
Memoirs on Differential Equations and Mathematical Physics
Volume 61, 2014, 21–36

Mouffak Benchohra and Sara Litimein

FUNCTIONAL INTEGRO-DIFFERENTIAL
EQUATIONS WITH STATE-DEPENDENT
DELAY IN FRÉCHET SPACES



Abstract. Sufficient conditions for the existence and uniqueness of a
mild solution on a semi-infinite interval for functional integro-differential
equations with state dependent delay are obtained.

2010 Mathematics Subject Classification. 34G20, 34K30.
Key words and phrases. Functional integro-differential equations,

state-dependent delay, mild solution, fixed point, Fréchet space, contraction.

ÒÄÆÉÖÌÄ. ×ÖÍØÝÉÏÍÀËÖÒÉ ÉÍÔÄÂÒÏ-ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄ-
ÁÄÁÉÓÀÈÅÉÓ ÌÃÂÏÌÀÒÄÏÁÉÓÀÂÀÍ ÃÀÌÏÊÉÃÄÁÖËÉ ÃÀÂÅÉÀÍÄÁÉÈ ÃÀÃÂÄ-
ÍÉËÉÀ ÓÖÓÔÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÉÓ ÓÀÊÌÀÒÉÓÉ
ÐÉÒÏÁÄÁÉ ÍÀáÄÅÒÀÃ ÖÓÀÓÒÖËÏ ÛÖÀËÄÃÛÉ.
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1. Introduction

The purpose of this paper is to prove the existence of mild solutions
defined on the positive semi-infinite real interval J := [0,+∞), for functional
integro-differential equations with state-dependent delay of the form

y′(t) = Ay(t) + f

(
t, yρ(t,yt),

t∫
0

e(t, s, yρ(s,ys)) ds

)
, a.e. t ∈ J, (1)

y0 = ϕ ∈ B, (2)

where A : D(A) ⊂ E → E is the infinitesimal generator of an analytic
semigroup of bounded linear operators, (T (t)t≥0) on a Banach space (E, | · |)
and f : J × B × E → E, e : J × J × B → E , ρ : J × B → R and ϕ ∈ B are
the given function. For any continuous function y defined on (−∞,+∞)
and any t ≥ 0, we denote by yt the element of B defined by yt(θ) = y(t+ θ)
for θ ∈ (−∞, 0]. Here yt( · ) represents the history of the state from each
time θ ∈ (−∞, 0] up to the present time t. We assume that the histories yt
belong to some abstract phase space B to be specified later.

Integro-differential equations have attracted great interest due to their
applications in characterizing many problems in physics, fluid dynamics,
biological models and chemical kinetics. Qualitative properties such as the
existence, uniqueness and stability for various functional integro-differential
equations have been extensively studied by many researchers (see, for in-
stance, [3, 4, 7, 18, 21, 23, 25]. Likewise, the functional differential equations
with state-dependent delay appear frequently in applications as model of
equations and for this reason the study of this type of equation has received
a significant amount of attention in the last years (we refer to [2,5,6,8,13–15]
and the references therein).

In the literature, the problem (1)–(2) has been studied by several au-
thors without delay or with delay depending only on time. A method to
reduce integro-differential equations with unbounded memory to systems
of functional differential equations with bounded memory without integrals
and analysis of stability of partial functional integro-differential equations on
this basis was presented in [1]. An important study of functional differential
equations with state dependent delay was presented in [11]. Hernández [12]
has discussed the existence of mild solutions of partial neutral integro-
differential equations with an infinite delay. Ravichandran and Mallika [21]
investigated the fractional problem. Gunasekar et al. [19] have discussed
the existence of mild solutions for an impulsive semilinear neutral func-
tional integro-differential equations with infinite delay in Banach spaces by
using the Hausdorff measure of noncompactness. When A depends on time,
Marcos et al. [22] have discussed the case of the existence of solutions for a
class of impulsive differential equations by using the fixed point theory of
compact and condensing operators. Yan [26] investigated the existence of so-
lutions for semilinear evolution integro-differential equations with nonlocal
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conditions. Recently, Hong-Kun [17] studied the existence of strong solu-
tions of a nonlinear neutral integro-differential problem on an unbounded
interval.

The main purpose of the paper is to establish a global uniqueness of
solutions for the problem (1)–(2). Our approach here is based on a re-
cent Frigon–Granas nonlinear alternative of Leray–Schauder type in Fréchet
spaces [9] combined with the semigroup theory.

2. Preliminaries

We introduce notations, definitions and theorems which are used through-
out this paper.

Let C([0,+∞);E) be the space of continuous functions from
[0,+∞) into E and B(E) be the space of all bounded linear operators from
E into E, with the usual supremum norm

N ∈ B(E), ∥N∥B(E) = sup
{
|N(y)| : |y| = 1

}
.

A measurable function y : [0,+∞) → E is Bochner integrable if and only
if |y| is Lebesgue integrable. For the Bochner integral properties, see the
classical monograph of Yosida [24].

Let L1([0,+∞), E) denote the Banach space of measurable functions
y : [0,+∞) → E which are Bochner integrable normed by

∥y∥L1 =

+∞∫
0

|y(t)| dt.

In this paper, we will employ an axiomatic definition of the phase space B
introduced by Hale and Kato in [10] and follow the terminology used in [16].
Thus, (B, ∥ · ∥B) will be a seminormed linear space of functions mapping
(−∞, 0] into E, and satisfying the following axioms:

(A1) If y : (−∞, b) → E, b > 0, is continuous on [0, b] and y0 ∈ B, then
for every t ∈ [0, b) the following conditions hold:
(i) yt ∈ B;
(ii) there exists a positive constant H such that |y(t)| ≤ H∥yt∥B;
(iii) there exist two functions K( · ),M( · ) : R+ → R+ independent

of y with K continuous and M locally bounded such that

∥yt∥B ≤ K(t) sup
{
|y(s)| : 0 ≤ s ≤ t

}
+M(t)∥y0∥B.

(A2) For the function y in (A1), yt is a B-valued continuous function on
[0, b].

(A3) The space B is complete.
Denote Kb = sup{K(t) : t ∈ [0, b]} and Mb = sup{M(t) : t ∈ [0, b]}.
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Remark 2.1.
1. (ii) is equivalent to |ϕ(0)| ≤ H∥ϕ∥B for every ϕ ∈ B.
2. Since ∥ · ∥B is a seminorm, two elements ϕ, ψ ∈ B can verify ∥ϕ −
ψ∥B = 0 without necessarily ϕ(θ) = ψ(θ) for all θ ≤ 0.

3. From the equivalence in the first remark, we can see that for all
ϕ, ψ ∈ B such that ∥ϕ− ψ∥B = 0: We necessarily have that ϕ(0) =
ψ(0).

We now indicate some examples of phase spaces. For other details we
refer, for instance, to the book due to Hino et al. [16].

Example 2.2. Let:
BC be the space of bounded continuous functions defined from (−∞, 0]

to E;
BUC be the space of bounded uniformly continuous functions defined

from (−∞, 0] to E;

C∞ :=
{
ϕ ∈ BC : lim

θ→−∞
ϕ(θ) exist in E

}
;

C0 :=
{
ϕ ∈ BC : lim

θ→−∞
ϕ(θ) = 0

}
,

be endowed with the uniform norm
∥ϕ∥ = sup

{
|ϕ(θ)| : θ ≤ 0

}
.

We have that the spaces BUC, C∞ and C0 satisfy conditions (A1)–(A3).
However, BC satisfies (A1), (A3) but does not satisfy (A2).

Example 2.3. The spaces Cg, UCg, C∞
g and C0

g .
Let g be a positive continuous function on (−∞, 0]. We define:

Cg :=
{
ϕ ∈ C((−∞, 0], E) :

ϕ(θ)

g(θ)
is bounded on (−∞, 0]

}
;

C0
g :=

{
ϕ ∈ Cg : lim

θ→−∞

ϕ(θ)

g(θ)
= 0

}
,

endowed with the uniform norm

∥ϕ∥ = sup
{ |ϕ(θ)|
g(θ)

: θ ≤ 0
}
.

Then we have that the spaces Cg and C0
g satisfy conditions (A3). We con-

sider the following condition on the function g.
(g1) For all a > 0,

sup
0≤t≤a

sup
{g(t+ θ)

g(θ)
: −∞ < θ ≤ −t

}
<∞.

They satisfy conditions (A1) and (A2) if (g1) holds.
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Example 2.4. The space Cγ .
For any real positive constant γ, we define the functional space Cγ by

Cγ :=
{
ϕ ∈ C

(
(−∞, 0], E

)
: lim

θ→−∞
eγθϕ(θ) exists in E

}
endowed with the norm

∥ϕ∥ = sup
{
eγθ|ϕ(θ)| : θ ≤ 0

}
.

Then in the space Cγ the axioms (A1)− (A3) are satisfied.

Definition 2.5. A function f : J × B × E → E is said to be an L1

-Carathéodory function if it satisfies:
(i) for each t ∈ J, the function f(t, · , · ) : B × E → E is continuous;
(ii) for each (y, z) ∈ B × E, the function f( · , y, z) : J → E is measur-

able;
(iii) for every positive integer k, there exists hk ∈ L1(J ;R+) such that

|f(t, y, z)| ≤ hk(t)

for all ∥y∥B ≤ k, |z| ≤ k and almost every t ∈ J.

Let E be a Banach space andB(E) be the Banach space of linear bounded
operators.

Definition 2.6. A one parameter family {T (t) | t ≥ 0} ⊂ B(E) of bounded
linear operators from E → E is a semigroup of bounded linear operator on
E if satisfying the conditions:

(i) T (t)T (s) = T (t+ s), for t, s ≥ 0;
(ii) T (0) = I.

Definition 2.7. Let T (t) be a semigroup defined on E. A linear operator
A defined by

D(A) =

{
x ∈ E| lim

h→0+

T (h)(x)− x

h
exists in E

}
,

and
A(x) = lim

h→0+

T (h)x− x

h
for x ∈ D(A),

is the infinitesimal generator of the semigroup T (t). D(A) is called the
domain of A.

Let X be a Fréchet space with a family of semi-norms {∥ · ∥n}n∈N. We
assume that the family of semi-norms {∥ · ∥n} verifies:

∥x∥1 ≤ ∥x∥2 ≤ ∥x∥3 ≤ · · · for every x ∈ X.

Let Y ⊂ X, we say that Y is bounded if for every n ∈ N, there exists
Mn > 0 such that

∥y∥n ≤Mn for all y ∈ Y.
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To X we associate a sequence of Banach spaces {(Xn, ∥ · ∥n)} as follows:
For every n ∈ N, we consider the equivalence relation ∼n defined by: x ∼n y
if and only if ∥x− y∥n = 0 for x, y ∈ X. We denote

Xn =
(
X|∼n , ∥ · ∥n

)
the quotient space, the completion of Xn with respect to ∥ · ∥n. To every
Y ⊂ X, we associate a sequence {Y n} of subsets Y n ⊂ Xn as follows: For
every x ∈ X, we denote by [x]n the equivalence class of x of the subset Xn

and we define Y n = {[x]n : x ∈ Y }. We denote by Y n, intn(Y n) and ∂nY n,
respectively, the closure, the interior and the boundary of Y n with respect
to ∥ · ∥n in Xn.

The following definition is the appropriate concept of contraction in X.

Definition 2.8 ([9]). A function f : X → X is said to be a contraction if
for each n ∈ N there exists kn ∈ [0, 1) such that

∥f(x)− f(y)∥n ≤ kn∥x− y∥n for all x, y ∈ X.

The corresponding nonlinear alternative result is the following

Theorem 2.9 (Nonlinear Alternative of Granas–Frigon, [9]). Let X be a
Fréchet space and Y ⊂ X a closed subset and let N : Y → X be a contraction
such that N(Y ) is bounded. Then one of the following statements holds:
(C1) N has a unique fixed point;
(C2) there exists λ ∈ [0, 1), n ∈ N and x ∈ ∂nY

n such that ∥x −
λN(x)∥n = 0.

3. Existence results

3.1. Mild solutions.
Definition 3.1. We say that the function y : (−∞,+∞) → E is a mild
solution of (1)–(2) if y(t) = ϕ(t) for all t ≤ 0 and y satisfies the following
integral equation:

y(t) = T (t)ϕ(0) +

t∫
0

T (t−s)f
(
s, yρ(s,ys),

s∫
0

e(s, τ, yρ(τ,yτ )) dτ

)
ds (3)

for each t ≥ 0.

Set
R(ρ−) =

{
ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0

}
.

For each b ∈ (0,∞), we assume that ρ : J × B → (−∞, b] is continuous.
Additionally, we introduce the following hypothesis:
(Hϕ) The function t → ϕt is continuous from R(ρ−) into B and there

exists a continuous and bounded function Lϕ : R(ρ−) → (0,∞)
such that

∥ϕt∥B ≤ Lϕ(t)∥ϕ∥B for every t ∈ R(ρ−).
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Remark 3.2. The condition (Hϕ) is frequently verified by the functions
continuous and bounded. For more details, see for instance, [16].

Lemma 3.3 ([15, Lemma 2.4]). If y : (−∞, b] → E is a function such that
y0 = ϕ, then

∥ys∥B ≤ (Mb + Lϕ)∥ϕ∥B +Kb sup
{
|y(θ)| : θ ∈ [0,max{0, s}]

}
,

s ∈ R(ρ−) ∪ J,

where Lϕ = supt∈R(ρ−) L
ϕ(t).

We introduce the following hypotheses:
(H1) There exists a constant M̂ ≥ 1 such that

∥T (t)∥B(E) ≤ M̂ for every t ≥ 0.

(Hf ) (i) There exist a function p ∈ L1
loc(J ;R+) and a continuous non-

decreasing function ψ : [0,∞) → (0,∞) such that:
|f(t, δ, w)| ≤ p(t)ψ

(
∥δ∥B + ∥w∥

)
for every (t, δ, x) ∈ J × B × E.

(ii) For all R > 0, there exists lR ∈ L1
loc(J ;R+) such that∣∣f(t, δ1, w1)− f(t, δ2, w2)

∣∣ ≤ lR(t)
(
∥δ1 − δ2∥B + ∥w1 − w2∥

)
where (t, δi, wi) ∈ J × B × E, i = 1, 2.

(He) (i) There exist a function m ∈ L1
loc(J ;R+) and a continuous non-

decreasing function Ω : R+ → (0,∞) such that:
|e(t, s, δ)| ≤ m(s)Ω

(
∥δ∥B

)
for all (t, s, δ) ∈ J × J × B.

(ii) There exists a constant C1 > 0 such that∣∣∣∣
t∫

0

[
e(t, s, x)− e(t, s, y)

]
ds

∣∣∣∣ ≤ C1∥x− y∥B

for (t, s) ∈ J, (x, y) ∈ B.
Consider the space

B+∞ =
{
y : R → E : y

∣∣
[0,T ]

continuous for T > 0 and y0 ∈ B
}
,

where y|[0,T ] is the restriction of y to the real compact interval [0, T ].
Let us fix τ > 1. For every n ∈ N, we define in B+∞ the semi-norms by

∥y∥n := sup
{
e−τ L∗

n(t)|y(t)| : t ∈ [0, n]
}
,

where

L∗
n(t) =

t∫
0

ln(s) ds, ln(t) = (1 + C1)KnM̂ln(t)
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and ln is the function from (Hf )(ii).
Then B+∞ is a Fréchet space with this family of semi-norms ∥ · ∥n∈N.

Theorem 3.4. Assume that (H1), (Hf ), (He) and (Hϕ) hold, and suppose
that for n ∈ N,

+∞∫
w(0)

ds

ψ(s) + Ω(s)
>

n∫
0

ϑ(s) ds. (4)

Then the problem (1)–(2) has a unique mild solution on (−∞,+∞).

Proof. We transform the problem (1)–(2) into a fixed-point problem. Con-
sider the operator N : B+∞ → B+∞ defined by

N(y)(t) =

=



ϕ(t), if t ≤ 0,

T (t)ϕ(0)+

t∫
0

T (t−s)f
(
s, yρ(s,ys),

s∫
0

e(s, τ, yρ(τ,yτ )) dτ

)
ds,

if t ∈ J.

(5)

Clearly, fixed points of the operator N are mild solutions of the problem
(1)–(2).

For ϕ ∈ B, we define the function x( · ) : (−∞,+∞) → E by

x(t) =

{
ϕ(t), if t ≤ 0,

T (t)ϕ(0), if t ∈ J.

Then x0 = ϕ. For each function z ∈ B+∞ with z0 = 0, we denote by z the
function defined by

z(t) =

{
0, if t ≤ 0,

z(t), if t ∈ J.

If y( · ) satisfies (3), we can decompose it as y(t) = z(t) + x(t), t ≥ 0, which
implies that yt = zt + xt, for every t ∈ J and the function z( · ) satisfies

z(t) =

t∫
0

T (t− s)f

(
s, zρ(s,zs+xs) + xρ(s,zs+xs),

s∫
0

e
(
s, τ, zρ(τ,zτ+xτ ) + xρ(τ,zτ+xτ )

)
dτ

)
ds for t ∈ J.

Let
B0

+∞ =
{
z ∈ B+∞ : z0 = 0 ∈ B

}
.
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For any z ∈ B0
+∞, we have

∥z∥+∞ = ∥z0∥B + sup
{
|z(s)| : 0 ≤ s < +∞

}
=

= sup
{
|z(s)| : 0 ≤ s < +∞

}
.

Thus (B0
+∞, ∥ · ∥+∞) is a Banach space. We define the operator F : B0

+∞ →
B0

+∞ by

F (z)(t) =

t∫
0

T (t− s)f

(
s, zρ(s,zs+xs) + xρ(s,zs+xs),

s∫
0

e
(
s, τ, zρ(τ,zτ+xτ ) + xρ(τ,zτ+xτ )

)
dτ

)
ds for t ∈ J.

Obviously, the operator N has a fixed point is equivalent to F has one,
so it turns to prove that F has a fixed point. Let z ∈ B0

+∞ be such that
z = λF (z) for some λ ∈ [0, 1). By the hypotheses (H1), (Hf (i)) and (He(i)),
for each t ∈ [0, n], we have

|z(t)| ≤
t∫

0

∥T (t− s)∥B(E)

∣∣∣∣f(s, zρ(s,zs+xs) + xρ(s,zs+xs),

s∫
0

e
(
s, τ, zρ(τ,zτ+xτ ) + xρ(τ,zτ+xτ )

)
dτ

)∣∣∣∣ ds ≤
≤ M̂

t∫
0

p(s)ψ

(
∥zρ(s,zs+xs) + xρ(s,zs+xs)∥B+

+

s∫
0

m(τ)Ω
(
∥zρ(s,zs+xs) + xρ(s,zs+xs)∥B

)
dτ

)
ds ≤

≤ M̂

t∫
0

p(s)ψ

(
Kn|z(s)|+

(
Mn + Lϕ +KnMH

)
∥ϕ∥B+

+

s∫
0

m(τ)Ω
(
Kn|z(s)|+

(
Mn+L

ϕ+KnMH
)
∥ϕ∥B

)
dτ

)
ds.

Set
cn :=

(
Mn +Kn + Lϕ +KnMH

)
∥ϕ∥B.

Then we have

|z(t)| ≤M

t∫
0

p(s)ψ

(
Kn|z(s)|+ cn +

s∫
0

m(τ)Ω(Kn|z(s)|+ cn) dτ

)
ds.



Functional Integro-differential Equations 31

Thus

Kn|z(t)|+ cn ≤

≤ cn+KnM̂

t∫
0

p(s)ψ

(
Kn|z(s)|+cn+

s∫
0

m(τ)Ω(Kn|z(s)|+cn) dτ
)
ds.

We consider the function µ defined by

µ(t) := sup
{
Kn|z(s)|+ cn : 0 ≤ s ≤ t

}
, 0 ≤ t < +∞.

Let t⋆ ∈ [0, t] be such that µ(t) = Kn|z(t⋆)| + cn∥ϕ∥B. By the previous
inequality, we have

µ(t) ≤ cn +KnM̂

t∫
0

p(s)ψ

(
µ(s) +

s∫
0

m(τ)Ω(µ(τ)) dτ

)
ds

for t ∈ [0, n].

Let us take the right-hand side of the above inequality as v(t). Then we
have µ(t) ≤ v(t) for all t ∈ [0, n]. This leads us to the following inequality:

v(t) ≤ cn +KnM̂

t∫
0

p(s)ψ

(
v(s) +

s∫
0

m(τ)Ω
(
v(τ) dτ

)
ds

)
for t ∈ [0, n],

whence

v′(t) ≤ M̂ Kn p(t)ψ

(
v(t) +

t∫
0

m(τ)Ω
(
v(τ) dτ

))
.

Next, we consider the function

w(t) = v(t) +

t∫
0

m(τ)Ω(v(τ)) dτ,

thus we have that v(0) = w(0) and v(t) ≤ w(t) for all t ∈ [0, n].
Using the nondecreasing character of ψ, we get

w′(t) = v′(t) + p(t)Ω(v(t)) ≤

≤ M̂Knp(t)ψ(w(t)) +m(t)Ω(w(t)) a.e. t ∈ [0, n].

We define the function ϑ(t) = max
{
M̂Knp(t),m(t)

}
, t ∈ [0, n], which im-

plies that
w′(t)

ψ(w′(t)) + Ω(w(t))
≤ ϑ(t).
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From condition (4), we have
w(t)∫

w(0)

ds

ψ(s) + Ω(s)
≤

t∫
0

ϑ(s) ds ≤
+∞∫

w(0)

ds

ψ(s) + Ω(s)
.

Thus, for every t ∈ [0, n], there exists a constant Λn such that w(t) ≤ Λn

and hence, µ(t) ≤ Λn. Since ∥z∥n ≤ µ(t), we have ∥z∥n ≤ Λn.
Set

Z =
{
z ∈ B0

+∞ : sup
0≤t≤n

|z(t)| ≤ Λn + 1, ∀n ∈ N
}
.

Clearly, Z is a closed subset of B0
+∞.

We shall show that F : Z → B0
+∞ is a contraction operator. Indeed,

consider z, z ∈ Z, thus using (H1) and (H3) for each t ∈ [0, n] and n ∈ N,

∣∣F (z)(t)− F (z)(t)
∣∣ ≤ t∫

0

∥∥T (t− s)
∥∥
B(E)

×

×
∣∣∣∣f(s, zρ(s,zs+xs)+xρ(s,zs+xs),

s∫
0

e
(
s, τ, zρ(τ,zτ+xτ )+xρ(τ,zτ+xτ )

)
dτ

)
−

−f
(
s, zρ(s,zs+xs) + xρ(s,zs+xs),

s∫
0

e
(
s, τ, zρ(τ,zτ+xτ ) + xρ(τ,zτ+xτ )

)
dτ

)∣∣∣∣ ds ≤
≤

t∫
0

M̂ln(s)
(∥∥zρ(s,zs+xs) − zρ(s,zs+xs)

∥∥
B+

+C1

∥∥zρ(s,zs+xs) − zρ(s,zs+xs)

∥∥
B

)
ds.

Using (Hϕ) and Lemma 3.3, we obtain∣∣F (z)(t)− F (z)(t)
∣∣ ≤

≤
t∫

0

M̂ln(s)
(
Kn|z(s)− z(s)|+ C1

(
Kn|z(s)− z(s)|

))
ds ≤

≤
t∫

0

M̂ln(s)[1 + C1]Kn|z(s)− z(s)| ds ≤

≤
t∫

0

[
ln(s) e

τL∗
n(s)

] [
e−τL∗

n(s)
∣∣z(s)− z(s)

∣∣] ds ≤
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≤
t∫

0

[eτL∗
n(s)

τ

]′
ds ∥z − z∥n ≤ 1

τ
eτL

∗
n(t)∥z − z∥n.

Therefore,
∥F (z)− F (z)∥n ≤ 1

τ
∥z − z∥n.

So, the operator F is a contraction for all n ∈ N. By the choice of Z, there
is no z ∈ ∂Zn such that z = λF (z), λ ∈ (0, 1). Then the statement (C2)
in Theorem 2.9 does not hold. The nonlinear alternative due to Frigon and
Granas shows that (C1) holds. Thus, we conclude that the operator F has
a unique fixed-point z⋆. Then y⋆(t) = z⋆(t)+x(t), t ∈ (−∞,+∞) is a fixed
point of the operator N , which is the unique mild solution of the problem
(1)–(2). �

4. An Example

To apply our results, we consider the following partial differential equa-
tion:

∂v

∂t
(t, ξ) =

∂2v

∂ξ2
(t, ξ)+

+m

(
t, v

(
t−σ(v(t, 0)), ξ

)
,

t∫
0

η
(
t, s, v

(
s−σ(v(s, 0)), ξ

))
ds

)
,

t ∈ [0,∞), ξ ∈ [0, π],

v(t, 0) = v(t, π) = 0, t ∈ [0,∞),

v(θ, ξ) = v0(θ, ξ), θ ∈ (−∞, 0], ξ ∈ [0, π],

(6)

where v0 and σ ∈ C(R, [0,∞)) are continuous. Take E = L2[0, π] and define
A : D(A) ⊂ E → E by Aw = w′′ with the domain

D(A) =
{
w ∈ E, w,w′ are absolutely continuous,

w′′ ∈ E, w(0) = w(π) = 0
}
.

Then

Aw =
∞∑

n=1

−n2(w,wn)wn, w ∈ D(A),

where wn(s) =
√

2
π sinns, n = 1, 2, . . . , is the orthogonal set of eigenvalues

of A. It is well known (see [20]) that A is the infinitesimal generator of an
analytic semigroup T (t), t ≥ 0 in E and is given by

T (t)w =
∞∑

n=1

e−n2t(w,wn)wn, w ∈ E.

Since the analytic semigroup T (t) is compact for t > 0, there exists a con-
stant M ≥ 1 such that ∥T (t)∥ ≤M .
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Theorem 4.1. Let B = BUC(R−, E) and ϕ ∈ B. Assume that condition
(Hϕ) holds. The function m : J × J × [0, π] → [0, π], σ : R → R+,
η : J × J × [0, π] → [0, π] are continuous. Then there exists a unique mild
solution of (6).

Proof. From the above assumptions, we have that the functions

f(t, φ, x)(ξ) = m

(
t, φ(0, ξ),

t∫
0

η
(
t, s, φ(0, ξ)

)
ds

)
,

e(t, s, φ)(ξ) = η
(
t, s, φ(0, ξ)

)
,

ρ(t, φ) = t− σ(φ(0, 0))

are well defined, permitting to transform system (6) into the abstract system
(1)–(2). Moreover, the function f is a bounded linear operator. Now the
existence of mild solutions can be deduced from a direct application of
Theorem 3.4. From Remark 3.2, we have the following result. �

Corollary 4.2. Let φ ∈ B be continuous and bounded. Then there exists a
unique mild solution of (6) on (−∞,+∞).
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