x)

X(x+ a)
, (1.2.2)

where

X(z) =
(
z − a

2

)κ
X0(z),

X0(z) = exp
(

cosh pz
2a

+∞∫
−∞

lnG0(t)

cosh pt sinh p(t− z)
dt

)
.

(1.2.3)
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By virtue of Theorem 1, X0(z) and [X0(z)]
−1 ∈ Aβ

0 (ε), where ε is an arbi-
trarily small positive number.

Using (1.2.2), we rewrite condition (1.2.1) as

Φ(x)

X(x)
= λ

Φ(x+ a)

X(x+ a)
+
F (x)

X(x)
, −∞ < x <∞. (1.2.4)

The function Φ(z)/X(z) is holomorphic in the strip 0 < Imz < β except
perhaps for the point z = a

2 at which it may have a pole of order κ, for
κ > 0 and satisfies the condition

(Φ(z)/X(z))e−µ|z| → 0 for |x| → ∞ and 0 ≤ y ≤ β,

where 0 < µ < πβ(3 + λ)/2(α2 + β2). By (1.1.4) and (1.1.5), condition
(1.2.4) implies

Φ(z) =
X(z)

2a

+∞∫
−∞

F (t)

X(t) sinh p(t− z)
dt+X(z)φ1(z) for λ = −1, (1.2.5)

Φ(z) =
X(z) cosh pz

2a

+∞∫
−∞

F (t)

X(t) cosh pt sinh p(t− z)
dt

+X(z)φ2(z) for λ = 1, (1.2.6)

where

φ1(z) =


0, κ ≤ 0,
κ−1∑
k=1

Ck(1/ cosh pz)(k), κ > 0,
(1.2.7)

φ2(z) =


0, κ < 0,
κ∑

k=1

Ck(tanh pz)(k), κ ≥ 0,
(1.2.8)

Ck are arbitrary constants.
Let us investigate the behavior of the function

φ(z) =
X(z)

2a

+∞∫
−∞

F (t)

X(t) sinh p(t− z)
dt, 0 ≤ Imz ≤ β, (1.2.9)

in the neighborhood of a point at infinity. The function X(z) can be rep-
resented as

X(z) =
(
z − a

2

)κ
expΓ1(z) · expΓ2(z),



18 Revaz Bantsuri

where

Γ1(z) = − 1

2a

∞∫
−∞

sinh p
2 (z + t) lnG0(t)

cosh pt cosh p
2 (t− z)

dt,

Γ2(z) =
1

2a

∞∫
−∞

lnG0(t)

sinh p(t− z)
dt.

As has been shown above, Γ2(z) ∈ Aβ
0 (0), i.e., (expΓ2(z)− 1) ∈ Aβ

0 (0).
By differentiating the function Γ1(z) we obtain

Γ′
1(z) =

1

2a

∞∫
−∞

lnG0(t)

cosh p
2 (t− z)

dt, 0 ≤ Imz ≤ β0 < β.

It is easy to verify that Γ′
1(z) → 0 for |z| → ∞ and therefore for any

φ(z) there is a number N such that
|Γ′

1(x+ iy)| < ε for |x| > N, 0 ≤ y ≤ β0 < β. (1.2.10)
We represent φ(z) as

φ(z) =
X(z)

2a

N∫
−N

F (t)

X(t)
· dt

sinh p(t− z)

+
X(z)

2a

( N∫
−∞

+

∞∫
N

)
F (t)

X(t) sinh p(t− z)
dt, 0 ≤ Imz ≤ β0.

It is easy to show that the first and the second term vanish as x→ +∞.
We will show that the third term also tends to zero as x → +∞, 0 ≤ y ≤
β0 < β. This term will be denoted by I.

I =

∞∫
N

exp(Γ2(z)− Γ2(t)) exp(Γ1(z)− Γ1(t))(z − a
2 )

κF (t)

(t− a
2 )

κ sinh p(t− z)
dt.

Assume that κ ≥ 0 and represent the function
(
z − a

2

)κ as(
z − a

2

)κ
= κ!

κ∑
n=1

(t− a
2 )

κ−n(z − t)n

(κ − n)! n!
+
(
t− a

2

)κ
. (1.2.11)

Inequality (1.2.10) implies that

|Γ1(z)− Γ1(t)| ≤

∣∣∣∣∣∣
z∫

t

Γ′(s) ds

∣∣∣∣∣∣ ≤ ε|t− z|, t < N, κ > N, 0 ≤ y ≤ β0,

i.e., Re(Γ1(t)− Γ1(z))− ε|t− z| < 0. Thus we have∣∣ exp[Γ1(t)− Γ1(z))− ε|t− z| − 1
∣∣ < A|t− z|, t > N, x > N.
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The latter inequality and formula (1.2.11) imply

|I| ≤ c

κ∑
n=1

∞∫
N

eε|x−t||x− t+ iy|n|F (t)|
(κ − n)!n!| sinh p(x− t+ iy)||t− a

2 |n
dt

+ c1

∞∫
N

eε|x−t|[A|x− t|+ (1− e−ε|x−t|)]|F (t)|
| sinh p(x− t+ iy)|

dt

+

∣∣∣∣∣∣
∞∫

N

F (t)

2|a| sinh p(t− z)
dt

∣∣∣∣∣∣ .
where, as shown above, the third term is the modulus of a function of the
class Aβ

0 (0). Since ε is an arbitrarily small number and F (∞) = F (−∞) =
0, the first two terms are the convolutions of functions summable with func-
tions tending to zero for x < 0. Therefore they tend to zero for x → ∞,
0 ≤ y ≤ β0 < β.

It can be shown in a similar manner that φ(z) → 0 for x → −∞,
0 ≤ y ≤ β0, as well. It is not difficult to prove that the function φ(z) tends
to zero for |x| → ∞, β0 ≤ Imz ≤ β. When κ < 0, one can use the same
reasoning to show that φ(z) → 0 for |x| → ∞, 0 ≤ y ≤ β, provided that z
and t are exchanged in equality (1.2.11). Thus the function Φ represented
by (1.2.5) tends to zero as |x| → +∞, 0 ≤ y ≤ β. Quite similarly, it is
proved that for the function Φ defined by (1.2.6) we have Φ(z)e−ε|z| → 0 as
|x| → ∞, 0 ≤ y ≤ β.

For κ < 0 the function X(z) has a pole of order −κ at the point z = a
2 .

In that case the solution exists only if the following conditions are fulfilled:
∞∫

−∞

F (t)

X(t)

(
1

cosh pt

)(k)

dt = 0, k = 0, . . . , (−κ − 1) for λ = −1, (1.2.12)

∞∫
−∞

F (t)

X(t)

(
ept

cosh pt

)(k)

dt = 0, k = 1, . . . , (−κ − 1) for λ = 1. (1.2.13)

The results obtained can be formulated as

Theorem 4. For λ = −1 and κ ≥ 0, problem (1.2.1) is solvable in the
class Aβ

0 (0) and a general solution is given by (1.2.5) with formula (1.2.7)
taken into account. If κ < 0, then the problem is solvable if condition
(1.2.12) is fulfilled. In these conditions problem (1.2.1) has a unique solution
in the class Aβ

0 (0) which is given by formula (1.2.5) for φ1 = 0.

Theorem 5. if λ = 1 and κ ≥ −1, then problem (1.2.1) is solvable in
the class Aβ

0 (ε) and its solution is given by (1.2.6) with (1.2.8) taken into
account; for κ < −1, the solution exists provided that condition (1.2.13) is
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fulfilled. If these conditions are fulfilled, then problem (1.2.1) has a unique
solution in the class Aβ

0 (ε). This solution is given by (1.2.6) where φ2 = 0.

1.3. A Carleman Type Problem with Unbounded Coefficients for
a Strip

Problems of the elasticity theory can often be reduced to a Carleman
type problem with coefficients polynomially increasing or decreasing at in-
finity. We will consider such a case below.

We write the boundary condition of the problem in the form

Φ(x) = Pn(x)G(x)Φ(x+ iβ) + F (x), −∞ < x <∞, (1.3.1)

where G(x) and F (x) satisfy the conditions discussed in Section 1.2, and
Pn(x) is a polynomial without real zeros. Condition (1.3.1) can be rewritten
as

Φ(x) = q[x2 + 4β2][
n
2 ](2β − ix)δ(n)G0(x)Φ(x+ iβ) + F (x), (1.3.2)

where δ(n) = 0 for even n and δ(n) = 1 for odd n; q is a complex number;
G0(x) is a Hölder class function including a point at infinity G0(−∞) =
G0(∞) = 1.

As shown above, the function G0(x) can be represented as

G0(x) =
X0(x)

X0(x+ iβ)
, −∞ < x <∞, (1.3.3)

where

X0(z) =

(
z − iβ

2

)κ

exp
(

cosh pz
2iβ

∞∫
−∞

ln
[
G0(t)(

t+iβ/2
t−iβ/2 )

κ]
cosh pt sinh p(t− z)

dt

)
. (1.3.4)

Write the function [x2+4β2][
n
2 ](2β− ix)δ(n) in form (1.3.3). Let us find

solutions of the problems

X1(x) = (2β + ix)X1(x+ iβ), −∞ < x < +∞, (1.3.5)
X2(x+ iβ) = (2β − ix)X2(x), −∞ < x < +∞. (1.3.6)

Applying the Fourier transform to conditions (1.3.5) and (1.3.6), we
obtain the differential equations

(f1(t)e
βt)′ = (1− 2βeβt)f1(t), −∞ < t < +∞,

f ′2(t) = (2β − e−βt)f2(t), −∞ < t < +∞,

where f1(t) and f2(t) denote the Fourier transforms of the functions X1(x)
and X2(x).
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By performing the reverse Fourier transformation of the solutions of
these equations we obtain the solutions of problems (1.3.5) and (1.3.6):

X1(z) =

+∞∫
−∞

exp
(
− 1

β
eβt + 3βz + itz

)
dt, 0 < Imz < β, (1.3.7)

X2(z) =

+∞∫
−∞

exp
(
− 1

β
e−βt − 2βt+ itz

)
dt, 0 < Imz < β. (1.3.8)

On substituting eβt = βτ , we have

X1(z) = β2β
iz
β

∞∫
0

e−ττ2+
iz
β dτ = β2β

iz
β Γ

(
3 +

iz

β

)
,

X2(z) = β− iz
β

∞∫
0

e−ττ1−
iz
β dτ = ββ− iz

β Γ

(
2− iz

β

)
.

(1.3.9)

We introduce the notation

X3(z) =

[
X1(z)

X2(z)

][n2 ]

(X2(z))
−δ(n), 0 < Imz < β. (1.3.10)

Using Stirling’s formulas [113], we obtain from (1.3.9) and (1.3.10) the
following representations of the functions X1(z) and X2(z) in the neigh-
bourhood of a point at infinity:

|X1(z)| = C1(y)e
− π

2β |x||x|
5
2−

y
β

(
1 +O

(
1

x

))
, 0 ≤ y ≤ β,

|X2(z)| = C2(y)e
− π

2β |x||x|
3
2+

y
β

(
1 +O

(
1

x

))
, 0 ≤ y ≤ β,

where C1(y), C2(y) are the non-vanishing bounded functions.
By virtue of these formulas, for sufficiently large values of |z| (1.3.10))

implies

|X3(z)| = C(y)
(
|x|

β−2y
β
)[n2 ](

e−
π
2β |x||x|

3
2+

y
β
)−δ(n)

(
1 +O

(
1

x

))
. (1.3.11)

By equalities (1.3.3) and (1.3.11), condition (1.3.2) can be rewritten as
Φ(x)

X(x)
− q

Φ(x+ iβ)

X(x+ iβ)
=
F (x)

X(x)
, −∞ < x <∞, (1.3.12)

where X(z) = X0(z)X3(z).
The function Φ(z)/X(z) is holomorphic in the strip 0 < Imz < β except

perhaps for the point z = iβ/2, where for κ > 0 it may have a pole of order
not higher than κ, and satisfies the condition(

Φ(z)/X(z)
)
e−µ|z| → 0 for |z| → ∞, µ <

π

2β
+ ε.



22 Revaz Bantsuri

Write q in the form

q =
X4(x)

X4(x+ iβ)
, X4(z) = exp

(
iz

β
ln q
)
.

From (1.2.7) and (1.2.5) it follows that if q is not a real positive number,
then a general solution of problem (1.3.1) is given by the formula

Φ(z) =
X(z)

2iβ

∞∫
−∞

exp
(
π−δ+iγ

β (z − t)
)

X(t) sinh p(t− z)
F (t) dt+X(z)φ(z), (1.3.13)

where γ = ln |q|, δ = arg q, 0 < δ < 2π.

φ(z) =

κ−1∑
j=0

Cj
dj

dzj

(
exp (π − δ + iγ)z

β
/ cosh pz

)
. (1.3.14)

For κ ≥ 0, the solution of problem (1.3.1) is given by formulas (1.3.13)
and (1.3.14). Note that for κ ≤ 0 it is assumed that φ(z) ≡ 0. For
κ < 0, the function X(z) has, at the point z = iβ

2 , a pole of order −κ and
therefore the bounded solution exists in the finite part of the strip only if
the conditions φ(z) = 0;

∞∫
−∞

F (t)Ψj(t) dt = 0, Ψj(t) =
dj

dtj

(
exp( δ−π−ij

β )t

cosh pt

)
, (1.3.15)

j = 0, . . . , (−1− κ),

are fulfilled. Thus, like in Section 1.2, it can be easily proved that in the
case of even n problem (1.3.1) has a solution Φ(z) ∈ Aβ

0 (0) for any δ ∈
(0, 2π), while in the case of odd n it has a solution Φ(z) ∈ Aβ

0

(
π−2δ
2β + ε

)
for δ ∈

(
0, π2

]
; Φ(z) ∈ Aβ

0 (0) for δ ∈
(
π
2 ,

3
2π
)
; Φ(z) ∈ Aβ

0

(
2δ−3π

2β + ε
)

for
δ ∈

[
3
2π, 2π

)
, where ε > 0 is an arbitrarily small number.

When q > 0, by substituting

Φ(z) = X4(x)Ψ(t)

condition (1.3.12) can be reduced to the form

Ψ(x)

X(x)
− Ψ(x+ iβ)

X(x+ iβ)
=
F (x)X4(x)

X(x)
, −∞ < x <∞. (1.3.16)

By virtue of formula (1.3.15) a general solution of problem (1.3.1) has
the form

Φ(z) =
X∗(z)

2iβ

∞∫
−∞

F (t)

X∗(t) sinh p(t− z)
dt+X∗(z)φ2(z), (1.3.17)
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where X∗(z) = X(z) cosh pzX4(z),

φ2(z) =


κ−1∑
j=0

Cj
dj

dzj
(tanh pz) + Cx, for κ > 0,

C, for κ = 0,

0, for κ ≤ −1,

(1.3.18)

C, Cj , j = 0, . . . , (κ − 1), are arbitrary constants. If κ < −1, then the
solution exists only provided that the condition

∞∫
−∞

F (t)

X∗(z)
· d

j

dtj

(
1

cosh pt

)
dt = 0, j = 0, . . . , (−κ − 2),

is fulfilled.
One can prove that Φ(z) ∈ Aβ

0 (ε) for even n and Φ(z) ∈ Aβ
0 (π/(2β)+ε)

for odd n; here ε is a small positive integer.

Remark. Formulas (1.3.8) and (1.3.9) can be obtained by applying
formulas (1.3.3) and (1.3.4).

Indeed, if in formula (1.3.4)G0(t) is replaced by the function (2β−ix)−1,
then we have

X2(z) = exp
(

cosh pz
2iβ

∞∫
−∞

ln i− ln(x+ 2iβ)

cosh px sinh p(x− z)
dx

)
. (1.3.19)

Under the function ln z we understand ln z = ln |z|+arg z, −π < arg z <
π. After rewriting ln(x+ 2iβ) as

ln(x+2iβ) =
n∑

k=0

[
ln(x+ iβ(k+2))− ln(x+ iβ(k+3))

]
+ ln(x+ iβ(3+n))

and substituting this expression into (1.3.19), by virtue of (1.1.3) we obtain

ω(z) =
cosh pz
2iβ

∞∫
−∞

ln i− ln(x+ 2iβ)

cosh px sinh p(x− z)
dx

=
n∑

k=0

[
ln(x+ iβ(k + 2))− ln

(
5iβ

2
+ kiβ

)]

+
cosh pz
2iβ

∞∫
−∞

ln(1 + n)β)

cosh pt sinh p(t− z)
dt+O

(
1

n

)
.

If we perform some simple transformations and calculate the latter in-
tegral by the formula

cosh pt
2iβ

∞∫
−∞

ln[(n+ 1)β]

cosh px sinh p(x− z)
dx = ln[(1 + n)β]

(
iz

β
+

1

2

)
,
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then we have

ω(z) =
n∑

k=1

ln
[(

1 +
ζ

k

)
e−

ζ
k

]
− ζ

(
ln(n+ 1)−

n∑
k=1

1

k

)
− lnβζ

− 5

2

(
ln(n+ 1)−

n∑
k=1

1

k

)
+ ln ζ + Cn, ζ =

z + 2iβ

iβ
.

Passing to the limit as n→ +∞, by virtue of (1.3.19) we obtain

X2(z) = Aζ
∞∏
1

(
1 +

ζ

k

)
e−

ζ
k e−cζβζ = AΓ

(
2− iz

β

)
β2− iz

β .

1.4. On a Conjugation Boundary Value Problem with
Displacements

As an application of the results obtained in Section 1.2, we will consider
one kind of a conjugation problem with displacements, when the boundary
is a real axis. Denote by S+ and S− the upper and the lower half-plane,
respectively.

Let us consider the following problem:
Find a piecewise-holomorphic function bounded all over the plane using

the boundary condition

Φ+(x) = G(x)Φ−[α(x)] + f(x), −∞ < x < +∞, (1.4.1)

where G(x) and f(x) are the given functions satisfying the Hölder condition,
G(x) ̸= 0, G(∞) = G(−∞) = 1, f(+∞) = f(−∞) = 0,

α(x) =

{
x, x < 0,

bx, x ≥ 0,

b is a constant.
If we denote by κ the index of the function G(x), then G(x) can be

represented as [76]

G(x) =
X+(x)

X−(x)
, X(z) =


expω(z), z ∈ S+,(
z + i

z − i

)κ

expω(z), z ∈ S−,
(1.4.2)

ω(z) =
1

2πi

+∞∫
−∞

lnG0(t)

t− z
dt, G0(x) = G(x)

(
x+ i

x− i

)κ

.

On putting the value of G(x) into (1.4.1), we obtain

Φ+(x)

X+(x)
− Φ−(α(x))

X−(x)
=

f(x)

X+(x)
, −∞ < x < +∞. (1.4.3)
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For x < 0, condition (1.4.3) takes the form
Φ+(x)

X+(x)
− Φ−(x)

X−(x)
=

f(x)

X+(x)
. (1.4.4)

A general solution of problem (1.4.4) can be written as

Φ(z) =
X(z)

2πi

0∫
−∞

f(t)

X+(t)(t− z)
dt+X(z)Φ0(z). (1.4.5)

The function Φ(z) is holomorphic on the plane cut along the positive
semi-axis except perhaps for the neighborhood of the point z = −i at which
it has a pole of order κ for κ > 0.

For κ < 0 the function X(z) has a pole of order −κ at the point z = −i.
Therefore for a bounded solution to exist it is necessary that the condition

Φ
(k)
0 (−i)+ k!

2πi

0∫
−∞

f(t)

X+(t)(t+ i)k+1
dt = 0, k = 0, 1, . . . , (−κ−1), (1.4.6)

be fulfilled.
If we put the value of Φ(z) into (1.4.3), then we have

Φ+
0 (x) = G1(x)Φ

−
0 (bx) + f0(x), 0 < x <∞, (1.4.7)

where G1(x) =
X−(bx)
X−(x) , f0(x) = f(x)

X+(x) −A+(x) +G1(x)A
−(bx),

A(z) =
1

2πi

0∫
−∞

f(t)

X+(t)(t− z)
dt.

The function z = eζ , ζ = ξ + iη, maps the strip 0 < η < 2π onto the
plane having a cut along the axis x > 0.

On introducing the notation Φ0(e
ζ) = Ψ0(ζ), 0 < η < 2π, we obtain

Φ+
0 (x) = Ψ0(ξ), Φ−

0 (bx) = Ψ0(ξ + ln b+ 2πi), −∞ < ξ < +∞. (1.4.8)
Thus problem (1.4.7) is reduced to the problem considered in Chapter

1, Section 2
Ψ0(ξ) = G+(ξ)Ψ0(ξ + ln b+ 2πi) + F0(ξ), −∞ < ξ < +∞, (1.4.9)

where G+(ξ) = G1(e
ξ), F0(ξ) = f0(e

ξ), G∗(−∞) = G∗(∞) = 1,

JndG
∗ = 0, F0(+∞) = 0, F0(−∞) =

f(0)

X+(0)
.

Since for κ > 0 the function Φ0(z) can have a pole of order κ at the
point z = −i, we seek for a solution Ψ0 of problem (1.4.9) in the class of
functions satisfying the condition

Ψ0(ζ)

(
ζ − 3

2πi

ζ + 3
2πi

)κ

∈ Aβ
0 (µ), µ <

4π2

4π2 + ln b . (1.4.10)
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By virtue of formula (1.2.6) it is easy to show that a general solution of
problem (1.4.9) is given by the formula

Ψ0(ζ) =
X∗(ζ) cosh pζ

2a

+∞∫
−∞

F0(t)

X+(t) cosh pt sinh p(t− ζ)
dt

+X∗(ζ)Ψ(ζ), (1.4.11)

where a = ln b+ 2πi, p = πi
a ,

ψ(ζ) =


κ∑

k=0

ck cothk p

(
ζ − 3

2
πi

)
, κ ≥ 0,

c−1, κ = −1,

0, κ < −1,

X∗(ζ) = exp
(

cosh pζ
2a

+∞∫
−∞

lnG∗(t)

cosh pt sinh p(t− ζ)
dt

)
.

Returning to the variable z, we obtain

Ψ0(ζ) =
X0(z)

a

+∞∫
0

t2p−1f0(t)

(t2p − z2p)X+
0 (t)

dt+X0(z)(φ0(z)−A), (1.4.12)

X0(z) = exp
(
1

a

∞∫
0

lnG1(t)t
2p−1

t2p − z2p
dt

)
, A =

1

a

∞∫
0

t2p−1f0(t)

(t2p + 1)X∗
0 (t)

dt.

With (1.4.5) and (1.4.12) taken into account we conclude that a general
solution of problem (1.4.1) has the form

Φ(z) = X(z)

[
1

2πi

0∫
−∞

f(t)

X+(t)(t− z)
dt

+
X0(z)

a

∞∫
0

t2p−1f0(t)

X+
0 (t)(t2p − z2p)

dt+X0(z)(φ0(z)−A)

]
, (1.4.13)

φ0(z) =


κ∑

k=0

ck

(
z2p + (−i)2p

z2p − (−i)2p

)k

, κ ≥ 0,

c−1, κ = −1,

0, κ < −1.

(1.4.14)

The function z2p is holomorphic on the plane cut along the positive
axis if under this function we mean the branch for which, assuming that
z → 1, the limit from the upper half-plane is equal to 1, and t2p denotes
the function value of the upper edge of the cut at the point t.
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For κ = −1, the function X0(z) has a pole of first order at the point
z = −i. In that case φ0(z) = C−1 and X0(−i) ̸= 0 and therefore the
constant c1 can be chosen so that for z = −i the expression enclosed in the
square brackets on the right-hand side of (1.4.13) will vanish. Hence when
κ ≥ −1, problem (1.4.1) has a bounded solution for an arbitrary right-hand
side. When κ < −1, for a bounded solution to exist it is necessary and
sufficient that the conditions

dk

dzk

 1

2πi

0∫
−∞

f(t)

X+(t)(t−z)
dt+

X0(z)

a

∞∫
0

t2p−1f0(t)

X+
0 (t)(t2p−z2p)

dt−AX0(z)

 = 0,

z = −i, k = 1, . . . ,−κ,

be fulfilled. Then the solution is given by formula (1.4.13).
For b = 1 we have p = 1

2 , X0(z) ≡ 1, f0(t) ≡ f(t) and formulas (1.4.13)
and (1.4.14) give a solution of the conjugation problem.

Conjugation problems with displacements are investigated in [62], [63],
[69] in the case with α′(t) belonging to the Hölder class.

1.5. A Carleman Type Problem with Continuous Coefficients for
the Circular Ring

In this paragraph we consider the following boundary value problem of
the analytic function theory.

Find a function φ(z), analytic in the ring D = {1 < |z| < R} and
continuous in the closed ring D, by the boundary condition

φ(at) = G(t)φ(t) + f(t), t ∈ γ, (1.5.1)
where γ denotes the circumference of unit radius and center at the origin,
a = Reiα, G(t) and f(t) belong to the class H on γ, G(t) ̸= 0 everywhere
on γ. We will call G(t) a coefficient, and f(t) a free term of problem (1.5.1).

The integer number κ = 1
2π [argG(t)]γ called the index of the function

G(t) will be called in our case the index of problem (1.5.1).
As we will see in the sequel, the solution of problem (1.5.1) is reduced

to the solution of the problem with constant coefficients
φ0(at) = gφ0(t) + f0(t), t ∈ γ. (1.5.2)

After multiplying equality (1.5.2) by t−(n+1), integrating over γ and
applying the Cauchy theorem, we obtain

(an − g)

∫
γ

φ(t)t−(n+1) dt =

∫
γ

f(t)t−(n+1) dt, n = 0,±1,±2, . . . .

Hence it follows that if an − g ̸= 0, n = 0,±1,±2, . . . , then problem
(1.5.2) has a unique solution given by the formula

φ(z) =
∞∑

n=−∞

fn
an − g

zn, fn =

∫
γ

f(t)e−(n+1) dt. (1.5.3)
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If am = g for some integer number m, then for problem (1.5.2) to be
solvable it is necessary and sufficient that the condition∫

γ

f(t)t−(m+1) dt = 0 (1.5.4)

be fulfilled.
When this condition is fulfilled, we have

φ(z) =

∞∑
m ̸=n=−∞

fn
an − g

zn + Czm, (1.5.5)

where C is an arbitrary constant.
To continue our investigation of the problem it is convenient to rewrite

formulas (1.5.3) and (1.5.5) in the form

φ(z) =
1

2πi

∫
γ

Kg

(z
t

) f(t)
t

dt, an − g ̸= 0; (1.5.6)

φ(z) =
1

2πi

∫
γ

K∗
g

(z
t

) f(t)
t

dt+ Czm, am = g, (1.5.7)

where

Kg(z) =
−a
z − a

+
1

g(1− z)
+ g

∞∑
n=0

1

an − g

(z
a

)n
+

1

g

−1∑
n=−∞

anzn

an − g
. (1.5.8)

and K∗
g (z) is obtained from (1.5.8) by removing the term the denominator

of which vanishes, i.e. the term with denominator n = m.
By virtue of the Plemelj–Privalov formula, formulas (1.5.6), (1.5.7),

(1.5.8) imply that a solution of problem (1.5.1) belongs to the class H.
Let us now prove

Proposition. The number of linearly independent solutions of the
boundary value problem

φ(at) = gtkφ(t), k > 0, (1.5.9)

is equal to k (k is a natural number).

Proof. Multiplying both parts of equality (1.5.9) by tn, integrating and
applying the Cauchy theorem, we obtain

Cn+k =
Cn

gan+k
, (1.5.10)

where
Cj =

∫
γ

φ(t)tj dt, j = 0,±1,±2, . . . .
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In formula (1.5.10), C0;C1, . . . , Ck; . . . can be chosen arbitrarily con-
stant and used for other definitions. Hence problem (1.5.9) has k linearly
independent solutions.

For k < 0, if system (1.5.10) has a nontrivial solution, then |Cn|→∞ as
n→∞, but this contradicts the property of Fourier coefficients. Therefore
for k<0, φ(z)= 0. �

A more general proposition is true: If IndG(t) = κ > 0, then the
homogeneous problem

φ(at) = G(t)φ(t) (1.5.11)
has exactly κ linearly independent solutions.

Let us first show that there exist a function X1(z), which is analytic
in the ring D and is everywhere different from zero, and a number µ1 such
that

G(t) = µ1t
κ X1(at)

X1(t)
, t ∈ γ. (1.5.12)

Indeed, from condition (1.5.12) we have
lnX1(at)− lnX1(t) = ln[t−κG(t)]− lnµ1.

This is a boundary value problem of form (1.5.1). From the solvability
condition we define the value for µ1,

µ1 = exp
(

1

2πi

∫
γ

ln
[
G(t)t−κ] dt

t

)
,

while, by virtue of (1.5.7), a solution has the form

X1(z) = exp
(

1

2πi

∫
γ

K∗
1

(z
t

)
ln
[
t−κG(t)

] dt
t

)
.

Note that the fulfillment of the condition κ > 0 has not been assumed here.
Now, with the aid of representation (1.5.12), the boundary value prob-

lem (1.5.11) is reduced to a problem of form (1.5.9), whence the validity of
the above proposition follows.

We will call the boundary value problems
φ(at) = G(t)φ(t) + f(t), t ∈ γ, (1.5.13)

and
φ(a t) = G(t)ψ(t) + g(t), t ∈ γ, (1.5.14)

adjoint.
Let us prove the following lemma.

Lemma. If the functions φ(z) and ψ(z) are holomorphic in D = {1 <
|z| < R} and continuous in D, then the equality∫

γ

φ(at)ψ(t)
dt

t
=

∫
γ

ψ(at)φ(t)
dt

t
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is valid.

Proof. Expand the functions φ(z) and ψ(z) into Laurent series

φ(z) =
∞∑

n=−∞
φnz

n, ψ(z) =
∞∑

n=−∞
ψnz

n, 1 < |z| < |a|.

Hence we obtain

φ

(
a

p
t

)
=

∞∑
n=−∞

φn

(
a

p

)n

tn, ψ(pt) =
∞∑

m=−∞
ψmp

mtm, 1 < p < |a|.

Since these series converge modulo, the following equality is valid:

φ

(
a

p
t

)
· ψ(pt) =

∞∑
n=−∞

tn
∞∑

m=−∞
φn−ma

n−mpm−nψ−mp
−m .

This series converges modulo because so do the series
∞∑

n=−∞
|a|n|φn|p−n,

∞∑
m=−∞

|ψm|pm.

The integration of the preceding equality gives∫
γ

φ

(
a

p
t

)
ψ(pt)

dt

t
= 2πi

∞∑
n=−∞

φnψna
n .

Analogously, we obtain∫
γ

φ(pt)ψ

(
a

p
t

)
dt

t
= 2πi

∞∑
n=−∞

φnψna
n .

Thus the lemma is true. �
After multiplying equality (1.5.1) by ψ(t)t and integrating, by virtue of

the above lemma we obtain∫
γ

φ(t)
[
ψ(at)−G(t)ψ(t)

] dt
t

=

∫
γ

f(t)ψ(t)
dt

t
.

If ψ(z) is a solution of the homogeneous problem corresponding to prob-
lem (1.5.14), then the integrand in the left-hand part of the last equality
is equal to zero. Hence the necessary condition for problem (1.5.1) to be
solvable is the equality ∫

γ

f(t)ψ(t)
dt

t
= 0. (1.5.15)

In an analogous manner we establish that the necessary condition for
problem (1.5.14) to be solvable is the equality∫

γ

g(t)φ(t)
dt

t
= 0, (1.5.16)
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where φ(z) is a solution of the homogeneous problem corresponding to prob-
lem (1.5.1).

Let z0 be an arbitrary fixed point of the ring D, then it is obvious that
the index of the function

G0(t) = G(t)

(
t− z0
at− z0

)κ

is equal to zero.
As has been shown above, in (1.5.12) the function G0(t) can be repre-

sented as
G0(t) = µ

X0(t)

X0(at)
, t ∈ γ, (1.5.17)

where

X0(z) = exp
(

1

2πi

∫
γ

K∗
1

(z
t

)
ln G0(t)

µ

dt

t

)
, z ∈ D, (1.5.18)

µ = exp
(

1

2πi

∫
γ

lnG0(t)
dt

t

)
. (1.5.19)

Therefore the function G(t) can be written in the form

G(t) = µ
X(at)

X(t)
,

X(z) = (z − z0)
κX0(z), z ∈ D.

(1.5.20)

We will call the function X(z) a canonical function of problem (1.5.1).
It can be easily shown that it depends on a choice of the point z0. Thus
problem (1.5.1) has an uncountable number of canonical functions.

Inserting the value of G(t) defined by (1.5.20) into condition (1.5.1), we
obtain

φ(at)

X(at)
− µ

φ(t)

X(t)
=

f(t)

X(at)
, t ∈ γ. (1.5.21)

For κ ≤ 0, the function φ(z)/X(z) is holomorphic in the ring D, while
for κ > 0 it may have, at the point z0, a pole of order not higher than κ.

Thus problem (1.5.1) reduces to problem (1.5.21) with constant coef-
ficients, whose particular solutions are given by formulas (1.5.6) or (1.5.7)
depending on the fact whether the equation an − µ = 0 has or does not
have an integer solution. A general solution of the problem is obtained by
adding a general solution of the corresponding homogeneous problem.

Let us now prove that if κ ̸= 0, then the point z0 can be chosen so that
an − µ ̸= 0 for any integer n.

Indeed, assume that z1 and z2 are arbitrary points of D, µ1 and µ2 are
their corresponding numbers defined by formula (1.5.19)

µk = exp
(

1

2πi

∫
γ

ln
[
G(t)

(
t− zk
at− zk

)κ]
dt

t

)
, k = 1, 2.
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Hence
µ1

µ2
= exp

[
1

2πi

∫
γ

ln
(
t− z1
t− z2

)κ
dt

t
+

1

2πi

∫
γ

ln
(
at− z2
at− z1

)κ
dt

t

]
.

Since the function ln
(

at−z2
at−z1

)κ
is holomorphic outside the circumference

γ and vanishes at infinity, by the Cauchy formula
1

2πi

∫
γ

ln
(
at− z2
at− z1

)κ
dt

t
= 0.

The function ln
(

t−z1
t−z2

)κ
is holomorphic inside the circumference γ and

therefore by the Cauchy formula
1

2πi

∫
γ

ln
(
t− z1
t− z2

)κ
dt

t
= ln

(
z1
z2

)κ

.

Assume that z1 = ρeiα1 , z2 = ρeiα2 , 1 < ρ < |a|. Then we have
µ1

µ2
= ei(α1−α2) .

If α1 and α2 are chosen so that (α1−α2)κ ̸= 2π, then we obtain µ1 ̸= µ2

and µ1 = µ2. In view of the fact that the equation an − µ = 0 may have
only one integer solution, if it turns out that am − µ1 = 0 for some integer
m, then an − µ2 ̸= 0 for any integer number n. We have thus shown that
for κ ̸= 0 the point z0 can be chosen so that an − µ ̸= 0 for any integer
n. In the sequel, it will be assumed that the latter condition is fulfilled for
κ ̸= 0.

To construct solutions of the homogeneous problem corresponding to
problem (1.5.21) which are of order x at the point z0, we have to consider
the adjoint problem (1.5.14).

Rewrite the condition of problem (1.5.14) in the form

ψ(at) =

(
z0t− a

z0t− 1

)κ

G1(t)ψ(t) + g(t). (1.5.22)

Since the index of the coefficient G1(t) is equal to zero, it can be repre-
sented as

G1(t) = µ
X ′

0(at)

X ′
0(t)

, (1.5.23)

where

X ′
0(z) = exp

(
1

2πi
K ′

1

(z
t

)
ln
[
G1(t)µ−1

] dt
t

)
. (1.5.24)

The function K ′
1(z) is obtained from K∗

1 (z) if we replace a by a. By
means of (1.5.23) condition (1.5.22) can be rewritten in the form

ψ(at)

X ′(at)
− µ

ψ(t)

X ′(t)
=

g(t)

X ′(at)
, t ∈ γ, (1.5.25)



Contact Problems of Plane Elasticity Theory . . . 33

where
X ′(z) = X ′

0(z) (z0z − a)
−κ

zκ , z ∈ D. (1.5.26)
Equalities (1.5.17), (1.5.20), (1.5.24) and (1.5.26) yield

X ′
1

(
1

z

)
=

1

X(az)
,

1

|a|
< |z| < 1. (1.5.27)

For κ ≥ 0, a solution of problem (1.5.25) is given by the formula

ψ(z) =
X ′(z)

2πi

∫
γ

K ′
µ

(z
t

) g(t)

X ′(at)

dt

t
,

but since the function X ′(z) has a pole of order κ at the point z = a/z0, to
obtain a bounded solution of problem (1.5.14) it is necessary and sufficient
that the conditions∫

γ

dj

dzj
K ′

µ

(z
t

) g(t)

X ′(at)

dt

t
= 0, j = 0, 1, . . . ,κ − 1, z = a/z0,

be fulfilled, which by virtue of equality (1.5.27) can be written in the form∫
γ

φj(t)X(t)g(t)
dt

t
= 0, j = 0, 1, . . . ,κ − 1, (1.5.28)

where

φj(t) =
dj

dtj
K ′

µ

(z
t

)
, z = a/z0, j = 0, 1, . . . ,κ − 1.

Condition (1.5.16) is the necessary one, while condition (1.5.28) is the
necessary and sufficient one for problem (1.5.14) to be solvable. Hence it can
be expected that the functions X(z)φj(z) are solutions of the homogeneous
problem corresponding to problem (1.5.1).

If this is so, then φj(z) must be solutions of the equation
φ(at)− µφ(t) = 0, t ∈ γ, (1.5.29)

having poles of order j + 1 at the point z = z0.
It is easy to verify that

K ′
µ

(
a

z0t

)
= −φ(z0; t),

where

φ(λ; z) =
z

z − λ
+

µz

z − aλ
+

∞∑
n=0

λn

zn(anµ− 1)

+ µ2
−1∑

n=−∞

a2nλn

zn(anµ− 1)
(1.5.30)

is such a solution of problem (1.5.29) that has a pole of first order at the
point x = λ.
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Thus a general solution of problem (1.5.29) having, at the point z = z0,
a pole of order not higher than κ is given by the formula

φκ(z) =

κ−1∑
j=0

Cj
djφ(λ; z)

dλj

∣∣∣∣
λ=z0

, (1.5.31)

where Cj are arbitrary complex constants. When κ > 0, the homogeneous
problem corresponding to problem (1.5.1) has κ linearly independent solu-
tions

φj(z) = X(z)
djφ(λ; z)

dλj

∣∣∣∣
λ=z′

0

, j = 0, 1, . . . ,κ − 1.

Therefore, by virtue of (1.5.6) and (1.5.21), for κ > 0 a general solution of
problem (1.5.2) is given by the formula

φ(z) =
X(z)

2πi

∫
γ

Kµ

(z
t

) f(t)

X(at)

dt

t
+ φκ(z)X(z), z ∈ D. (1.5.32)

For κ < 0, a solution of problem (1.5.1) exists if and only if the condi-
tions ∫

γ

dj

dzj
Kµ

(
z
t

)
X(at)

f(t)

t
dt = 0, j = 0, 1, . . . ,−κ − 1. (1.5.33)

are fulfilled. In that case, a solution of problem (1.5.1) is given by
formula (1.5.32) where we should put φκ(z) ≡ 0.

For κ = 0 and an − µ ̸= 0, n = 0,±1,±2, . . . , a solution of problem
(1.5.1) is given by formula (1.5.32) where we should put φκ(z) ≡ 0.

For κ = 0 and am = µ, problem (1.5.2) is solvable if and only if the
condition ∫

γ

f(t)

X(at)tm+1
dt = 0 (1.5.34)

is fulfilled.
In that case, by virtue of (1.5.7) and (1.5.21) a solution of the problem

has the form

φ(z) =
X(z)

2πi

∫
γ

K∗
µ

(z
t

) f(t)

X(at)t
dt+ CX(z)zm, (1.5.35)

while we have the function

ψ0(z) = CX ′(z)zm (1.5.36)

as a solution of the adjoint homogeneous problem and condition (1.5.34) for
problem (1.5.1) takes the form∫

γ

f(t)ψ0(t)
dt

t
= 0. (1.5.37)
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For κ < 0, the adjoint homogeneous problem has −κ linearly indepen-
dent solutions

ψj+1(z) =
dj

dzj
ψ(λ; z)X ′(z), λ =

a

z0
, (1.5.38)

where ψ(λ; z) is given in the form of series (1.5.30) where the numbers a
and µ should be replaced by their complex-conjugate values.

It is not difficult either to show that

ψj+1(t) =
djKµ

(
z
t

)
dzj

∣∣∣∣
z=z0

· 1

X(at)
. (1.5.39)

Taking the last equality into account, the solvability conditions and
(1.5.33) take the form∫

γ

ψj(t) f(t)
dt

t
= 0, j = 1, 2, . . . ,−κ. (1.5.40)

Thus, for problem (1.5.1) the following Noether type theorems are valid:
1. If κ > 0 or κ = 0 and am − µ ̸= 0, then the adjoint homogeneous

problem has no solution different from zero, and problem (1.5.1) is always
solvable.

2. If κ < 0 or κ = 0 and an − µ = 0, then the adjoint homogeneous
problem has a nontrivial solution of form (1.5.38) and (1.5.36), and for
problem (1.5.1) to be solvable it is necessary and sufficient that conditions
(1.5.40) and (1.5.37) be fulfilled.

1.6. A Carleman Type Problem with Discontinuous Coefficients

Let us consider the following Carleman type problem
φ(at) = G(t)φ(t) + f(t), t ∈ γ, (1.6.1)

when the functions G(t) and f(t) have discontinuities of first kind at a finite
number of points of the boundary, and satisfy the Hölder condition on each
closed arc whose ends are discontinuity points. It is assumed that G(t) ̸= 0
everywhere on γ. Of the unknown function φ(z) it is required that it be
continuously extendable on the boundary of the domain D except for the
discontinuity points c of the functions G(t) and f(t) and their corresponding
points on the boundary of the ring D near which φ(z) must satisfy the
condition

|φ(z)| < const |z − c|−α, |φ(z)| < const |z − ac|−α, 0 ≤ α < 1.

Following [76], the discontinuity points, at which the condition
argG(c− 0) = argG(c+ 0)

is fulfilled, are called singular and all other points nonsingular.
Take a point t1 ∈ γ at which G(t) is continuous and choose any value

lnG(t1+0). Moving t away from t1 in the positive direction, we can change
the function lnG(t) continuously until t reaches the first nonsingular point c.
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Having reached this point, argG(t) obtains the well-defined value argG(c−
0).

When passing through the point c, we choose the value argG(c+ 0) so
that one of the conditions

0 <
1

2π

(
argG(c− 0)− argG(c+ 0)

)
< 1 (1.6.2)

or
−1 <

1

2π

(
argG(c− 0)− argG(c+ 0)

)
< 0 (1.6.3)

is fulfilled.
Continuing the movement of the point t in the positive direction on γ

and choosing the value argG(t) so that one of conditions (1.6.2) or (1.6.3)
is fulfilled at each nonsingular point, we obtain, on returning to the initial
point t1, a well-defined value for the function lnG(t) on each of the arcs
into which the contour γ is divided by discontinuity points of G(t) and the
point t1.

Assume

κ =
1

2πi

[
lnG(t1 − 0)− lnG(t1 + 0)

]
=

1

2π
[argG(t)]γ ,

where the symbol [ ] denotes an increment of the bracketed expression that
takes place when t moves around the contour γ in the positive direction
and condition (1.6.2) or (1.6.3) is fulfilled. It is obvious that κ is an integer
number.

Consider the function

G0(t) =

(
t− z0
at− z0

)κ

G(t),

where z0 is some fixed point of the ring D. It is obvious for the above-
indicated choice of argG(t) we have

[lnG0(t)]γ = 0.

Absolutely in the same manner as in Section 1.5, the function G(t) can
be written in the form

G(t) = µ
X(at)

X(t)
, t ∈ γ, (1.6.4)

where

X(z) = (z − z0)
κ exp

(
1

2πi

∫
γ

K∗
1

(z
t

)
ln G0(t)

µ

dt

t

)
,

µ = exp
(

1

2πi

∫
γ

lnG0(t)
dt

t

)
.

(1.6.5)

Since
K∗

1

(z
t

)
=

(
at

at− z

)
+

t

t− z
+K0

(z
t

)
,
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where

K0
(z
t

)
=

∞∑
n=1

1

an − 1

( z
at

)n
+

−1∑
n=−∞

an

an − 1

(z
t

)n
,

is holomorphic in the ring 1
|a| <

∣∣ z
t

∣∣ < |a|2, the function X(z) is continu-
ously extendable at all points of the boundary of the ring D except for the
discontinuity points c of the function G(t) and their corresponding points
ac. Near these points, X(z) is representable as

X(z) =
[
(z − c)(z − ac)

]α+iβ
Ω(t) (1.6.6)

(see [76, Chapter 3, Section 26]), where

α =
1

2π
arg G(c− 0)

G(c+ 0)
, β =

1

2π
ln
∣∣∣∣G(c− 0)

G(c+ 0)

∣∣∣∣ .
The function Ω(z) is holomorphic near the points c and ac and tends

to the well-defined nonzero limit as z → c or z → ac.
As we see from formula (1.6.6), the function X(z) is bounded near all

singular points and those nonsingular points, for which condition (1.6.2) is
fulfilled, and also near the points corresponding to them. Moreover, for the
nonsingular points c limX(z) → 0 as z → c or z → ac.

When solving various applied problems it is sometimes required to
find solutions of the Carleman type problem (1.6.1) which are bounded
near certain prescribed nonsingular points c1, c2, . . . , cp and the points
ac1, ac2, . . . , acp corresponding to them. Following [76, Section 77], we call
the solutions of problem (1.6.1) satisfying this condition the solutions of the
class h(c1, c2, . . . , cp)1.

We will denote the class corresponding to p = 0 by h(0) or h0. If m is
the number of all nonsingular points and c1, c2, . . . , cp are all these points,
then the class h(c1, c2, . . . , cm) is sometimes denoted by hm. The class h0
contains all other classes and the class hm is contained in all others.

If it is assumed that the function lnG(t) in (1.6.5) is chosen so that con-
dition (1.6.2) is fulfilled at the nonsingular points c1, c2, . . . , cp, while con-
dition (1.6.3) is fulfilled at all other nonsingular points cp+1, cp+2, . . . , cm,
then, by virtue of the above reasoning, the function X(z) defined by formula
(1.6.5) is bounded at the points c1, c2, . . . , cp. We call this function X(z) a
canonical function of problem (1.6.1) from the class h(c1, c2, . . . , cp), while
the number κ corresponding to it is called an index of the problem from the
class h(c1, c2, . . . , cp). It is obvious that the function X(z) is holomorphic
in the ring D and different from zero everywhere except for the point z0
where it has zero of order κ for κ > 0 and has a pole of order −κ for κ < 0.

1If in the indicated conditions the solution of problem (1.6.1) is bounded at the
points c1, c2, . . . , cp, it will also be bounded at the points ac1, ac2, . . . , acp corresponding
to them.
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Let cm+1, . . . , cn be singular points. If all discontinuity points of the
function G(t) are nonsingular, then n = m.If all discontinuity points are
singular, then m = 0.

A canonical function X(z) of the class h(c1, c2, . . . , cp) is continu-
ously extendable on the boundary of the ring D except for the points
c1, c2, . . . , cm and the points corresponding to them, is bounded near the
points cm+1, cm+2, . . . , cn, acm+1, . . . , acn and near the nonsingular points
ck and ack, k = p+ 1, . . . ,m, it admits an estimate

|X(z)| < const

|z − ck|α
, |X(z)| < const

|z − ack|α
, 0 < α < 1.

Substituting the value of the function G(t) defined by (1.6.4) into con-
dition (1.6.1), we obtain

φ(at)

X(at)
− µ

φ(t)

X(t)
=

f(t)

X(at)
, t ∈ γ. (1.6.7)

For κ ̸= 0, the point z0 can be chosen so that an − µ ̸= 0, n =
0,±1,±2, . . . . For κ > 0, by formula (1.5.5) we obtain

φ(z) =
X(z)

2πi

∫
γ

Kµ

(z
t

) f(t) dt

tX(at)
+X(z)φκ(z), (1.6.8)

where Kµ(z) and φκ(z) are the same functions as in Section 1.5.
Using the corollaries from [76, Section 26], we conclude that the solution

belongs to the class h(c1, . . . , cp) and, near the singular points, is almost
bounded.

For κ < 0, a solution of the class exists if and only if the following
conditions are fulfilled:∫

γ

djKµ

(
z
t

)
dzj

f(t)

X(at)

dt

t
= 0, z = z0, j = 0, 1, . . . ,−κ − 1. (1.6.9)

When these conditions are fulfilled, the problem has a unique solution
given by formula (1.6.7) where we should put φκ(z) = 0.

For κ = 0 and an ̸= µ, a solution from the class h(c1, . . . , cp) always
exists and is given by the same formula (1.6.7) for φκ(z) = 0.

When κ = 0 and am = µ for some integer number m, the problem is
solvable if the condition ∫

γ

f(t) ft

tm+1X(at)
dt = 0 (1.6.10)

is fulfilled and the solution is given by the formula

φ(z) =
X(z)

2πi

∫
γ

K∗
µ

(z
t

) f(t)

X(at)

dt

t
+ bzm, (1.6.11)

where b is a complex constant.
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If now condition (1.6.2) is replaced by condition (1.6.3). then we ob-
tain the most general solution of problem (1.6.1) on which no restriction is
imposed at the nonsingular points. Such a solution is not attributed to the
class h0. It is obvious that the index κ0 of this class is greater than the
indices of all other classes. The index κ is the class h(c1, . . . , cp) is related
to κ by

κ = κ0 − p.

The class hm is a subclass of all other classes, its index κm is less than
other indices and

κm = κ0 −m.

We call the problem

ψ(at) = G(t)ψ(t), t ∈ γ, (1.6.12)

the adjoint problem to (1.6.1). It is obvious that the singular (nonsingular)
points of problem (1.6.1) are the singular (nonsingular) points of problem
(1.6.12).

Accordingly, the class h = h(c1, . . . , cp) of solutions of problem (1.6.1)
and the class h′ = h(cp+1, . . . , cm) of solutions of problem (1.6.12) are called
the adjoint classes.

The canonical functions of the adjoint problems (1.6.12) and (1.6.1) of
the adjoint classes are related by (see Section 1.5)

X ′(z) =
1

X(a/z)
, z ∈ D, (1.6.13)

while the corresponding indices by

κ′ = κ.

For κ > 0, the homogeneous problem (1.6.1) has, in the class
h(c1, . . . , cp), κ linearly independent solutions of the form

φj(z) = X(z)
dj

dzj
φ(λ; z)

∣∣∣∣
λ=z0

, j = 0, 1, . . . ,κ − 1. (1.6.14)

For κ < 0, an adjoint homogeneous problem of the class h(cm, . . . , cn)
has −κ linearly independent solutions of the form

ψj(z) = X ′(z)
dj

dzj
ψ(λ; z)

∣∣∣∣
λ= a

z0

, j = 0, 1, . . . ,−κ − 1. (1.6.15)

For κ = 0 and an ̸= µ, adjoint homogeneous problems in the respective
adjoint classes have no solutions.

For κ = 0 and am = µ, each of the adjoint homogeneous problems has
one solution in the adjoint classes of the form

φ(z) = CX(z)zm, ψ(z) = X ′(z)zm. (1.6.16)
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In view of (1.6.13) the second formula (1.6.16) gives

ψ(t) =
1

X(t)tm
.

It is likewise easy to show that

ψj(t) =
1

X(at)

dj

dzj
Kµ

(z
t

)
, z = z0, j = 0, 1, . . . ,−κ − 1. (1.6.17)

Thus, for problem (1.6.1) the following Noether type theorems are valid:
1. For κ > 0 or κ = 0 and an ̸= µ, the homogeneous problem (1.6.12)

has no nonzero solutions in the class h(cp+1, . . . , cm), while problem (1.6.1)
is always solvable in the class h(c1, . . . , cp) and its solution is given by for-
mula (1.6.11).

2. For κ < 0, the homogeneous problem (1.6.12) has −κ linearly inde-
pendent solutions of form (1.6.15) and, by virtue of equalities (1.6.9) and
(1.6.17), for problem (1.6.1) to be solvable it is necessary and sufficient that
the conditions ∫

γ

f(t)ψj(t)
dt

t
= 0, j = 0, 1, . . . ,−κ − 1

be fulfilled. When these conditions are fulfilled, the solution of problem
(1.6.1) is given by formula (1.6.8) where it is assumed that φκ(z) = 0.

3. If κ = 0 and am = µ for some integer number m, then each of the
adjoint homogeneous problems has one solution φ0, ψ0, each, in the adjoint
classes, which are given by formula (1.6.16), and for the nonhomogeneous
problem (1.6.1) to be solvable it is necessary and sufficient that the condition∫

γ

f(t)ψ0(t)
dt

t
= 0

be fulfilled. When this condition is fulfilled, a solution of problem (1.6.1)
looks like (1.6.11).

1.7. The Riemann–Hilbert Problem for Doubly Connected
Domains

Let D be a finite or infinite domain bounded by the smooth closed
contours L0, L1, . . . , Ln, of which the first one covers all others. L will be
understood as the set of all these contours. The Riemann–Hilbert problem
is formulated as follows.

Find a function φ(z), holomorphic in D and continuous in D + L, by
the condition

Re
[
a(t)φ(t)

]
= c(t), t ∈ L, (1.7.1)

where a(t) and c(t) are functions of the class H given on L.
This problem is a particular case of quite a general problem posed by

Riemann. The problem was considered by Hilbert.
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In subsequent years, the problem was the subject of investigation
by many authors. For the detailed references see the monographs by
N. Muskhelishvili [76], I. N. Vekua [121], F. D. Gakhov [42], where various
methods are presented for its solution.

In the case of a simply connected domain, N. I. Muskhelishvili [76]
proposed an effective technique of solution of the Riemann–Hilbert problem
by reducing it to a linear conjugation problem. This technique is based
on the application of conformal mapping of the domain onto the circle.
Therefore the assumption that the domain is simply connected is quite
essential.

Below we give a method of effective solution of the Riemann–Hilbert
problem for a doubly connected domain.

Since an arbitrary doubly connected domain can always be conformally
mapped onto the circular ring [52], we assume that the domain D = {1 <
|z| < R}. We denote by L0 the external boundary of the ring D, and by L1

the internal boundary.
The boundary condition is written as follows:

a0(t)φ(t) + a0(t)φ(t) = 2c0(t), t ∈ L0, (1.7.2)
a1(t)φ(t) + a1(t)φ(t) = 2c1(t), t ∈ L1, (1.7.3)

where a0, a1, c0, c1 are given function of the class H; a0(t) ̸= 0, a1(t) ̸= 0
everywhere.

We introduce the notation: κj = (−1)j Ind aj(t), j = 0, 1, κ = κ0+κ1.
The number κ is called the index of the Riemann–Hilbert problem.

We rewrite condition (1.7.3) in the form

φ(t) +
a1(t)

a1(t)
φ(t) =

2c1(t)

a1(t)
, t ∈ L1 (1.7.4)

and represent the function a1(t)/a1(t) as (see [76])
a1(t)

a1(t)
=
a−(t)

a−(t)
t−2κ1 , (1.7.5)

where

a−(z) = eiβ exp
(
− 1

2πi

∫
L1

ln
(
a1(t)

a1(t)
t2κ1

)
dt

t− z

)
, |z| > 1,

β =
1

2πi

∫
L1

arg
(
tκ1a1(t)

) dt
t
.

(1.7.6)

Substituting (1.7.5) into condition (1.7.4) and introducing the notation

ψ(z) =


φ(z)zκ1 [a−(z)]−1, 1 < |z| < R,

−φ
(
1

z

)
z−κ1

[
a−
(
1

z

) ]−1

,
1

R
< |z| < 1,

(1.7.7)
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we obtain

ψ+(t)− ψ−(t) = − 2c1(t)t
κ1

a1(t)a−(t)
, t ∈ L1. (1.7.8)

Hence follows

ψ(z) = A(z)− A(0)

2
+ ω1(z), (1.7.9)

where

A(z) = − 1

πi

∫
L1

c1(t)t
κ1

a1(t)a−(t)(t− z)
dt, |z| ̸= 1 (1.7.10)

and ω1(z) is a holomorphic function in the ring 1/R < |z| < R.
Formula (1.7.7) implies that the function ψ(z) satisfies the condition

ψ(z) + ψ(1/z) = 0 for 1 < |z| < R and therefore the function ω1(z) must
satisfy the condition

ω1(z) = −ω1

(
1

z

)
,

1

R
< |z| < R. (1.7.11)

Formulas (1.7.7) and (1.7.9) yield

φ(z) = a−(z)z−κ1

[
A(z)− A(0)

2
+ ω1(z)

]
, 1 < |z| < R, (1.7.12)

φ

(
1

z

)
= −a

(
1

z

)
zκ1

[
A(z)− A(0)

2
+ ω1(z)

]
,

1

R
< |z| < R, (1.7.13)

or

φ(z) = −a−(z)(z)−κ1

[
A

(
1

z

)
− A(0)

2
+ ω1(z)

]
, 1< |z|<R. (1.7.14)

Substituting values (1.7.12) and (1.7.14) into formula (1.7.2) and intro-
ducing the notation

ζ = Rz, ω(ζ) = ω1

(
ζ

R

)
= ω1(z), 1 < |ζ| < R2. (1.7.15)

for finding the function ω(ζ) we obtain the boundary condition

ω(R2σ) = G(σ)ω(σ) + F (σ), |σ| = 1, (1.7.16)

where

G(σ) =
a0(Rσ)a−(Rσ)

a0(Rσ)a−(Rσ)
σ2κ1 , |σ| = 1, (1.7.17)

F (σ) = G(σ)A
( σ
R

)
−A(σR)

− A(0)

2
[G(σ)− 1] +

2c0(Rσ)(Rσ)
κ1

a0(Rσ)a−(Rσ)
, (1.7.18)
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The function D1 = {1 < |z| < R2} which we want to define in the ring
ω(ζ) must satisfy the additional condition

ω(ζ) = −ω
(
R2

ζ

)
, ζ ∈ D1, (1.7.19)

(1.7.16) is the problem which we studied in 1.5 The solution of this problem
obtained in that paragraph may not satisfy the additional condition (1.7.19),
but using this solution we may construct the solution satisfying condition
(1.7.19). Indeed, passing in (1.7.16) to the conjugate values, we see that
if the function ω0(ζ) satisfies condition (1.7.16), then the function ω∗(ζ) =

−ω0(R2/ζ) satisfies the condition

ω∗(R
2σ) = G(σ)ω∗(σ)− F (σ)G(σ), |σ| = 1.

It can be shown that

F (σ)G(σ) = −F (σ).

Thus the functions ω0(ζ) and ω∗(ζ) satisfy one and the same boundary
condition (1.7.16) and therefore the function

ω(ζ) =
1

2

[
ω0(ζ) + ω∗(ζ)

]
=

1

2

[
ω0(ζ)− ω0

(
R2

ζ

) ]
also satisfies conditions (1.7.16) and (1.7.9). Thus ω(ζ) is a solution of the
problem posed.

The solution of the considered problem can written in simpler terms.
For this, in formula (1.5.20), the function ζ − ζ0 should be replaced by such
a function Wκ(ζ) that satisfies the conditions

Wκ(ζ) =Wκ

(
R2

ζ

)
, Wκ(ζ0) = 0 for κ > 0, R < |ζ| < R2.

An example of such a function is

Wκ(ζ) = (ζ − ζ0)
κ(R2 − ζζ0)

κζ−κ , R < |ζ| < R2.

The index of the function Wκ(σ)/W (R2σ) is equal to −2κ, and it
module is equal to one.

Thus, for κ > 0 a solution of the problem posed has the form (see 1.5)

ω(ζ) =
X(ζ)

2πi

∫
γ

Kµ

(
ζ

σ

)
F (σ)

σX(R2σ)
dσ +X(ζ)Q(ζ), (1.7.20)
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where

X(ζ) = eiαWκ(ζ) exp
(

1

2πi

∫
γ

K∗
1

(
ζ

σ

)
ln G(σ)Wκ(σ)

µWκ(R2σ)

dσ

σ

)
,

µ = exp
(

1

2πi

∫
γ

ln G(σ)Wκ(σ)

Wκ(R2σ)

dσ

σ

)
,

α = − 1

2πi

∫
γ

ln G(σ)Wκ(σ)

µWκ(R2σ)

dσ

σ
.

(1.7.21)

It is obvious that |µ| = 1. The point ζ0 can always be chosen so that
µ ̸= 1 for κ ̸= 0.

For κ > 0,

Q(ζ) =
κ−1∑
j=0

[
cjφj(ζ)− cjφj

(
R2

ζ

) ]
,

φj(ζ) =
dj

dλj
φ(λ, ζ)

∣∣∣∣
λ=ζ0

,

where c0, c1, . . . , cκ−1 are complex constants.
It is easy to show that

Kµ

(
ζ

σ

)
= −µKµ

(
R2

ζσ

)
, ζ ∈ D1, µ ̸= 1

and

K∗
1

(
ζ

σ

)
= −K∗

1

(
R2

σζ

)
+ 2, ζ ∈ D.

By these equalities and the condition
F (σ)

X(σR2)
=

F (σ)

µX(R2σ)
,

we conclude that the function represented by (1.7.20) is a solution of the
problem posed, i.e. it satisfies condition (1.7.19), too.

If κ < 0, then a solution of problem (1.7.16) exists provided that the
necessary and sufficient conditions∫

γ

dj

dζj
Kµ

(
ζ

σ

)
F (σ)

X(σR2)

dσ

σ
= 0, j = 0, 1, . . . ,−κ − 1, (1.7.22)

are fulfilled for ζ = ζ0 and ζ = R2/ζ0 and is represented by formula (1.7.20)
where it is assumed that Q(ζ) ≡ 0.

If conditions (1.7.22) are fulfilled at the point ζ = ζ0, they will be
fulfilled at the point ζ = R2/ζ0, too, since

ω(ζ) = −ω
(
R2

ζ

)
.
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For κ = 0 and µ ̸= 1, problem (1.7.16) has a unique solution given by
formula (1.7.20) where Q(ζ) ≡ 0.

If κ = 0 and µ = 1, then provided that the following necessary and
sufficient condition ∫

|σ|=1

F (σ)

σX(R2σ)
dσ = 0

for the existence of a solution is fulfilled, a solution of the problem is given
by the formula

ω(ζ) =
X(ζ)

2πi

∫
γ

K∗
1

(
ζ
σ

)
F (σ)

σX(R2σ)
dσ + ciX(ζ), (1.7.23)

where c is an arbitrary real constant.
The first three terms in formula (1.7.18) of the expression of the function

F (σ) are transformed as follows

G(σ)

[
A
( σ
R

)
− A(0)

2

]
−A(Rσ) +

A(0)

2

=
µX(R2σ)

X(σ)

[
1

πi

∫
|t|=1

f1(t)

t− σ/R
dt− A(0)

2

]

− 1

πi

∫
|t|=1

f1(t)

t−Rσ
dt+

A(0)

2
, |σ| = 1,

and substituted into formula (1.7.20). Inverting the order of integration in
the double integrals and applying the Cauchy residue theorem, we obtain

ω(ζ) =
X(σ)

πi

[∫
γ

Kµ

(
ζ
σ

)
f0(Rσ)

X(R2σ)σ
dσ − µ

∫
γ

Kµ

(
ζ
σ

)
f1(σ)

X(Rσ)σ
dσ

]

+X(ζ)Q(ζ)−A

(
ζ

R

)
+
A(0)

2
.

Replacing now in this formula ζ/R by z, ω(ζ/R) by ω1(ζ) and substi-
tuting the obtained values into (1.7.12), we have

φ(z) =
a−(z)z−κ1X(Rz)

πi

[ ∫
L0

Kµ

(
R2z
σ

)
f0(σ)

X(Rσ)σ
dσ−µ

∫
L1

Kµ

(
z
σ

)
f1(σ)

X(Rσ)σ
dσ

]
+X(Rz)Q(Rz)a−(z)z−κ1 , (1.7.24)

where
fj(t) =

cj(t)σ
κ1

aj(t)a−(t)
, t ∈ Lj , j = 0, 1.

So, we come to the conclusions:
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1. For κ > 0, a solution of the Riemann–Hilbert problem is given by
formula (1.7.24).

2. For κ < 0, for the problem to be fulfilled it is necessary and sufficient
that the conditions∫

L0

djKµ

(
R2 z

t

)
f0(t)

dzjX(Rt)t
dt− µ

∫
L1

djK
(
z
t

)
f0(t)

dzj
· f1(t)

X(Rt)t

dt

t
= 0, (1.7.25)

j = 0, 1, . . . ,−κ − 1, z = z0,

be fulfilled. Then the problem has a unique solution given by (1.7.24) where
Q(Rz) ≡ 0.

3. For κ = 0 and µ ̸= 1, the solution (unique) is given by the same
formula (1.7.24) if Q(Rz) = 0.

4. For κ = 0 and µ = 1, the Riemann–Hilbert problem has a solution
if and only if the condition∫

L0

f0(t)

tX(Rt)
dt−

∫
L1

f1(t)

tX(Rt)
dt = 0, (1.7.26)

is fulfilled. Then a solution has the form

φ(z) =
z−κ1a−(z)X(Rz)

πi

×

[ ∫
L0

K∗
µ

(
R2 z

t

)
f0(t)

tX(Rt)
dt− µ

∫
L1

K∗
µ

(
z
t

)
f1(t)

tX(Rt)
dt+ C

]
, (1.7.27)

where c is a real constant.
It can be easily shown that for κ = 0 the number µ can be represented

as follows

µ = exp
(
1

π

2π∫
0

arg a0(Re
iθ)

a1(eiθ)
dθ

)
.

Hence it follows that if the integral
2π∫
0

arg a0(Re
iθ)

a1(eiθ)
dθ ̸= 0,

then the Riemann–Hilbert problem is solvable for any right-hand part, but if
this integral is equal to zero, then the Riemann–Hilbert problem is solvable
only provided that condition (1.7.26) is fulfilled.

1.8. The Riemann–Hilbert Problem with Discontinuous
Coefficients for a Ring

Let us now consider the case where the functions a0(t), a1(t), c0(t), c1(t)
have discontinuities of first kind at a finite number of points of the boundary
and, on each closed arc whose ends are discontinuity points, satisfy the
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Hölder condition and it is assumed that aj(t) ̸= 0 everywhere on Lj , j = 0, 1.
Denote the number of discontinuity points on the internal contour L1 by
n1, and that on the external contour L0 by n0.

The Riemann–Hilbert problem is formulated as follows: Find in the ring
D = {1 < |z| < R} a holomorphic function φ(z), continuously extendable
to all points of the boundary except perhaps for the discontinuity points of
the functions a0(t), a1(t) and c0(t), c1(t) near which

φ(z) <
const

|z − c|α
, 0 ≤ α < 1,

by the boundary condition

φ(t) +
a0(t)

a0(t)
φ(t) =

2c0(t)

a0(t)
, t ∈ L0, (1.8.1)

φ(t) +
a1(t)

a1(t)
φ(t) =

2c1(t)

a1(t)
, t ∈ L1. (1.8.2)

Like in 1.6, the discontinuity points, at which the argument of the
relation aj/aj , j = 0, 1 can be changed continuously when passing through
them, are called singular, and all other points nonsingular.

Analogously to what has been done in 1.6, a solution will be sought
in the class h(c1, . . . , cq, cn+1, . . . , cn+p), i.e. in the class of functions
bounded near the nonsingular points c1, . . . , cq, cn+1, . . . , cn+p, where the
points c1, c2, . . . , cq and cn+1, cn+2, . . . , cn+p, q < n, p < n lie on the con-
tours L1 and L0, respectively.

The index κ of this class is defined by the formula

κ = κ0 + κ1, (1.8.3)

where

κ0 =
1

2π

[
arg a0(t)

a0(t)

]
L0

, κ1 =
1

2π

[
arg a1(t)

a1(t)

]
L1

,

[ ]Lj , j = 0, 1, denotes an increment of the bracketed function that takes
place when the point t passes over the contour Lj in the positive direction,
i.e. in the direction leaving the point of the ring D on the left. The values of
arg
(
a0(t)/a0(t)

)
and arg

(
a1(t)/a1(t)

)
are chosen so that condition (1.6.2) is

fulfilled at the nonsingular points c1, c2, . . . , cq and cn+1, cn+2, . . . , cn+p, and
condition (1.6.3) at the nonsingular points cq+1, . . . , cq+l, cn+p+1, . . . , cn+r,
l < n, r < m.

As different from the case of a continuous coefficient, κ0 and κ1 may
be both even and odd.

The coefficient of the boundary condition (1.8.2) can be represented as

a1(t)

a1(t)
= t−κ1

a−(t)

a−(t)
, (1.8.4)
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where

a−(z) = eiβ0 exp
(

− 1

2πi

∫
L1

ln
[
a1(t)

a1(t)
tκ1

]
dt

t− z

)
, |z| > 1,

β0 =
1

2πi

∫
L1

ln
[
a1(t)

a1(t)
tκ1

]
dt

t
.

(1.8.5)

Let us first consider the case where κ1 is an even number. Like in 1.7
we obtain

φ(z) = z−
κ1
2 a−(z)

[
A1(z)−

A1(0)

2
+ ω1(z)

]
, 1 < |z| < R, (1.8.6)

φ(z) = −(z)−
κ1
2 a1(z)

[
A1

(
1

z

)
−A1(0)

2
+ω1

(
1

z

)]
, 1< |z|<R, (1.8.7)

where
A1(z) = − 1

πi

∫
L1

c1(t)t
κ1
2

a1(t)a−(t)

dt

t− z
, z ̸= 1, (1.8.8)

and ω(ζ) is a holomorphic function in the ring 1/R < |z| < R that satisfies
the condition

ω1

(
1

z

)
= −ω1(z). (1.8.9)

Substituting the boundary values of φ(z) and φ(z) defined by (1.8.6) and
(1.8.7) into formula (1.8.1) and using the otation

ζ = Rz, ω(ζ) = ω1(z) = ω1

(
ζ

R

)
, 1 < |ζ| < R2, (1.8.10)

we obtain
ω(R2σ) = G(σ)ω(σ) + F (σ), σ ∈ γ, (1.8.11)

where

G(σ) =
a0(Rσ)a−(Rσ)

a(Rσ)a−(Rσ)
σκ1 ,

F (σ) = G(σ)

[
A1

( σ
R

)
− A1(0)

2

]
−A1(Rσ) +

A1(0)

2
+

2c0(Rσ)(Rσ)
κ1/2

a0(Rσ)a−(Rσ)
.

Formulas (1.8.9) and (1.8.10) imply that ω(ζ) must satisfy the condition

ω

(
R2

ζ

)
= −ω(ζ), 1 < |ζ| < R2. (1.8.12)

Thus the finding of a solution of the Riemann–Hilbert problem in the
class h(c1, . . . , cq, cn+1, . . . , cn+p) reduces to finding a solution of the Car-
leman type problem studied in 1.5 in the class h

( cn+1

R , . . . ,
cn+p

R

)
with the

additional condition (1.8.11). Note that the index of problem (1.8.10) of
the class h

( cn+1

R , . . . ,
cn+p

R

)
coincides with the index of the Riemann–Hilbert

problem of the class h(c1, . . . , cq, cn+1, . . . , cn+p).
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Let us introduce the function
Wκ(ζ) = (ζ −Reiα0)−κζδ(n)ei

α0κ
2 , (1.8.13)

where

δ(n) =


κ
2

for even κ,
κ − 1

2
for odd κ,

α0 is a fixed number, α0 ∈ [0, 2π].
It is obvious that

Wκ

(
R2

ζ

)
=


Wκ(ζ) for even κ,

−ζ Wκ(ζ)

R
for odd κ.

As we have done in 1.6, we find a general solution of problem (1.8.10)
for κ > 0

ω(ζ) =
X(ζ)

2πi

∫
γ

Kµ

(
ζ
σ

)
F (σ)

X(R2σ)σ
dσ +Q(ζ)X(ζ), (1.8.14)

where

X(ζ) =Wκ(ζ)e
iβ0 exp

(
1

2πi

∫
γ

K1

(
ζ

σ

)
ln
[
G(σ)Wκ(σ)

µWκ(R2σ)

]
dσ

σ

)
, (1.8.15)

µ = exp
(

1

2πi

∫
γ

ln G(σ)Wκ(σ)

Wκ(R2σ)

dσ

σ

)
,

|µ| = 1 when κ is even, and |µ| = R when κ is odd.

Q(ζ) =

κ−1∑
j=0

(
djφj(ζ) + djφj

(
R2

ζ

) )
for odd κ,

Q(ζ) =
κ−1∑
j=0

(
djφj(z)− djφj

(
R2

ζ

) )
for even κ,

(1.8.16)

φj(ζ) is the same as in 1.7.
If we take into account that

Kµ

(
R2

σζ

)
=


−µKµ

(
ζ

σ

)
for even κ,

−µ ζ
σ
Kµ

(
ζ

σ

)
for odd κ

and

X

(
R2

ζ

)
=


X(ζ) for even κ,

− ζ

R
X(ζ) for odd κ
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and

F (σ) =
F (σ)

G(σ)
+
A1(0)

2

[
1− 1

G(σ)

]
,

then it can be easily shown that ω(ζ) satisfies condition (1.8.11).
If κ < 0, then the solution of problem (1.8.11) exists provided that the

necessary conditions∫
γ

dj

dζj
Kµ

(
ζ

σ

)
F (σ)

X(R2σ)

dσ

σ
= 0, j = 0, 1, . . . ,−κ − 1, (1.8.17)

are fulfilled for ζ = Reiα0 and is represented by formula (1.8.14) where it
should be assumed that Qκ(ζ) ≡ 0.

When κ = 0 and µ ̸= 1, problem (1.8.10) has a unique solution given
by (1.8.14) where Qκ(ζ) ≡ 0.

For κ = 0 and µ = 1 the solution exists only provided that∫
γ

F (σ)

X(R2σ)σ
dσ = 0.

If this condition is fulfilled, then the solution is given by the formula

ω(ζ) =
X(ζ)

2πi

∫
γ

Kµ

(
ζ
σ

)
F (σ)

X(R2σ)σ
dσ + ciX(ζ),

where c is an arbitrary real constant.
Now we let us consider the case where κ1 is odd. The functions φ(z)

and φ
(
1
z

)
can be written in the form

φ(z) = z−
κ1−1

2 a−(z)
[
A2(z) + ω2(z)

]
, 1 < |z| < R, (1.8.18)

φ

(
1

z

)
= −z

κ1+1
2 a−

(
1

z

)[
A2(z) + ω2(z)

]
,

1

R
< |z| < 1, (1.8.19)

where

A2(z) = − 1

πi

∫
L1

c1(t)t
κ1−1

2

a1(t)a−(t)

dt

t− z
, |z| ̸= 1,

the function ω2(z) is holomorphic in the ring 1/R < |z| < R and satisfies
the condition

ω2

(
1

z

)
= −zω2(z). (1.8.20)

If we substitute the boundary values of φ(z) and φ(z) defined by (1.8.18)
and (1.8.19) into the boundary condition (1.8.1) and use the notation

ζ = Rz, ω(ζ) = ω2

(
ζ

R

)
= ω2(z),
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then for ω(ζ) we obtain the Carleman type problem

ω(R2σ) =
G(σ)

R
ω(σ) + F1(σ), σ ∈ γ,

where

G(σ) =
a0(Rσ)a−(Rσ)

a0(Rσ)a−(Rσ)
σκ1 ,

F1(σ) = G(σ)
[
A2

( σ
R

)
−A(Rσ)

]
+
c0(Rσ)(Rσ)

κ1−1
2

a0(Rσ)a−(Rσ)
,

with the additional condition

ω∗

(
R2

ζ

)
=

ζ

R
ω(ζ). (1.8.21)

If we introduce the notation µ/R = µ∗, then for κ > 0 a solution of
problem (1.8.1) can be represented as

ω(ζ) =
X(ζ)

2πi

∫
γ

Kµ∗

(
ζ

σ

)
F1(σ)

σX(R2σ)
dσ +X(ζ)Q1(ζ), (1.8.22)

where

Q1(ζ) =



κ−1∑
j=0

[
djφj(ζ)− dj

R

ζ
φj

(
R2

ζ

) ]
for even κ,

κ−1∑
j=0

[
djφj(ζ) + djφj

(
R2

ζ

) ]
for odd κ,

0 for κ = 0,

dj are complex constants.
For κ < 0, a solution is given by (1.8.22), where it is assumed that

Q1(ζ) ≡ 0 provided that the following necessary and sufficient solvability
conditions are fulfilled:∫

γ

dj

dζj
Kµ∗

(
ζ

σ

)
F1(σ)

σX(R2σ)
dσ = 0, ζ = Reiα0 , j = 0, 1, . . . ,−κ − 1.

1.9. Solution of an Infinite System of Algebraic Equations

In this paragraph, we will show one more application of the results
obtained in 1.5. Let us consider the following infinite system of algebraic
equations

anφn −
∞∑

m=−∞
Kn−mφm = fn, n = 0,±1,±2, . . . , (1.9.1)

where |a| ̸= 1 is a complex constant; f = {fn}∞−∞, K = {kn}∞−∞ are given
vectors and φ = {φn} is an unknown vector in the space l1. It can be
assumed without loss of generality that |a| > 1.
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The space l1 is the commutative normed ring where the operation of
multiplication is defined by the convolution

Kφ = K ∗ φ =

{ ∞∑
m=−∞

Kn−mφm

}∞

−∞

=

{ ∞∑
m=−∞

φn−mKm

}∞

−∞

= φ ∗K = φK. (1.9.2)

Assume
ψ = {ψn}∞−∞ ∈ l1

and consider the function

Ψ(t) =

∞∑
n=−∞

ψnt
n, t = eiθ, 0 ≤ θ ≤ 2π. (1.9.3)

Thus to each vector of the space l1 there corresponds a function which is
the sum of an absolutely summable Fourier series and, vice versa, to each
function defined on the circumference |t| = 1 which can be expanded into
an absolutely summable Fourier series there corresponds one vector of the
ring l1 of the form

ψn =

{
1

2πi

∫
|t|=1

Ψ(t)t−(n+1) dt

}∞

−∞

. (1.9.4)

The class of functions defined on the circumference |t| = 1 and expandable
into an absolutely converging Fourier series is called the Wiener class and
denoted by W .

Equality (1.9.3), which to each vector ψ ∈ l1 puts into correspondence
a function Ψ ∈ W , is called the discrete Fourier transform, and equality
(1.9.4) which provides the reciprocal correspondence is called the reciprocal
discrete Fourier transform.

Since the discrete Fourier transform of a convolution is the product of
functions, the class W is a commutative normed ring with the ordinary
operation of multiplication where the norm is defined as follows

∥Ψ∥W = ∥ψ∥l1 =

∞∑
n=−∞

|ψn|.

The system of equations

anψn −
∞∑

m=−∞
Km−nψm = cn, n = 0,±1,±2, . . . , (1.9.5)

where c = {cn}∞−∞ is a given vector and ψ = {ψn}∞−∞ is the unknown vector
of the ring l1, will be called the adjoint system to (1.9.1).
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After carrying out discrete Fourier transformation of systems (1.9.1) and
(1.9.5) and applying the convolution transformation property, we obtain

Φ(at) = K(t)Φ(t) + F (t), t ∈ γ, (1.9.6)
Ψ(at) = K(t)Ψ(t) + C(t), t ∈ γ, (1.9.7)

where

K(t) =
∞∑

n=−∞
Knt

n, F (t) =
∞∑

n=−∞
fnt

n, C(t) =
∞∑

n=−∞
cnt

n, t ∈ γ,

while

Φ(z) =
∞∑

n=−∞
φnz

n, Ψ(t) =
∞∑

n=−∞
ψnz

n, z ∈ D, D = {1 < |z| < R},

are the sought analytic functions with boundary values belonging to the
ring W .

We have studied these problems in 1.5 for the case where the coefficient
and free term belong to the class H (Hölder). But, as is well known, a func-
tion of the class H cannot belong to the class W and conversely. Therefore,
in that case additional investigation of the problem is needed.

The next two theorems play an essential role in the study of problem
(1.9.6).

Wiener–Levy Theorem. If the function Ω(z) is analytic in the do-
main S, F (t) ∈W and its pre-image F (γ) ∈ S, then, together with F , also
Ω(F ) ∈W .

Theorem. If F (t) ∈ W , then there exists a Cauchy principal value of
the singular integral

1

πi

∫
γ

F (t)

t− t0
dt, t ∈ γ,

belonging to the class W .

With the aid of these theorem the solution of problem (1.9.6) can be
constructed in the same manner as in Section 1.5, i.e. for κ > 0 or κ = 0
and an − µ ̸= 0 the solution can given by the formula

Φ(z) =
X(z)

2πi

∫
γ

Kµ

(z
t

) F (t)

tX(at)
dt+X(z)φκ(z), z ∈ D, (1.9.8)

where X, Kµ, φκ and µ are the same as in 1.5. If κ < 0, then for problem
(1.9.1) to be solvable it is necessary and sufficient that∫

γ

F (t)Ψj(t)
dt

t
= 0, j = 1, 2, . . . ,−κ, (1.9.9)
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where the functions Ψj(t) are the boundary values of the functions Ψj(z),
j = 1, 2, . . . ,−κ, which make up a complete system of linearly independent
solutions of the homogeneous problem adjoint to the considered one.

If κ = 0 and am −µ = 0 for some integer number m, then the homoge-
neous problems corresponding to problems (1.9.6) and (1.9.7) have each a
solution, while for the nonhomogeneous problem (1.9.6) to be solvable it is
necessary and sufficient that the condition∫

γ

F (t)Ψ(t)
dt

t
= 0 (1.9.10)

be fulfilled.
Since between the rings W and l1 there arises an isomorphism, the

above propositions hold also for system (1.9.1) whose solution is given by
the inverse transform

φ =

{
1

2πi

∫
γ

Φ(t)

tn+1
dt

}∞

−∞

. (1.9.11)

Thus, if κ > 0 or κ = 0 and an − µ ̸= 0, n = 0,±1,±2, . . . , then
the homogeneous system corresponding to system (1.9.1) has κ linearly
independent solutions, its adjoint system has only a trivial solution, and
the nonhomogeneous system (1.9.1) is always solvable.

If κ = 0 and am = µ for some integer number m, then the homoge-
neous system corresponding to system (1.9.1) and its adjoint homogeneous
system have one solution each. For the nonhomogeneous system (1.9.1) to
be solvable it is necessary and sufficient that the condition

∞∑
n=−∞

fnψ
(0)
n = 0 (1.9.12)

be fulfilled. This condition arises from condition (1.9.10) where ψ =
{ψn}∞−∞ is a solution of the adjoint homogeneous system to (1.9.1).

If κ < 0, then the homogeneous system corresponding to (1.9.1) has
no solution, its adjoint system has κ linearly independent solutions, while
for the nonhomogeneous system (1.9.1) to be solvable it is necessary and
sufficient that the conditions

∞∑
n=−∞

fnψ
(j)
n = 0, j = 1, 2, . . . ,−κ, (1.9.13)

be fulfilled, where
ψ(j) = {ψj

n}∞−∞, j = 1, 2, . . . ,−κ,
are solutions of the homogeneous system corresponding to system (1.9.5).

In [53], system (1.9.1) is investigated for |a| = 1 by reducing it to the
functional equation

Φ(teiθ)−K(t)Φ(t) = F (t), t ∈ γ. (1.9.14)
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An important particular case of equation (1.9.14) is investigated for
K(t) ≡ 1 in [6], [7]. It is obvious that the case investigated by us differs
essentially from the case considered in these works since for equation (1.9.14)
to be solvable it is necessary and sufficient that the condition IndK(t) = 0
be fulfilled.



CHAPTER 2

The Contact Problems for Unbounded
Domains with Rectilinear Boundaries

2.1. Some Basic Formulas of the Elasticity Theory

In the sequel, we will use some basic formulas of the plane static elastic-
ity theory. These formulas establish a relation of the stress (σx, σy, τxy) and
displacement (u, v) component to analytic functions of a complex variable.

For an isotropic body, stress and displacement components
are expressed through two analytic functions by the well known
Kolosov–Muskhelishvili formulas [77]

i

z∫
z0

(Xn + iYn) ds = φ(z) + zφ′(z) + ψ(z) + const, (2.1.1)

2µ(u+ iv) = κφ(z)− zφ′(z) + ψ(z), (2.1.2)

where φ(z) and Ψ(z) are analytic functions in the domain S occupied by
the body; µ is the shear modulus; κ = 3 − 4ν for plane deformation; κ =
(3 − ν)/(1 + ν) for plane stressed state; ν is Poisson’s ratio; the integral
is taken over any smooth arc l lying within the domain S and connecting
the fixed point z0 with the variable point z of the domain S; Xn and Yn
are the components of stress acting on the arc from the side of the positive
normal, i.e.the normal directed to the right if one looks along the positive
direction l. As is known,

Xn = σx cos(n, x) + τxy cos(n, y),
Yn = τxy cos(n, x) + σy cos(n, y). (2.1.3)

For the case of an anisotropic body, S. G. Lekhnitski showed in [67]
that if the equation

a11s
4 − 2a16s

3 + (2a12 + a66)s
2 − 2a26s+ a22 = 0, (2.1.4)

where a11, a12, a22, a16, a26, a66 are real constants depending on the elas-
tic properties of the considered body, has no multiple roots, i.e. has four
different pairwise conjugate roots1

s1 = α1 + iβ1, s2 = α2 + iβ2, s3 = α1 − iβ1, s4 = α2 − iβ2;

1In [67] it was established that equation (2.1.4) has no real roots.

56
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then stresses and displacements are expressed through two analytic func-
tions Φ1(z1) and Φ2(z2) of the variables

z1 = x1 + iy1 = (x+ α1y) + i(β1y),

z2 = x2 + iy2 = (x+ α2y) + i(β2y)

as follows:
σx = 2Re

[
s21Φ1(z1) + s22Φ2(z2)

]
,

σy = 2Re
[
Φ1(z1) + Φ2(z2)

]
,

τxy = −2Re
[
s1Φ1(z1) + s2Φ2(z2)

]
,

(2.1.5)

u = 2Re
[
p1φ1(z1) + p2φ2(z2)

]
,

v = 2Re
[
q1φ1(z1) + q2φ2(z2)

]
.

(2.1.6)

Here
p1 = a11s

2
1 + a12 − a16s1,

p2 = a11s
2
2 + a12 − a16s

2
2,

q1 = a12s1 + a22/s1 − a26,

q2 = a12s2 + a22/s2 − a26,

Φ1(z1) =
dφ1(z1)

dz1
,

Φ2(z2) =
dφ2(z2)

dz2
.

(2.1.7)

We also present the formula ([66, Section 8]) which can be used instead
of (2.1.5)

(1 + is1)φ1(z1) + (1 + is1)φ1(z1) + (1 + is2)φ2(z2) + (1 + is2)φ2(z2)

= i

z∫
z0

(Xn + iYn) ds+ const. (2.1.8)

If equation (2.1.4) has multiple roots, then stresses and displacements
are expressed by formulas analogous to the formulas for isotropic body.

In the particular case, if the body is orthotropic and the direction of
the x- and y-axes coincides with the principal directions of elasticity, then
equation (2.1.4) takes the form

1

E1
s4 +

(
1

G
− 2ν1
E1

)
s2 +

1

E2
= 0. (2.1.9)

Here E1, E2 are Young’s modulus with respect to the principal x− and y−
axes; G is the shear modulus, ν1 is Poisson’s ratio characterizing contraction
along the y-axis for extension (compression) along the x-axis.

The roots of equation (2.1.4) are purely imaginary; s1 = iβ1, s2 = iβ2.
It is assumed that β1 > β2.
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Then

a16 = a26 = 0, a11 =
1

E1
, a12 = − ν1

E1
= − ν2

E2
, a66 =

1

G
,

p1 = −β
2
1 + ν1
E1

, p2 = −β
2
2 + ν1
E1

,

q1 = −i
(
ν1β1
E1

+
1

E2β1

)
, q2 = −i

(
ν1β2
E1

+
1

E2β2

)
.

(2.1.10)

Taking into account that β2
1β

2
2 = E1/E2, we obtain

q1 = − iβ1(β
2
2 + ν1)

E1
, q2 = − iβ2(β

2
1 + ν1)

E1
.

2.2. A Contact Problem for a Wedge with an Elastic Fastening

Let us assume that a thin isotropic wedge-shaped plate on the plane
z = x+ iy occupies an angle −α < arg z < 0, 0 < α ≤ 2π.

Let one side arg z = −α of the angle be free or fastened and a rec-
tilinear rod be pasted to the other side arg z = 0. We are to define the
law of distribution of contact forces along the fastening line and the elastic
equilibrium of the plate when the concentrated force P directed along the
x-axis is applied to the rod end. The rod rigidity in bending is assumed to
be negligibly small, i.e. σy = 0.

From the condition of equilibrium of any part (0, x) of the rod we have

P + S0σ
(0)
x − h

x∫
0

τ (0)xy (s) ds = 0, x > 0. (2.2.1)

Here σ(0)
x is the normal stress acting in an arbitrary cross-section of the rod,

τ
(0)
xy is the tangent stress acting on the rod along the contact line, S0 is the

rod cross-section, h is the plate thickness.
A condition of a complete contact of the elastic rod with the wedge has

the form
du0(x)

dx
=
du(x, 0)

dx
, τ (0)xy = τxy(x; 0) = τ(x), x > 0. (2.2.2)

Furthermore, taking into account that σ(0)
y = σy = 0, by Hooke’s law

we obtain
du0(x)

dx
=
σ
(0)
x

E0
,

du(x, 0)

dx
=
σx(x, 0)

E
, (2.2.3)

where E and E0 are respectively the elasticity moduli of the place and the
rod.

By virtue of (2.2.2) and (2.2.3), condition (2.2.1) takes the form

P +Kσx − h

x∫
0

τ(s) ds = 0, x > 0, (2.2.4)
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where
K =

S0E0

E
.

Using the Kolosov–Muskhelishvili formulas the problem posed reduces
to finding two holomorphic functions Φ(z) and Ψ(z) in the angle by the
boundary conditions

Φ(t) + Φ(t) + tΦ′(t) + Ψ(t) = −τ(t), t = x > 0, (2.2.5)
K1Φ(t)− Φ(t)− e2iα

[
tΦ′(t) + Ψ(t)

]
= 0, arg t = −α, (2.2.6)

2K
[
Φ(t) + Φ(t)

]
= h

t∫
0

τ(s) ds− P, t = x > 0, (2.2.7)

where
K1 = −1 if stresses are given on the boundary;
K1 = κ if the boundary is fastened.

Let us introduce the notation
Ψ1(z) = Φ(z) + zΦ′(z) + Ψ(z), −α ≤ arg z ≤ 0.

Then formulas (2.2.5) and (2.2.6) can be rewritten in the form

Φ(t) + Ψ1(t) = −iτ(t), t = x > 0, (2.2.8)
K1Φ(t)− (1− e2iα)(tΦ(t))′ − e2iαΨ1(t) = 0, arg t = −α. (2.2.9)

Of the functions Φ(z) and Ψ1(z) it is required that for large |z| they have
the form

Φ(z) = O

(
1

z

)
, Ψ1(z) = O

(
1

z

)
and, near the angle vertex, satisfy the condition

zΦ(z) → 0, zΨ1(z) → 0 as z → 0.

We will seek these functions in the form

Φ(z) =
1√
2π z

∞∫
−∞

A1(t)

t
e−it ln z dt− c1

z
, −α < arg z < 0, (2.2.10)

Ψ1(z) =
1√
2π z

∞∫
−∞

A2(t)

t
e−it ln z dt− c2

z
, −α < arg z < 0, (2.2.11)

where

ck = lim
z→0

∞∫
−∞

Ak(t)

t
e−it ln z dt = i

√
π

2
Ak(0), k = 1, 2. (2.2.12)

In formulas (2.2.10) and (2.2.11), the integrals at the point t = 0are
understood in the sense of Cauchy principal value.
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It is not difficult to show that

lim
z→∞

zΦ(z) = −2c1, lim
z→∞

zΨ1(z) = −2c2.

Let us require of the function τ(x) that xτ(x) → 0 as x→ 0 or x→ ∞.
Then from condition (2.2.9) we obtain xΦ(x) + xΨ1(x) → 0 as x→ ∞.

Hence it should be required that c1 + c2 = 0, i.e. c2 = −c1 or, which is the
same, A1(0) = A2(0).

The substitution of values (2.2.10) and (2.2.11) into formulas (2.2.8)
and (2.2.9) and the Fourier transform yieldA1(t)−A2(−t) = −itT (t),

K1e
−αtA1(t) + i(1− e−2iα)teαtA1(−t) + eαtA2(−t) = 0,

(2.2.13)

where

T (t) =
1√
2π

∞∫
−∞

τ(es)eseits ds.

Since T (−t) = T (t), a solution of system (2.2.13) has the form

A1(t) = − (K1e
2αt + 1 + 2teiα sinα)itT (t)

2K1 ch 2αt+K2
1 + 1 + 4t2 sin2 α

, (2.2.14)

A2(t) = A1(−t) + itT (t). (2.2.15)

Using formulas (2.2.14) and (2.2.10) , from condition (2.2.7) we obtain

1

2i
√
2π

∞∫
−∞

K1 sh 2αt+ t sin 2α(
K1+1

2

)2
+K1 sh2 αt+ t2 sin2 α

T (t)e−it ln x dt

= Hx

( x∫
0

τ(s) ds− P

h

)
+ 2Re c1, (2.2.16)

where H = h/2K.
Hence, in the case K1 = −1, i.e. when one side arg z = −α of the angle

is free from external stresses, we obtain

1

2i
√
2π

∞∫
−∞

sh 2αt− t sin 2α

sh2 αt− t2 sin2 α
T (t)e−it ln x dt

= Hx

( x∫
0

τ(s) ds− P

h

)
+ 2Re c1, (2.2.17)
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and, in the case K1 = κ, i.e. when the side arg z = −α of the angle is
rigidly fixed, we have

1

2i
√
2π

∞∫
−∞

κ sh 2αt+ t sin 2α(κ+1
2

)2
+ κ sh2 αt+ t2 sin2 α

T (t)e−it ln x dt

= Hx

( x∫
0

τ(s) ds− P

h

)
+ 2Re c1, (2.2.18)

Though equations (2.2.17) and (2.2.18) look superficially alike, they
essentially differ from each other. Indeed, the point t = 0 is a pole of first
order for the coefficients of the unknown function T (t) in equation (2.2.17),
and a zero of first order in equation (2.2.18). Therefore these equations
should be considered separately.

Thus the problems posed reduce to equations (2.2.17) and (2.2.18).
We will first consider the case where the side arg z = −α of the angle

is free, i.e. K1 = −1. Then from equalities (2.2.12) and (2.2.14) we obtain

c1 =
π

2
√
2π

α− e−iα sinα
α2 − sin2 α

T (0),

and since
∞∫
0

τ(s) ds =
P

h
,

we have

T (0) =
P√
2π h

=
1√
2π

∞∫
−∞

esτ(es) ds =
1√
2π

∞∫
0

τ(s) ds

and

c1 =
α− e−iα sinα
α2 − sin2 α

P

4h
.

After substituting

lnx = ξ

and introducing the notation

G(t) =
sh2 2αt− t sin 2α

sh2 αt− t2 sin2 α
t,

equation (2.2.17) takes the form
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1

2i
√
2π

∞∫
−∞

G(t)

t
T (t)e−itξ dt

= Heξ
( ξ∫
−∞

esτ(es) ds− P

h

)
+ 2Re c1. (2.2.19)

Since the function in the right-hand part is not integrable (it does not
vanish as x → ∞), this equation cannot be solved by the standard Fourier
transform.

Let us introduce a new function

φ1(ξ) =

ξ∫
−∞

esτ(es) ds− eπξ(P − λe−ξ)

h(1 + eπξ)
, (2.2.20)

where
λ = 8K Re c1.

After carrying out Fourier transformation in equality (2.2.20) we obtain

T (t) = −itΦ1(t) +
P√
2π h

t

sh t −
λ√
2π h

t

sh(t+ i)
, (2.2.21)

where Φ1(t) is the Fourier transform of the function φ1(ξ).
Taking into account formulas (2.2.20) and (2.2.21) and making some el-

ementary transformations, from equation (2.2.19) we obtain for the function
φ1(ξ) the equation

1√
2π

∞∫
−∞

G(t)Φ1(t)e
−itξ dt+Heξφ1(ξ) = f(ξ), −∞ < ξ <∞, (2.2.22)

where

f(ξ) =
Peξ

2K(1 + eπξ)
+

P

2πih

∞∫
−∞

G(t)−G(0)

sh t e−itξ dt

− λ

2πi

∞∫
−∞

G(t)

sh(t+ i)
e−itξ dt.

It is easy to see that the function f(ξ) is integrable all over the axis,
while the integrand G(t)Φ1(t) in (2.2.22) is continuous at the point t = 0.

Carrying out Fourier transformation in equation (2.2.22) we obtain
G(t)Φ1(t) +HΦ1(t− i) = F (t), (2.2.23)

where

F (t) =
P

2
√
2πKi sh(t− i)

− P
G(t)−G(0)√

2π ih sh t
− λG(t)√

2π i sh(t+ i)
. (2.2.24)
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Thus we reduce the considered problem to the problem studied in Sec-
tion 1.3 in the case where the coefficient and the free term are meromorphic
functions.

To meet our purposes, the problem with the boundary condition (2.2.23)
is formulated as follows:

Using condition (2.2.23),find a function Φ1(w), which is analytic in the
strip −1 < Imw < 1 except for a finite number of points lying in the strip
0 < Imw < 1 where it may have poles, and which vanishes at infinity.

It is obvious that if we manage to find a function Φ−
1 (w) which is holo-

morphic in the strip −1 < Imw < 0, continuous on the boundary and
satisfying condition (2.2.23), the solution of the formulated problem is

Φ1(w) =

{
Φ−

1 (w), −1 < Imw < 0,

Φ+
1 (w), 0 < Imw < 1,

(2.2.25)

where
Φ+

1 (w) =
F (w)−HΦ(w − i)

G(w)
, 0 < Imw < 1. (2.2.26)

But since the function F (w) is holomorphic in the strip 0 < Im(w) < 1,
the function Φ+

1 (w) will have poles at the points which are zeros of the
function G(w).

Let us write the function G(t) in the form

G(t) = tG0(t) = itG0(t) th π

2
t ·

sh π
2 (t− i)

sh π
2 t

.

Since the index of the function G0(t) th π
2 t is equal to zero and

ln
[
G0(t) th π

2 t
]
∈ L1(−∞,∞), this function can be represented as

G0(t) th π

2
t =

X0(t− i)

X0(t)
, (2.2.27)

where

X0(w) = exp
(
− 1

2i

∞∫
−∞

ln
[
G0(t) th π

2
t
]

cthπ(t− w) dt

)
.

The function X0(z) is holomorphic in the strip, continuous on the
boundary and bounded in the closed strip −1 ≤ Imw ≤ 0 and at infin-
ity.

Therefore for the function G(t) we have

G(t) = it
X0(t− i) sh π

2 (t− i)

X0(t) sh π
2 t

. (2.2.28)

Substituting (2.2.28) into condition (2.2.23) and introducing the nota-
tion

Ψ2(w) =
iwΦ−

1 (w)

X0(w) sh π
2 w

, (2.2.29)
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we obtain

(1 + it)Ψ2(t) +HΨ2(t− i) =
F (t)(1 + it)

X0(t− i) sh π
2 (t− i)

.

As follows from Section 1.3, the solution of the problem is given by the
formula

Ψ2(w) = −X1(w)

2iH

∞∫
−∞

F (t)(1 + it)

X(t) shπ(t− w)
dt , −1 < Imw < 0, (2.2.30)

where
X(w) = X0(w) sh π

2
wX1(w),

X1(w) = exp(−iw lnH)Γ(1 + iw).

Now (2.2.29) implies

Φ−
1 (w) = −X(w)

2Hw

∞∫
−∞

F (t)(1 + it)

X(t) shπ(t− w)
dt. (2.2.31)

As shown in Section 1.3, the function X1(w) in the strip −1 < Imw < 0
satisfies the condition

D1|t|
1
2 e−

π
2 |t| <

∣∣X1(t+ iτ)
∣∣ < D2|t|

3
2 e−

π
2 |t|,

and therefore X(w) in this strip admits an estimate

D3|t|
1
2 <

∣∣X(t+ iτ)
∣∣ < D4|t|

3
2 .

Since the function F (w) exponentially vanishes at infinity, it is easy to
prove that the function Φ−

1 (w), too, possesses this property. Therefore the
function Φ1(w) defined by (2.2.25), (2.2.26) and (2.2.31) will be holomorphic
in the strip −1 < Im < 1, exponentially vanishing at infinity, bounded
throughout the strip except for the points of the upper half of the strip
which are zeros of the function G(w) at which it has poles of first order.

Now due to formula (2.2.21) we conclude that the function T (t) is ana-
lytically extendable in the strip −1 < Imw < 1 except for the points of the
strip 0 < Imw < 1 which are the roots of the function G(w). Furthermore,
the function T (w) exponentially vanishes at infinity for −1 ≤ Imw < 1, is
continuously extendable all over the boundary except for the point w = i
and the points of the boundary Imw < 1 which are the roots of the function
G(w).

Since T (t) is an integrable function, the contact tangent stress is defined
by the inversion formula

τ(x) =
x−1

√
2π

∞∫
−∞

T (t)e−it ln x dt, x > 0. (2.2.32)

Let us investigate the behavior of this function at infinity and near the
angular point x = 0.
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Recalling the character of the function Φ1(w), by the Cauchy formula
we can write

φ′
1(lnx) =

i√
2π

∞∫
−∞

tΦ1(t)e
−it ln x dt = − ix

−1

√
2π

∞∫
−∞

(t− i)Φ1(t− i)e−it ln x dt.

Therefore, for sufficiently large values of x we have

φ′
1(lnx) = O

(
1

x

)
.

Differentiating formula (2.2.20) and passing to the variable x, by the latter
relation we obtain

τ(x) =
λ

hx2
+O

(
1

x2

)
. (2.2.33)

If α < β, where β is the smallest positive root of the equation tg 2β = 2β
(β ≈ 2, 247), then it can be proved that the function G(w) has no roots in
the strip 0 ≤ Imw ≤ 1.

If α > β, then the function G(w) has roots in this strip, these roots
being purely imaginary. The closest root to the real axis is denoted by iτ0.

If α = β, then G(w) has only one root w = i in the strip.
Using formulas (2.2.21), (2.2.24) and (2.2.26), the function T (t) can be

represented as

T (t) = − Pt

2
√
2πKG(t) sh(t− i)

+ T0(t), (2.2.34)

where T0(t) is analytically extendable in the strip −ε < Imw < 1 + ε for
α < β and has a root at the point w = i for α = β.

Carrying out the inverse Fourier transformation of equality (2.2.34) for
α < β and applying the Cauchy formula, in the neighborhood of a zero we
obtain the representation

τ(x) = P
α sin 2α− 2 sinα
2α cos 2α− sin 2α

+ ε(x), (2.2.35)

where
ε(x) → 0 as x→ 0.

When α = β, equality (2.2.34) can be rewritten in the form

T (t) = −P α cosα− sinα
2
√
2πKα2 cos2 α

1

(t− i)2
+ T1(t), (2.2.36)

where the function T1(t) is holomorphic throughout the strip −ε < Imw <
1 + ε except for the point w = i where it has a pole of first order and for
sufficiently large values of |t| is represented as

T1(t) = O

(
1

t2

)
.
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Carrying out the inverse Fourier transformation of equality (2.2.36) and
applying the Cauchy formula, we obtain

τ(x) = −P (α− tgα)
2α2K

lnx+ φ0(x), 0 < x < 1,

where φ0(x) is a bounded function.
If α > β, then T (w) has, at the point w = iτ0, a pole of first order and,

using the generalized Cauchy theorem, from (2.2.32) we obtain
τ(x) = mxτ0−1(1 + φ0(x)),

where
m =

√
2π lim

τ→τ0
T (t)(τ − τ0),

and φ0(x) is a continuous function that vanishes at the point x = 0. It is
obvious that if α = π; 3

2 π; 2π, then, correspondingly, τ0 = 1
2 ;

1
3 ;

1
4 .

Let us consider the case where the side of the angle is rigidly fastened.
If it is assumed that the function τ(x) is integrable, then by the Fourier
transformation of equality (2.2.18) we obtain the homogeneous problem

κ sh 2αt+ t sin 2α

2
[(κ+1

2

)2
+ κ sh2 αt+ t2 sin2 α

] T (t) +HT (t− i) = 0.

The coefficient of this problem vanishes at the point t = 0. It can be
proved that this problem has no solution which is the Fourier transform of
a summable function , i.e. if it is assumed that τ(x) is summable, then
xτ(x) = 0. Therefore τ(x) = 0 except for the point x = 0 where it may
turn into the Dirac function δ(x).

Thus we obtain that if one side of the angle is rigidly fastened and to
the other side a stringer is pasted, whose end is subjected to the action of
the tensile force P , then this force does not spread all over the body.

2.3. A Contact Problem for an Anisotropic Wedge with an
Elastic Fastening

Let us now investigate the problem considered in Section 2.2 for the
case where a thin plate occupying an angle −θ < arg z < 0, 0 < θ < 2π, on
the plane is anisotropic. It is obvious that then the following formulas are
valid:

P + S0σ
(0)
x − h

x∫
0

τ (0)xy ds = 0, x > 0, (2.3.1)

du0(x)

dx
=
du(x, 0)

dx
, τ (0)xy (x) = τxy(x, 0) = τ(x), x > 0. (2.3.2)

Furthermore, since, by condition, σ(0)
y (x) = σy(x) = 0, on the boundary

x > 0, y = 0 Hooke’s law takes the form
du0(x)

dx
=
σ0
x(x)

E0
,

du(x, 0)

dx
= a16τxy(x, 0) + a11σx(x, 0), (2.3.3)
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where E0 is the shear modulus of the rod; a11, a16 are the elastic constants
of the plate. By virtue of (2.3.2) and (2.3.3) condition (2.3.1) takes the form

P +K1σx +K2τ(x)− h

x∫
0

τ(s) ds = 0, x > 0, (2.3.4)

where
K1 = S0E0a11, K2 = S0E0a16.

Consider two planes of complex variables z1 = x1+iy1 and z2 = x2+iy2
obtained respectively from the plane z = x+ iy by the affine transforms

xk = x+ αky, yk = βky, βk > 0, k = 1, 2,

where sk = αk+iβk (k = 1, 2) are the roots of equation (2.1.4) and, besides,
s1 ̸= s2.

By means of these transforms, the given domain S (−θ < arg z < 0)
transforms, on the plane of a complex variable z, to domains Sk (−θk <
arg zk < 0) on the plane zk (k = 1, 2), where

tg θk =
βk sin θ

cos θ − αk sin θ , 0 < θk < 2π.

Due to formula (2.1.8), the above-formulated problem reduces to the
solution of the following boundary value problem of the theory of functions
of a complex variable: find two analytic functions Φ1(z1) and Φ2(z2) in the
domains S1 and S2, respectively, by the boundary conditions

(s1 − s2)t1Φ1(t1) + (s1 − s2)t1Φ1(t1) + (s2 − s2)t2Φ2(t2) = 0, (2.3.5)
tk = ρ(cos θ − sk sin θ), ρ = |t| ≥ 0,

(s1 − s2)Φ1(t1) + (s1 − s2)Φ1(t1) + (s2 − s2)Φ2(t2) = −τ(x), (2.3.6)
t1 = t2 = x > 0,

2Re
[
K1aΦ1(x) + (K2 − 2α2K1)τxy

]
= h

x∫
0

τxy(s) ds− P, x > 0, (2.3.7)

where
a = (s1 − s2)(s1 − s2).

Let us assume that stresses and rotations vanish at infinity. Then for
large |zk| we write

Φk(zk) =
γk
zk

+ o

(
1

zk

)
, k = 1, 2. (2.3.8)

Let us also assume that the functions Φ1(z1) and Φ2(z2) are continu-
ously extendable to all points of the boundary except perhaps for the points
zk = 0 at which they satisfy the conditions

lim
zk→0

zkΦk(zk) = 0.
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Therefore we will seek analytic functions Φ1(z1) and Φ2(z2) in the form

Φk(zk) =
1√
2π zk

∞∫
−∞

Ak(t)

t
eit ln zk dt− ck

zk
, zk ∈ Sk, (2.3.9)

where

ck = lim
zk→0

1√
2π

∞∫
−∞

Ak(t)

t
eit ln zk dt, k = 1, 2.

At the point t = 0, the integrals are understood in the sense of the
Cauchy principal value.

It can be easily shown that

ck = i

√
π

2
Ak(0) = − lim

zk→∞

1√
2π

∞∫
−∞

Ak(t)

t
eit ln zk dt, (2.3.10)

whence
γk = −2ck = −i

√
2π Ak(0). (2.3.11)

Formulas (2.3.9) and (2.3.5) imply that c1 and c2 satisfy the condition
(s2 − s2)c2 = (s2 − s1)c1 + (s2 − s1)c1.

Substituting expressions (2.3.9) into the boundary conditions (2.3.5)
and (2.3.6) and after that carrying out Fourier transformation, we obtain
(s1−s2)A1(t)e

δt−(s1−s2)A1(−t)e−γt+(s2−s2)A2(t)e
iµt = 0,

(s1 − s2)A1(t)− (s1 − s2)A1(−t) + (s2 − s2)A2(t) = −tT (t),

 (2.3.12)

where
µ = ln | cos θ − s1 sin θ| − ln | cos θ − s2 sin θ|,

γ = θ1 + θ2, δ = θ1 − θ2,

T (t) =
1√
2π

∞∫
−∞

esτ(es)e−its ds. (2.3.13)

It is obvious that
T (−t) = T (t).

Solving system (2.3.12) with respect to the unknown function A1(t), we
have

A1(t) =
(s1 − s2)e

−δt + (s2 − s1)e
−γt + (s2 − s2)e

−iµt

2
[
|s1 − s2|2 ch γt− |s1 − s2|2 ch δt+ 4β1β2 cosµt

] tT (t). (2.3.14)

The function A2 is obtained from (2.3.14) by permutation of s1 and s2,
θ1 and θ2.

We can prove that for real t the denominator of expression (2.3.14)
does not vanish anywhere except for the point t = 0. At this point it
has a double root. Therefore the functions A1(t) and A2(t) are continuous
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throughout the axis if the function τ(x) is absolutely integrable. Further we
will see that these functions are not only continuous but are also analytically
extendable in some strip and analytically vanish at infinity. Therefore in
equality (2.3.14), the integral at the point t = 0 exists in the sense of Cauchy
principal value.

Since, by condition, stresses vanish at infinity, passing in (2.3.4) to
infinity we obtain

T (0) =
P√
2π h

.

Therefore from (2.3.14) it follows that

A1(0) =
(s1 − s2)γ − (s1 − s2)δ − iµ(s2 − s2)

|s1 − s2|2γ2 − |s1 − s2|2δ2 − 4β1β2µ2

P√
2π h

. (2.3.15)

Thus the constants c1, c2, γ1, γ2 can be defined by equalities (2.3.10),
(2.3.11) and (2.3.15).

Substituting the values of Φ1(z1) defined by (2.3.14) and (2.3.9) into
the boundary condition (2.3.7) and carrying out some transformations, we
obtain

1√
2π i

∞∫
−∞

[
∆1(t)

∆(t)
− i(α1 − α2)

]
T (t)eit ln x dt

+

[
K2

K1
− (α1 + α2)

]
xτ(x)−Hx

( x∫
0

τ(s) ds− P

h

)
= 2Re ac1, (2.3.16)

where

∆(t) = |s1 − s2|2 ch γt− |s1 − s2|2 ch δt+ 4β1β2 cosµt,
∆1(t) = −(β1 + β2)|s1 − s2|2 sh γt

+ (β1 − β2)|s1 − s2|2 sh δt+ 4|α1 − α2|β1β2 sinµt,

H =
h

K1
.

Using the inverse Fourier transform, we have

1√
2π

∞∫
−∞

T (t)eit ln x dt = xτ(x).
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By means of the latter equality, equation (2.3.16) can be rewritten in
the form

1

i
√
2π

∞∫
−∞

∆1(t)

∆(t)
T (t)eit ln x dt

+

[
K2

K1
− (α1 + α2)

]
xτ(x)−Hx

( x∫
0

τ(s) ds− P

h

)
= 2Re ac1,

where K2/K1 = a16/a11 is a half of the second coefficient of the charac-
teristic equation with the opposite sign. Hence by the Viéte formulas we
have

K2

K1
=

1

2

(
s1 + s1 + s2 + s2

)
= α1 + α2

or, which is the same,
K2

K1
− α1 − α2 = 0.

Thus equation (2.3.16) can be rewritten as

1

i
√
2π

∞∫
−∞

∆1(t)

∆(t)
T (t)eit ln x dt−Hx

( x∫
0

τ(s) ds− P

h

)
= 2Re ac1. (2.3.17)

Passing to the limit in equation (2.3.17) as x→ 0 we obtain

2Re ac1 = −G(0) P
2h

,

where
G(t) =

∆1(t)

∆(t)
t.

The substitution of lnx = ξ makes equation (2.3.17) take the form

1

i
√
2π

∞∫
−∞

G(t)T (t)

t
eitξ dt−Heξ

( ξ∫
−∞

τ(es)es ds− P

h

)

= − P

2h
G(0). (2.3.170)

Thus the considered problem reduces to an equation like (2.3.18) in the
preceding paragraph.

Let us introduce the notation

Ψ1(ξ) =

ξ∫
−∞

esτ(es) ds− eπξ
P + λe−ξ

h(1 + eπξ)
, −∞ < ξ <∞, (2.3.18)

where
λ =

K1P

h
G(0).
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The inverse Fourier transformation of equality (2.3.18) gives

itΨ1(t) = T (t) +
Pt√

2π h sh t
+

λt√
2π sh(t− i)

, (2.3.19)

where Ψ1(t) is the inverse Fourier transform of the function Ψ1(ξ). Using
(2.3.18) and (2.3.19), equation (2.3.170) can be rewritten in the form

1

i
√
2π

∞∫
−∞

G(t)Ψ1(t)e
itξ dt−HeξΨ1(ξ) = f(ξ), −∞ < ξ <∞, (2.3.20)

where

f(ξ) =− P

K1

eξ

1 + eπξ

+
P

2πih

∞∫
−∞

G(t)−G(0)

sh t eitξ dt+
λ

2πih

∞∫
−∞

G(t)

sh(t− i)
eitξ dt.

The inverse Fourier transformation of (2.3.20) yields

G(t)Ψ1(t)−HΨ1(t+ i) = F (t), −∞ < t <∞, (2.3.21)

where

F (t) =
P

i
√
2πK1 sh(t+ i)

+
P

2πih

G(t)−G(0)

sh t +
λ

2πih

G(t)

sh(t− i)
.

So, for isotropic and anisotropic plates the problems reduce to one and
the same boundary value problem which is a particular case of the problem
considered in Chapter 1. The free term and the coefficient of problem
(2.3.21) are analytic in the strip except for the points which are poles of the
function G(t). Rewrite (2.3.21) as follows

Ψ1(t)−H[G(t)]−1Ψ1(t+ i) = F (t)G−1(t). (2.3.22)

The coefficient and the free term of problem (2.3.22) are analytic in the
strip −1 < Imw < 1 except for the points where G(w) = 0. At these points
they have poles of first order.

The considered problem reduces to the following problem: find a func-
tion Ψ1(w) which is holomorphic in the strip −1 < Imw < 1, van-
ishes at infinity, is bounded throughout the strip except for the points wk

(k = 1, 2, . . . , n) that are zeros of the function G(w) in the lower half-plane
and satisfies condition (2.3.22).

We introduce the notation

Ψ1(w) =

{
Ψ+

1 (w), 0 < Imw < 1,

Ψ−
1 (w), −1 < Imw < 0,

where Ψ+
1 (w) denotes the solution of the following problem: by the bound-

ary condition (2.3.22) find a function which is holomorphic in the strip
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0 < Imw < 1, vanishes at infinity, is continuously extendable on the strip
boundary.

By solving this problem the solution of the preceding problem can be
constructed as follows

Ψ1(w)

=

{
Ψ+

1 (w), 0 < Imw < 1,

HΨ1(w + i)[G(w)]−1 + F (w)[G(w)]−1, −1 < Imw < 0.
(2.3.23)

It is obvious that Ψ1(w) is holomorphic in the strip −1 < Imw < 1
except for the points wk = tk + iτk (k = 1, 2, . . . , n), −1 < τk < 0. If G(w)
has no roots in the strip −1 < Imw < 0, the function Ψ1(w) will be analytic
throughout the strip −1 < Imw < 1.

Let us introduce the notation

G0(t) = −i ∆1(t)

∆(t)(β1 + β2)

sh π
2 t

sh π
2 (t+ i)

. (2.3.24)

The function G0(t) is positive all over the axis, G0(−∞) = G(∞) = 1,
IndG0(t) = 0 and lnG0(t) ∈ L1(−∞;∞). Therefore it can be represented
as

G0(t) =
X0(t+ i)

X0(t)
, −∞ < t <∞, (2.3.25)

where

X0(w) = exp
(

1

2i

∞∫
−∞

lnG0(t) cthπ(w − t) dt

)
, 0 < Imw < 1. (2.3.26)

Following (2.3.24) and (2.3.25), the function G(t) can be written in the
form

G(t) = it
X0(t+ i)

X0(t)

sh π
2 (t+ i)

sh π
2 t

(β1 + β2).

Inserting this value into condition (2.3.22) and introducing the notation

Ψ0(w) =
wΨ+

1 (w)

X(w) sh π
2 w

, 0 < Imw < 1, (2.3.27)

we obtain

H0(1− it)Ψ0(t) + Ψ0(t+ i) =
F (t)(it− 1)

HX0(t+ i) ch π
2 t

, (2.3.28)

where
H0 =

β1 + β2
H

.

As has been shown above, H0(1− it) is representable in the form

H0(1− it) =
X1(t+ i)

X1(t)
, (2.3.29)
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where
X1(t) = Γ(1− it)e−it ln H0 .

Substituting this value into the boundary condition (2.3.28) and taking
into account equality (2.3.27) we obtain

tΨ+
1 (t)

X0(t)X1(t) sh π
2 t

+
(t+ i)Ψ+

1 (t+ i)

X0(t+ i)X1(t+ i) sh π
2 (t+ i)

=
F (t)(it− 1)

HX0(t+ i)X1(t+ i) ch π
2 t

.

By virtue of (1.2.7) a solution of this problem has the form

Ψ+
1 (w) =

X(w)

2iHw

∞∫
−∞

F (t)(t+ i)

X(t+ i) shπ(t− w)
dt, 0 < Imw < 1, (2.3.30)

where
X(w) = X0(w)Γ(1− iw) exp(−iw lnH0) sh π

2
w.

Since F (t) exponentially vanishes at infinity and X(w) satisfies the con-
dition

c3|t|
1
2 < |X(w)| < c4|t|

3
2 , w = t+ iτ, 0 ≤ τ ≤ 1

the integral in (2.3.30) exponentially decreases, i.e. Ψ+
1 (w) is continuous in

a closed strip 0 < Imw < 1 and exponentially vanishes at infinity.
Thus the solution of the problem posed is provided by (2.3.23). When

τ0 < −1, the solution is analytic throughout the strip −1 < Imw < 1 and
exponentially vanishes at infinity; when τ0 > −1, the solution has poles of
first order at the points wk = tk + iτk (k = 0, 1, . . . , n). The function T (t)
defined by (2.3.19) is of the same nature and for it, as can be easily verified,
the equality T (−t) = T (t) holds.

The stress τ(x) can be calculated by the formula

τ(x) =
x−1

√
2π

∞∫
−∞

T (t)eit ln x dt.

Just like in the case of an isotropic body, for sufficiently large values of
x, τ(x) has the form

τ(x) =
λ

hx2
+ o

(
1

x2

)
.

For τ0 < −1, τ(x) is bounded at the point x = 0, while for τ0 > −1 it has
near this point the form

τ(x) = φ1(x)x
|τ0|−1,

where φ1(x) is bounded at the point x = 0.
As different from the case of an isotropic body, in the case of general

anisotropy, as follows from the boundary condition, the stresses σx(x) and
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τxy(x) are simultaneously bounded or infinitely increase but so that the sum
K1σx(x) +K2τxy(x) remains bounded.

Let us consider two particular cases:
1. When θ = π, i.e. the body is a half-plane, we have

∆1(t) = −(β1 + β2)|s1 − s2|2 sh 2πt,

∆(t) = 2|s1 − s2|2 sh2 πt

and
G(t) = −(β1 + β2)

chπt
shπt t.

The function G(w) has the only one, frequently imaginary, root w0 =
− i

2 in the strip −1 < Imw < 0, while the contact stress near the point
x = 0 has the form

τ(x) =
c√
x
+ φ0(x),

where φ0(x) is a bounded function.
2. When θ = 2π, i.e. when the body occupies the entire plane cut along

the positive part of the real axis, we have
∆1(t) = −(β1 + β2)|s1 − s2|2 sh 4πt,

∆(t) = 2|s1 − s2|2 sh2 πt

and
G(t) = −(β1 + β2)

ch 2πt

sh 2πt
t.

The function G(w) has purely imaginary roots w0 = − 1
4 i, w1 = −3

4 i in the
strip −1 < Imw < 0, while the contact stress near the point has the form

τ(x) = c1x
− 3

4 + c2x
− 1

4 + φ0(x), x > 0,

where φ0(x) is a bounded function.
Thus for an anisotropic body the stress τ(x) has the same features as

for an isotropic case in analogous situations.
Let us now consider the case in which the body is orthotropic and

the principal axes of anisotropy coincide with the coordinate axes. Then
a16 = α1 = α2 = 0 and since K2 = a16E0S0 = 0, condition (2.3.4) takes the
form

K1σx + P − h

x∫
0

τ(s) ds = 0,

i.e. the form it has in the case of an isotropic body. The stress σx(x) is
always bounded for x = 0. In this setting,

∆1(t) = −(β1 + β2)(β1 − β2)
2 sh γt+ (β1 + β2)

2(β1 − β2) sh δt,
∆(t) = (β1 − β2)

2 ch γt− (β1 + β2)
2 ch δt+ 4β1β2 cosµt,

and since β1 > β2, we have | tg θ1| ≥ | tg |θ2|.
Assuming θ < π/2, we have θ2 < θ1 < π/2.



Contact Problems of Plane Elasticity Theory . . . 75

Let us consider the function

∆1(w) = (β2
2 − β2

1) [(β1 − β2) sh γw − (β1 + β2) sh δw]

and prove that the equation

(β1 − β2) sh γw − (β1 + β2) sin δw = 0 (2.3.31)

has no roots in the strip −1 < Imw < 0.
Dividing this equation by β1 and using the equality β2

β1
= tg θ2

tg θ1
, we

obtain
1± β2

β1
= 1± tg θ2

tg θ1
=

sin(θ1 ± θ2)

cos θ1 · cos θ2
ctg θ1.

For θ ̸= π/2, equation (2.3.31) takes the form

sin δ sh γt− sin γ sh δt = 0.

For 0 < θ < π it can be proved that in the strip the latter equation
may have only the imaginary root w = iτ . In that case, it is equivalent to
the equation

sin δ sin γτ − sin γ sin δτ = 0, −1 ≤ τ ≤ 0. (2.3.32)

If τ0 is the root of this equation, then −τ0 is also the root and therefore
it can be assumed that 0 < τ < 1.

Let θ < π/2, then θ2 < θ1 < π/2. Consider the function

f(τ) = sin δ sin γτ
sin δτ − sin γ.

We have

f(0) =
γ

δ
sin δ − sin γ = γ

(
sin δ
δ

− sin γ
γ

)
> 0,

f(1) = 0,

f ′1(τ) = γτ(γ − τ)

[
sin γτ · cos δτ

γτ
− sin(γ − τ)τ

(γ − τ)τ

]
≤ γτ(γ − τ)

[
sin γτ
γτ

− sin(γ − δ)τ

(γ − δ)τ

]
≤ 0.

Since f(τ) is a decreasing function on the interval (0; 1) and f(1) = 0,
we have f(τ) > 0 for τ ∈ (0, 1). Therefore the equation has no roots for
θ < π/2.

When θ = π/2, we have δ = 0 and γ = π,

∆(w) = (β2 − β1)(β
2
1 − β2

2) shπw.

This function has no zeros in the strip −1 < Imw < 0 and therefore the
stress τxy(x) is bounded.

When θ = 3π/2, we have θ1 = θ2 = 3π/2 and

∆1(t) = (β2
1 − β2

2)(β2 − β1) sh 3πt.



76 Revaz Bantsuri

This function has zeros at the points w = −1
3 i;−

2
3 i and near the point

x = 0 the stress τxy(x) is written as

τxy = c0x
− 2

3 + c1x
− 1

3 + φ0(x), x > 0,

where φ0(x) is continuous in an interval 0 ≤ x <∞.
Thus, for an orthotropic body the stress τxy has, for θ = π

2 ;π; 3π
2 ; 2π,

the same character as for an isotropic body.
When π/2 < θ < π, by choosing numbers γ and δ or, which is the same,

β1 and β2 we can make equation (2.3.32) have a root in the interval (−1; 0).
This means that for θ ∈ (π/2;π) the stress τxy can be both bounded and
unbounded.

Since tg θk = βk tg θ, π/2 < θ < π, by choosing a number βk > 0, | tg θk|
can be made both arbitrarily large andr arbitrarily small, therefore θk can
be arbitrarily approximated both to π/2 and to π.

Let us now show that if π/2 < θ < π, then the material and therefore
the parameters β1 and β2 can always be chosen so that the stress τxy at the
point x = 0 be bounded or unbounded.

It has been shown above that for 0 < θ < π/2 the stress is bounded in
the neighborhood of the point x = 0 for any orthotropic material.

We will show below that for any material there exists a number π/2 <
θ0 < π such that the stress θ < θ0 is bounded for τxy and unbounded for
θ > θ0.

Let us consider the situation
f(τ) = sin γτ sin δ − sin γ sin δτ.

It is obvious that f(1) = 0. For τ = 1 to be the double root of equation
(2.3.31) the following condition

f ′(1) = γ cos γ sin δ − δ sin γ cos δ = 0

must be fulfilled. Hence we obtain

γ − tg γ · δ cos δ
sin δ = 0

Denote by the angle θ0 the respective angles θ1 and θ2 (tg θk = βk tg θ0,
k = 1, 2) which satisfy the equation

(θ1 + θ2)− (θ1 − θ2) tg(θ1 + θ2) ctg(θ1 − θ2) = 0. (2.3.33)
For β1 → β2 = 1, i.e. for θ1 → θ2 = θ0 it follows that tg 2θ0 = 2θ0. This
is the necessary and sufficient condition for the stress τxy to be bounded
which has been obtained in Section 2.2.

When θ = θ0, equation (2.3.31) has the double root at the point w = −i,
while at the point x = 0 the stress τxy has a logarithmic singularity. When
θ < θ0, the function τxy is bounded. When θ > θ0, equation (2.3.31) has
the root −1 < τ0 < 0 and the stress τxy can be written in the form

τxy(x) = x|τ0|−1φ0(x), x > 0,

where φ0(x) is bounded for x ≥ 0.
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2.4. The Bending Problem of a Beam Resting on the Elastic
Foundation

Let an elastic anisotropic body occupy an angle −θ < arg z < 0 (0 <
θ < 2π) on the plane z = x+iy. Assume that one boundary arg z = 0 of the
body supports a beam with rigidity D to which a distributed normal load
with intensity p(x) is applied. Also assume p(x) is a bounded summable
functions equal to zero outside some interval. There is no friction between
the beam and the wedge. The other side of the boundary is free of external
stresses.

As is known, the vertical displacement of points of the beam midline
satisfies the equation

D
d4Vn
dx4

= p(x) + σy(x), x > 0, (2.4.1)

where

D =
E0h

3

12(1− ν2)

is the beam rigidity and σy(x) is the sought contact stress satisfying the
equilibrium condition

∞∫
0

σy(x) dx = −
∞∫
0

p(x) dx = P,

∞∫
0

xσy(x) dx = −
∞∫
0

xp(x) dx =M.

(2.4.2)

Thus the posed problem reduces to the problem of equilibrium of an
elastic body with the following boundary conditions

D
d3v

dx3
= −

x∫
0

p(s) ds−
x∫

0

σy(s) ds,

τxy(x; 0) = 0, x > 0,

(2.4.3)

Xn(t) = Yn(t) = 0, arg t = −θ, (2.4.4)

with σy(x) satisfying condition (2.4.2).
Let us consider two planes of complex variables z1 = x1 + iy1 and

z2 = x2 + iy2 which are respectively obtained from the plane z = x+ iy by
the affine transforms

x1 = x+ α1y; y1 = β1y; x2 = x+ α2y; y2 = β2y; β1 > β2 > 0.

By means of these transforms, the domain S = {−θ < arg z < 0} of the
plane of the variable z becomes the domain Sk = {−θk < arg zk < 0} of the
plane of the variable zk.
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If the roots of the characteristic equation (2.1.4) s1 ̸= s2, then the posed
problem reduces, by virtue of formulas (2.1.6), (2.1.8), to finding holomor-
phic functions Φ1(z1) and Φ2(z2) in the domains S1 and S2, respectively,
using the following boundary conditions

(s1 − s2)t1Φ1(t1) + (s1 − s2)t1Φ1(t1) + (s2 − s2)t2Φ2(t2) = 0,

tk = ρ(cos θ − sk sin θ), ρ = |t| > 0,
(2.4.5)

(s1 − s2)Φ1(x) + (s1 − s2)Φ1(x) + (s2 − s2)Φ2(x)

= −s2σy(x), x > 0, (2.4.6)

2Re
[
q1Φ

′′
1(x) + q2Φ

′′
2(x)

]
= − 1

D

x∫
0

[
p(s) + σy(s)

]
ds, x > 0. (2.4.7)

It is required of the functions Φ1(z1) and Φ2(z2) that they satisfy the
conditions

lim zkΦk(zk) → 0 as zk → 0 (k = 1, 2)

and for sufficiently large |zk| have the form

Φk(zk) =
γk
zk

+ o

(
1

zk

)
(k = 1, 2). (2.4.8)

A solution of the problem will be sought in the form

Φk(zk) =
1

zk
√
2π

∞∫
−∞

Ak(t)

t
eit ln zk dt− i

√
π

2

Ak(0)

zk
, (2.4.9)

where A1(0) and A2(0) satisfy the condition

(s2 − s2)A2(0) = (s2 − s1)A1(0) + (s1 − s2)A1(0).

Substituting value (2.4.9) into the boundary conditions (2.4.5) and (2.4.6)
and arguing as in Section 2.3, we obtain

A1(t) =
s1(s2−s2)eiµt+s2(s1−s2)e−δt+s2(s2−s1)e−γt

2∆(t)
tN(t),

A2(t) =
s2(s2−s2)e−iµt+s1(s2−s1)eδt+s1(s2−s1)e−γt

2∆(t)
tN(t),

(2.4.10)

where

∆(t) = |s1 − s2|2 ch γt− |s1 − s2|2 ch δt+ 4β1β2 cosµt,
γ = θ1 + θ2, δ = θ1 − θ2,

µ = ln
∣∣∣∣cos θ − s1 sin θ
cos θ − s2 sin θ

∣∣∣∣ , N(t) =
1√
2π

∞∫
−∞

σy(e
s)es−its ds.
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The first equality (2.4.2) yields

N(0) =
1√
2π

∞∫
−∞

σy(e
s)es ds =

∞∫
0

σy(x) dx =
P√
2π

.

Passing to the limit in equalities (2.4.10) as t→ 0 and taking the value
N(0) = P√

2π
into account, we obtain

A1(0) =
−2β2µs1 − δs2(s1 − s2) + γs2(s1 − s2)

|s1 − s2|2γ2 − |s1 − s2|2δ2 − 4β1β2µ2
· P√

2π
.

Putting the values of Φ1(z1) and Φ2(z2) represented by formula (2.4.9)
into the boundary condition (2.4.7) and using equality (2.4.10), we have

2Re
[
q1Φ

′′
1(x) + q2Φ

′′
2(x)

]
=

1

x3
√
2π

∞∫
−∞

(it− 1)(it− 2)(∆2 + i∆1)

∆(t)
N(t)eit ln x dt+

c

x3
, (2.4.11)

where
c = −2

√
π Im

[
q1A1(0) + q2A2(0)

]
,

∆1(t) = a1 sh γt+ b1 sh δt+ c1 sinµt,
∆2(t) = a2 ch γt+ b2 ch δt+ c2 cosµt,

c1 = 2β2 Im[q1s1]− 2β1 Im[q2s2],

c2 = 2β2 Im[q1s1] + 2β1 Im[q2s2],

a2 + ia1 =
(
s2q1 − q2s1

)
(s2 − s1),

b2 + ib1 =
(
q1s2 − q2s1

)
(s1 − s2).

The substitution of the values of q1 and q2 defined by equality (2.1.7)
into these formulas and some simple transformations give

a1 = a22|s1 − s2|2 Im
(

1

s1
+

1

s2

)
,

b1 = a22|s1 − s2|2 Im
(

1

s2
− 1

s1

)
,

a2 = |s2 − s1|2K2, b2 = −|s1 − s2|2K2,

c1 = 4β1β2 Re
(

1

s1
− 1

s2

)
, c2 = 4β1β2K2,

K2 = a22 Re
[
1

s1
+

1

s2

]
− a26.

By Viète’s theorem we have
a22 = s1 · s1 · s2 · s2 · a11,

2a26
a11

= s1s2s1 + s2s1 · s2 + s2 · s1s2 + s1 · s1 · s2,
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whence it follows that
K2 = 0

and therefore
a2 = b2 = c2 = ∆2(t) = 0.

Thus formula (2.4.11) takes the form

2Re
[
q1Φ

′′
1(x) + q2Φ

′′
2(x)

]
=

i

x3
√
2π

∞∫
−∞

(it− 1)(it− 2)∆1(t)N(t)

∆(t)
eit ln x dt+

c

x3
. (2.4.12)

Comparing equalities (2.4.7) and (2.4.12) we obtain

i√
2π

∞∫
−∞

(it− 1)(it− 2)∆1(t)N(t)

∆(t)
eit ln x dt+

x3

D

x∫
0

σy(s) ds

= −x
3

D

x∫
0

p(s) ds+ c. (2.4.13)

The functions ∆(t) and ∆1(t) do not vanish anywhere except for the
point t = 0. The point t = 0 is a zero of second order for the function ∆(t),
and a zero of second order for the function ∆1(t).

Making a substitution in formula (2.4.12)
ξ = lnx,

we obtain

i√
2π

∞∫
−∞

(it− 1)(it− 2)∆1(t)N(t)

∆(t)
eitξ dt+

e3ξ

D

ξ∫
−∞

σy(e
s)es ds

= −e
3ξ

D

ξ∫
−∞

p(es)es ds+ c. (2.4.14)

Since the function in the right-hand part of equation (2.4.14) is not
integrable, we have to introduce, as we have done in Section 2.3, a new
unknown function

Ψ1(ξ) =

∞∫
−∞

esσy(e
s) ds− eπξ(p− λe−3ξ)

1 + eπξ
. (2.4.15)

After differentiating this equality and performing the inverse Fourier trans-
formation, we obtain

N(t) = itΨ1(t) +
pt√

2π sh t
− λt√

2π sh(t− 3i)
, (2.4.16)

where Ψ1(t) is the inverse Fourier transform of the function Ψ1(ξ).
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Substituting values (2.4.16) and (2.4.15) into formula (2.4.14), making
some transformations and choosing λ by the equality

λ = 8 Im
[
q1A1(0) + q2A2(0)

]
,

we obtain

1√
2π

∞∫
−∞

(t+ i)(t+ 2i)t∆1(t)Ψ1(t)

∆(t)
eitξ dt+

1

D
e3ξΨ1(ξ) = f(ξ), (2.4.17)

−∞ < ξ <∞,

where

f(ξ) =− P√
2π i

∞∫
−∞

G(t)−G(0)

sh t eitξ dt

+
λ

2πi

∞∫
−∞

G(t)eitξ

sh(t− 3i)
dt− e3ξ

D

( ξ∫
−∞

p(es) ds− Peπξ

1 + eπξ

)
,

G(t) =− (t+ i)(t+ 2i)∆1(t)

∆(t)
.

Since outside some interval, p(x) = 0 for a sufficiently large value of n,
if ξ > n, we have p(eξ) = 0 and therefore

e3ξ
( ξ∫
−∞

esp(es) ds− Peπξ

1 + eπξ

)
=

Pe3ξ

1 + eπξ
for ξ > n,

i.e. the function f(ξ) is integrable along the whole axis.
By the inverse Fourier transformation of equation (2.4.17) we obtain

t(t+ i)(t+2i)
∆1(t)

∆(t)
Ψ1(t)+

1

D
Ψ1(t+3i) = F (t), −∞ < t <∞, (2.4.18)

where F (t) is the inverse Fourier transform of the function f(ξ). The func-
tion F (t) is analytically extendable in the strip −3 < Imw < 3 except for
the point w = (3 − π)i and points w which are the roots of the function
∆(w), where it has poles and vanishes at infinity.

We have thus come to the following problem of the analytic function
theory: by the boundary condition (2.3.22), find a function, which is an-
alytic in the strip −3 < Imw < 0 except for the points t = i, 2i and wk,
where it may have poles, and vanishing at infinity.

The coefficient of the problem can be written in the form
t(t+ i)(t+ 2i)∆1(t)

∆(t)

= −ait(t+ i)(2t− 3i)

(t− 2i)(2t+ 3i)

∆1(t)

a∆(t)
(t2 + 4) th π

6
t

sh π
6 (t+ 3i)

sh π
6 t

2t+ 3i

2t− 3i
,



82 Revaz Bantsuri

where
a = a22 Im

(
1

s1
+

1

s2

)
= lim

t→∞

∆(t)

∆1(t)
.

We introduce the notation

G0(t) =
∆1(t)(t+ i)(2t− 3i)

a∆(t)(t− 2i)(2t+ 3i)
th π

6
t.

The function G0(t) is continuous all over the axis and G0(−∞) =
G0(∞) = 1. Substituting the function G0(t) as a product of two functions

∆1(t)

a∆(t)
th π

6
t and t+ i

t− 2i
· 2t− 3i

2t+ 3i

of which one takes positive values, while the other has one zero in the upper
half-plane, we see that IndG0(t) = 0.

It is easy to verify that the branch of the function G0(t) which vanishes
at infinity is integrable all over the axis.

As has been shown in Section 1.2, the function G0(t) can be written in
the form

G0(t) =
X0(t+ 3i)

X0(t)
, −∞ < t <∞, (2.4.19)

where

X0(w) = exp
(

1

6i

∞∫
−∞

lnG0(t) coth π
3
(t− w) dt

)
, 0 < Imw < 3. (2.4.20)

In Section 1.3 we have shown that the function G0(x) is representable in
the form

t2 + 4 =
X1(t+ 3i)

X1(t)
, −∞ < t <∞, (2.4.21)

where
X1(w) =

3−2iwΓ
(
2−iw

3

)
Γ
(
5+iw

3

) , 0 ≤ Imw ≤ 3.

The function X1(w) satisfies, in the strip 0 ≤ Imw ≤ 3, the condition
D1

|2 + it|
< |X1(w)| < D2|2 + it|.

We represent the number D/a as
D

a
=
X2(t+ 3i)

X2(t)
, −∞ < t <∞, (2.4.22)

where

X2(w) = exp
(
− iw ln 3

√
D

a

)
.

If we substitute expressions (2.4.19), (2.4.21) and (2.4.22) into formula
(2.4.18) and introduce the notation

X3(w) =
X0(w)X2(w)X1(w)

(
w − 3

2 i
)

sh π
6 w

w
,
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then we obtain
(3− it)Ψ1(t)

X3(t)
+

Ψ1(t+ 3i)

X3(t+ 3i)
=

DF (t)

X3(t+ 3i)
, −∞ < t <∞. (2.4.23)

By virtue of (1.3.9),

3− it =
X4(t+ 3i)

X4(t)
,

where

X4(w) = 3iwΓ

(
3− iw

3

)
.

Introducing one more notation

X(w) = X3(w) ·X4(w)

condition (2.4.23) can be given the form
Ψ1(t)

X(t)
+

Ψ1(t+ 3i)

X(t+ 3i)
=

DF (t)

X(t+ 3i)
, −∞ < t <∞. (2.4.24)

The function [X(z)]−1 is holomorphic in the strip 0 < Imw < 3 except
for the point w = 3

2 i where it has a pole of second order. Let us investigate
the behavior of this function for large |w|.

The functions X0(w) and X2(w) are bounded throughout the strip,
while X1(w) and X4(w) admit the following estimate for sufficiently large
|w|

|X1(w)| = O
(
|t| 2τ3 −1

)
, |X4(w)| = O

(
|t| 12+ τ

3

)
e−

π
6 |t|, w = t+iτ, 0 < τ ≤ 3.

Hence it follows that for sufficiently large |w|, X(w) admits the estimate

|X(w)| = O(tτ−
1
2 ), 0 ≤ τ ≤ 3. (2.4.25)

Thus the function Ψ1(w)/X(w) is holomorphic in the strip 0 < Imw < 3
except for the point w = 3i/2 where it may have a pole of second order.
According to condition (2.4.16), the function wΨ1(w) vanishes at infinity
and therefore Ψ1(w)/X(w), too, vanishes at infinity.

By virtue of (1.1.4), the solution of problem (2.4.24) is given by the
formula

Ψ1(w) =
DX(w)

6i

∞∫
−∞

F (t)

X(t+ 3i) sh π
3 (t− w)

dt+
A0X(w)

ch π
3 w

, (2.4.26)

0 < Imw < 3.

Since the function F (t) is analytically extendable in the strip −3 <
Imw < 0, a solution of this problem in the strip −3 < Imw < 3 will have
the form

Ψ1(w)
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=


DX(w)

6i

∞∫
−∞

F (t)

X(t+3i) sh(t−w) dt+
A0X(w)

ch π
3 w

, 0 < Imw < 3,

DF (w)−Ψ+(w + 3i)

(t+ i)(t+ 3i)w

∆(w)

∆1(w)
, −3 < Im < 0.

(2.4.27)

The function represented by formula (2.4.27) is holomorphic in the strip
−3 < Imw < 3 except for the points w = −i, w = −2i, w = (3 − π)i,
w = tk + iτk (k = 0, . . . , n), where tk + iτk are zeros of the function ∆1(w)
in the lower half-plane, Imw < 0, and |τ0| < |τ1| < · · · < |τn|.

For sufficiently large |t|, the function F (t) has the form F (t) =
O(1/|t|2+ε) because we have required of the function p(x) that it be bounded
and integrable. Taking now estimate (2.4.25) into account, we conclude that
for sufficiently large |t|, the function F (t)/X(t+ 3i) admits the estimate

F (t)

X(t+ 3i)
= O(t−k),

where k > 4.
The integral in the right-hand part of formula (2.4.26) will decrease in

the same manner in the closed strip 0 ≤ Imw ≤ 3.
By virtue of formulas (1.1.8) which are analogous to the Sokhot-

ski–Plemelj formula, from (2.4.26) we obtain

Ψ+
1 (t0) =

X(t0)F (t0)D

2X(t0 + 3i)
+
X(t0)

6i

∞∫
−∞

F (t)

X(t+ 3i) sh π
3 (t− t0)

dt

+
A0X(t0)

ch π
3 t0

,

Ψ−
1 (t0) =

DF (t0)

2
+
X0(t+ 3i)

6i

∞∫
−∞

F (t)

X(t+ 3i) sh π
3 (t− t0)

dt

− A0X(t0 + 3i)

ch π
3 t0

.

(2.4.28)

Since Ψ1(t) vanishes at infinity being of order more than four, the inte-
gral in formula (2.4.17) exists in the ordinary sense, while the integrals in
formulas (2.4.9) and (2.4.13) exist at infinity in the ordinary sense and, at
the point t = 0, in the sense of Cauchy principal value.

From formula (2.4.16) it follows that the function W (t) is analytically
extendable in the strip −3 < Im < 3 except perhaps for the points w = i; 2i
and w = tk + iτk. Therefore it can be written in the form

N(w) = iwΨ1(w) +
Pw√

2π shw
− λw√

2π sh(w − 3i)
. (2.4.29)
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Using the condition

M =

∞∫
0

xσy(x) dx =

∞∫
−∞

e2sσy(e
s) ds =

√
2πNi,

from expression (2.4.29) we obtain

Ψ1(i) =
P√

2π sin 1
+

λ√
2π sin 2

− M√
2π

.

Substituting into this equality the value of Ψ1(i) defined from (2.4.26),
we obtain the value of the constant A(0).

The contact stress σy(x) is obtained from the function N(t) by means
of the Fourier transform

σy(x) = x−1 1√
2π

∞∫
−∞

N(t)eit ln x dt, x > 0. (2.4.30)

By arguments analogous to those used in Section 2.2 we prove that for
sufficiently large |x|

σy(x) =
λ

x4
+ o

(
1

x4

)
.

Note that for N(w) the function |τ0| > 1 is holomorphic in the strip
−1 < Imw < 3, while for |τ0| < 1 it has a pole of first order at the point
w = t0 + iτ0. In the same manner as in the preceding paragraphs it can be
proved that for |τ0| > 1 the function σy(x) is bounded in the neighborhood
of the point x = 0 and is representable in the form

σy(x) = x|τ0|−1φ(x), x > 0,

for |τ0| < 1; φ(x) is continuous on a semi-axis x ≥ 0.
Let us now consider the particular cases.
1. Assume that the domain S is a half-plane, then

θ1 = θ2 = θ = π, δ = 0, γ = 2π, µ = 0,

∆(t) = 2|s1 − s2|2 sh2 πt,

∆1(t) = 2a|s1 − s2| shπt · chπt,
i.e.

∆1(t)

∆(t)
=
a chπt
shπt .

Hence it follows that
τ0 = −1

2
, τ1 = −3

2
,

and the function σy(x) can be represented as

σy(x) =
c√
x
+ φ0(x), x > 0,

where φ0(x) is continuous on a semi-axis x ≥ 0.
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When θ = 2π, which means that the plane is cut in the positive direction
of the real axis, we obtain

θ1 = θ2 = θ = 2π, δ = 0, γ = 4π, µ = 0,

∆(t) = 2|s1 − s2|2 sh2 2πt,

∆1(t) = 2|s1 − s2|2a sh 2πt · ch 2πt,

and
τ0 = −1

4
, τ1 = −3

4
,

and the function σy(x) can be represented as

σy(x) = c0x
− 3

4 + c1x
− 1

4 + φ0(x).

2. Let the body be orthotropic and the elastic anisotropy axes be paral-
lel to the coordinate axes. Then a16 = a26 = 0, the characteristic equation
will be biquadratic and its roots be purely imaginary: s1 = iβ1, s2 = iβ2.

Furthermore we have

∆1(t) =
a22(β

2
1 − β2

2)(β1 − β2) sh γt+ a22(β1 + β2)
2(β1 − β2) sh δt

β1β2
,

∆(t) = (β1 − β2)
2 ch γt− (β1 + β2)

2 ch δt+ 4β2β2 cosµt.

The boundary condition (2.4.18) will take the form

t(t+ i)(t+ 2i)a1
(β1 + β2)

[
(β1 + β2) sh γt+ (β1 − β2) sh δt

]
(β1−β2)2 ch γt−(β1+β2)2 ch δ(t)+4β1β2 cosµt Ψ1(t)

+ Ψ1(t+ 3i) = DF (t), (2.4.31)
where

a1 = a22
β1 + β2
β1β2

D.

We can show that the equation
(β1 + β2) sh γw + (β1 − β2) sh δw = 0 for θ < π/2 (2.4.32)

has no roots in the strip −1 < Imw < 0.
Indeed, since tg θk = βk tg θ (k = 1, 2), we rewrite equation (2.4.32) as

sin δ sin γw + sin γ sin δw = 0.

We can prove that the equation has only imaginary roots for θ < π/2,
i.e. it is equivalent to the equation

sin δ sin γτ + sin γ sin δτ = 0 (2.4.33)
for −1 < τ < 0.

Both summands in the left-hand part of equation (2.4.33) are negative
and therefore it has no solution.

If θ = π/2, then γ = π, δ = 0 and equation (2.4.33) takes the form
sinπw = 0.
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This equation has, in the strip −1 < Imw < 0, a unique root w = −i.
This number is at the same time a simple root of the function ∆(w). The
coefficient of problem (2.4.31) does not have a zero in the strip −1 ≤ Imw <
0. Therefore the contact stress σy(x) is bounded near the point x = 0.

If θ > π/2, then θ1 > π/2, θ2 > π/2 and equation (2.4.33) always has a
solution in the strip −1 < Imw < 0, therefore the function is representable
in the form

σy(x) = |x||τ0|−1φ0(x),

where φ0(x) is bounded on the half-axis x ≥ 0.
In particular, if θ = 3π

2 , then θ1 = θ2 = 3π
2 , δ = 0, γ = 3π. Therefore

in that case σy(x) is representable in the form

σy(x) = c0x
− 2

3 + c1x
− 1

3 + φ0(x), x > 0,

where φ0(x) continuous near the point x = 0.
3. Assume now that the body is isotropic. In that case, the boundary

conditions cannot be represented as (2.4.3), (2.4.6) and (2.4.7) because we
have obtained them under the assumption that the characteristic equation
has no multiple roots. For an isotropic body, the characteristic equation
has the multiple roots

s1 = s2 = i, s3 = s4 = −i.

But by the expressions obtained using the above-mentioned conditions,
which do not contain complex potentials, we can obtain the results for an
isotropic body if we take the limit as s1 → s2 = i. Namely, assuming β2 = 1,
taking into account that θ2 = 0, and γ · δ · µ depend on β1, and passing to
the limit as β1 → 1 in (2.4.31), we obtain the problem of an isotropic body.

Let us represent the coefficient of problem (2.4.31) in the form

a1
sh γt+ (1 + β1)

sh δt
β1−1

ch γt− (β1+1)2 ch γt−4β1 cosµt
(β1−1)2

.

Evaluating the indeterminate form as β1 → 1, we obtain

2a22D
sh 2θt+ 2t sin θ cos θ

sh2 θt− t2 sin2 θ
. (2.4.34)

If now the relation ∆1(t)/∆(t) in solution (2.4.28) is replaced by
(2.4.34), we obtain the contact stress σy(x) for an isotropic body.

4. In the case where the concentrated force P is applied at some point
x0 > 0 of the beam, the function f(ξ) is analytic in the intervals (−∞; lnx0)
and (lnx0;∞), and has, at the point lnx0, a discontinuity of first kind. It
can be proved that the function F (t) vanishes at infinity when being of first
order, Ψ(t) vanishes when being of second order, and N(t) vanishes when
being of third order. Therefore the integrand in (2.4.17) vanishes at infinity
when being of first order, and the integral itself exists in the Plancheral
sense [116] and for it the inverse Fourier transform is valid.
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When x0 = 0, which means that the concentrated force is applied to
the beam end, the function f(ξ) is analytic all over the axis and vanishes
exponentially at infinity. The functions F (t) and N(t) possess the same
property.

2.5. The Contact Problem for an Anisotropic Wedge-Shaped
Plate with an Elastic Fastening of Variable Stiffness

Contact problems of the interaction between elastic bodies of various
shapes (including wedge-shaped bodies) and thin elastic elements in the
form of stringers or inclusions were considered in [5], [4], [94]. Problems
for an elastic isotropic or anisotropic wedge, supported by a rod of constant
stiffness [13], [19], [81], [95], as well as the problem for an elastic isotropic
wedge, supported along the bisector by an elastic rod of variable stiffness
[83] were studied by means of boundary-value problems of the theory of
analytical functions.

In this section, we consider the elastic anisotropic thin wedge-shaped
plate occupying an angle −θ < arg z < θ, 0 < θ < 2π in the plane. One
side of the angle arg z = −θ is free of stresses and the rod of variable
tensile stiffness is glued to the other side arg z = 0. We will determine the
distribution of contact forces along the fastening line as well as the elastic
equilibrium of the plate under tangential load of intensity τ0(x) applied
along the rod. It is assumed that the bending stiffness of the rod is negligibly
small, i.e. σ0

y = 0.
From the equilibrium condition for any part (0, x) of the rod we have

S0(x)σ
0
x(x)− h

x∫
0

[
τ0xy(s)− τ0(s)

]
dx = 0, x > 0. (2.5.1)

A condition for a full contact between the elastic rod and the wedge has
the form (the prime denotes differentiation with respect to x)

u′0(x) = u′(x, 0), τ0xy(x) = τxy(x, 0) ≡ τ(x), x > 0. (2.5.2)

By Hooke’s law, taking into account that σ0
y = σy = 0, we have

u′0(x) = σ0
x(x)/E0(x), u′(x, 0) = a16τxy(x, 0) + a11σx(x, 0). (2.5.3)

Here E0(x) is the modulus of elasticity of the rod, a11 and a16 are the
elasticity constants of the plate, σ0

x(x), τ0xy(x) and σx(x, y), τxy(x, y) are
the normal and shear stresses of the rod and the wedge, respectively, u0(x)
and u(x, y) are the horizontal displacements of the rod and elastic wedge,
respectively; s0(x) is the cross-section area of the rod and h is the plate
thickness.
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Taking equations (2.5.2) and (2.5.3) into account, we can rewrite con-
dition (2.5.1) in the form

k1(x)σx(x) + k2(x)τ(x)− hJ(x) = 0, x > 0,

k1(x) = s0(x)E0(x)a11, k2(x) = s0(x)E0(x)a16,

J(x) =

x∫
0

[τ(s)− τ0(s)] ds.

(2.5.4)

An equilibrium condition for the rod has the form

J(∞) = 0. (2.5.5)

Consider two planes of complex variables: z1 = x1 + iy1, z2 = x2 + iy2,
which are obtained from the plane z = x + iy by the affine transforms
xn = x + αny and yn = βny, βn > 0, respectively, where sn = αn + iβn
(n = 1.2) are the roots of the characteristic equation, where s1 ̸= sx [66].

The domain S(−θ < arg z < 0) in the plane of the complex variable z is
mapped by means of these transforms into the domains Sn(−θn < arg zn <
0), respectively, in the plane zn (n = 1, 2) where

tg θn = βn sin θ(cos θ − αn sin θ)−1, 0 < θn < 2π.

The problem thus reduces, by means of the well-known relations from
[66] defining the stress vector components in terms of two analytical func-
tions, to the solution of the following boundary value problem of the theory
of functions of a complex-variable: find two functions Φ1(z1) and Φ2(z2)
that are analytic in the domains S1 and S2, respectively, using the bound-
ary conditions

(s1 − s2)t1Φ1(t1) + (s1 − s2)t1Φ1(t1) + (s2 − s2)t2Φ2(t2) = 0, (2.5.6)
tn = ρ(cos θ − sn sin θ), ρ = |t| ≥ 0,

(s1 − s2)Φ1(t1) + (s1 − s2)Φ1(t1) + (s2 − s2)Φ2(t2) = −τ(x), (2.5.7)
t1 = t2 = x > 0,

2Re[k1(x)aΦ1(x)] + [k2(x)− 2α2k1(x)]τ(x) = hJ(x), x > 0, (2.5.8)
a = (s1 − s2)(s1 − s2).

Assume that stresses and rotations vanish at infinity, for large |zn| we
obtain

Φn(zn) = γn/zn +O(1/zn), n = 1, 2.

Assume further that the functions Φ1(z1) and Φ2(z2) are continuously
extendable to all boundary points, except perhaps for the points zn = 0, at
which they satisfy the conditions

lim znΦn(tn) = 0 when zn → 0.
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So, we will look for functions Φ1(z1) and Φ2(z2) in the form

Φn(zn) =
1√
2π zn

∞∫
−∞

An(t)

t
eit ln zn dt− an

zn
, zn ∈ Sn, (2.5.9)

where

an = lim
zn→0

1√
2π

∞∫
−∞

An(t)

t
eit ln zn dt, n = 1, 2. (2.5.10)

At the point t = 0 the integrals are considered in the sense of the
principal Cauchy value. It can be shown that an = −i

√
π/2An(0) from

which it follows that γn = −2an = i
√
2π An(0). We can also conclude from

Eqs (2.5.6) and (2.5.9) that a1 and a2 satisfy the condition
(s2 − s2)a2 = (s2 − s1)a1 + (s2 − s1)a1.

Substituting (2.5.9) into conditions (2.5.6) and (2.5.7), carrying out
Fourier transformation and solving the latter system for An(t) (n = 1, 2),
we obtain

A1(t)=
1

2∆(t)

[
(s1−s2)e−δt+(s2−s1)e−γt+(s2−s2)e−iµt

]
tT (t), (2.5.11)

∆(t) = |s1 − s2|2 ch γt− |s1 − s2|2 ch δt+ 4β1β2 cosµt,

T (t) =
1√
2π

∞∫
−∞

esτ(es)e−its dt,

γ = θ1 + θ2, δ = θ1 − θ2, µ = ln | cos θ − s1 sin θ| − ln | cos θ − s2 sin θ|.

The function A2(t) is obtained from the expression for A1(t) by interchang-
ing s and s2 and θ1 and θ2. It is obvious that T (−t) = T (t). Since the
stress vanishes at infinity, taking the limit in the relation for T (t) we obtain

T (0) = T0/
√
2π , T0 =

∞∫
0

τ(t) dt =

∞∫
0

τ0(t) dt.

It can be proved that the function ∆(t) vanishes nowhere for real t
except for the point t = 0 where it has a double zero root. The function in
square brackets in the equation for A1(t) behaves similarly. Consequently,
if the function τ(x) is absolutely integrable, then the functions A1(t) and
A2(t) is continuous over the axis. Therefore equation (2.5.11) implies

A1(0) =
(s1 − s2)γ − (s1 − s2)δ − iµ(s2 − s2)

|s1 − s2|2γ2 − |s1 − s2|2δ2 − 4β1β2µ2

T0√
2π

. (2.5.12)

Hence the constants a1, a2, γ1 and γ2 are well-defined.
Substituting the value of the function Φ1(z1) defined by equations

(2.5.9) and (2.5.11) into the boundary condition (2.5.8), by Vieta’s formula
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for characteristic equations we get

1√
2π i

∞∫
−∞

∆1(t)

∆(t)
T (t)eit ln x dt− hx

k1(x)
J(x) = 2Re aa1, (2.5.13)

∆1(t) = −(β1 + β2)|s1 − s2|2 sh γt+ (β1 − β2)|s1 − s2|2 sh δt
+4|α1 − α2|β1β2 sinµt.

Let k1(x) = d0x
α, d0 > 0 and α be any real number. After substituting

lnx = ξ, equation (2.5.13) takes the form

1√
2π

∞∫
−∞

G(t)

t
T (t)eitξ dt

−He−kξ

( ξ∫
−∞

[τ(es)− τ0(e
s)]es ds

)
= 2Re aa1, (2.5.14)

G(t) =
∆1(t)

∆(t)
t, k = α− 1, H =

h

d0
.

Differentiating both sides of (2.5.14) and applying the inverse Fourier
transformation to the resulting relation with the complex variable t = t0−iε
as a parameter (ε is an arbitrarily small positive number), we obtain

G(t)Ψ(t)−HΨ(t− ik) = F (t), −∞− iε < t < +∞− iε, (2.5.15)

tΨ(t) = T (t)− T0(t), F (t) = −G(t)T0(t)
t

,

T0(t) =
1√
2π

∞∫
−∞

esτ0(e
s)e−its dx.

Assume that k > 0. The problem under consideration reduces to the
following Carleman type problem for the strip: find a function Ψ(z) which
is holomorphic in the strip −k− ε < Im z < −ε, vanishes at infinity, is con-
tinuously extendable on the strip boundary and satisfies condition (2.5.15).

Using the results obtained earlier [15], the function Ψ(z) can be written
in the form

Ψ(z) =
χ(z)

2ikH

+∞−iε∫
−∞−iε

F (t)

χ(t− ik)

(
sh π

k
(t− z)

)−1

dt, (2.5.16)

−k − ε < Im z < −ε,

χ(z) =
1

z
χk(z)κ(z) sh π

2k
z, κ(z) = kiz/kΓ

(
k + iz

k

)
exp(iz lnH1/k

0 ),
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χk(z) = exp
{

1

2ik

+∞−iε∫
−∞−iε

lnGk(t) coth π
k
(t− z) dt

}
,

Gk(t) = − ∆1(t)

(β1 + β2)∆(t)
th π

2k
t, H0 =

β1 + β2
H

.

Now assume that k ≥ 1. If the function T0(z) is analytically extendable
in the strip −1 < Im z < 1 and vanishes exponentially at infinity, then
condition (2.5.15) and equation (2.5.16) imply that the function

Ψ1(z) =

{
Ψ(z), −k − ε < Im z < −ε,
[F (z) +HΨ(z − ik)]/G(z), −ε < Im z < k − ε,

is holomorphic in the strip −k− ε < Im z < k− ε, vanishes exponentially at
infinity, and is bounded all over the strip except for the points z+j = t+j +iτ+j
(j = 0, 1, . . . , p) which are the zeroes of the function G(z) in the upper strip.

Thus, according to the Cauchy formula, the required contact stress can
be represented as

τ(x)−τ0(x)=
x−1

√
2π

∞∫
−∞

tΨ(t)eit ln x dt=
x−1

√
2π

∞∫
−∞

(t−ik)Ψ(t−ik)ei(t−ik) ln x dt.

Consequently, in the neighborhood of the angle vertex we obtain τ(x)−
τ0(x) = xk−1φ0(x) (as x→ 0), where φ0(x) is a bounded function near the
point x = 0. For large x we get

τ(x)− τ0(x) = O(1/x1+τ+
0 ).

If 0 < k < 1, the function Ψ(z) given by (2.5.16) is analytically con-
tinuous in the strip −1 < Im z < 1 except for the points ω−

j = λ−j + iµ−
j

(j = 0, 1, l) which are the poles of the function G(z) in the same strip. Then
shear stress near the point x = 0 is represented as follows:

τ(x)− τ0(x) =
x−1

√
2π

∞∫
−∞

(t− i)Ψ(t− i)ei(t−i) ln x dt

+
x−1

√
2π

res
[
zΨ(z)eiz ln x

]
ω−

0 =λ−
0 +iµ−

0
= c1x

−(µ−
0 +1) + φ1(x), c1 = const,

where φ1(x) is a bounded function for x ≥ 0.
Let us consider the case where k < 0 (α < 1), i.c. where the stiffness

of the rod grows near the angle vertex and vanishes at infinity, and the
principal vector of external load is shifted to the wedge. Putting m = −k,
we can write condition (2.5.15) in the form
G(t)Ψ0(t)−HΨ0(t+ im) = F (t), −∞− iε < t < +∞− iε. (2.5.17)
Now we will consider the following problem: find a function Ψ2(z) which

is holomorphic in the strip −m − ε < Im z < m − ε, vanishes at infinity
and is bounded all over the strip, except for the points z−j = t−j + iτ−j
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(j = 0, 1, . . . , q) which are the zeroes of the function G(z) in the lower
half-space.

If we first solve the problem of finding a function Ψ0(z) which is holo-
morphic in the strip −ε < Im z < m− ε, vanishes at infinity and is continu-
ously extendable on the strip boundary by the boundary condition (2.5.17),
then the solution of the preceding problem will be the function

Ψ2(z) =

{
Ψ0(z), −ε < Im z < m− ε,

[F (z) +HΨ0(z + im)]/G(z), −m− ε < Im z < −ε,

Using the results obtained in [15], the function Ψ0 can be written in
the form

Ψ0(z) = − χ̃(z)

2imH

+∞−iε∫
−∞−iε

F (t)

χ̃(t+ im)

(
sh π

m
(t− z)

)−1

dt, (2.5.18)

χ̃(z) =
1

z
χm(z)κ̃(z) sh π

2m
z,

κ̃(z) = m−iz/mΓ

(
m− iz

m

)
exp(−iz lnH1/m

0 ).

If τ−0 < 1, then the function Ψ2(z) is analytically extendable in the strip
−1 < Im z < m − ε and the shear stress τ(x) − τ0(x) is bounded at the
point x = 0. If τ−0 > −1, then the function Ψ2(z) has the pole very near
to the real axis at the point z−0 = t−0 + iτ−0 , the function T (t)− T0(t) has a
similar property and the unknown contact stress near the point x = 0 can
be represented as

τ(x)− τ0(x) = c2x
−(τ−

0 +1) + φ2(x).

For large x we have
τ(x)− τ0(x) = O(1/x1+m).

For α = 1 (k = m = 0), condition (2.5.17) gives
Ψ(z) = F (z)/(G(z)−H)

and shear stress has the form
τ(x)− τ0(x) = O(xλ−1) as x→ 0, λ = Imµ,

where µ is chosen from the zeros nearest to the real axis of the functions
∆(z) and G(z)−H in the lower half-space.

For α < 1, when θ = π, i.e. the anisotropic body is a half-plane, the
function

G(z) = −(β1 + β2)z cothπz
has a unique purely imaginary root z0 = −i/2 in the strip −1 < Im z < 0,
and shear stress near the point x = 0 has the form

τ(x)− τ0(x) = c2x
−1/2 + φ2(x).
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When θ = 2π, i.e. the body occupies the entire plane cut along the
positive part of the real axis, then

G(z)− (β1 + β2)z coth 2πz.

This function has pure imaginary roots z0 = −i/4, z1 = −3i/4 in the strip
−1 < Im z < 0, and the shear stress as x→ 0 has following form

τ(x)− τ0(x) = c3x
−3/4 + c4x

−1/4 + φ3(x).

Here φ2(x) and φ3(x) arc bounded functions for x ≥ 0, and c2, c3 and
c4 are constants.

For 1 < α ≤ 2, when θ = π the function G(z) has a pole at the point
ω−
0 = −i, the shear stress is bounded in the neighborhood of the angle

vertex. When θ = 2π as x→ 0, shear stress has a singularity of square root
order.

Analogous results are obtained for an isotropic body in [9].
Now consider the case with an orthotropic body. Then
∆1(t) = −(β1 + β2)(β1 − β2)

2 sh γt+ (β1 + β2)
2(β1 − β2) sh δt,

∆(t) = (β1 − β2)
2 ch γt− (β1 + β2)

2 ch δt+ 4β1β2 cosµt.
One can prove that, for 0 < θ < π, the equation ∆1(t) = 0 can have

only the imaginary root in the strip −1 < Im z < 0, while the equation
∆(z) = 0 does not have any roots in this strip. Moreover, for θ < π/2
(θ2 < θ1 < π/2), the equation ∆1(z) = 0 does not have any roots in the
strip −1 < Im z < 0.

For α < 1, if θ = 2π/3, the function ∆1(z) has zeroes at the points
z−0 = −i/3, z−1 = −2i/3 and the stress at the point x = 0 has the estimate

τ(x)− τ0(x) = c̃1x
−2/3 + c̃2x

−1/3 + φ̃3(x),

where φ̃3(x) is a bounded function for x ≥ 0, and c̃1 and c̃2 are constants.
When π/2 < θ < π, by an appropriate choice of numbers δ and γ or

numbers β1 and β2, we can make the equation ∆1(z) = 0 have a root in the
strip −1 ≤ Im z < 0. This means that the stress τ(x) − τ0(x) can be both
bounded and unbounded at the point x = 0.

2.6. The Bending Problem of a Beam Resting on the Elastic
Foundation

Contact problems of the interaction of differently shaped elastic bodies
with thin elastic elements in the form of stringers, beams or inclusions were
considered in [5], [4], [94]. Problems for an elastic isotropic or anisotropic
wedge, reinforced with elastic elements of constant stiffness [13], [17], [19],
[81], [95], and, also, the problem for an elastic isotropic wedge reinforced
along the bisectrix by an elastic rod of variable stiffness [83] were inves-
tigated using boundary value problems of the analytic functions theory.
The contact problem for an anisotropic wedge-shaped plate with an elastic
support of variable stiffness was considered in [27].
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Let us assume that a beam with stiffness D(x) lies on one boundary
(arg z = 0) of an elastic anisotropic body which occupies an angle −θ ≤
arg z ≤ 0 in the plane z = x + iy and that the distributed normal load
P0(x) is applied to the beam. P0(x) is assumed to be a bounded summable
function, equal to zero outside some interval. There is no friction between
the beam and the wedge. The other boundary of the wedge (arg z = −θ) is
stress-free, 0 < θ < 2π.

The problem reduces to the following problem of elastic angle equilib-
rium

d2

dx2
D(x)

d2v

dx2
= P0(x)− P (x), τxy(x, 0) = 0, x > 0;

D(x) =
E0(x)h

3(x)

12(1− ν20)
,

(2.6.1)

Xn(t) = Yn(t) = 0, arg t = −θ, (2.6.2)

where P (x) is the required contact stress satisfying the equilibrium condi-
tions

∞∫
0

P (t) dt =

∞∫
0

P0(t) dt = P0,

∞∫
0

tP (t) dt =

∞∫
0

tP0(t) dt =M0, (2.6.3)

E0(x) is the elasticity modulus of the beam, h(x) is its thickness, ν0 is
Poisson’s ratio and v(x) is the vertical displacement of the points of the
beam.

We will consider two planes of complex variables: z1 = x1 + iy1 and
z2 = x2 + iy2 obtained from the plane z = x+ iy by the affine transforms
x1 = x+ α1y, y1 = β1y, x2 = x+ α2y, y2 = β2y; β1 > β2 > 0.

By these transformats, the domain S(−θ ≤ arg z ≤ 0) of the plane of
the variable z transforms to the domain Sk(−θk ≤ arg zk ≤ 0) of the plane
of the variable zk (k = 1, 2), tg θk = βk sin θ(cos θ − αk sin θ)−1.

If the roots of the characteristic equation s1 ̸= s2, then, by virtue of
the well-known formulas [66], the problem reduces to finding holomorphic
functions Φ1(z1) and Φ2(z2) in the domains S1 and S2, respectively, by the
following boundary conditions

(s1 − s2)t1Φ1(t1) + (s1 − s2)t1Φ1(t1) + (s2 − s2)t2Φ2(t2) = 0,

tk = ρ(cos θ − sk sin θ), ρ = |t| > 0,
(2.6.4)

(s1−s2)Φ1(t)+(s1−s2)Φ1(t)+(s2−s2)Φ2(t) = −s2P (t), t > 0, (2.6.5)

2Re
[
q1Φ

′
1(x) + q2Φ

′
2(x)

]
=

1

D(x)

x∫
0

dt

t∫
0

[P0(s)−P (s)] ds, x > 0. (2.6.6)

It is required of the functions Φ1(z1) and Φ2(z2) to satisfy the conditions
lim zkΦk(zk) → 0, zk → 0, k = 1, 2,



96 Revaz Bantsuri

and, for sufficiently large |zk|, to have the form
Φk(zk) = γk/zk +O(1/zk), k = 1, 2, (2.6.7)

Φk(zk) =
1√
2π zk

∞∫
−∞

Ak(t)

t
eit ln zk − i

√
π

2

Ak(0)

zk
, zk ∈ Sk. (2.6.8)

Furthermore, we assume that Ak(0) satisfies the condition
(s2 − s2)A2(0) = (s2 − s1)A1(0) + (s1 − s2)A1(0) .

The substitution of (2.6.8) into the boundary conditions (2.6.4) and (2.6.5)
yields

Ak(t) =
[
sk(s2 − s2)e

i(3−2k)µt

+ s3−k(sk − s3−k)e
−(3−2k)δt + s3−k(s2 − s1)e

−γt
] tN(t)

2∆(t)
, (2.6.9)

where

µ = ln
∣∣∣∣cos θ − s1 sin θ
cos θ − s2 sin θ

∣∣∣∣ , δ = θ1 − θ2, γ = θ1 + θ2,

∆(t) = |s1 − s2|2 ch γt− |s1 − s2|2 ch δt+ 4β1β2 cosµt,

N(t) =
1√
2π

∞∫
−∞

P (es)ese−its ds.

The first equality of (2.6.3) gives

√
2πN(0) =

∞∫
−∞

P (es)es ds =

∞∫
0

P (t) dt = P0.

Taking the limit in equalities (2.6.9) as t→ 0, we obtain

Ak(0) =
2(−1)kµβ2sk + (−1)kδs3−k(sk − s3−k) + γs3−k(s1 − s2)

|s1 − s2|2γ2 − |s1 − s1|2δ2 − 4β1β2µ2

P0√
2π

.

Substituting the functions Φk(zk) defined by (2.6.8) into the boundary
condition (2.6.6) and keeping in mind equality (2.6.9), we have

2Re
[
q1Φ

′
1(x) + q2Φ

′
2(x)

]
=

1√
2π x2

∞∫
−∞

(it− 1)(∆2 + i∆1)N(t)eit ln x

∆(t)
dt+

c

x2
, (2.6.10)

where
c =

√
π Im[q1A1(0) + q2A2(0)],

∆1(t) = a+1 sh γt+ a−1 sh δt+ c−1 sinµt,
∆2(t) = a+2 ch γt+ a−2 ch δt+ c+1 cosµt,
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c±1 = 2β2 Im[q1s1]± 2β1 Im[q2s2],

a−2 + ia−1 = (q1s2 − q2s1)(s1 − s2),

a+2 + ia+1 = (q1s2 − q2s1)(s2 − s1).

Substituting the values of q1, and q2 [66] into the above formulas, performing
the operation of reduction and applying Vieta’s theorem, we obtain

a+1 = a22|s1 − s2|2 Im
(

1

s1
+

1

s2

)
, a−1 = a22|s1 − s2|2 Im

(
1

s2
− 1

s1

)
,

a+2 = a−2 = c+1 = 0, c−1 = 4β1β2 Re
(

1

s1
− 1

s2

)
, ∆2(t) = 0,

where a22 is one of the constants of elasticity of the plate.
Thus, by (2.6.10), condition (2.6.6) takes the form

− 1√
2π

∞∫
−∞

G(t)N(t)eit ln x dt+
x2

D(x)

x∫
0

dt

t∫
0

[P (s)−P0(s)] ds = c;

G(t) =
(1− it)∆1(t)

∆(t)
.

(2.6.11)

The functions ∆(t) and ∆1(t) do not vanish anywhere except for the point
t = 0. The point t = 0 is a second order zero for the function ∆(t) and a
first order zero for the function ∆1(t).

We put D(x) = d0x
p+2, d0 > 0, where p is any real number. After

substituting ξ0 = lnx into formula (2.6.11), differentiating both sides of the
resulting equality and carrying out the inverse Fourier transformation, we
obtain

d0t(p+ it)G(t)Ψ(t) + Ψ(t− ip) = F (t), −∞− iε < t <∞− iε, (2.6.12)

where

Ψ(t) =
N(t)−N0(t)

t
, F (t) = −d0G(t)(p+ it)N0(t),

N0(t) =
1√
2π

∞∫
−∞

esP0(e
s)e−its ds

and ε is a positive number which can be arbitrarily small.
There arises the following problem: find a function which is homomor-

phic in the strip −p− ε < Im z < −ε, vanishes at infinity, is continuable on
the strip boundary and satisfies condition (2.6.12).

The function F (t) is analytically extendable in the strip 0 < Im z < p
except for the points which are the roots of the function ∆(t), where F (t)
has poles and vanishes at infinity.
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Assume that p > 0. Then the coefficients of the problem can be given
the form

t(t− ip)(t+ i)∆1(t)

∆(t)
= it(t2 + p2)Tp(t)

∆1(t)

∆(t)
th π

2p
t

sh π
2p (t− ip)

sh π
2p t

;

Tp(t) =
t+ i

t+ ip
.

Consider the function
Gp(t) = Tp(t)Up(t),

where

Up(t) =
∆1(t)

a∆(t)
th π

2p
t, a = lim

t→∞

∆1(t)

∆(t)
= a22 Im

(
1

s1
+

1

s2

)
.

The function Gp(t) is continuous all over the axis and Gp(−∞) =
Gp(+∞) = 0. The function Up(t) takes positive values,the function Tp(t)
has a unique zero and one pole in the lower half-plane and therefore
IndGp(t) = 0. The branch of the function In Gp(t) which vanishes at
infinity is integrable all over the axis.

By virtue of the results obtained in [15], the functions Gp(t), t2 + p2

and the number ad0 can be represented as

Gp(t) =
Xp(t− ip)

Xp(t)
, t2 + p2 =

X1(t− ip)

X1(t)
, ad0 =

X2(t− ip)

X2(t)
, (2.6.13)

−∞− iε < t < (∞− iε),

where

Xp(z) = exp
{

1

2iρ

∞−iε∫
−∞−iε

lnGp(t) cothπ(t− z) dt

}
,

X1(z) = p2tz/pΓ(1 + iz/p)/Γ(2− iz/p),

X2(z) = exp(i(z/p) ln(ad0)), −p− ε < Im z < −ε.

The substitution of expressions (2.6.13) into (2.6.12) yields
Ψ(t)

X(t)
+

Ψ(t− ip)

X(t− ip)
=

F (t)

X(t− ip)
, −∞− iε < t <∞− iε,

X(z) =
1

z
Xp(z)X1(z)X2(z) sh π

2p
zpiz/pΓ(1 + iz/p).

(2.6.14)

The functions Xp(z) and X2(z) are bounded all over the strip and, for
sufficiently large |z|, the function X1(z) admits the estimate

|X1(z)| = O(|t|−2τ/p−1), z = t+ iτ, −p < τ < 0.

Hence it follows that
X(z) = O(|t|−3τ/p−1/2), −p < τ < 0.
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Now the solution of problem (2.6.14) can be written in the form

Ψ(z) =
X(z)

2ip

∞−iε∫
−∞−iε

F (t)

X(t− ip) sh π
p (t− z)

dt, (2.6.15)

−p− ε < Im z < −ε.

Assume that p ≥ 1. If the function N0(t) is analytically continuable in
the strip −1 < Im z < 1 and vanishes exponentially at infinity, it follows
from condition (2.6.12) and formula (2.6.15) that the function

Ψ1(z) =


Ψ(z), −p− ε < Im z < −ε,

F (z)−Ψ(z − ip)

d0z(p+ iz)G(z)
, −ε < Im < p− ε,

is holomorphic in the strip −p − ε < Im z < p − ε, vanishes exponentially
at infinity and is bounded all over the strip, except for the points z+j =

t+j + iτ+j (j = 1, 2, . . . , l) which are the zeros of the function G(z) in the
strip −ε < Im z < p− ε.

Applying the Cauchy formula, the required contact stress can be rep-
resented as

∆P (x) = P (x)− P0(x) =
1√
2π x

∞∫
−∞

tΨ(t)eit ln x dt

=
1√
2π x

∞∫
−∞

(t− ip)Ψ(t− ip)ei(t−ip) ln x dt.

Thus near the angle vertex (x → 0) we have ∆P (x) = xp−1g(x), where
g(x) is a bounded function when x ≥ 0. For large x, we have ∆P (x) =

O(x−(1+τ+
1 )).

If 0 < p < 1, then the function Ψ(z) given by formula (2.6.15) is
analytically continuable throughout the strip −1 < Im z < −ε except for
the points w−

j = λ−j + iµ−
j (j = 1, 2, . . . , q) which are the poles of the

function G(z) in the same strip. The normal contact stress can then be
represented near the point x = 0 as follows: ∆P (x) = c̃x−(1+µ−

1 ) + g̃(x),
where g̃(x) is a bounded function when x ≥ 0, c̃ = const.

We will now consider the case where p < 2, i.e. the rod stiffness increases
at the angle vertex and decreases at infinity. Introducing the notation m =
−p (m > 0) and arguing as above, we can write condition (2.6.12) in the
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form
Ψ0(t)

X̃(t)
+

Ψ0(t+ im)

X̃(t+ im)
=
F0(t)

X̃(t)
, −∞+ iε < t <∞+ iε,

X̃(z) =
1

z
Xm(z)k(z)(z − im/2) sh π

2m
z, ε < Im z < m+ ε,

Xm(z) = exp
{

1

2im

∞+iε∫
−∞+iε

lnGm(t) coth π

m
(t− z) dt

}
,

k(z) = exp(−iz/m ln(ad0))m−3tz/mΓ2(1 + iz/m)/Γ(2 + iz/m),

Gm(t) =
t+ i

a(t− im)

2t− im∆1(t)

2t+ im∆(t)
th π

2m
t .

(2.6.16)

For sufficiently large |z|, the function X̃(z) admits the estimate

|X̃(z)| = O(|t|3τ/m−5/2), 0 < τ < m.

The function Ψ0(z)/X̃(z) is holomorphic in the strip ε < Im z < m+ ε
except for the point z = im/2 where it can have a first-order pole. Therefore
the solution of problem (2.6.16) is given by

Ψ0(z) =
X̃(z)

2im

∞+iε∫
−∞+iε

F0(t)

X̃(t+ im) sh π
m (t− z) dt

+
A0X̃(z)

ch π
m z

,

F0(z) = d0(iz − 1)(m− iz)(∆1(z)/∆(z))N0(z),

A0 = const, ε < Im z < m+ ε.

Using the equality
∞∫
0

t(P (t)− P0(t)) dt = 0

we obtain Ψ0(i) = 0, from which we define the constant A0.
The function

Ψ2(z) =


Ψ0(z), ε < Im z < m+ ε,

F0(z) + Ψ0(z + im)

d0z(m− iz)G(z)
, −m− ε < Im < ε,

is holomorphic in the strip −m+ ε < Im z < m+ ε, vanishes at infinity and
is continuable on the strip boundary, except for the points z−j = t−j + iτ−j
(j = 1, 2, . . . , n) which are the zeros of the function G(z) in the strip −m+
ε < Im z < ε.

If τ−1 < −1, then the function Ψ2(z) is analytically continuable in the
strip −1 < Im z < m+ ε and the normal contact stress ∆P (x) is bounded
in the neighborhood of the point x = 0.
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If τ−1 > −1, the function Ψ2(z) has a pole very close to the real axis
at the point z−1 = t−1 + iτ−1 and, consequently, the contact stress in the
neighborhood of the point x = 0 can be represented as

∆P (x) = c̃1x
−(1+τ−

1 ) + g̃1(x),

where g̃1(x) is a bounded function when x ≥ 0, c̃1 = const. For large x, we
have

∆P (x) = O(x−1−m), x→ ∞.

Let us consider some special cases. As will be clear from the discussion
below, in these cases we have

∆P (x) =


O(xp−1), p ≥ 1,

O(xξ), 0 < p < 1,

O(xη), p < 0,

x→ 0. (2.6.17)

Assume that the domain S is a half-plane. Then
θ1 = θ2 = θ = π, δ = 0, γ = 2π, µ = 0,

∆(t) = 2|s1 − s2|2 shπt, ∆1(t) = 2|s1 − s2|2a shπt chπt.

Hence we obtain that τ−1 = −1/2, µ−
1 = −1 and the function ∆P (x) satisfies

relations (2.6.17) when ξ = 0, η = −1/2.
When θ = 2π, i.e. the plane is cut along the real positive axis, we

obtain
θ1 = θ2 = 2π, δ = 0, γ = 4π, µ = 0,

∆(t) = 2|s1 − s2|2 sh 2πt, ∆1(t) = 2|s1 − s2|2a sh 2πt ch 2πt.

Therefore τ−1 = −1/4, µ−
1 = −1/2 and the function ∆P (x) satisfies

relations (2.6.17) when ξ = −1/2, η = −3/4. Note that for p = m = 0,
condition (2.6.12) gives

Ψ(z) = F (z)/(id0z
2G(z) + 1)

and the estimate
∆P (x) = O(xλ−1) when x→ 0

holds for the normal stress, where λ = − Imµ and µ is the zero of the
function id0z2G(z)+1 in the lower half-plane which is very close to the real
axis.

In a special case where the body is orthotropic and one of its axes of
anisotropy is parallel to the edge of the wedge which supports the beam,
we prove that for p < 0, the normal contact stress near the beam end is
bounded when θ ≤ π/2 and has the form ∆P (x) = O(x−τ0), x → 0, for
θ > π/2 where 0 < τ0 ≤ 3/4. In particular, we have ∆P (x) = O(x−2/3),
x→ 0, when θ = 3π/2.



CHAPTER 3

The Problems of Plane Theory of Elasticity
for an Anizotropic Body with Cracks and

Inclusions

3.1. Solution of the First Basic Boundary Value Problem of the
Elasticity Theory for an Orthotropic Wedge with a Finite

Cut

Let on the plane of a complex variable z = x+ iy an elastic orthotropic
body occupy an angle −α < arg z < α, 0 < α < 2π, which is cut from the
angle vertex along the bisectrix segment. Assume that the length of the cut
is equal to one.

Let the boundary of the body arg z = ±α be free of external stresses
(this can be assumed without loss of generality) and let the following stress
components be given on the cut:

σy = p1(x), τxy = q1(x) on the upper edge of the cut,
σy = p2(x), τxy = q2(x) on the lower edge of the cut,

where p1(x), p2(x), q1(x), q2(x) are absolutely continuous functions. As-
sume further that the principal of elasticity coincide with the coordinate
axes.

Let S be the domain occupied by the body. The domains S1 and S2

are respectively obtained from the domain S by the affine transforms

xk = x, yk = βky (k = 1, 2),

β1 > β2 > 0 are the angles of Dk cut along a segment of the real axis
J = [0, 1], i.e. Sk = Dk − J , where

Dk =
{
− αk < arg zk < αk

}
,

αk = arg(cosα+ iβk sinα).

Write Dk in the form Dk = Dk1 ∪Dk2 where

Dkn =
{
αk(1− n) < arg zk < αk(2− n)

}
, k, n = 1, 2.

Introduce the notation

Φk(zk) = Φkn(zk) for zk ∈ Dk.

102
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Since the functions Φk(zk) are analytic in the domains Sk, they must satisfy
the conditions

Φk1(xk) = Φk2(xk) for xk > 1, k = 1, 2.

According to formula (2.1.8), the problem we want to consider can be
formulated as follows: find functions Φkn(zk), n, k = 1, 2, in the domains
Dkn by the boundary conditions

(β1 + β2)t1Φ1n(t1) + (β2 − β1)t1Φ1(t1) + 2β2t2Φ2(t2) = 0,

tk = ρ [cosα+ (3− n)iβk sinα] , n = 1, 2, k = 1, 2,
(3.1.1)

(β1 + β2)Φ1n(x) + (β2 − β1)Φ1n(x) + 2β2Φ1(x) = β2σ
(n)
y + iτ (n)xy ,

σ(n)
y = pn(x), τ (n)xy = qn(x), x ∈ J ,

(3.1.2)

σ(1)
y = σ(2)

y = σy, τ (1)xy = τ (2)xy = τxy, x > 1, (3.1.3)
Φ11(x)− Φ12(x) = Φ21(x)− Φ22(x) = 0, x > 1. (3.1.4)

Analytic functions Φkn(zk), k, n = 1, 2, will be sought in the form

Φkn(zk) =

(
1

zk
− d

dzk

)
1√
2π

∞∫
−∞

Akn(t)

t
e−it ln zk dt−

− i

√
π

2

Akn(0)

zk
. (3.1.5)

The integrals at the point t = 0 are understood in the sense of the Cauchy
principal value.

Like in the preceding paragraphs, it is assumed that Akn(0), k, n = 1, 2,
satisfy the conditions

2β2A2n(0) = −(β1 − β2)A1n(0)− (β1 + β2)A1n(0). (3.1.6)

I will be shown below that the sought functions Akn(t), k, n = 1, 2,
are the Fourier transforms of the summable functions akn(ξ) which are
continuous all over the whole axis except perhaps for the point ξ = 0.

The class of such functions is denoted by R′
0. If Akn(t) ∈ R′

0, then it is
easy to show that in representations (3.1.5), the integrals exist in the sense
of the Cauchy principal value and it is possible to pass to the limit both
under the sign of the differential and under the sign of the integral for zk
tending to a point of the boundary Dkn.

Let us introduce some other notation and definitions.
Denote by R0 a set of all functions

F (t) =

∞∫
−∞

f(ξ)eitξ dξ where f(ξ) ∈ L1(−∞;∞).
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R0 is a ring of continuous functions on the closed straight line [116]. Denote,
further, by R+

0 (R−
0 ) a subring of R0 composed of the functions

F+(t) =

∞∫
0

f(ξ)eitξ dξ

(
F−(t) =

0∫
−∞

f(ξ)eitξ dξ

)
.

The ring obtained by expansion of the ring R0 (R+
0 ; R−

0 ) by adding 1 to it is
denoted by R (R+; R−). It is obvious that a function Φ+ ∈ R+

0 (Φ− ∈ R−
0 )

is the limiting value of a function, analytic in the upper (lower) half-plane
and vanishing at infinity.

Denote by Nn(t), Tn(t), Pn(t), Qn(t) the Fourier transforms of the
functions eξσ(n)

y (eξ), eξτ (n)xy (eξ), eξpn(eξ), eξqn(eξ), respectively.
Substituting expression (3.1.5) into the boundary conditions and argu-

ing as in the preceding paragraphs, we obtain

Akn(t) = −δkn(t) + γkn(t)− 2βke
−iµkt

2(1 + it)∆(t)
(β1 + β2 − βk)tNn(t)

+
γkn(t)− δkn(t) + 2βke

−iµkt

2(1 + it)∆(t)
itTn(t) (k, n = 1, 2),

where

∆(t) = (β1 − β2)
2 ch γt− (β1 + β2)

2 ch δt+ 4β1β2 cosµt,

µk = (−1)k ln
∣∣∣∣cosα+ iβ2 sinα
cosα+ iβ1 sinα

∣∣∣∣ ,
δ1n = (β1 + β2) exp [(2n− 3)δt] , δ2n = (β1 + β2) exp [(3− 2n)δt] ,

γ1n = (β1 − β2) exp [(2n− 3)γt] , γ2n = (β2 − β1) exp [(2n− 3)γt] ,

γ = γ1 + γ2.

By virtue of condition (3.1.4) we have(
1

x
− d

dx

)
1√
2π

∞∫
−∞

Ak1(t)−Ak2(t)

t
e−it ln x dt

= i

√
π

2

[Ak1(0)−Ak2(0)

x
, x > 0. (3.1.7)

Using the notation lnx = ξ, we obtain

(
1− d

dξ

)
1√
2π

∞∫
−∞

Ak1(t)−Ak2(t)

t
e−itξ dt

= i

√
π

2

[
Ak1(0)−Ak2(0)

]
, −∞ < ξ <∞. (3.1.8)
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If we assume that Akn(t) ∈ R0 and pass to the limit, then we obtain
that the limit in the right-hand part of equality (3.1.8) is equal to

−
√
π

2
i
(
Ak1(0)−Ak2(0)

)
as ξ → ∞. Hence it follows that

Ak1(0)−Ak2(0) = 0, k = 1, 2. (3.1.9)
Now it can be shown that if Akn(t) ∈ R0, then

Ak1(t)−Ak2(t) ∈ R−
0 .

The function

1√
2π

∞∫
−∞

Ak1(t)−Ak2(t)

t
e−itξ dt for ξ > 0

vanishes at infinity and satisfies condition (3.1.8). Therefore

Ψk(ξ) =
i√
2π

d

dξ

∞∫
−∞

Ak1(t)−Ak2(t)

t
e−itξ dt = 0 for ξ > 0.

Since Ak1(t) − Ak2(t) ∈ R0, the function Ψk(ξ) ∈ L1 and the Fourier
inversion formula

Ak1(t)−Ak2(t) =
1√
2π

0∫
−∞

Ψk(ξ)e
itξ dξ ∈ R−

0

is valid.
By conditions (3.1.4) we have

Nn(t) = Pn(t) +N+(t), Tn(t) = Qn(t) + T+(t), (3.1.10)
where

N+(t) =
1√
2π

∞∫
0

σy(e
ξ)eξeitξ dξ, T+(t) =

1√
2π

∞∫
0

eξτxy(e
ξ)eitξ dξ

are the sought functions of the class R+
0 .

From conditions (3.1.7)–(3.1.9) we obtain

A11(t)−A12(t)=
β2t∆1(t)

(1 + it)∆(t)
N+(t)+

t∆2(t)

(1 + it)∆(t)
iT+(t)+f1(t), (3.1.11)

A21(t)−A22(t)=− β1t∆1(t)

(1+it)∆(t)
N+(t)− t∆2(t)

(1+it)∆(t)
iT+(t)+f2(t), (3.1.12)

where
∆n(t) = (β1 + β2) sh δt+ (−1)n(β1 − β2) sin γt, n = 1, 2,

f1(t), f2(t) are given functions of the class R0.
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Since the functions Ak1(t)−Ak2(t) ∈ R0, k = 1, 2, (3.1.11) and (3.1.12)
are the conditions of Riemann boundary value problems for two pairs of
functions.

Our problem reduces to the following two Riemann problems:

A11(t)−A12(t) +A21(t)−A22(t)

=
(β2 − β1)t∆1(t)

(1 + it)∆(t)
N+(t) + f1(t) + f2(t), (3.1.13)[

A11(t)−A12(t)
]
β1 +

[
A21(t)−A22(t)

]
β2

=
(β1 − β2)t∆1(t)

(1 + it)∆(t)
iT+(t) + β1f1(t) + β2f2(t). (3.1.14)

Since (3.1.13) and (3.1.14) are problems of the same type, we will solve
only problem (3.1.13).

Let us introduce the notation
Φ−(t) =

√
1 + it

(
A11(t)−A12(t) +A21(t)−A22(t)

)
,

Φ+(t) = −
√
1− itN+(t),

(3.1.15)

where under the radicals
√
1 + iw and

√
1− iw we understand respectively

the branches, holomorphic on the plane cut along the lines (i; i∞) and
(−i;−i∞), and the branches taking positive values on the uncut part of the
imaginary axis.

Substituting (3.1.15) into expression (3.1.13), we obtain

Φ+(t) =
∆(t)

√
1 + it

(β1 − β2)t∆(t)
Φ−(t) + g(t), −∞ < t <∞. (3.1.16)

It is easy to show that by the conditions we have made as to the given
stresses, g(t) ∈ R′

0, and since the coefficient of the problem belongs to the
class R and is positive all over the axis −∞ < t <∞, the index of problem
(3.1.15) is equal to zero.

From equalities (3.1.14) it follows that if N+(t) ∈ R+
0 , then Φ+(t) may

not belong to the class R+
0 , it may increase at infinity by order less than

half. But we know that if the homogeneous problem has such a solution,
then it is bounded. Therefore we will seek for a solution of problem (3.1.15)
in the class R.

Due to [25], a solution of the boundary value problem (3.1.15) in the
class of functions Φ±(t) ∈ R±

0 is given by the formula

Φ±(t0) =
X±(t0)

2

[
± g(t0)

X+(t0)
+

1

πi

∞∫
−∞

g(t)

X+(t)(t− t0)
dt+ c

]
, (3.1.17)
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where

X(z) = exp
[

1

2πi

∞∫
−∞

ln ∆(t)
√
1 + t2

t(β1 − β2)∆1(t)

dt

t− z

]
. (3.1.18)

By the Wiener–Levy [44] and Wiener [44] theorems we have

X±(t) ∈ R±,
[
X±(t)

]−1 ∈ R±.

It can be easily shown that X±(t) − 1 and [X±(t)]−1 − 1 are the Fourier
transforms of summable and bounded functions on the whole axis.

Taking into account that by virtue of (3.1.9) and (3.1.15) Φ−(0) = 0,
from (3.1.17) we obtain

c =
g(0)

X+(0)
− 1

πi

∞∫
−∞

g(t)

tX+(t)
dt. (3.1.19)

From equalities (3.1.15) and (3.1.17) we have

N+(t0) = − g(t0)

2
√
1− it0

− X+(t0)

2πi
√
1− it0

∞∫
−∞

g(t)

X+(t)(t− t0)
dt− c

X+(t0)√
1− it0

.

This formula can be rewritten as

N+(t0) = − g(t0)

2
√
1− it0

− X+(t0)− 1

2πi
√
1− it0

∞∫
−∞

g(t)

X+(t)(t− t0)
dt

− 1

2πi
√
1− it0

∞∫
−∞

(
1

X+(t)
− 1

)
g(t)

t− t0
dt

− 1

2πi
√
1 + it

∞∫
−∞

g(t)

t− t0
dt− c(X+(t0)− 1)√

1− it0
− c√

1− it0
. (3.1.20)

Since X+(t)−1 and 1/X+(t)−1 are the Fourier transforms of bounded
functions, the second, the third and the fifth summand in the right-hand
part of (3.1.20) are the Fourier transforms of continuous functions on the
closed right-hand semi-axis.

It is proved that the first and the fourth summand are the Fourier
transforms of functions, continuous on the whole semi-axis except perhaps
for the point ξ = 0 where they have logarithmic singularities, i.e.

N+(t) = N+
0 (t)− c√

1− it
.

Hence it follows that the function σy(e
ξ; θ) can be represented in the form

σy(e
ξ; 0) = φ0(ξ)e

−ξ − ce−ξ

√
ξ
, ξ > 0,
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or, if we return to the variable x, in the form

σy(x; 0) = φ1(x)−
c1

x2
√
x− 1

, x > 1, (3.1.21)

where φ1(x) is a continuous function for x > 0 that may have a logarithmic
singularity near the point x = 0.

In the particular case, where symmetric normal stresses are applied to
the cut edges, i.e. p1(x) = p2(x) = p(x), q1(x) = q2(x) = 0, conditions
(3.1.11) and (3.1.12) take the form

A11(t)−A12(t)

=
β2∆1(t)t

(1 + it)∆t

(
N+(t) + p−(t)

)
+

∆2(t)t

∆(t)(1 + it)
iT+(t), (3.1.22)

A21(t)−A22(t)

= − β1∆1(t)t

(1 + it)∆t

(
N+(t) + p−(t)

)
− ∆2(t)t

∆(t)(1 + it)
iT+(t). (3.1.23)

Hence it follows that

(A11(t)−A12(t))β1 + (A21(t)−A22(t))β2 =
(β1 − β2)∆2(t)

(1 + it)∆t
itT+(t).

It is easy to see that the problem has only a trivial solution in the class
R±

0 , i.e.
T+(t) = 0, β1 (A11(t)−A12(t)) = −β2 (A21(t)−A22(t)) .

In that case, equalities (3.1.22) and (3.1.23) are equivalent.
We introduce the notation

(A11(t)−A12(t))
β1 − β2
β1

√
1 + it = Φ−(t);

√
1− itN+(t) = Φ+(t).

Now formula (3.1.22) takes the form

Φ+(t) =
∆(t)

√
1 + t2

t(β2 − β1)∆1(t)
Φ−(t)− P (t)

√
1− it , −∞ < t <∞. (3.1.24)

The solution of this problem is given by formulas (3.1.17) and (3.1.18),
where it is assumed that

g(t) = −P (t)
√
1− it .

If p(x) =
n∑

k=0

akx
k, where ak are constant values, we have

P (t) =
1√
2π

n∑
k=0

ak
k + 1 + it

.

The function P (t) is a homomorphism all over the plane except perhaps for
the point w = (k + 1)i, k = 0, 1, . . . , n.
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We rewrite equality (3.1.24) in the form

√
1− it

(
N+(t) +

1√
2π

n∑
k=0

ak
1 + k + it

)
=

∆(t)
√
1 + t2

(β1 − β2)∆1(t)t
.

Taking into account that

∆(t)
√
1 + t2

t(β1 − β2)∆(t)
=
X+(t)

X−(t)
,

we have
√
1− it

X+(t)

(
N+(t) +

1√
2π

n∑
k=0

ak
1 + k + it

)
=

Φ−(t)

X−(t)
.

Applying the generalized Liouville theorem, we obtain

N+(w) =
X+(w)√
1− iw

( n∑
k=0

ck
1 + k + iw

+c

)
− 1√

2π

n∑
k=0

ak
1 + k + iw

, (3.1.26)

Φ−(w) = X−(w)

( n∑
k=0

ck
1 + k + iw

+ c

)
. (3.1.27)

Since Φ−(0) = 0, from (3.1.27) we obtain

c = −
n∑

k=0

ck
k + 1

.

Multiplying expression (3.1.26) by
n∏

k=0

(k+1+iw) and replacing w by (k+1)i,

we have

ck =
ak√
2π

√
(k + 2)i

X+((k + 1)i)
, k = 0, 1, . . . , n.

Thus the constants c1, c2, . . . , cn are well defined.
Formula (3.1.26) implies

N+(w) =
X+(w)√
2π

√
1− iw

n∑
k=0

ak
√

(k + 2)i

X+(i+ ki)(k + 1 + iw)

− 1√
2π

n∑
k=0

ak
k + 1 + iw

+
cX+(w)√
1− iw

. (3.1.28)

The function N+(t) can be represented as

N+(t) = N+
0 (t) +

c√
1− it

, (3.1.29)

where N+
0 (t) is the Fourier transform of a continuous function on the closed

semi-axis ξ ≥ 0.
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From equality (3.1.29) we obtain

σy(x; 0) = φ0(x) +
c

x2
√
x− 1

, x > 1,

c = − 1√
2π

n∑
k=0

ak
√
k + 2 exp

(
1

2π

∞∫
−∞

(k + 1) lnG(t)
t2 + (k + 1)2

dt

)
,

(3.1.30)

where

G(t) =
∆(t)

√
1 + t2

(β1 − β2)t∆1(t)
.

Until now we have assumed that the stresses given on the cut are ab-
solutely continuous. As will be seen below, this condition is not necessary.
The solution of the problem can be constructed not only in the case of
absolutely continuousF boundary conditions, but also even in the case of
concentrated force.

Assume that the concentrated force P is applied to the point x0 of the
cut, i.e.

p1(x) = p2(x) = Pδ(x− x0),

q1(x) = q2(x) = 0.

Then

P (t) =
Px0 exp(it lnx0)√

2π
.

The substitution of this value into the boundary condition (3.1.24) gives

N+(t)
√
1− it = G(t)Φ−(t)− Px0

√
1− it exp(it lnx0)√

2π
. (3.1.31)

Since the free term of problem (3.1.31) increases at infinity, to solve the
problem we cannot apply formulas (3.1.17) in a straightforward manner.

Dividing equality (3.1.31) by 1− it, we obtain

N+(t)√
1− it

= G(t)
Φ−(t)

1− it
− Px0 exp(it lnx0)√

2π
√
1− it

. (3.1.32)

Since the function Φ−(t)/(1− it) is holomorphic in the lower half-plane
except for the point w = −i where it has a pole of first order, the solution
of problem (3.1.32) is given by the formulas

N+(w) = − X(w)

2πi
√
2π

√
1− iw Px0

∞∫
−∞

exp(it lnx0)
X+(t)

√
1− it (t− w)

dt

+
cX+(w)√
1− iw

, Imw > 0,
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Φ−(w) = −PX(w)(1− iw)x0

2πi
√
2π

∞∫
−∞

exp(it lnx0)
X+(t)

√
1− it (t− w)

dt

+ cX−(w) , Imw<0.

Hence we have

N+(t0) =
Px0 exp(it lnx0)

2
√
2π

−
√
1− it0X

+(t0)Px0

2πi
√
2π

∞∫
−∞

eit ln x0

X+(t)
√
1− it (t− t0)

dt+
cX+(t0)√
1− it

; (3.1.33)

Φ−(t0) =
Px0e

it ln x0
√
1− it0

2
√
2πG(t0)

− Px0(1− it0)

2πi
√
2π

∞∫
−∞

eit ln x0

X+(t)
√
1− it (t− t0)

dt+ cX−(t0). (3.1.34)

Since Φ−(0) = 0, from (3.1.34) we define the values

c =
Px0

2πi
√
2π

∞∫
−∞

exp(it lnx0)
X+(t)

√
1− it t

dt− Px0

2
√
2πX+(t0)

.

Using the equality

1√
2π

∞∫
−∞

exp(it lnx0)
X+(t)

√
1− it t

dt = −i
√
π

2

∞∫
0

K(y) sign(− lnx0 − y) dy,

where K(y) is the function whose Fourier transform is the function
(X+(t)

√
1− it)−1, we obtain

c =
Px0

2
√
2π

∞∫
0

K(y) sign(− lnx0 − y) dy − Px0

2
√
2πX+(0)

.

Since lnx0 < 0, we have

∞∫
0

K(y) sign(− lnx0 − y) dy =

− ln x0∫
0

K(y) dy −
∞∫

− ln x0

K(y) dy

= 2

− ln x0∫
0

K(y) dy −
∞∫
0

K(y) dy = 2

− ln x0∫
0

K(y) dy − 1

X+(0)
,
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and finally we obtain

c = −Px0√
2π

− ln x0∫
0

K(y) dy.

Let us introduce the notation

X+(t) = X0(t) + 1,
[
X+(t)

]−1
= X1(t) + 1.

If now we take into account that for sufficiently large values of |t|
X0(t) and X1(t) have order O( 1

|t| ), then, after elementary calculations, from
(3.1.33) we obtain

N+(t0) = −Px0
√
1− it0

2
√
2π

(
eit ln x0

√
1− it0

+
1

πi

∞∫
−∞

eit ln x0

√
1− it (t− t0)

dt

− 1

πi(1 + it0)

∞∫
−∞

X1(t)e
it ln x0

√
1− it

dt

)
+

c√
1− it0

+Φ1(t0),

where Φ1(t0) is the Fourier transform of a function φ1(ξ) that is continuous
all over the whole axis except for the point ξ = 0 where it may have a
logarithmic singularity.

Since the function 1/
√
1− it is the Fourier transform of the function

φ(ξ) =


e−ξ

√
πζ

for ξ > 0,

0 for ξ < 0,

the expression eit ln x0/
√
1− it is the Fourier transform of the function φ(ξ−

lnx0), and the expression

1

πi

∞∫
−∞

exp(it lnx0)√
1− it (t− t0)

dt

is the Fourier transform of the function φ(ξ − lnx0) sign ξ. Hence it follows
that N+(t) can be written in the form

N+(t0)=

(
Px20

2π
√
− lnx0

− Px0

2
√
2π

∞∫
−∞

X+
1 (t)eit ln x0

√
1− it

dt+c

)
1√

1− it0
+Φ2(t0),

i.e.
N+(t) =

K√
1− it

+Φ2(t).

Hence we obtain
σy(x; 0) =

K

x2
√
x− 1

+ φ(x).
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3.2. First Basic Problem of a Piecewise-Homogeneous
Orthotroipic Half-Plane with a Cut Perpendicular to the

Boundary Line

Let the domain S occupied by a piecewise-homogeneous orthotropic
elastic body be the whole plane of the complex variable z = x + iy cut
along the segment [0, 1] of the Ox-axis. It is assumed that the left-hand
(Re z < 0) and right-hand (Re z > 0) half-planes are homogeneous and the
principal directions of elasticity coincide with the coordinate axes.

We denote by S1 and S2 the right-hand and the left-hand half-plane,
respectively. The stress and displacement components as well as the elastic
constants and other values related to S1 and S2 are denoted by the symbols
1 and 2, respectively.

Let the symmetric normal stresses

(σ(1)
y )+ = (σ(1)

y )− = p(x), (τ (1)xy )+ = (τ (1)xy )− = 0

be applied the edges of the cut 0 ≤ x ≤ 1. Here p(x) is an absolutely con-
tinuous functions; the signs (+) and (−) denote respectively the boundary
values on the upper and the lower edge of the cut.

As is known, the stresses and displacements are written in the form

σ(k)
x = −2Re

[
β2
kΦk(zk) + γ2kΨk(ζk)

]
,

σ(k)
y = 2Re

[
Φk(zk) + Ψk(ζk)

]
,

τ (k)xy = 2 Im Re
[
βkΦk(zk) + γkΨk(ζk)

]
,

 (3.2.1)

uk = 2Re
[
ρkφk(zk) + rkψk(ζk)

]
,

vk = −2 Im
[
βkrkφk(zk) + γkpkψk(ζk)

]
,

}
(3.2.2)

zk = x+ iβky, ζk = x+ iγky, (x, y) ∈ Sk,

where

Φk(zk) = φ′
k(zk), Ψk(ζk) = ψ′

k(ζk),

µ4 +
(Ek

Gk
− 2νk

)
µ2 +

Ek

E∗
k

= 0, (3.2.3)

pk = −β
2
k + νk
Ek

, rk = −γ
2
k + νk
Ek

, k = 1, 2.

±βki, ±γki are the roots of equation (3.2.3).
Using formulas (3.2.1), (3.2.2), we reduce the problem posed to finding

holomorphic functions Φk(zk), Ψk(ζk), k = 1, 2, in the domains S1 and S2,
respectively, by the boundary conditions on the cut 0 ≤ x ≤ 1 and the
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boundary line x = 0:

2Re
[
Φ±

1 (x) + Ψ±
1 (x)

]
= p(x), 0 < x < 1,

Im
[
β1Φ

±
1 (x) + γ1Ψ

±
1 (x)

]
= 0,

(3.2.4)

Re
[
β2
1Φ1(t1) + γ21Ψ1(σ1)

]
= Re

[
β2
2Φ2(t2) + γ22Ψ2(σ2)

]
,

Im
[
β1Φ1(t1) + γ1Ψ1(σ1)

]
= Im

[
β2Φ2(t2) + γ2Ψ2(σ2)

]
,

(3.2.5)

Im
[
p1β1Φ1(t1) + r1γ1Ψ1(σ1)

]
= Im

[
p2β2Φ2(t2) + r2γ2Ψ2(σ2)

]
,

Re
[
β2
1r1Φ1(t1) + γ21p1Ψ1(σ1)

]
= Re

[
β2
2r2Φ2(t2) + γ22p2Ψ2(σ2)

]
,

(3.2.6)

where

tk = iβky, σk = iγky, k = 1, 2.

Due to the symmetry

τ (1)xy = v1(x; 0) = 0 for x > 1,

∂u+1
∂x

− ∂u−1
∂x

= 0, (τ (1)xy )+ − (τ (1)xy )− = 0,

∂v+1
∂x

− ∂u−1
∂x

= 2
∂v+1
∂x

, (σ(1)
y )+ − (σ(1)

y )− = 0,

x > 0. (3.2.7)

After substituting into formulas (3.2.7) the boundary values of the stress
and displacement components defined by equalities (3.2.1) and (3.2.2) we
have

Re
[
Φ+

1 (x)− Φ−
1 (x) + Ψ+

1 (x)−Ψ−
1 (x)

]
= 0,

Im
[
β1
(
Φ+

1 (x)− Φ−
1 (x)

)
+ γ1

(
Ψ+

1 (x)−Ψ−
1 (x)

)]
= 0,

Re
[
p1
(
Φ+

1 (x)− Φ−
1 (x)

)
+ r1(Ψ

+
1 (x)−Ψ−

1 (x)
)]

= 0,

Im
[
β1r1

(
Φ+

1 (x)− Φ−
1 (x)

)
+ γ1p1

(
Ψ+

1 (x)−Ψ−
1 (x)

)]
= −i ∂v

+
1 (x, 0)

∂x
.

This system has the unique solution

Φ+
1 (x)− Φ−

1 (x) = i
f(x)

β1(p1 − r1)
,

Ψ+
1 (x)−Ψ−

1 (x) = i
f(x)

γ1(r1 − p1)
,

x > 0, (3.2.8)

where

f(x) ≡ ∂v+1 (x; 0)

∂x
.
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Since f(x) = 0 for x > 1, a general solution of problem (3.2.8) is written
in the form

Φ1(z1) =
1

2πiβ(p1 − r1)

1∫
0

f(t)

t− z1
dt+W1(z1),

Ψ1(ζ1) =
1

2πiγ(r1 − p1)

1∫
0

f(t)

t− ζ1
dt+W2(ζ1),

(3.2.9)

where W1(z1) and W2(z2) are analytic functions in the half-planes Re z1 > 0
and Re ζ1 > 0, respectively.

Let us rewrite formulas (3.2.9) as

Φ1(z1) =
W0(z1)

β1
+W1(z1),

Ψ1(ζ1) =
W0(ζ1)

γ1
+W2(ζ1),

(3.2.10)

where

W0(z) =
1

2π(p1 − r1)

1∫
0

f(t)

t− z
dt.

Now substituting the boundary values of formulas (3.2.10) into equal-
ities (3.2.6), multiplying the resulting expressions by 1

2πi
dt
t−z , t = iy,

z = x + iy, x > 0, integrating along the imaginary axis and using the
fact that if Φ(z) is holomorphic in the half-plane Re z > 0 (Re z < 0), then
Φ(iy) is the boundary value of the holomorphic function Φ(−z) in the half-
plane Re z < 0 (Re z > 0), we obtain by means of the Cauchy theorem and
formula the system

β2
1W1(β1z) + γ21W2(γ1z)− β2

2Φ2(β2z)− γ22Ψ2(−γ2z)

= −β1W0(−β1z) + γ1W0(−γ1z),

β1W1(β1z) + γ1W2(γ1z) + β2Φ2(β2z) + γ2Ψ2(−γ2z)

=W0(−β1z)−W0(−γ1z),

p1β1W1(β1z) + r1γ1W2(γ1z) + p2β2Φ2(−β2z) + γ2r2Ψ2(−γ2z)

= p1W0(−β1z)− r1W0(−γ1z),

β2
1r1W1(β1z) + γ21p1W2(γ1z)− β2

1r2Φ2(−β2z)− γ22p2Ψ2(γ2z)

= −β1r1W0(−β1z) + γ1p1W0(−γ1z).
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Having solved this system for the functions W1(β1z) and W2(γ1z), we
have

W1(β1z) =
∆12

∆β1
W0(−β1z)−

∆22

∆γ1
W0(−γ1z), (3.2.11)

W2(γ1z) =
∆11

∆β1
W0(−β1z) +

∆21

∆γ1
W0(−γ1z), (3.2.12)

Re z > 0,

where

∆ =

∣∣∣∣∣∣∣∣
β1 γ1 −β2 −γ2
1 1 1 1
p1 r1 p2 r2
r1β1 p1γ1 −β2r2 −γ2p2

∣∣∣∣∣∣∣∣β1β2γ1γ2,

∆ij =

∣∣∣∣∣∣∣∣
−ai aj −β1 −γ2
1 1 1 1
bi bj p2 r2
−cj cj −r2β2 −p2γ2

∣∣∣∣∣∣∣∣ aiajβ2γ2,
a1 = β1, b1 = p1, c1 = r1β1, a2 = γ1, b2 = r1, c2 = p1γ1.

Let us replace z in equality (3.2.11) by z1/β1, and z in equality (3.2.12)
by ζ1/γ1, and insert the value of W0, we obtain

W1(z1) =
∆12

∆β1
W0(−z1)−

∆22

∆γ1
W0

(
− γ1
β1
z1

)
,

W2(z1) =
∆11

∆β1
W0

(
− β1
γ1
ζ1

)
− ∆21

∆γ1
W0(−ζ1).

(3.2.13)

It is easy to verify that γ31∆11 = β3
1∆22.

For 0 < x < 1, the boundary condition (3.2.4) is equivalent to the
condition

Re
[
Φ+

1 (x) + Φ−
1 (x) + Ψ+

1 (x) + Ψ−
1 (x)

]
= σ(1)

y , x > 0,

Re
[
Φ+

1 (x)− Φ−
1 (x) + Ψ+

1 (x)−Ψ−
1 (x)

]
= 0, x > 0.

(3.2.14)

We have already used the second condition (3.2.14) and therefore the
functions Φ1(z1) and Ψ1(ζ1) represented by formulas (3.2.9) and (3.2.13)
satisfy this condition for any f(x). It is also obvious that these functions
satisfy condition (3.2.5). Thus, to find f(x) it remains to use only the first
condition (3.2.14).

If we introduce the boundary values of Φ1(z1) and Ψ1(ζ1) into the first
equality (3.2.14) and take into account the relation

E1(r1 − p1) = (β1 − γ1)(β1 + γ1),
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then we obtain
1∫

0

f(t)

t− x
dt−K1

1∫
0

f(t)

t+ x
dt−K2γ1

1∫
0

f(t)

β1t+ γ1x
dt

−K2β1

1∫
0

f(t)

γ1t+ β1x
dt = K3πσ

(1)
y (x), x > 0, (3.2.15)

where

K1 =
∆12γ1 +∆21β1
∆(β1 − γ1)

,

K2 =
γ21∆11

β1∆(γ1 − β1)
,

K3 =
(γ1 + β1)γ1β1

E1
.

If 0 < x < 1, then σ
(1)
y (x) = p(x) and (3.2.15) is a singular integral

equation which also has a fixed singularity at the point x = 0.
Below it will be shown that at the point x = 0 the singularity order of

the obtained equation can be any number less than 1.
Since the displacement must be bounded at the point x = 0, it is nec-

essary to require of the sought function f(x) to satisfy the condition
xf(x) → 0 as x→ 0.

Multiplying equations (3.2.15) by x and using the equality
1∫

0

f(x) dx =

1∫
0

∂v1
∂x

dx = v+1 (1)− v+1 (0) = 0, (3.2.16)

we obtain
1∫

0

tf(t)

t− x
dt+

1∫
0

Q
(x
t

)
f(t) dt = K3πxσ

(1)
y (x), (3.2.17)

where
Q(x) = K1(1 + x)−1 +K2β1(β1 + γ1x)

−1 +K2γ1(γ1 + β1x)
−1.

Let us substitute x = eξ0 , yt = eξ into formula (3.2.17). Then we have
0∫

−∞

f(eξ)eξ

1− exp(ξ0 − ξ)
dξ+

∞∫
−∞

Q(eξ0−ξ)f(eξ)eξ dξ = K3πe
ξ0σ(1)

y (eξ0). (3.2.18)

By the Fourier transformation of this equation we obtain
Φ+(t) = G(t)Φ−(t)−K3iP (t), −∞ < t <∞, (3.2.19)
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where

G(t) =
chπt+K1 + 2K2 cosµt

shπt , µ = ln β1
γ1
,

Φ+(t) = − K3i√
2π

∞∫
0

σy(e
ξ)eξ(1+it) dξ,

Φ−(t) =
1√
2π

∞∫
−∞

f(eξ)eξ(1+it) dξ,

P (t) =
1√
2π

0∫
−∞

p(eξ)eξ(1+it) dξ.

Since the function p(eξ)eξ exponentially vanishes as ξ → −∞, the func-
tion P (w), where w = t+ iτ , will be analytic in the half-plane Imw < 1.

Also note that

Φ−(0) =
1√
2π

0∫
−∞

f(eξ)eξ dξ =
1√
2π

1∫
0

f(t) dt = 0.

Let us now consider the function
G1(t) = chπt+K1 + 2K2 ch iµt.

We prove that if the condition

νk <

√
Ek

E∗
k

is fulfilled, then
G1(0) > 0, G′′

1 > 0.

It is obvious that if K2 < 0, then G1(t) > G1(0) and G1(t) > 0 on the whole
axis, and since G′′

1 > 0, G1(0) > 0, for K2 > 0 we have
G′′

1(t) = π2 chπt− 2K2µ
2 ch iµt > G′′

1(0),

i.e. in this case the function G′(t) increases and, at the point t = 0, attains
its minimum. Hence it follows that the function G1(t) also increases and
attains its minimum at the point t = 0. Since G1(0) > 0, we have G1(t) > 0.

The function G(t) has a first order pole at the point t = 0, and a first
kind discontinuity at infinity becauseG(∞) = −G(−∞) = 1. The boundary
condition (3.2.19) can be rewritten as follows

Φ+(t)√
t+ i

=
G(t)t√
1 + t2

Φ−(t)

t

√
t− i− K3iP (t)√

t+ i
, (3.2.20)

where
√
w + i and

√
w − i denote the branches which are analytic in the

half-planes cut along the rays drawn from the points w = −i and w = i,
respectively, along the direction x and which take respectively a positive
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and a negative value on the upper side of the cut. For such a choice of
branches the function

√
1 + w2 is analytic in the strip −1 < Imw < 1 and

takes a positive value on the real axis.
Since the relation w/

√
w + i is holomorphic in the half-plane Imw <

1, the relation Φ+(w)/
√
w + i is holomorphic in the half-plane Imw > 0,

G(t) ̸= 0 and Φ−(t) = 0, the function Φ−(w)
√
w − i/w will be holomorphic

everywhere in the half-plane Imw < 1, except those points which are zeros
of the function G(w) and lie in the upper half-plane.

Thus the considered problem can be formulated as follows: Using con-
dition (3.2.20), find a function Φ+(w), which is holomorphic in the upper
half-plane Imw > 0 and vanishes at infinity, and a function Φ−(w), which
is holomorphic in the half-plane Imw < 1, except the points wn which are
the roots of the function G(w), vanishes at infinity and is continuous on the
real axis w = t.

The function G0(t) = G(t)t(1+ t2)−
1
2 is positive and continuous on the

whole real axis and G0(∞) = G0(−∞) = 1 and therefore IndG0(t) = 0.
The solution of problem (3.2.19) is given by the formulas

Φ+(w) = −X(w)K3

√
w + i

2π

∞∫
−∞

P (t)

X+(t)
√
i+ t (t− w)

, Imw > 0, (3.2.21)

Φ−(w) = −X(w)K3w

2π
√
w − i

∞∫
−∞

P (t)

X+(t)(t− w)
√
t+ i

, Imw ≤ 0, (3.2.22)

Φ−(w) =
Φ+(w) +K3iP (w)

G(w)
, 0 < Imw < 1, (3.2.23)

X(w) = exp
(

1

2πi

∞∫
−∞

ln[t(t2 + 1)−
1
2G(t)]

t− w
dt

)
, Imw ̸= 0. (3.2.24)

Using the Sokhotski–Plemelj formulas it can be verified that

Φ−(t− i0) = Φ−(t+ i0), Imw < 0,

and therefore the function Φ−(w) is holomorphic in the half-plane except
the points wk, k = 0, 1, . . . , n, which lie in the upper half-plane and are
zeros of the function G(w).

One can prove that G(i) < 0, and since G(0) > 0, G(w) has at least
one purely imaginary zero w0 = iτ0, 0 < τ0 < 1.

Let us rewrite the function Φ+(w) as

Φ+(w) = −X
+(w)K3

2π
√
w + i

[ ∞∫
−∞

(t+ i)P (t)

X+(t)
√
t+ i (t− w)

dt−
∞∫

−∞

P (t)

X+(t)
√
t+ i

dt

]
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or as

Φ+(w) = Φ+
0 (w) +

X+(w)K3

2π
√
w + i

∞∫
−∞

P (t)

X+(t)
√
t+ i

dt.

The boundary value Φ+
0 (t) of the function Φ−

0 (w) is the Fourier trans-
form of the bounded function, i.e.

Φ+(t0) = Φ+
0 (t0) +

cK3√
t+ i

, (3.2.25)

where

c =
1√
2π

∞∫
−∞

P (t)

X+(t)
√
t+ i

dt. (3.2.26)

The function P (t) is the Fourier transform of a real function and there-
fore P (−t) = P (t). Moreover, X±(−t) = X±(t), X±

0 (−t) = ±iX±
0 (t),

where X±
0 (t) =

√
t± i. Based on the above reasoning, we easily conclude

that
Φ+(−t) = −Φ+(t) and Φ−(t) = Φ−(t),

i.e. Φ+(t) is the Fourier transform of a purely imaginary function, while
Φ−(t) is that of a real function. Therefore the solution of the considered
problem can be obtained by the inverse Fourier transformations of the func-
tions Φ+(t), Φ−(t).

Let us perform the inverse Fourier transformation of equality (3.2.25)
and go back to the variable x. By elementary calculations we obtain

σ(1)
y (x, 0) = −

c exp(π4 i)
πx2

√
x− 1

+ φ0(x), x > 1, (3.2.27)

where φ0(x) is bounded for x ≥ 0.
It is easy to show that ceiπ/4 is a real number. In that case, if the force

applied to the boundaries of the cut is constant, i.e. p(x) = p = const, we
have

P (t) =
1√
2π

p

1 + it
.

The substitution of this value into formula (3.2.26) yields

c =
p

2π
√
2π i

∞∫
−∞

dt

X+(t)
√
t+ i (t− i)

=
1

2
√
π i

p

X+(i)
.

Using formula (3.2.24) and taking into account that the integral density is
an even value, we obtain

c =
p

2
√
π i

exp
(
− 1

2π

∞∫
−∞

ln[t(t2 + 1)−
1
2G(t)]

t2 + 1
dt

)
. (3.2.28)

Thus we have obtained that the normal stress has a singularity of order 1/2
in the neighborhood of the cut end x = 1, as should have been expected.
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Let us now proceed to investigating the behavior of the function f(x) in
the neighborhood of the cut ends. Applying the same reasoning as above,
we see that in the neighborhood of the point x = 1 the function f(x) is
represented in the form

f(x) =
c1√
1− x

+ φ1(x), (3.2.29)

where the function φ1(x) may have a logarithmic singularity in the neigh-
borhood of the point x = 1.

For 0 ≤ Imw < 1 we easily obtain

Φ−(w) =
c2√
w − i

+Φ−
0 (w), (3.2.30)

where the function Φ−
0 (w) is holomorphic throughout the strip 0 < Imw <

1, except perhaps the points w0 = iτ0, τ0 < β < 1, at which it has a first
order pole, and for sufficiently large values of |w| it can be written in the
form

Φ0(w) = O
( 1

|w|

)
.

Multiply the function Φ−
0 (w) by e−iξw, ξ < 0, and integrate the obtained

expression along the rectangle with vertices at the points (−N ; 0), (N ; 0),
(N, β), (−N, β). Applying the Cauchy theorem for a multiply connected
domain we obtain

N∫
−N

Φ−
0 (t)e

−itξ dt = eβξ
N∫

−N

Φ−
0 (t+ iβ)e−itξ dt+ c1e

τ0ξ + ε(N, ξ),

where ε(N, ξ) → 0 as N → ∞. Thus we have established that for N → ∞
the integrals exist in the sense of Plancherel [116]. By the Fourier transfor-
mation, from (3.2.30) we obtain

eξf(eξ) =,
Meξ√
−ξ

+
eβξ√
2π

∞∫
−∞

Φ0(t+ iβ)e−tξ dt+
c1e

τ0ξ

√
2π

, ξ < 0,

where M is real, and

c1 = 2πi lim
τ→τ0

(τ − iτ0)Φ
−(τ).

By formula (3.2.23) we can write

lim
τ→τ0

Φ−(τ)(τ − iτ0) =
Φ+(iτ0) +K3iP (iτ0)

π sinπτ0 − 2K2µ shµτ0
sinπτ0,

and therefore

c1 = − 1√
2π

K3

∞∫
0

σy(x)x
−τ0dx

π sinπτ0 − 2K2µ shµτ0
.
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Thus we have

f(x) =
N√
ln 1

x

+ xβ−1φ0(x) +
c1√
2π

xτ0−1 = O(xτ0−1).

Applying the properties of Cauchy type integrals in the neighborhood of the
ends of the open contour [76], it can be shown that near the points z = 0
and x = 1 the functions Φ1(z1) and Ψ1(ζ1) have the same character as the
function f(x). It can further be shown that the functions Φ2(z2) and Ψ2(ζ2)

and the stress components σ(2)
y , σ(2)

x and τ (2)xy have the analytic character in
the neighborhood of the point x = 0.

In the particular case of the problem to be considered below we see that
τ0 can take any value from the interval (0; 1).

1. Assume that the domain S2 is obtained from the domain S1 by the
rotation of the elastic axis by an angle of 90◦. Then we shall have

E2 = E∗
1 , E∗

2 = E1, ν2 = ν∗1 =
E∗

1

E1
ν1, G2 = G1.

The characteristic equation for the body S2 will take the form

µ4 +
(E∗

1

G
− 2

E∗
1

E1
ν1

)
µ2 +

E∗
1

E1
= 0.

or ( 1
µ

)4
+
(E1

G1
− 2ν1

)( 1
µ

)2
+
E1

E∗
1

= 0.

The roots of this equation are ±i/γ1, ±i/β1, i.e. β2 = 1/γ1, γ2 = 1/β1.
Furthermore

p2 = −
(β2

2 + ν2
E2

)
= −

( 1

γ21
+
E∗

1

E1
ν1

) 1

E∗
1

= − 1

E1

( E1

γ21E
∗
1

+ν1

)
= −β

2
1 + ν1
E1

,

i.e. p2 = p1. Analogously, we obtain

∆ = −(p1 − r1)
2 (α1β1 + 1)2

γ1β1
, ∆11 = 0,

∆12 = −∆21 = (p1 − r1)
2 γ

2
1β

2
1 − 1

γ1β1
,

K1 = (∆12γ1 +∆21β1)(β1 − γ1)∆ =
β2
1γ

2
1 − 1

(γ1β1 + 1)2

=
β1γ1 − 1

β1γ1 + 1
=

√
E1 −

√
E∗

1√
E1 +

√
E∗

1

,

G(t) =
(

chπt+
√
E1 −

√
E∗

1√
E1 +

√
E∗

1

) 1

shπt .

Hence it follows that if E1 < E∗
1 , then

τ0 =
1

π
arccos

(√E1 −
√
E∗

1√
E1 +

√
E∗

1

)
<

1

2
.
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If E∗
1 < E1, then

τ0 = 1− 1

π
arccos

(√E1 −
√
E∗

1√
E1 +

√
E∗

1

)
>

1

2
.

If E∗
1 = E1, then

τ0 =
1

2
.

The latter fact corresponds to the case in which the cut plane is homoge-
neous.

The considered example shows that the more rigid the left-hand half-
plane is, the lower the concentration degree is near the end which is on the
boundary line.

In the case in which the cut edges are under the action of the constant
load p, the stress σy near the right-hand end of the cut be represented in
the form

σy(x, 0) = − c
√
2i

πx2
√
x− 1

+ φ0(x), x > 1,

where φ0(x) is continuous on the closed semi-axis x ≥ 0 and

c =
1√
2i

exp
(
− 1

2π

∞∫
−∞

ln
∣∣ (chπt+K)t

sh πt
√
t2+1

∣∣
t2 + 1

dt

)
or

c =
c0√
2π

exp
(
− 1

2π

∞∫
−∞

ln(1 + K
chπt )

t2 + 1
dt

)
,

c0 = exp
(
− 1

2π

∞∫
−∞

[
ln t chπt

(1 + t2)1/2 shπt

]
dt

t2 + 1

)
,

K =

√
E∗

1 −
√
E1√

E∗
1 +

√
E1

.

For the homogeneous body, K = 0 and c0 = c, i.e. c0 is the concentra-
tion coefficient corresponding to the homogeneous plane.

When E∗
1 > E1, K > 0 and ln(1 + K

chπt ) > 0, while when E∗
1 < E1,

K < 0 and ln(1 + K
chπt ) < 0. In the former case c < c0 and in the latter

case c > c0.
This example shows that the concentration degree near the left-hand

end of the cut may be an arbitrary number from the interval (0, 1). This
number takes a value greater than a half when, as compared with the right-
hand half-plane, the left-hand half-plane is less rigid along the y-axis, and
takes a value smaller than a half when, as compared with the left-hand half-
lane, the right-hand half-plane is less rigid along the y-axis. In the former
case, the coefficient is greater than that of the homogeneous body, while in
the former case the coefficient is smaller.
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2. Assume that the bodies S1 and S2 are isotropic, then β1 = γ1 =
γ2 = β2 = 1. The characteristic equation will have the multiple roots
and therefore formulas (3.2.1), (3.2.2) will not be valid, but the expressions
not containing complex potentials will remain in force if we assume that
γ1 = γ2 = 1 and pass to the limit as β1 → 1 and β2 → 1.

In particular, if we pass to the limit in equation (3.2.17) as βk → γk → 1,
then, after evaluating the indeterminacy, we obtain

Q(x) =
1

2

( 1− α

α+ κ1
+

κ1 − ακ2

1 + α+ κ2

)
(x+ 1)−1 +

2(α− 1)

α+ κ1

x2 − x

(1 + x)3

where
α =

µ1

µ2
, κk =

3− νk
1 + νk

, k = 1, 2.

The coefficient of the boundary value problem (3.2.19) takes the form

G(t) =
chπt+ 1

2

(
1−α
α+κ1

+ κ1−ακ2

1+ακ2

)
+ 2(α−1)

α+κ1
t2

shπt .

For isotropic bodies, this problem is studied in [54].

3.3. The Contact Problem for Piecewise-Homogeneous Plane
with a Semi-Infinite Inclusion

We consider a piecewise-homogeneous elastic plate stiffened with a semi-
infinite inclusion under the action of tangential stresses with intensity τ0k (x).
The problem consists in defining contact tangential stresses τk(x) along the
contact line and in establishing their behavior at singular points.

In mathematical terms the problem reads as follows: let the elastic body
S occupy the plane of a complex variable z = x+ iy, which, along the line
L = (−∞, 1), contains an elastic inclusion with elasticity modulus E0(x),
thickness h0(x), the Poisson ratio ν0, and consists of two half-planes S1 =
{z | Re z > 0, z /∈ ℓ1 = [0, 1]} and S2 = {z | Re z < 0, z /∈ ℓ2 =] −∞, 0]}
that are sealed together along the axis x = 0. The values and functions
related to Sk will be marked by the index k (k = 1, 2), and the boundary
values of other functions on the upper and lower edges of the inclusion will
be marked by the signs (+) and (−), respectively.

On the interface boundary we have the following conditions of continuity

σ(1)
x = σ(2)

x , τ (1)xy = τ (2)xy , u1 = u2, v1 = v2 . (3.3.1)

On the segment ℓk we have the conditions

du
(0)
k (x)

dx
=

1

E(x)

{
P0δ1k − (−1)k+1

x∫
ak

[
τk(t)− τ0k (t)

]
dt

}
, (3.3.2)

x ∈ ℓk, k = 1, 2,
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where u(0)k (x) are horizontal displacements of the inclusion points a1 = 0,
a2 = −∞, E(x) = E0(x)h0(x)

1−ν2
0

, while the equilibrium conditions for separate
parts of the inclusion have the form

0∫
−∞

(τ2(t)− τ
(0)
2 (t)) dt = P0, P0 −

1∫
0

(τ1(t)− τ
(0)
1 (t)) dt = P, (3.3.3)

where P0 and P are the unknown axial stresses at the points x = 0 and
x = 1, respectively. From the Kolosov–Muskhelishvili [77] formulas

φk(z) + zφ′
k(z) + ψ(z) = i

z∫
zk

(X(k)
n + iY (k)

n ) ds ≡ Rk(z),

ℵkφk(z)− xφ′
k(z)− ψ(z) = 2µk(uk + iνk), ℵk = 3− 4νk,

(3.3.4)

we obtain

φ+
k (x)− φ−

k (x) =
i

1 + ℵk

x∫
xk

τk(t) dt ≡ ifk(t),

ψ+
k (x)− ψ−

k (x) = −i(ℵkfk(x) + xf ′k(x)), x ∈ ℓk, k = 1, 2.

For z ∈ Sk a solution of these problems has the form

φk(z) =
1

2π

∫
ℓk

fk(t)

t− z
dt+Wk(z) = wk(z) +Wk(z),

ψk(z) = − 1

2π

∫
ℓk

(ℵkfk(t) + tf ′k(t))

t− z
dt+Qk(z)

= qk(z) +Qk(z), z ∈ Sk,

(3.3.5)

where Wk(z) and Qk(z) are analytic functions in Sk.
By the introduction of the function

ωk(z) = −zφ′
k(z) + ψk(z) = ηk(z) + Ωk(z), (3.3.6)

where
ηk(z) = −zw′

k(z) + qk(z), Ωk(z) = −zWk(z) +Qk(z),

equalities (3.3.4) take the form
φk(z) + (z + z)φ′

k(z) + ωk(z) = Rk(z),

ℵkφk(z)− (z + z)φ′
k(z)− ωk(z) = 2µk(uk + ivk).

After writing conditions (3.3.1) in terms of these functions and applying the
singular operator

S(·) = 1

2πi

i∞∫
−i∞

(·)
t− z

dt, z ∈ Sk,
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to the resulting equalities, for the functions W1(z), Ω1(z), W2(−z), Ω2(−z)
we obtain a system of four equations whose solution has the form

W1(z) = e1η1(−z) + r2w2(z),

Ω1(z) = h1w1(−z) +m2η2(z),

W2(−z) = e2η2(z) + r1w1(−z),

Ω2(−z) = h2w2(z) +m1η1(−z).

Using these relations, from formulas (3.3.5), (3.3.6) we find the following
expressions for φk(z) and ψk(z)

φk(z) =
1

2π

∫
ℓk

[
1

t− z
− ekℵk

t+ z
+

ekz

(t+ z)2

]
fk(t) dt

− ek
2π

∫
ℓk

tf ′k(t)

t+ z
dt+

r3−k

2π

∫
ℓ3−k

f3−k(t)

t− z
dt,

ψk(z) =
1

2π

∫
ℓk

[
−ℵk

t− z
+

hk
t+ z

+
ek(1 + ℵk)z

(t+ z)2
− 2ekz

2

(t+ z)3

]
fk(t) dt

+
1

2π

∫
ℓk

[
−1

t− z
+

ekz

(t+ z)2

]
tf ′k(t) dt

+
1

2π

∫
ℓ3−k

[
−m3ℵ3−k

t− z
+

(r3−k −m3−k)z

(t− z)2

]
f3−k(t) dt

− m3−k

2π

∫
ℓ3−k

tf ′3−k(t)

t− z
dt, k = 1, 2,

(3.3.7)

where

e1 =
µ1 − µ2

∆1
, r2 =

µ1(ℵ2 + 1)

∆1
, m2 =

µ2(ℵ1 + 1)

∆1
, h2 =

ℵ2µ1 − ℵ1µ2

∆1
,

e2 =
µ1 − µ2

∆2
, r1 =

µ2(ℵ1 + 1)

∆2
, m1 =

µ1(ℵ2 + 1)

∆2
, h1 =

ℵ1µ2 − ℵ2µ1

∆2
,

∆1 = ℵ1µ2 + µ1 , ∆2 = ℵ2µ1 + µ2.

If we substitute relations (3.3.7) into the equality

uk(z) =
1

2µk
Re
[
ℵkφk(z)− zφ′

k(z)− ψk(z)
]
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take the limit as z → x± i0, then we come to a system of singular integro-
differential equations

E(x)

4πµ1

∞∫
0

[
2ℵ1

t− x
+

ℵ2
1e1 + h1
t+ x

− 4e1t
2

(t+ x)3

]
f̃ ′1(t) dt

− E(x)

4πµ1

∞∫
0

[
r2ℵ1 +m2ℵ2

t+ x
+

2(m2 − r2)t

(t+ x)2

]
f̃ ′2(t) dt

=

{
−(1 + ℵ1)f̃1(x) + T1(x), x ∈ (0, 1),

E(x)u′1(x), x ∈ (1,∞),

− E(x)

4πµ2

∞∫
0

[
2ℵ2

t− x
+

ℵ2
2e2 + h2
t+ x

− 4e2t
2

(t+ x)3

]
f̃ ′2(t) dt

+
E(x)

4πµ2

∞∫
0

[
r1ℵ2 +m1ℵ1

t+ x
+

2(m1 − r1)t

(t+ x)2

]
f̃ ′1(t) dt

= (1 + ℵ2)f̃2(x) + T2(x), x ∈ (0,∞), (3.3.8)

where

f̃1(x) =

{
f1(x), x ∈ (0, 1),

0, x ∈ (1,∞),
f̃2(x) = f2(−x).

The functions T1(x) and T2(x) depend on the known value τ (0)k (x) (k =
1, 2) and on the unknown constants P0 and P , i.e.

T1(x) = P0 +

x∫
0

τ01 (t) dt− g1(x), T2(x) =

∞∫
−x

τ02 (−t) dt− g2(x),

g1(x) =
E(x)

2µ1
((ℵ1 − 1)α(x)− xα′(x)− δ(x)) ,

g2(x) =
E(x)

2µ2
((ℵ2 − 1)β(−x)− xβ′(−x)− γ(−x)) ,

where

α(x) = C1

{
e1

(1 + x)2
+

1

1− x
+
e1ℵ1

1 + x

}
+ C2

r2
x
,

β(x) = C1
r2

1− x
+ C2

(1− e2ℵ2)

x
,

γ(x) = C1

{
m1ℵ1

1− x
+
m1 − r1
(1− x)2

}
+ C2

h2 − ℵ2

x
,

δ(x) = C1

{
ℵ1

1− x
+

h1
1 + x

− e1(1 + ℵ1)

(1 + x)2
− 2e1x

(1 + x)3

}
− C2

m2ℵ2

x
,
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C1 =
T 0
1 + P0 − P

2π(1 + ℵ1)
, C2 =

P0 + T 0
2

2π(1 + ℵ2)
,

T 0
1 =

1∫
0

τ01 (t) dt, T 0
2 =

0∫
−∞

τ02 (t) dt.

To solve system (3.3.8) when the inclusion rigidity changes by a linear law,
i.e. E(x) = h|x|, x ∈ (−∞, 1), after substituting t = eζ and x = eξ into
(3.3.8) and making Fourier transformation [42], we obtain a system

G1(s)F
−(s) +G2(s)Φ(s) = −(1 + ℵ1)F

−(s) + Ψ+(s) + P1(s),

G3(s)Φ(s) +G4(s)F
−(s) = −(1 + ℵ2)Φ(s) + P2(s),

s = s0 − iε, ε > 0,

(3.3.9)

where

F−(z) =
1√
2π

0∫
−∞

f̃1(e
ξ)eiξz dξ, Φ(z) =

1√
2π

+∞∫
−∞

f̃2(e
ξ)eiξz dξ,

Ψ+(z) =
1√
2π

+∞∫
0

u′(eξ)eiξz dξ, P1(z) =
1√
2π

0∫
−∞

T1(e
ξ)eiξz dξ,

P2(z) =
1√
2π

+∞∫
−∞

T2(e
ξ)eiξz dξ,

G1(z) =
1

sh(πz)

[
2ℵ1 ch(πz) + ℵ2

1e1 + h1 − 2e1iz
2(z + i)

]
,

G2(z) =
1

sh(πz)

[
(r2ℵ1 +m2ℵ2) + 2(m2 − r2)z

2
]
,

G3(z) =
1

sh(πz)

[
2ℵ2 ch(πz) + ℵ2

2e2 + h2 − 2e2iz
2(z + i)

]
,

G4(z) =
1

sh(πz)

[
(r1ℵ2 +m1ℵ1) + 2(m1 − r1)z

2
]
.

If from system (3.3.9) we eliminate the function

Φ(s) =
P2(s)−G4(s)F

−(s)

G3(s)− (1 + ℵ2)
, (3.3.9′)

then we obtain
G(s)F−(s) = Ψ+(s) +H(s), (3.3.10)

where

G(s) = G1(s) + (1 + ℵ1)−
G2(s)G4(s)

G3(s)− (1 + ℵ2)
,

H(s) = P1(s)−
P2(s)G2(s)

G3(s)− (1 + ℵ2)
.
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It is easy to show that the function G(s) → 3ℵ1 + 1 ≡ α as t → +∞,
G(s) → 1− ℵ1 ≡ β (β < 0) as t→ −∞, G(t) = t2g0(t)

sh πt , g0(t) > 0.
Condition (3.3.10) can be rewritten in the form

√
1 + t2

t
G(t)

tF−(t)√
t− i

= Ψ+(t)
√
t+ i+H(t)

√
t+ i , (3.3.11)

where under
√
z + i and

√
z − i we understand the branches which are ana-

lytic in the planes cut along the rays radiating from the points z = −i and
z = i in the direction x and which take respectively positive and negative
values on the upper edge of the cut. With such a choice of branches, the
function

√
1 + z2 is analytic in the strip −1 < Im z < 1 and takes a positive

value on the real axis.
Thus the posed problem can be formulated as follows: using condition

(3.3.11), find a function Ψ+(z), holomorphic in the half-plane Im z > 0 and
vanishing at infinity, and a function F−(z), holomorphic in a half-plane
Im z < 1 except for the points which are the roots of the function G(z) and
the poles of the function H(z), vanishing at infinity and continuous on the
real axis.

A solution of problem (3.3.11) has the form

F−(z)=

√
z−iX(z)

z

(
1

2πi

+∞∫
−∞

√
t+ iH(t)

X+(t)(t−z)
dt+

c

z−i

)
, Im z<0,

Ψ+(z)=
X(z)√
z + i

(
1

2πi

+∞∫
−∞

√
t+ iH(t)

X+(t)(t− z)
dt+

c

z − i

)
, Im z > 0,

F−(z)=
{
Ψ+(z) +H(z)

}
G−1(z), 0 < Im z < 1,

(3.3.12)

where

X(z) = exp
{
z + i

2πi

+∞∫
−∞

lnG0(t)

(t+ i)(t− z)
dt

}
, G0(t) =

√
1 + t2

t
G(t).

The constant c is defined from the condition F−(0) = O(1),

c =
H(0)

2
√
iX+(t)

+
1

2π

∞∫
−∞

H(t)
√
t+ i

X+(t)t
dt.

It is easy to show that F−(x+ i0) = F−(x− i0) and therefore the function
F−(z) is holomorphic in the half-plane except for the points which are the
zeros of the function G(z) and the poles of the function H(z) in the upper
half-plane. Our aim is to investigate the behavior of contact stresses near
the singular points z = 0 and z = 1. It can be shown that in (3.3.12)
F−(x) = c0√

x−i
+ F−

0 (x), where F−
0 (x) is the Fourier transform of a con-

tinuous function f0(x) on the semi-axis except perhaps for a point x ≤ 0
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where it may have a logarithmic singularity. By the inverse transformation
we obtain τ1(x) = O((1− x)−1/2), x→ 1−.

Let us now study the behavior of the function τ1(x) near the point z = 0.
The poles of the function F−(z) in the domain D0 = {z : 0 < Im z < 1}
are the zeros of the functions g(z) = (G1(z)+ (1+ℵ1))(G3(z)− (1+ℵ2))−
G2(z)G4(z) and g1(z) = G3(z)− (1 + ℵ2).

Assume that iτ0 is the smallest modulo a simple zero of the functions
g(z) and g1(z) in the domain D0. Then, applying to the function eiξzF−(z)
the Cauchy theorem on residues for the rectangle D(N) with the boundary
L(N) consisting of segments [−N,N ], [N+i0, N+iβ0], [N+ iβ0,−N+iβ0],
[−N + iβ0,−N + i0], τ0 < β0 < τ10 , (g(iτ10 ) = 0 or g1(iτ10 ) = 0, we obtain

∫
L(N)

F−(t)e−iξtdt =

N∫
−N

F−(t)e−iξt dt

− eβ0ξ

N∫
−N

F−(t+ iβ0)e
−iξt dt+ ρ(N, ξ) = K1e

ξτ0 , (3.3.13)

where ρ(N, ξ) → 0 as N → ∞. Passing to the limit in (3.3.13) and returning
to the old variables, we obtain

τ1(x) = (1 + ℵ1)f
′
1(x) = (1 + ℵ1)K1x

τ0−1 +O(xβ0−1), x→ 0 + .

Analogously, defining the function Φ(t) by (3.3.9′) and making the in-
verse Fourier transformation, after some calculations we obtain

τ2(x) = (1 + ℵ2)f
′
2(x) = O(xµ0−1), x→ 0−,

here iµ0 (µ0 ≥ τ0) is the smallest modulo a simple zero of the function g1(z)
in the domain D0.

Suppose the functions g(x) and g1(x) do not have simple zeros in the
domain D0. In that case, contact stresses may have a singularity of loga-
rithmic type at the origin (if for instance the point z = i is a double zero of
the function g(x) or g1(x)).

It should be noted that the obtained system of integro-differential equa-
tions (3.3.8) reduces to one equation in the following quite interesting cases:

1. When a semi-infinite inclusion has constant rigidity or rigidity
changes according to a qualitative (nonlinear) law and reaches the
interface between two materials, for the Fourier transform of the
sought functions we obtain a boundary value problem of the theory
of analytic functions with shear for a strip (this is a Carleman type
problem).

2. When the stiffness of a semi-infinite or finite inclusion changes by
a linear law and reaches the interface of two materials, for the
Fourier transform of the sought function we obtain an algebraic
equation or a boundary value problem of linear conjugation.
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The application of the theory of analytic functions and integral trans-
formations makes it possible to obtain effective solutions of the above-stated
concrete problems.



CHAPTER 4

The Problem for Doubly-Connected Domains

4.1. Solution of the Third Basic Problem of the Elasticity Theory
for Doubly-Connected Domains Bounded by Broken Lines

Let on the domain S an elastic body occupy a finite doubly-connected
domain z = x+ iy bounded by two mutually disjoint closed convex broken
lines L0 and L1. Also assume that L0 is the external and L1 the internal
boundary of the domain S. Let the origin lie within the contour L1.

Denote by A1, A2, . . . , Ap and Ap+1, . . . , Ap+q the vertices of the broken
lines L1 and L0, respectively, and by Γk = AkAk+1 the their sides for
k = 1, 2, . . . , p+ q, k ̸= p, p+ q, Γp = ApA1, Γp+q = Ap+qAp+1.

We will consider the following problem.
Given on the boundary L (L = L0 ∪ L1) the tangent component T of

acting external forces and the normal component vn of the displacement
vector, find an elastic equilibrium of the domain S.

Assume that v′n(t) and Γ(t) belong to the class H0 for the nodes Ak,
k = 1, 2, . . . , p+ q.

The third basic problem for multiply connected domains bounded by
smooth contours is investigated in [108].

The third basic problem for domains mapped conformally on the circle
by means of rational functions is solved in [74], and for the polygon - in
[89]–[93].

Using the Kolosov–Muskhelishvili method [77] we can reduce the prob-
lem to finding two analytic functions φ(z) and ψ(z) of the complex variable
z = x+ iy in the domain S by the following conditions on L:

Re
[(
κφ1(t)− tφ′

1(t)− ψ1(t)
)
e−iα(t)

]
= 2µvn, t ∈ L, (4.1.1)

Re
[(
φ1(t) + tφ′

1(t) + ψ1(t)
)
e−iα(t)

]
= Re e−iα(t)

[
i

t∫
tj

(
N(t0) + iT (t0)

)
eiα(t0) ds0

]
+ cj , (4.1.2)

t ∈ Lj , j = 0, 1,

where κ and µ are elastic constants, s0 is the arc abscissa of the point t0
counted from the point tj , j = 0, 1; c0, c1 are some constants, α(t) is the
angle between the external normal n and the positive direction of the x-axis.

132
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It is obvious that α(t) is a piecewise-constant function, i.e. α(t) = αk on
Γk, k = 1, 2, . . . , p + q. Without loss of generality it can be assumed that
π > α1 > · · · > αp > −π and 0 ≤ αp+1 < αp+2 < · · · < αp+q < 2π.

The constants c0, c1 are a priori unknown; it is assumed that c1 = 0,
c0 = A+ iB, where A and B are the sought real constants.

Since α(t) is piecewise-constant, the right-hand part of equality (4.1.2)
can be rewritten in the form

Re e−iα(t)i

t∫
tj

(N + iT )eiα(t) ds0 = −
t∫

tj

T (t0) cos
[
α(t)− α(t0)

]
ds0 + C(t),

where

C(t) =

t∫
tj

N(t0) sin
[
α(t)− α(t0)

]
ds0

=
k∑

r=1

∫
Γr

N(t) sin[αk − αr] ds = Ck, k = 1, 2, . . . , p,

C(t) =

t∫
Ap+1

N(t0) sin
[
α(t)− α(t0)

]
ds0

=

k∑
r=p+1

∫
Γr

N(t) sin[αk − αr] ds = Ck, k = p+ 1. . . . , p+ q.

From this we see that c1 = cp+1 = 0.
As is known [77], the functions φ1(z) and ψ1(z) are written in the form

φ1(z) = φ2(z)−
X + iY

2π(1 + κ)
ln z, (4.1.3)

ψ1(z) = ψ2(z) +
(X − iY )κ
2π(1 + κ)

ln z, (4.1.4)

where φ2(z) and ψ2(z) are holomorphic functions in the domain S, and
(X,Y ) are the projections of the principal vector of external forces applied
to L1. These constants are a priori unknown and are to be defined together
with the functions φ2(z), ψ2(z).

Thus the problem reduces to defining the holomorphic functions
φ2(z) and ψ2(z) in the domain S, and p + q − 2 real constants
c2, . . . , cp, cp+r, . . . , cp+q, A, B, X, Y . As we will see below, the constants
cp and cp+q can be expressed through the constants X and Y .

Indeed, if we multiply the equality

X + iY =

∫
L1

(N + iT )eiα(t) ds
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by e−iαp and equate the real parts to each other, then we obtain

Cp = X sinαp − Y cosαp +

∫
L1

T (t) cos
(
αp − α(t)

)
ds. (∗)

From the equilibrium condition we have∫
L0

(N + iT )eiα(t) ds = −
∫
L1

(N + iT )eiα(t) ds = −(X + iY ).

By transformations analogous to those above we obtain

Cp+q = −X sinαp+q + Y cosαp+q +

∫
L0

T (t) cos(αp+q − α(t)) ds. (∗∗)

Thus it remains for us to define only p+q constants and the functions φ2(z)
and ψ2(z).

Summing the boundary conditions (4.1.1) and (4.1.2) we have

Re
[
φ1(t)e

−iα(t)
]
= fj(t) +

C(t)

κ + 1
+ Re e

−iαcj
κ + 1

, t ∈ Lj , (4.1.5)

where

fj(t) =
2µ

κ + 1
vn(t)−

1

κ + 1

t∫
tj

T (t0) cos
[
α(t)− α(t0)

]
ds0,

j = 0, 1, t1 = A1, t0 = Ap+1.

As is known [52], any doubly-connected domain is conformally mapped
on a circular ring r < |ζ| < R, where r can be chosen arbitrarily and R is
defined uniquely for this domain.

Assume that the function z = z(ζ) maps conformally the domain S on
the circular ring D = {1 < |ζ| < R}, the contour L1 transforms to the
circumference |ζ| = 1 and the contour L0 to the circumference |ζ| = R.

Denote by ak the points of the boundary of the circle D which corre-
spond to the points Ak of the boundary of the domain S, and by γk the
arcs corresponding to the segments Γk, k = 1, 2, . . . , p+ q.

Remark. The problem of finding the functions reduces to the homo-
geneous Riemann–Hilbert problem for the ring with piecewise-constant co-
efficients. The index of the problem z = z(ζ) is equal to zero and µ = 1.

As has been shown above, this problem has a unique nontrivial solution
given by formula (1.7.27).

Let us introduce the notation
φ1(z) = φ1(z(ζ)) = φ(ζ), ψ1(z) = ψ1(z(ψ)) = ψ(ζ), (4.1.6)

Then, using (4.1.3) and (4.1.4), we obtain

φ(ζ) = φ0(ζ)−
X + iY

2π(1 + κ)
ln ζ, (4.1.7)
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ψ(ζ) = ψ0(ζ)−
(X − iY )κ
2π(1 + κ)

ln ζ, (4.1.8)

where the functions φ0(ζ) and ψ0(ζ) are holomorphic in the ring D.
By the latter equalities the boundary condition (4.1.5) can be rewritten

in the form
φ0(σ) + eiβ(σ)φ0(σ) = 2eiα(σ)f2(σ), |σ| = R,

φ0(σ) + e2iα(σ)φ0(σ) = 2eiα(σ)f3(σ), |σ| = 1,
(4.1.9)

where
β(σ) = 2αp+k − 2π(k − 1), σ ∈ γp+k, k = 1, 2, . . . , q,

f2(σ) = f0(t(σ)) +
c(σ)

κ + 1

+Re
[
e−α(σ) X + iY

2π(1 + κ)
lnσ

]
, |σ| = R,

f3(σ) = f1(t(σ)) +
c(σ)

κ + 1

+Re
[
e−α(σ)

(
X + iY

2π(1 + κ)
lnσ +A+ iB

)]
, |σ| = 1.

(4.1.10)

Since it is assumed that the displacement vector projection on the
x- and y-axes is continuous and that N + iT is integrable, by the
Kolosov–Muskhelishvili formulas we obtain that the functions φ2(z) and
zφ′

2(z) + ψ2(z) are continuous in the closed domain S = S + L. Hence
it follows that a solution of problem (4.1.9) can be sought in the class of
bounded functions, i.e. in the class h(a1; . . . , ap+q).

It can be easily shown that the index of problem (4.1.9) of the class
h(a1; . . . , ap+q) is equal to κ = −q, while by virtue of formulas (1.7.24) a
solution of the class hp+q has the form

φ0(ζ) =
g(ζ)X(Rζ)

πi

×

∫
ℓ0

Kλ

(
R2ζ
σ

)
f2(σ)

X(Rσ)σ
dσ + λ

∫
ℓ1

Kλ

(
ζ
σ

)
f3(σ)

X(Rσ)σ
dσ

 , ζ ∈ D, (4.1.11)

where l = l0 ∪ l1; l0 and l1 denote respectively the circumferences |σ| = R
and |σ| = 1;

Kλ(z) =
R2

R2 − z
+

1

λ

1

1− z
+ λ

∑
n≥1

1

R2n − λ

( z

R2

)n

+
1

λ

∑
n≤−1

R2nzn

R2n − λ
+


λ

1− λ
for λ ̸= 1,

0 for λ = 1.
(4.1.12)
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The function g(ζ) defined by (1.8.5) can now be represented as

g(ζ) = e−iβ0
(ζ − a1)(ζ − a2)

a1ζ

(
ζ − a1
ζ − ap

)αp
π

p−1∏
k=2

(
ζ − ak+1

ζ − ak

)αk
π

, |ζ| > 1.

Under the expression
[
(ζ−ak+1)/(ζ−ak)

]αk/π we mean a holomorphic
branch on the plane cut along the arcs γk, for which

lim
ζ→∞

ζ − ak+1

ζ − ak
→ 1.

It is known that λ can be given in the following manner

λ = exp
(

1

2π

2π∫
0

lnG(eiθ) dθ
)
,

where

G(σ) =
e2iα(σ)g(Rσ)W ∗

q (σ)

g(Rσ)W ∗
q (R

2σ)
.

. In that case, instead of the function

Wq(ζ) = (ζ −Reiα0)ζ [
q
2 ]e

iθ0q
2

we can take the function

W ∗
q (ζ) =

q∏
k=1

(ζ − ζkR)
−1ζ [

q
2 ]e

iθ0q
2 ,

where

ζk = exp i
(
α0 +

2π(k − 1)

q

)
, k = 1, 2, . . . , q, 0 ≤ θ0 < 2π,

X(Rζ) = eiγ0W ∗
q (Rζ) exp

[
1

2πi

∫
|σ|=1

K1

(
Rζ

σ

)
ln
(
G(σ)

λ

)
dσ

σ

]
,

γ0 = − 1

2π

2π∫
0

arg G(σ)
λ

dθ, σ = eiθ.

(4.1.13)

It can be easily verified that W ∗
q (ζ) satisfies the condition

W ∗
q

(
R2

ζ

)
=


W ∗

q (ζ) for even q,

− ζ

R
W ∗

q (ζ) for odd q.
(4.1.14)

As has been shown in § 1.8, the function X(τ) satisfies the condition

X

(
R2

ζ

)
=


X(ζ) for even q,

− ζ

R
X(ζ) for odd q.

(4.1.15)
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With (4.1.14) taken into account, it can be easily shown that |λ| = R
for odd q and |λ| = 1 for even q and that, in the latter case, ζ0 can be chosen
so that |λ| ̸= 1.

Since the function W ∗
q (Rζ) has first order poles at the points ζ = ζk,

k = 1, 2, . . . , q, for the function φ0(ζ) to be bounded it is necessary and
sufficient that the condition

lim
ζ→ζk

∫
ℓ0

Kλ

(
R2ζ

σ

)
f2(σ)

X(Rσ)g(σ)

dσ

σ

− lim
ζ→ζk

∫
ℓ1

Kλ

(
ζ
σ

)
f3(σ)

X(Rσ)g(σ)σ
dσ = 0, k = 1, . . . , q (4.1.16)

be fulfilled.
Since the expression f∗(σ)/X(Rσ)g(σ) vanishes at the points ζk, we

can pass to the limit under the integral sign in formula (4.1.16) and thus
write the solvability condition of problem (4.1.15) in the form∫

ℓ0

Kλ

(
R2ζk
σ

)
f2(σ)

X(Rσ)g(σ)

dσ

σ
+

∫
ℓ1

Kλ

(
ζk
σ

)
f3(σ)

X(Rσ)g(σ)σ
dσ = 0, (4.1.17)

k = 0, 1, . . . , q.

Substituting here the value f∗(σ) defined by formula (4.1.10), we obtain
a system of linear algebraic equations

q+p∑
j=1

akjXj = dk, k = 1, 2, . . . , q, (4.1.18)

where akj are well-defined constants independent of the functions f0(z(σ))
and f1(z(σ)), and dk are constants depending on these functions:

dk =
1

2πi

[
−
∫

|σ|=1

Kλ

(
R2ζk
σ

)
f1(t(σ))e

iα(σ)

X(R2(σ))g(σ)

dσ

σ

+

∫
|σ|=R

Kλ

(
R2ζk
σ

)
f0(t(σ))e

iα(σ)

X(R2σ)g(σ)

dσ

σ

]
,

Xj = Cj for j = 2, 3, . . . , p+ q − 1 and j ̸= p, p+ 1,

X1 = X, Xp = Y, Xp+1 = A, Xp+q = B.

Let us now show that akj and dk are real numbers. For this it suffices
to show that for real f∗(σ) the left-hand part of equality (4.1.17) takes a
real value or it becomes real if multiplied by some complex numbers.
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We rewrite the left-hand part of equality (4.1.17) as follows

1

2πi

∫
|σ|=1

Kλ

(
Rζk
σ

)
f2(σ)e

iα(Rσ)

X(R2σ)g(σ)

dσ

σ

− 1

2πi

∫
|σ|=1

Kλ

(
R2ζk
σ

)
f3(σ)

X(Rσ)g(σ)

dσ

σ
= D(ζk).

Passing in this expression to the conjugate values and then using the
following properties of the functions Kλ(ζ), X(ζ) and g(ζ), we obtain

Kλ

(
R2ζk
σ

)
= −


Kλ

(
R2ζk
σ

)
for even q,

σ

ζk
Kλ

(
R2ζk
σ

)
for odd q,

Kλ

(
Rζk
σ

)
= −


λKλ

(
Rζk
σ

)
for even q,

λ
σ

Rζk
Kλ

(
Rζk
σ

)
for odd q,

X(Rσ) = −

{
X(Rσ) for even q,

σX(Rσ) for odd q,

X(R2σ) = −

X(σ) for even q,

− σ

R
X(σ) for odd q,

X(R2σ) = X(σ)λe2iα
g(Rσ)

g(σ)
and g(σ) = e2iαg(σ),

we have

D(ζk) =

{
D(ζk) for even q,

ζkD(ζk) for odd q.

Thus, when q is even, (4.1.18) is a system with real coefficients, and
when q is odd, system (4.1.18) can be made such if we multiply it by ζ1/2k .

In the sequel, we will show that there exists a unique value of the
constants Xk, k = 1, 2, . . . , p+q, that satisfies system (4.1.18) or conditions
(4.1.17).

The function K1(ζ/σ) can be written in the form

K1

(
Rζ

σ

)
=

Rσ

Rσ − ζ
+

σ

σ − ζ
+K0

1

(
ζ

σ

)
, 1 < |ζ| < R,

where K0
1 (ζ/σ) is analytic in the ring 1/R < |ζ| < R2. Therefore X(Rζ) is

analytic in the ring 1/R < |ζ| < R except for the points ζ = ζk, continuously
extendable on the boundary |ζ| = R, the boundary value X(Rσ) satisfies
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the Hölder condition [76] on the circumference |σ| = R and vanishes at the
points ak by order less than one.

Let us write the function Kλ(ζ/σ) in the form

Kλ

(
ζ

σ

)
=

σ

σ − ζ
+

R2σ

R2σ − ζ
+K0

λ

(
ζ

σ

)
, 1 < |ζ| < R,

where K0
λ(ζ/σ) is analytic in the ring 1/Rλ < |ζ| < R2 for σ ∈ l. Then

φ0(ζ) can be represented as

φ0(ζ) =
2g(ζ)X(Rζ)

2πi

[∫
l

f∗(σ)eiα(σ)

X(Rσ)g(σ)(σ − ζ)
dσ

+

∫
l

f∗(σ)K0
λ

(
R2ζ
σ

)
eiα(σ)

X(Rσ)g(σ)σ
dσ

]
. (4.1.19)

The second summand in the right-hand part of equality (4.1.19) is holo-
morphic in the ring 1 < |ζ| < R and continuous in the closed ring D. The
first summand is a Cauchy type integral whose density satisfied the Hölder
condition on every open arc γk. Therefore by the Plemelj–Privalov theo-
rem [76] the function φ0(ζ) is continuously extendable on the open arcs γk
and its boundary value satisfies on these arcs the Hölder condition. If we
now use the results of [76, § 26], then we will satisfy ourselves that φ0(ζ)
is continuously extendable on the whole boundary and its boundary value
satisfies on it the Hölder condition.

Since the function z = z(ζ) is continuous in the closed ring D and
its boundary value satisfies the Hölder condition, the function φ2(z), too,
satisfies this condition in the closed domain D.

Let us now study the behavior of a derivative of the function φ0(ζ) near
the ends ak. It suffices to consider only the end ζ = a1.

We rewrite equality (4.1.19) as follows

φ0(ζ) = X(Rζ)φ3(ζ) + g(ζ)φ4(ζ), (4.1.20)

where

φ3(ζ) =
g(ζ)

2πi

∫
l

f∗(σ)eiα(σ)

X(Rσ)g(σ)(σ − ζ)
dσ,

φ4(ζ) =
X(Rσ)

2πi

∫
l

f∗(σ)K0
λ

(
R2ζ
σ

)
eiα(σ)

X(Rσ)g(σ)

dσ

σ
.
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Near ζ = a1, the derivative of the function g(ζ) is representable as

g(ζ) =
g(ζ)

ζ − a1

[
1 +

αp

π

ap − a1
ζ − ap

+ (ζ − a1)

ρ−1∑
r=2

αr(αr − αr+1)

(ζ − ar)(ζ − ar+1)
− ζ − a1

ζ

]
.

Since the function φk(ζ) is analytic near the point a1, after differentiating
equality (4.1.20) we satisfy ourselves that near the point φ′

0(ζ) the derivative
a1 is representable as

φ′
0(ζ) = X(Rζ)φ′

3(ζ) +M(ζ)

(
ζ − ap
ζ − a1

)−αp
π

, (4.1.21)

where M(ζ) is an analytic function in the neighborhood of the point ζ = a1
and bounded at the point a1. In the sequel, the function possessing the
above-mentioned properties will be denoted by M(ζ).

Let us introduce the notation
ϕ(ζ) = (ζ − a1)φ3(ζ). (4.1.22)

We can rewrite ϕ(ζ) as follows

ϕ(ζ) =
g(ζ)

2πi

∫
l

F (σ)(σ − a1)

(σ − ζ)g(σ)
dσ − g(ζ)

2πi

∫
l

F (σ)

g(σ)
dσ. (4.1.23)

where
F (σ) =

f∗(σ)eiα(σ)

X(Rσ)
.

Differentiating equalities (4.1.22) and applying the results of [68], we
obtain

ϕ′(ζ)− φ3(ζ) =M(ζ)g(ζ),

φ′
3(ζ) =

ϕ′(ζ)− φ3(ζ)

ζ − a1
=
M(ζ)g(ζ)

ζ − a1
.

Therefore in the neighborhood of the point φ′
0(ζ) the derivative ζ = a1

is representable as

φ′
0(ζ) =M(ζ)

(
ζ − ap
ζ − a1

)−αp
π

.

If we now use the equality

φ′
1(ζ) =

φ′(ζ)

ω′(ζ)
=
φ′
0(ζ)

ω′(ζ)
− X + iY

2π(1 + κ)ω′(ζ)

take into consideration the fact that in the neighborhood of the point a1,
ω′(ζ) can be represented as

ω′(ζ) = ω0(ζ)(ζ − a1)
1+

αp
π ,
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where ω0(ζ) is bounded in the neighborhood of a1 and ω0(a1) ̸= 0, then we
have

φ′
1(ζ) =

Ω(ζ)

ζ − a1
. (4.1.24)

As is known, near the point A1 the inverse function z = z(ζ) of ζ = ζ(z)
is written in the form

ζ − a1 = Ω(z)(z −A1)
π
δ1 ,

where Ω(z) is a nonzero function bounded near the point z = A1, δ1 is the
value of the angle with the vertex at the point A1.

From the above reasoning it follows that in the neighborhood of the
point A1, φ′

1(z) satisfies the condition

|φ′
1(z)| <

M

|z −A1|π/δ1
.

It is obvious that this representation holds for any point Ak, k = 1, 2, . . . , p.
Therefore, in the neighborhood of the point we have the inequality

|φ′
1(z)| <

M

|z −Ak|π/δk
,

where δk > π is the value of the angle with vertex at the point Ak.
By an analogous reasoning it can be shown that the representation

|φ′
1(z)| < M ln |z −Ak|

holds near the points Ak, k = p+ 1, . . . , p+ q.
Using the Plemelj–Privalov theorem we prove that the boundary values

of the function φ′
1(z) belong to the class H∗ on L1, and to the class Hε on

L0.
If we assume that the second derivative of the function fj(t), j = 0, 1,

satisfies the condition H0, then by a reasoning analogous to that above it
can be shown that the boundary values of the function φ′′

1(z) belong to the
class H on the interior segments Γk, whereas near the ends of the segments
they satisfy the condition

|φ′′
1(z)| <

M

|z −Ak|δ
, 1 ≤ δ ≤ 2.

Let us now define the function ψ1(z). Substituting (4.1.11) into condi-
tion (4.1.1), we obtain the Riemann–Hilbert problem for the function ψ1(z)
whose right-hand part is unbounded near the points Ak, k = 1, . . . , p + q.
Hence the solution of the obtained problem should be sought in the class
of unbounded functions. Using formulas (1.8.21) by means of which we
considered the Riemann–Hilbert problem in the case of the bounded right-
hand part, we can investigate the problem in the considered case, too, but
this will put us into a difficult position, especially when proving the con-
tinuity of the expression zφ′

1(z) + ψ(z) in a closed domain. This difficulty
can be overcome by reducing the considered problem to a problem with the
bounded right-hand part.
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Let us rewrite the boundary condition (4.1.1) as follows

Re eiα
[
P (t)φ′

1(t) + ψ1(t)
]

= −2µvn + Re eiα
[
(t− P (t))φ′

1(t)− κφ1(t)
]
, (4.1.25)

where P (t) is the interpolation polynomial satisfying the conditions

P (Ak) = Ak, k = 1, 2, . . . , p+ q.

We have thus reduced the problem to the case we have studied above,
i.e. when the right-hand part in the boundary condition (4.1.25) is bounded,
and a solution is sought in the class of bounded functions. The index of
problem (4.1.25) of the class hp+q is equal to −p, and the solution can
be constructed analogously to the preceding one, the solvability condition
having form (4.1.17). This condition is a system of linear algebraic equations
with real coefficients of form (4.1.18):

p+q∑
j=1

bkjXj = d
(2)
k , k = 1, 2, . . . , p, (4.1.18′)

where bkj , k = 1, 2, . . . , p, j = 1, . . . , p + q, are the known constants not
depending on the functions vn and T , d(2)k are also the known constants
which can be expressed through the functions vn and T and which vanish
for vn = T = 0. Xj has the same meaning as in equation (4.1.18).

Thus (4.1.18)–(4.1.18′) is a system consisting of p + q equations with
respect to the unknowns Xj . This system can be represented in the form

p+q∑
j=1

KsjXj = ds, s = 1, 2, . . . , p+ q, (4.1.26)

where

Ksj =

{
asj for s = 1, 2, . . . , q; j = 1, 2, . . . , p+ q,

bs−q for s = q + 1, . . . , p+ q; j = 1, 2, . . . , p+ q,

ds =

{
d
(1)
s for s = 1, 2, . . . , p,

d
(2)
s−q for s = q + 1, . . . , q + p.

Let us now show that the determinant of system (4.1.26) differs from
zero. Indeed, assume T = vn = 0, then all ds = 0 and system (4.1.26)
becomes homogeneous. If the determinant of the latter system is equal to
zero, then the homogeneous system will have nontrivial solutions. Assume
that X0

j , j = 1, . . . , p+ q, is one of the solutions, then the problem will have
a solution which we denote by φ0(z) and ψ0(z). These functions satisfy the
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conditions

Re
[
e−iαφ0(t)

]
=
C0(t)

κ + 1
+ Re

[
e−iαjCj

]
, t ∈ Lj , j = 1, 2,

Re
[(
κφ0(t)− tφ′

0(t)− ψ0(t)
)
e−iα

]
= 0, t ∈ L.

(4.1.27)

Let Sε be a doubly connected domain bounded by the broken lines L(ε)
0

and L
(ε)
1 and lying in the domain S. Assume that the sides of the broken

lines L(ε)
0 and L

(ε)
1 are parallel to the sides of L0 and L1, respectively, and

lie from them at a sufficiently small distance ε.
Consider the integral

Jε =
1

2µ

∫
Lε

Re
{
2φ′

0(t)− e2iα
[
tφ′′

0(t) + ψ′
0(t)

]}

× Re
{[

κφ0(t)− tφ′
0(t)− ψ0(t)

]
e−iα

}
ds

+
1

2µ

∫
Lε

Im
{
− e2iα

[
tφ′′

0(t) + ψ′
0(t)

]}

× Im
{[

κφ0(t)− tφ′
0(t)− ψ(t)

]
e−iα

}
ds, (4.1.28)

or

Jε =
1

2µ
Re
∫
Lε

[(
φ′
0(t) + φ′

0(t)
)
e−iα − eiα

(
tφ′′

0(t) + ψ′
0(t)

)]
×
[
κφ0(t)− tφ′

0(t)− ψ0(t)
]
ds

=
1

2µ
Re
{∫

Lε

[
φ′
0(t) + φ′

0(t)− tφ′′
0(t)− ψ′

0(t)
]

×
[
κφ0(t)− tφ′

0(t)− ψ(t)
]

cosαds

− i

∫
Lε

[
φ′
0(t) + φ′

0(t) + tφ′′
0(t) + ψ′

0(t)
]

×
[
κφ0(t)− tφ′

0(t)− ψ0(t)
]

sinαds
}
.

Using Green’s formula, we obtain

Jε = 2(κ−1)

∫∫
Sε

[
Reφ′

0(z)
]2
dx dy+

∫∫
Sε

∣∣zφ′′
0(z)+ψ

′
0(t)

∣∣2 dx dy. (4.1.29)

Since κφ0(z)− zφ′
0(z)−ψ0(z) is continuously extendable in the closed

domain S, and φ′
0(z) and zφ′′

0(z) + ψ′
0(t) are continuously extendable all
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over the boundary L except perhaps for the points Ak at which they may
reduce to infinity of order less than one, we may pass in expression (4.1.29)
to the limit for ε→ 0. Since for ε→ 0 we have Lε → L, Sε → S

Re e−iα
[
κφ0(t)− tφ′

0(t)− ψ0(t)
]
−→ 0,

Im e2iα
[
tφ′′

0(t) + ψ′(t)
]
−→ T −→ 0,

by passing to the limit as ε→ 0 we obtain from (4.1.29) that

2(κ − 1)

∫∫
D

[
Reφ′

0(z)
]2
dx dy +

∫∫
D

[
zφ′′

0(z) + ψ′
0(z)

∣∣2 dx dy = 0.

This implies
φ′
0(t) = ic, φ0(z) = icz +D1, ψ0(z) = D2, (4.1.30)

where c is a real constant, and D1 anD2 are complex constants. The sub-
stitution of values (4.1.30) into the second condition (4.1.27) gives

Re e−iα
[
(κ + 1)ict+ κD1 −D2

]
= 0. (4.1.31)

When t ∈ Γ1, we have α(t) = π, t ∈ x1+iy = ReA1+iy, ImA1 < y < ImA2

and condition (4.1.31) takes the form

Re
[
(κ + 1)cy − κD1 +D2

]
= (κ + 1)yc− Re[κD1 −D2] = 0.

Hence it follows that c = 0, Re[κD1 −D2] = 0.
When t ∈ Γ2, condition (4.1.31) takes the form

Re e−iα2 [κD1 −D2] = cosα2 Re(κD1 −D2) + sinα2 Im(κD1 −D2) = 0.

Since α2 ̸= π, 2π, we obtain
Im(κ ·D1 −D2) = 0, κD1 −D2 = 0.

Thus we have
φ0(z) = 0, ψ0(z) = κD1,

and from representation (4.1.3) it follows that X = Y = 0, which by virtue
of (∗) and (∗∗) implies cp = cp+q = 0.

From the first condition (4.1.27) we obtain

Re e−iα(t)D1 =
C(t)

κ + 1
, t ∈ L0 (4.1.32)

whence it follows that {
Re e−iαp+1D1 = 0,

Re e−iαp+qD1 = 0.

The determinant of this system sin(αp+q −αp+1) ̸= 0; therefore D1 = 0
and from equality (4.1.32) we obtain

Cp+1 = Cp+2 = Cp+q = 0.
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Since C1 = Cp+1 = 0, from the first equality (4.1.27) for t ∈ L0 we analo-
gously obtain

A = B = C1 = C2 = · · · = Cp+1 = 0.

Thus the determinant of system (4.1.26) is different from zero and therefore
the problem has a unique solution.

4.2. Defining a Hole of Uniform Strength in a Polygonal Plate

In this paragraph we investigate the problem of finding a hole with a
uniformly strong boundary in a finite plate.

Let us consider an isotropic and homogeneous plate shaped as a convex
polygon weakened by a curvilinear hole. Assume that the normal displace-
ment un on each side of the polygon has a constant value, the tangent stress
on the external boundary of the plate is equal to zero, while the internal
boundary is under the action of the constant normal force and the tangent
stress is equal to zero. We can consider two cases where 1) the values of the
constant un are given, and 2) the values of the principal vector are given on
either side of the external boundary of the plate.

The mechanical meaning of the first case consists in the following: an
elastic washer is inserted into the hole of polygonal configuration made in
a fixed rigid body. Prior to deformation the shape of the washer contour
differs but little from the shape of the hole. In the second case it is assumed
that the dies with rectilinear bases adjoin the sides of the plate.

We pose the following problem: find a stressed state of the body and the
boundary of the hole assuming that the boundary of the hole is uniformly
strong. Let on the plane of the complex variable z = x+iy the plate occupy
the domain S bounded by the closed convex broken line A1A2 · · ·An which
we denote by L1 and by the smooth closed contour L2 lying inside L1. To
simplify the notation, the affixes of the points Ak, k = 1, 2, . . . , n, which are
the vertices of the broken line are denoted by the same symbols.

It is also assumed that the point z = 0 lies within the sought contour
L2.

We make use of the following formulas [77]

κφ(z)− zφ′(z)− ψ(z) = 2µ(u+ iv), (4.2.1)

φ(z) + zφ′(z) + ψ(z) = i

z∫
z0

(Xn + iYn) ds+ const, (4.2.2)

Xx + Yy = 4Reφ′(z), (4.2.3)

where φ(z), ψ(z) are holomorphic functions in the domain S occupied by
the body; u, v are the displacement components on the coordinate axes; Xx,
Yy are stress components. The integral in formula (4.2.2) is taken over any
smooth arc l that lies within S and connects an arbitrarily fixed point z0
with a variable point z of the domain S; Xn and Yn denote the component
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of stress acting on the arc l from the side of the normal directed to the right
relative to the direction on l leading from z0 to z.

By the Kolosov–Muskhelishvili formulas (4.2.1), (4.2.2) for two sought
holomorphic functions φ and ψ in the domain S we obtain the boundary
condition

Re
[
e−iα(t)

(
κφ(t)− tφ′(t)− ψ(t)

)]
= 2µun on L1, (4.2.4)

Re
[
e−iα(t)

(
φ(t) + tφ′(t) + ψ(t)

)]
= C(t) on L1, (4.2.5)

where α(t) is the angle formed by the normal to L1 at the point t with the
ox-axis,

C(t) = Re
[
i

s∫
0

N(t0)e
i(α(t0)−α(t)) ds0

]
,

N(t) is the normal stress to L1 at the point t, s is the arc abscissa at the
point t counted from the point A1 in the positive direction.

Taking into account that α(t) is a piecewise-constant function, we obtain

C(t) =

k∑
j=1

sin(αk − αj)

sj+1∫
sj

N(t0) ds0

for t ∈ AlAk+1 k = 1, 2, . . . , n; An+1 = A1,

where αk’s are the values of the function α(t) on AkAk+1, k = 1, 2, . . . , n;
sj is the arc abscissa of the point Aj , i.e. the length of the broken line
A1A2 · · ·Aj . It is obvious that C(t) is also a piecewise-constant function.

For the functions φ and ψ, from formulas (4.2.2), (4.2.3) we obtain the
condition on L2

φ(t) + tφ′(t) + ψ(t) = B1 + iB2 on L2, (4.2.6)
4Reφ′(t) = σt = K on L2, (4.2.7)

where B1, B2, K are real constants.
Since in the first case un is a given piecewise-constant function, and in

the second case C(t) is also a given piecewise-constant function, by virtue of
formulas (4.2.4) and (4.2.5) both cases reduce to identical problems of the
analytic function theory. We will consider the second case where the values
of the principal vector of external stress are given on the segments AkAk+1

Pk =

sk+1∫
sk

N(s) ds, k = 1, 2, . . . , n.

From the equilibrium condition we have
n∑

k=1

Pke
iαk = 0. (4.2.8)
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Using formulas (4.2.1)–(4.2.3) and applying physical argumentation we con-
clude that the function φ(z) is continuous in the closed domain S, whereas
φ′(z) and ψ(z) are continuously extendable on the domain boundary ex-
cept perhaps for the points Ak, k = 1, 2, . . . , n, near which they admit an
estimate of the form

|φ′(z)|, |ψ(z)| < M |z −Ak|−δ, 0 ≤ δ < 1.

Taking into account the fact that L1 is a broken line, by the summation of
formulas (4.2.4) and (4.2.5) and the next differentiation we obtain Imφ′(t) =
0 on L1. The latter equality and condition define uniquely φ′(z) = K

4 ,
whence, neglecting the constant summand which does not influence the
stressed state of the body, we obtain

φ(z) =
1

4
Kz. (4.2.9)

Thus the boundary conditions (4.2.5), (4.2.6) take the form

Re
[
e−iα(t)

(
K

2
t+ ψ(t)

)]
= C(t) on L1, (4.2.10)

ψ(t) +
K

2
t = B on L2, B = B1 + iB2. (4.2.11)

If t ∈ AkAk+1, then

(t−Ak) = iρeiαk , ρ = |t−Ak|,

whence
Re(te−iα(t)) = Re

(
A(t)e−iα(t)

)
, t ∈ L1, (4.2.12)

where A(t) = Ak for t ∈ AkAk+1, k = 1, 2, . . . , n.
Let the function z = ω(ζ) conformally map the circular ring 1 < |ζ| < R

onto the domain S, where R is the unknown number to be determined.
Assume that the circumference |ζ| = R is mapped onto L1. Assume that to
the vertices A1, A2, . . . , An there correspond the points a1, a2, . . . , an from
the circumference |ζ| = R. Let ak = Reiδk , k = 1, 2, . . . , n, where δk are
unknown numbers. Assume that 0 = δ1 < δ2 < · · · < δn < 2π. From
conditions (4.2.10)–(4.2.12) we have

Re
[
e−iα(σ)

(
1

2
ω(σ) + ψ0(σ)

)]
= C(σ), |σ| = R, (4.2.13)

ψ0(σ) +
1

2
Kω(σ) = B, |σ| = 1, (4.2.14)

Re
[
e−iα(σ)ω(σ)

]
= Re

[
e−iα(σ)A(σ)

]
, |σ| = R, (4.2.15)

where ψ0(ζ) = ψ[ω(ζ)], 1 < |ζ| < R. For the sake of simplicity we rite
α(σ), A(σ), C(σ) instead of α[ω(σ)], A[ω(σ)], C[ω(σ)], respectively. These
functions are defined all over the plane by the equalities

α(rσ) = α(σ), A(rσ) = A(σ), C(rσ) = C(σ), 0 < r <∞, |σ| = 1.
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Let W (ζ) be the function defined by the equalities

W (ζ) =


1

2
Kω

(
ζ

R

)
for R < |ζ| < R2,

B − ψ0

(
R

ζ

)
for 1 < |ζ| < R.

(4.2.16)

It is obvious that W (ζ) is a holomorphic function in domains 1 < |ζ| <
R and R < |ζ| < R2. By virtue of condition (4.2.14), on the circumference
W (ζ) the boundary values of |ζ| = R, are equal to each other from the inside
and outside. Therefore W (ζ) is holomorphic in the ring 1 < |ζ| < R2.

From (4.2.16) we have

1

2
Kω(Rσ) =W (R2σ) for |σ| = 1,

ψ0(Rσ) = B −W (σ) for |σ| = 1.

The substitution of the values into conditions (4.2.13), (4.2.15) gives

Re
[
e−iα(σ)W (σ)

]
= f(σ), σ ∈ Γ, (4.2.17)

where

Γ = Γ1 ∪ Γ2, Γ1 = {σ : |σ| = R2}, Γ2 = {σ : |σ| = 1},

f(σ) =


1

2
K Re

[
e−iα(σ)A(σ)

]
, σ ∈ Γ1,

ReBe−iα(σ) − C(σ) +
1

2
K Re

[
e−iα(σ)A(σ)

]
, σ ∈ Γ2.

(4.2.18)

We have thus reduced the posed problem to the Riemann–Hilbert prob-
lem for the circular ring with piecewise-constant coefficients. All disconti-
nuity points are nonsingular (see [76, p. 256]).

Since the function W (ζ) must be bounded on the domain boundary,
a solution of problem (4.2.17) should be sought in the class of functions
bounded on the boundary, i.e. in the class h2n (see [76, p. 256]).

The coefficient index of problem (4.2.17) corresponding to this class
is equal to −n + 2 on Γ1, and to −2 on Γ2. Therefore the index of the
Riemann–Hilbert problem (4.2.17) corresponding to the class h2n is equal
to −n.

Let us represent the boundary condition (4.2.17) in the form

W (σ) + e2iα(σ)W (σ) = 2f1(σ)e
iα(σ) on Γ1,

W (σ) + e2iα(σ)W (σ) = 2f2(σ)e
iα(σ) on Γ2,

(4.2.19)

where f1(σ) and f2(σ) are the values of the function f(σ) on Γ1 and Γ2,
respectively.
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Consider the function

χ(z) = z exp

iβ +

∫
Γ2

ln(e−2iα(σ)σ2)

σ − z
dσ

 , |z| > 1,

where

β = − 1

4π

2π∫
0

arg
(
σ2e2iα(σ)

)
dϑ, ϑ = argσ.

χ(z) is holomorphic in the domain of its definition and satisfies the condition

χ(σ) = e2iα(σ)χ(σ) for |σ| = 1. (4.2.20)

By virtue of (4.2.20) the boundary condition on Γ2 in (4.2.19) can be
written as follows

W (σ)

χ(σ)
+
W (σ)

χ(σ)
=

2f2(σ)e
iα(σ)

χ(σ)
for |σ| = 1. (4.2.21)

Consider the holomorphic function Ψ(z)

Ψ(z) =


W (z)

χ(z)
for 1 < |z| < R2,

−W (1/z)

χ(1/z)
for 1

R2 < |z| < 1,

(4.2.22)

on the set (1 < |z| < R2) ∪ (1/R2 < |z| < 1).
By (4.2.21)

Ψ+(σ)−Ψ−(σ) = −f0(σ) for |σ| = 1, (4.2.23)

where

f0(σ) =
2f2(σ)e

iα(σ)

χ(σ)
. (4.2.24)

Since the piecewise-holomorphic function

F (z) = − 1

2πi

∫
Γ2

f0(t)

t− z
dt (4.2.25)

also satisfies condition (4.2.23), we obtain

Ψ(z) = F (z) +W1(z), (4.2.26)

where W1(z) a holomorphic function in the ring 1/R2 < |z| < R2. For the
function Ψ to be representable as (4.2.22) we should subject the function
W1 to the condition

W1(z) +W1

(
1

z

)
= −F (z)− F

(
1

z

)
.
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Using (4.2.20) and (4.2.25) we obtain

F (z) + F

(
1

z

)
= F (0). (4.2.27)

Therefore the function W1 in (4.2.26) should be subjected to the con-
dition

W1(z) +W1

(
1

z

)
= −F (0). (4.2.28)

Using formulas (4.2.19), (4.2.22), (4.2.28), for the function W1(z) we
obtain the boundary condition

W1(σ)− e2iα(σ)
χ(σ)

χ(σ)
W1

( σ

R4

)
= Q(σ), |σ| = R2, (4.2.29)

where

Q(σ) =
1

χ(σ)

(
2f1(σ)e

iα(σ) − χ(σ)F (σ) + e2iα(σ)χ(σ)F

(
1

σ

))
.

Let us introduce a new sought function

W2(z) =W1

( z

R2

)
.

Then, by virtue of (4.2.29), we obtain
W2(R

4σ) = G(σ)W2(σ) +Q(R2σ) for |σ| = 1, (4.2.30)
where

G(σ) = e2iα(σ)
χ(R2σ)

χ(R2σ)
,

Q(R2σ) =
2f1(R

2σ)

χ(R2σ)
− F (R2σ) +G(σ)F

( σ

R2

)
, |σ| = 1, (4.2.31)

and condition (4.2.28) takes the form

W2(z) +W2

(
R4

z

)
= −F (0). (4.2.32)

Thus we come to the problem of finding a holomorphic function W2 in
the ring 1 < |z| < R4 by the boundary condition (4.2.30) and the additional
condition (4.2.32). We have to find bounded solutions of this problem.

To solve problem (4.2.30), we make use of the following result [18].
Consider a problem with the boundary condition

Φ(R4σ)− λΦ(σ) = g(σ), |σ| = 1, (4.2.33)
where Φ is the sought holomorphic function in the ring 1 < |z| < R4, g is a
given function from the class H∗, λ is some number.

If λ ̸= R4n, n = 0,±1,±2, . . . , then problem (4.2.33) has the unique
solution

Φ(z) =
1

2πi

∫
Γ2

Kλ

(z
t

) g(t)

t
dt (4.2.34)
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but if λ = 1, then for problem (4.2.33) to be solvable it is necessary and
sufficient that the condition ∫

Γ2

g(t)

t
dt = 0

be fulfilled. In that case, for λ = 1 the solution of problem (4.2.32) is written
in the form

Φ(z) =
1

2πi

∫
Γ2

K1

(z
t

) g(t)

t
dt+ C, (4.2.35)

where C is an arbitrary number.
In the above formulas, the function Kλ(z) has the form

Kλ(z) =
R4

R4 − z
+

1

λ
· 1

1− z
+ λ

∑
n≥1

1

R4n − λ

( z

R4

)n

+
1

λ

∑
n≤−1

R4nzn

R4n − λ
+


λ

1− λ
for λ ̸= 1,

0 for λ = 1.
(4.2.36)

Consider the function

Tn(z) =
n∏

k=1

(z −R2zk)
−1z[

n
2 ]ei

ϑ0n
2 , (4.2.37)

where
zk = exp

(
iϑ0 +

2π(k − 1)

n
i

)
, k = 1, 2, . . . , n,

is a fixed number, ϑ0, such that 0 ≤ ϑ0 < 2π does not coincide with the
points a1, a2, . . . , an.

By direct calculations we find that

Tn

(
R4

z

)
=

−Tn(z) if n is even,

− z

R2
Tn(z), if n is odd.

(4.2.38)

Further it is not difficult to verify that

IndΓ2

Tn(σ)

Tn(R4c)
= n.

By the results of [18], we write the coefficient in the boundary condition
(4.2.30) as follows

G(σ) = λ
X(R4σ)

X(σ)
, |σ| = 1, (4.2.39)

where

X(z) = Tn(z) exp
(

1

2πi

∫
Γ2

K
(
1;
z

σ

)
ln G(σ)Tn(σ)

λTn(R4σ)

dσ

σ

)
, (4.2.40)
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λ = exp
(

1

2πi

∫
Γ2

1

σ
ln G(σ)Tn(σ)

Tn(R4σ)
dσ

)
. (4.2.41)

It is obvious that X(z) is a function holomorphic in the ring 1 < |z| < R4

except for the points R2zk, k = 1, 2, . . . , n, where it has poles of first order.
From (4.2.38) and (4.2.41) we derive

|λ| =

{
1 for even n,

R2 for odd n.

Therefore for odd n we have λ ̸= R4n (n = 0,±1,±2, . . . ). The number
ϑ0 in formula (4.2.37) can be chosen so that λ ̸= 1 for even n. Then λ ̸= R4n

(n = 0,±1,±2, . . .) for even n too.
Using (4.2.39), from the boundary condition (4.2.30) we obtain

W2(R
4σ)

X(R4σ)
= λ

W2(σ)

X(σ)
+
Q(R2σ)

X(R4σ)
.

From this, by virtue of (4.2.34), we find the solution of problem (4.2.39)

W2(z) =
X(z)

2πi

∫
Γ2

Kλ

(
z
σ

)
Q(R2σ)

σX(R4σ)
dσ. (4.2.42)

Let us prove that this function satisfies condition (4.2.32), too.
Note the following properties of the functionKλ(z) which can be verified

by direct calculations:

K1

(
R4

z σ

)
= 2−K1

( z
σ

)
, |σ| = 1, (4.2.43)

if λ ̸= 1, |σ| = 1,

K1

(
R4

z σ

)
=


−λKλ

( z
σ

)
for even n,

−λ σ
z
Kλ

( z
σ

)
for odd n.

(4.2.44)

Taking into account that∣∣∣∣G(σ)Tn(σ)λTn(R4σ)

∣∣∣∣ = 1

and using formulas (4.2.41) and (4.2.42), from formula (4.2.40) we obtain

X

(
R4

z

)
= −X(z) for even n,

X

(
R4

z

)
= − z

R2
X(z) for odd n.

(4.2.45)

From formula (4.2.31) with (4.2.27) taken into account we derive

Q(R2σ) =
1

G(σ)
Q(R2σ) +

F (o)

G(σ)
(1−G(σ)), |σ| = 1. (4.2.46)
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Note that Φ(z) ≡ 1 is a solution of the problem with the boundary
condition

Φ(R4σ) = G(σ)Φ(σ) + (1−G(σ)), |σ| = 1,

and by virtue of (4.2.42) we obtain the identity
X(z)

2πi

∫
Γ2

Kλ

(
z
σ

)
(1−G(σ))

X(R4σ)
dσ = 1. (4.2.47)

By virtue of (4.2.39), (4.2.44)–(4.2.47) we make sure that the function
W2(z) defined by (4.2.42) satisfies condition (4.2.32).

By (4.2.25), (4.2.31) and (4.2.39) we obtain

W2(z) =
X(z)

πi

∫
Γ2

Kλ

(
z
σ

)
f1(R

2σ)eiα(σ)

σX(R4σ)χ(R2σ)
dσ

− X(z)

2πi

∫
Γ2

f0(t)

(
1

2πi

∫
Γ2

Kλ

( z
σ

)

×
(
− 1

X(R4σ)(t−R2σ)
+

λ

X(σ)(t− σ/R2)

)
dσ

σ

)
dt. (4.2.48)

Consider the integral

I1(z) =
1

2πi

∫
Γ2

Kλ

( z
σ

) λR2

σX(σ)(R2t− σ)
dσ.

Since
Kλ(z) =

R4

R4 − z
+

1

λ(1− z)
+K0

λ(z),

where K0
λ(z) is a holomorphic function in the ring 1 < |z| < R4, the inte-

grand function of σ in the expression for I1(z) in the ring 1 < |σ| < R4 has
poles at the points σ = z and σ = R2t. Therefore by virtue of the Cauchy
theorem

I1(z) =
1

2πi

( ∫
|σ|=R4

+

∫
γ−
1

+

∫
γ−
2

)
Kλ

( z
σ

) λR2

σX(σ)(R2t− σ)
dσ,

where γ1 and γ2 are circumferences in the ring 1 < |σ| < R4 with centers
at the points R2t and z.

By the Cauchy theorem,
1

2πi

∫
γ−
1

Kλ

( z
σ

) λR2

σX(σ)(R2t− σ)
dσ =

λ

t
Kλ

( z

R2t

) 1

X(R2t)
,

1

2πi

∫
γ−
2

Kλ

( z
σ

) λR2

σX(σ)(R2t− σ)
dσ = − λR2

X(z)(R2t− σ)
.
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Hence (4.2.48) yields

W2(z) =
X(z)

πi

∫
Γ2

Kλ

(
z
σ

)
f1(R

2σ)eiα(σ)

σX(R4σ)χ(R2σ)
dσ

+
X(z)

2πi

∫
Γ2

f0(t)

2πi
dt

∫
Γ2

Kλ

(
z
σ

)
σX(R4σ)χ(t−R2σ)

dσ

− X(z)

2πi

∫
Γ2

λf0(t)Kλ

(
z

R2t

)
tX(R2t)

dt

+
R2

2πi

∫
Γ2

f0(t)

R2t− z
dt

− X(z)

2πi

∫
Γ2

f0(t)

2πi

(∫
Γ2

Kλ

( z

R4σ

) λ

σX(R4σ)(t−R2σ)
dσ

)
dt.

By direct calculations we verify that

λKλ

( z

R4

)
= Kλ(z).

Then we obtain

W1(z) =W2(R
2z) =

X(R2z)

πi

∫
Γ2

Kλ

(
R2z
σ

)
f1(R

2σ)eiα(σ)

σX(R4σ)χ(R2σ)
dσ

− X(R2z)

2πi

∫
Γ2

λf0(σ)

σX(R2σ)
Kλ

( z
σ

)
dσ − F (z),

1

R2
< |z| < R2.

By virtue of (4.2.22), (4.2.26) we have

W (z) = χ(z)
(
W1(z) + F (z)

)
=

=
χ(z)X(R2z)

2πi

(∫
Γ2

2Kλ

(
R2z
σ

)
f1(R

2σ)

σX(R4σ)χ(R2σ)
dσ

−
∫
Γ2

λf0(σ)

σX(R2σ)
Kλ

( z
σ

)
dσ

)
. (4.2.49)

Hence, using (4.2.24) and (4.2.49), we finally come to

W (z) =
χ(z)X(R2z)

πi

∫
Γ

Kλ

(
R4z
σ

)
f(σ)eiα(σ)

σχ(σ)X(R2σ)
dσ, 1 < |z| < R2, (4.2.50)

where f is the given function defined by (4.2.18).



Contact Problems of Plane Elasticity Theory . . . 155

Since X(R2z) has simple poles at the points z = zk, for the function
W (z) to be bounded it is necessary and sufficient that the conditions∫

Γ

Kλ

(
R4z

σ

)
f(σ)eiα(σ)

σχ(σ)X(R2σ)
dσ = 0, k = 1, 2, . . . , n (4.2.51)

be fulfilled.
Let us write the function Kλ(R

4z/σ) in the form

Kλ

(
R4z

σ

)
=

σ

σ − z
+K0

λ

(
R4z

σ

)
, 1 < |z| < R2,

then by virtue of (4.2.50) we have

W (z) =
χ(z)X(R2z)

πi

[∫
Γ

f(σ)eiα(σ)

σX(R2σ)χ(σ)(σ − z)
dσ

+

∫
Γ

f(σ)K0
λ

(
R4z
σ

)
eiα(σ)

σX(R2σ)χ(σ)
dσ

]
. (4.2.52)

The second summand in the right-hand part of equality (4.2.52) is a
holomorphic function in the ring D (1 < |z| < R2) and a continu-
ous one in the closed ring D. The first summand is a Cauchy type in-
tegral whose density is a Hölder-continuous function on each open arc
(Rak, Rak+1), (R−1ak, R

−1ak+1), k = 1, 2, . . . , n. Therefore, according to
the Plemelj–Privalov theorem (see e.g. [76]), the function W (z) is contin-
uously extendable on these open arcs and its boundary value satisfies the
Hölder condition on them. Applying now the results of N. I. Muskhelishvili’s
monograph [76, § 26], we see that W (z) is continuously extendable on Γ
and its boundary value is a Hölder-continuous function on Γ.

(4.2.51) is a system of n equations with respect to n+3 real unknowns
K, B1, B2, R, δk, k = 2, 3, . . . , n, 0 < δk < 2π. To each solution of
system (4.2.51), if it is solvable, we can assign, by formula (4.2.50), the
unique solution of the Riemann–Hilbert problem (4.2.17). Hence solutions
by formula (4.2.16) are defined by the functions ω and ψ0:

ω(ζ) =
2

K
W (Rζ), 1 < |ζ| < R, (4.2.53)

ψ0(ζ) = B −W

(
R

ζ

)
, 1 < |ζ| < R. (4.2.54)

Since ω′(ζ) is shown to be different from zero in the domain of its
definition, z = ω(ζ) conformally maps a circular ring 1 < |ζ| < R onto the
domain S, and t = ω(σ), whereas ω(σ) = W (Rσ)/K is the equation of the
sought contour.

To show one important application case, we will prove that the system
of algebraic equations (4.2.51) is always solvable and find its solution in
explicit form.
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Let L1 be the boundary of a regular polygon. Assume that the die with
rectilinear base adjoins each side of the polygon. Assume that a normal
pressing concentrated force P is applied to the middle of each die. The
origin is supposed to lie at the centre of the polygon A1A2 · · ·An and the
ox-axis to be directed normally to the side A1A2. Then

Ak = ρ exp
(
πi

n
(2k − 3)

)
, αk =

2π

n
(k − 1), k = 1, 2, . . . , n.

By the symmetry property it can be assumed that
ak = Re

2π
n (k−1)i, k = 1, 2, . . . , n.

This assumption is justified if system (4.2.51) is solvable with respect
to the unknowns K, B1, B2, R.

Let us show that if one of conditions (4.2.51) is fulfilled, then all other
conditions are fulfilled too.

First we give some equalities whose validity is easy to verify:

Tn(ze
2πi
n ) =

−Tn(z) if n is even,

−e−πi
n Tn(z), if n is odd,

α(σe
2πi
n ) =


α(σ) +

2π

n
, if σ ∈ akak+1, 1 ≤ k ≤ n− 1,

α(σ)− 2π(n− 1)

n
, if σ ∈ ana1,

ln
(
e−2iα(σ0)σ2

0

)∣∣∣
σ0=σe

2πi
n

= ln
(
e−2iα(σ)σ2

)
,

X(ze
2πi
n ) = e

2πi
n χ(z), G(σe

2πi
n ) = G(σ),

A(σe
2πi
n ) = e

2πi
n A(σ).

By means of these equalities we easily conclude that the function X(z)
satisfies the condition

X(ze
2πi
n ) =

−X(z) if n is even,

−e− 2πi
n X(z), if n is odd.

In that case f1(σ) is a constant,

f1(σ) =
1

2
Kρ cos π

n
.

Let us now show that the constants B1 and B2 can be chosen so that
the function f2 would also be a constant.

In the considered case

C(σ) = −P
k−1∑
r=1

sin 2π

n
r = − P

2 sin π
n

(
cos π

n
− cos(2k − 1)

π

n

)
,

σ ∈ akak+1, k = 1, 2, . . . , n.
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By virtue of (4.2.18),

f2(σ) = B1 cosα+B2 sinα− C(σ) + f1(σ).

Therefore if σ ∈ akak+1, then

f2(σ) = B1 cos 2π
n

(k − 1) +B2 sin 2π

n
(k − 1) +

P

2
ctg π

n

− P

2
cos 2π

n
(k − 1) ctg π

n
+
P

2
sin 2π

n
(k − 1) + f1(σ).

If we now take

B1 =
P

2
ctg π

n
, B2 = −P

2
,

then we obtain
f2(σ) =

1

2

(
Kρ cos π

n
+ P ctg π

n

)
.

Thus f2(σ) is a constant.
If we introduce the notation

D(ζ) =

∫
|σ|=1

Kλ

(
R2ζ

σ

)
f1(σ)e

iα(σ)

σX(R4σ)χ(R2σ)
dσ

−
∫

|σ|=1

Kλ

(
R4ζ

σ

)
f2(σ)e

iα(σ)

σX(R2σ)χ(σ)
dσ,

then conditions (4.2.51) take the form

D(ζk) = 0, k = 1, 2, . . . , n. (4.2.55)

By virtue of the above equalities we readily obtain

D(ζe
2πi
n ) =

−D(ζ) if n is even,

−eπi
n D(ζ), if n is odd.

Hence it follows that if D(ζ1) = 0, then D(ζk) = 0, k = 2, 3, . . . , n.
Therefore system (4.2.55) reduces to one equation with two unknowns

Kρ

∫
|σ|=1

Kλ

(
R2ζ1
σ

)
eiα(σ)

σX(R4σ)χ(R2σ)
dσ

=

(
Kρ +

P

sin π
n

) ∫
|σ|=1

Kλ

(
R4ζ1
σ

)
eiα(σ)

σX(R2σ)χ(σ)
dσ.

Hence we obtain

K =
Pγ(R)

ρ(δ(R)− γ(R)) sin π
n

,
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where

δ(R) =

∫
|σ|=1

Kλ

(
R2eiϑ0

σ

)
eiα(σ)

σX(R4σ)X(R2σ)
dσ,

γ(R) =

∫
|σ|=1

Kλ

(
R4eiϑ0

σ

)
eiα(σ)

σX(R2σ)χ(σ)
dσ.

(4.2.56)

Using formula (4.2.56) and assuming R to be given, we define the tangential
normal stress value on the sought contour. Giving R various values, we
obtain a table of relationship between K and R, i.e. the position of a
uniformly strong contour can be defined by the given values of K.

4.3. Defining the Shapes of a Hole in Bent Plates

Given an isotropic homogeneous plate shaped as a polygon weakened
by a curvilinear hole, we assume that a rigid strip is attached to each side
of the polygon and the plate is bent by moments of force applied to the
strips. The contour of the hole is assumed to be free from external forces.
The tangential normal moment on the hole contour depends on the shape
and position of the hole. We will consider the following problem: find a
deflection of the plate and a hole contour such that the tangential normal
moment would take a constant value on the sought contour.

A problem of finding a hole contour within an isotropic infinite plate
was solved in the monograph by N. V. Banichuk [11] under the assumption
that the plate is bent by moments of force applied at a point at infinity, the
hole contour is free from load and the tangential moment on it is constant.

Let us assume that on the plane of a complex variable the midsurface of
the plate occupies the doubly connected domain S bounded by the convex
closed broken line z = x+ iy and the sought contour A1A2 · · ·An(L1). Like
in the preceding paragraph, the affixes of the points Ak are denoted by
the same symbols. The plate deflection at the point M(x, y) is denoted by
W (x, y). According to the approximate plate bending theory, the considered
case W must satisfy the biharmonic equation

∆2W = 0, z ∈ S,

and the boundary conditions
∂W (t)

∂n
= dk, dk = tgβk,

N(t) = 0 on AkAk+1, k = 1, 2, . . . , n (An+1 = A1),
(4.3.1)

Mn(t) = 0, Mns(t) = 0, Ms(t) = const = K on L2, (4.3.2)

where n is the external normal, βk’s are constants (angles of rotation), N(t)
is the intersecting force, Mn(t) is the normally bending moment, Mns(t)
is the torque, Ms(t) is the tangential normal moment, t is a point of the
contour.
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We can consider two cases:
1) the rotation angles βk, k = 1, 2, . . . , n are known;
2) the values of the principal bending moment Mk are given on each

side AkAk+1 of the external plate boundary.
As is known, a solution of a biharmonic equation is written in the form

W (x, y) = Re
[
zφ(z) + χ(z)

]
, z ∈ S, (4.3.3)

where φ and χ are analytic functions in the domain S.
By (4.3.3) we obtain

∂W

∂n
= Re

[
i
∂t

∂s

(
φ(t) + tφ′(t) + ψ(t)

)]
on L1,

where ψ(z) = χ′(z).
Hence, by virtue of (4.3.1) we have

Re
[
e−iα(t)

(
φ(t) + tφ′(t) + ψ(t)

)]
= d(t) on L1, (4.3.4)

where α(t) is the angle formed by the normal to L1 at a point t and the
ox-axis, d(t) = dk for t ∈ AkAk+1, k = 1, 2, . . . , n.

Using (4.3.1) and the formula for intersecting force N(t) [76] we obtain

Re
[
e−iα(t)

(
κφ(t)− ttφ′(t)− ψ(t)

)]
= C(t) on L1, (4.3.5)

where C(t) is the value of a piecewise-constant function at a point t: C(t) =
Ck for t ∈ AkAk+1, k = 1, 2, . . . , n,

Ck =
k∑

j=1

sin(αk − αj)Mj , j = 1, 2, . . . , n,

Mj =

sj+1∫
sj

Mn(t(s)) ds, j = 1, 2, . . . , n,

is the principal bending moment acting on the side AjAj+1, j = 1, 2, . . . , n,
κ = σ+3

σ−1 , σ is the Poisson ratio.
Let us now establish the boundary conditions for the functions φ and

ψ on the sought contour L2.
We make use of the formulas [76]

Mx +My = −2D(1 + σ)
[
φ′(z) + φ′(z)

]
, (4.3.6)

My −Mx + 2iMxy = 2D(1− σ)
(
zφ′′(z) + ψ(z)

)
, (4.3.7)

where Mx, My, Mxy are bending moments, D is the cylindrical rigidity of
the plate.

Since Mx+My is invariant with respect to a choice of axes, from (4.3.6)
we obtain

Reφ′(t) = − K

4D(1 + σ)
, t ∈ L2. (4.3.8)
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By virtue of (4.3.2) and (4.3.7) we have
2D(1− σ)

(
tφ′′(t) + ψ(t)

)
e2iθ = K, t ∈ L2, (4.3.9)

where θ(t) is the angle formed by the tangent to L2 at a point t with the
ox-axis.

As has been said above, we can consider two cases where either the
rotation angles of the links of the broken line L1 or the values of the principal
bending moment acting on each side of the broken line L1 are given. From
(4.3.4) and (4.3.5) we see that in both cases we obtain the identical problems
of the analytic function theory. We will consider the case with given values
of principal bending moments Mj , j = 1, 2, . . . , n.

Using formulas (4.3.4), (4.3.5), (4.3.8), we obtain like in the preceding
paragraph

φ(z) = − K

4D(1 + α)
z.

Hence formula (4.3.5) take the form

Re
[
e−iα(t)

(
(κ − 1)pt− ψ(t)

)]
= C(t) on L1, (4.3.10)

whereas formula (4.3.9) implies
ψ(t) = qt+B on L2, (4.3.11)

where
p = − K

4D(1 + σ)
, q =

K

2D(1− σ)
, B = B1 + iB2,

B1 and B2 are unknown real constants.
The boundary conditions (4.3.10), (4.3.11) have the form of the bound-

ary conditions (4.1.9), (4.1.10) obtained for the problem considered in the
preceding paragraph. Hence it is clear that the problem posed in this para-
graph is solved in the same manner as the preceding problem.
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