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Introduction

Since the early sixties, the theory of elastic mixtures has become very

popular in mechanics and engineering sciences. A lot of important results

have been obtained concerning mathematical problems of three-dimensional

models (see [1] and references cited therein ). As to the corresponding two-

dimensional problems, they are not deeply investigated so far. The present

paper deals with the two-dimensional version of the above theory. Using the

potential method and the theory of integral equations, basic boundary value

problems are studied and uniqueness and existence theorems are proved.

Applying the theoretical results obtained, explicit solutions (in quadratures)

are constructed for some particular domains with concrete geometry.

1. Basic Equations and Boundary Value Problems
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chanical properties of the elastic mixture in question and satisfy certain

conditions (inequalities).
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Let D
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The basic boundary value problems (BV Ps) are formulated as follows
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Note that in the above formulations of BVPs, we can replace the physical

stress vector by the generalized stress vector.
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2. The Basic Fundamental Matrix

In this section, we will construct the basic fundamental matrix of the

equation (1.4).

Upon taking the divergence operation, from (1.1) we get
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Direct calculations give
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Substituting (2.8) into (2.5), we obtain the basic fundamental matrix of

the equation (1.4)
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It is evident that �(x � y) is a symmetric matrix. It easily follows from

(2.12) and (2.13) that all elements of � are single-valued functions on the

whole plane and they have a logarithmic singularity at most. It can be

shown that columns of the matrices �(x� y) and �(x� y) are solutions to

the equation (1.4) with respect to x for any x 6= y.
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We also rewrite (1.1) in the matrix form

Cu =  ; (2.18)

where

C =









C

(1)

C

(2)

C

(3)

C

(4)









; C

(i)

= kC

(i)

kj

k

2�2

; i = 1; 4; (2.19)

C

(1)

kj

= a

1

�

kj

4+b

1

@

k

@

j

; C

(2)

kj

= c�

kj

4+d@

k

@

j

;

C

(3)

kj

= c�

kj

4+d@

k

@

j

; C

(4)

kj

= a

2

�

kj

4+b

2

@

k

@

j

:

(2.20)



67
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Thus we have proved that u
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3. Singular Matrices of Solutions

Using the basic fundamental matrix, we will construct the so-called sin-

gular matrices of solutions and study their properties.

For simplicity, we will introduce the special generalized stress operators.

Let the elements of the matrix (1.11) be de�ned as follows
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with { de�ned by (3.1) (the

corresponding matrix is denoted by {

L

). Then by (1.6),

(Lu)

1

= L

1

n

1

� L

2

n

2

; (Lu)

2

= L

2

n

1

+ L

1

n

2

;

(Lu)

3

= L

3

n

1

� L

1

n

2

; (Lu)

4

= L

4

n

1

+ L

3

n

2

;

(3.2)

where L

1

; L

2

; L

3

; L

4

are de�ned by (1.7).

It follows from (1.11) that

{

T

u = Lu+ ({ � {

L

)

@u

@s(x)

: (3.3)

First let us construct L�, i.e., L� (see (2.12)). Denote by �

(k)

the k-th

column of the matrix � given by (2.13). �

0

k

; �

00

k

; !

0

k

and !

00

k

denote expressions
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given by (1.2) and (1.8) for the vector �

(k)

, k = 1; 4. Simple manipulations

lead to

�

0

1

= (e

1

+ e

4

)

@

@x

1

ln� = �(e

1

+ e

4

)i

@ ln�

@x

2

; �

00

1

= (e

2

+ e

5

)

@ ln�

@x

1

;

!

0

1

= �ie

1

@

@x

1

ln�; !

00

1

= �ie

2

@

@x

1

ln�;

�

0

2

= �(e

1

+ e

4

)

@

@x

2

ln�; �

00

2

= (e

2

+ e

5

)

@ ln�

@x

2

;

!

0

2

= e

1

@

@x

1

ln�; !

00

2

= e

2

@

@x

1

ln�;

�

0

3

= (e

2

+ e

5

)i

@ ln�

@x

2

; �

00

3

= �(e

3

+ e

6

)i

@ ln�

@x

2

;

!

0

3

= �ie

2

@ ln�

@x

1

; !

00

3

= �ie

3

@ ln �

@x

1

;

�

0

4

= (e

2

+ e

5

)i

@ ln�

@x

2

; �

00

4

= (e

3

+ e

6

)

@ ln�

@x

2

;

!

0

4

= e

2

@ ln �

@x

1

; !

00

4

= e

3

@ ln�

@x

1

:

From these formulas together with (2.4), (1.7) and (3.2), it follows

L

x

�(x� y) = Im

@

@s(x)

(E + iE

1

) ln�; (3.4)

where

E

1

=

















0 1 0 0

�1 0 0 0

0 0 0 1

0 0 0 �1

















: (3.5)

Applying (3.4) and (3.3), we get

{

T

x

�(x� y) =

@

@s(x)

Im

�

(E + iE

1

) ln� + i({ � {

L

)�(x � y)

�

: (3.6)

If {

1

= {

2

= {

3

= 0, then { = 0 (see (1.13)), and (3.6) implies

T

x

�(x� y) =

@

@s(x)

Im

h

(E + iA) ln� +

B

2

�

�

i

; (3.7)
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where

A =

















0 1�A

1

0 �A

2

�1 +A

1

0 A

2

0

0 �A

3

0 1�A

4

A

3

0 �1 +A

4

0

















;

B =

















B

1

iB

1

B

2

iB

2

iB

1

�B

1

iB

2

�B

2

B

3

iB

3

B

4

iB

4

iB

3

�B

3

iB

4

�B

4

















;

(3.8)

A

1

= 2(�

1

m

1

+ �

3

m

2

); A

2

= 2(�

1

m

2

+ �

3

m

3

);

A

3

= 2(�

3

m

1

+ �

2

m

2

); A

4

= 2(�

3

m

2

+ �

2

m

3

);

(3.9)

B

1

= �

1

e

4

+ �

3

e

5

; B

2

= �

2

e

5

+ �

3

e

6

:

B

3

= �

2

e

5

+ �

3

e

4

; B

4

= �

2

e

6

+ �

3

e

5

:

(3.10)

It is obvious that T

x

�(x�y) is a singular kernel (in the sense of Cauchy)

on Liapunov (C

1+�

) curves since the matrix A is not identical zero.

Replacing x by y and vice versa in matrix (3.6), we arrive to

�

{

T

y

�(y � x)

�

0

=

@

@s(y)

Im

�

i�(y � x)({

L

� {) + (E � iE

1

) ln�

�

: (3.11)

where ( )

0

denotes transposition.

It is easy to check that the columns of the matrix (3.11) are solutions

of the equation (1.4) with respect to the variable x for any x 6= y. It

is also evident that the elements of the matrix (3.11) are singular kernels

in the sense of Cauchy since m({

L

� {) � E

1

6= 0. Let us note that if

m({

L

� {) = E

1

, then [

{

T

y

�(y � x)]0 is a weakly singular kernel. The

previous equation yields

{ = {

L

�m

�1

E

1

; (3.12)

where

m

�1

=

1

�

0

















m

3

0 �m

2

0

0 m

3

0 �m

2

�m

2

0 m

1

0

0 �m

2

0 m

1

















; �

0

= m

1

m

3

�m

2

2

: (3.13)

From (3.12) and (3.13) it follows

{

1

= 2�

1

�

m

3

�

0

; {

2

= 2�

2

�

m

1

�

0

; {

3

= 2�

3

+

m

2

�

0

: (3.14)

Denote by N the stress operator

{

T

with { given by (3.12). Then we have

[N

y

�(y � x)]

0

=

@

@s(y)

Im

�

E ln� �

"

2

�

�

�

; (3.15)
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where

" =

















"

1

i"

1

"

3

i"

3

i"

1

�"

1

i"

3

�"

3

"

2

i"

2

"

4

i"

4

i"

2

�"

2

i"

4

�"

4

















(3.16)

2�

0

"

1

= e

5

m

2

� e

4

m

3

; 2�

0

"

3

= e

4

m

2

� e

5

m

1

;

2�

0

"

2

= e

6

m

2

� e

5

m

3

; 2�

0

"

4

= e

5

m

2

� e

6

m

1

;

(3.17)

�

0

is de�ned by (3.13).

Taking into account expressions for m

j

(j = 1; 3) and e

j

(j = 4; 6) (see

(2.15) and (2.3)), we have for the coe�cients "

j

(j = 1; 4)

�

0

"

1

= b

1

(2a

2

+ b

2

)� d(2c+ d); �

0

"

3

= 2(da

2

� cb

2

);

�

0

"

2

= 2(da

1

� cb

1

); �

0

"

4

= b

2

(2a

1

+ b

1

)� d(2c+ d);

�

0

= (2a

1

+ b

1

)(2a

2

+ b

2

)� (2c+ d)

2

� 4�

0

d

1

d

2

:

(3.18)

Later on, we will show that �

0

> 0, i.e., �

0

> 0.

It follows from (3.15)

N

x

�(x� y) =

@

@s(x)

Im

�

E ln� �

"

0

2

�

�

�

� m

�1

@

@s(x)

Im�(x� y): (3.19)

Quite similarly we have

N

x

Im�(x� y) = �m

�1

@�(x� y)

@s(x)

: (3.20)

Due to the equation �(x � y) = Re�(x � y), we get from (3.19) and

(3.20)

N

x

�(x� y) = �im

�1

@�(x� y)

@s(x)

; (3.21)

Now (3.19) implies

T

x

�(x� y) = Im(m

�1

� i{

N

)

@�(x� y)

@s(x)

; (3.22)

where {

N

is de�ned by (1.13) with {

1

, {

2

and {

3

given by (3.14).

In turn, (3.22) yields

[T

y

�(x� y)]

0

= Im

@�(y � x)

@s(x)

(m

�1

+ i{

N

): (3.23)

Analogously we have

�
{

T

y

�(y � x)

�

0

= Im

@�(y � x)

@s(x)

[m

�1

+ i({

N

� {)]: (3.24)

In what follows, we will see that the operator N plays an essential role

in the study of the �rst boundary value problem (it enables us to reduce
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the BVP to a Fredholm equation of the second kind with a weakly singular

kernel).

4. Matrix M(x� y)

In this section, we will construct the special fundamental matrix which

reduces the second BVP to a Fredholm integral equation of the second kind.

We denote the matrix by M(x� y) and look for it as

M(y � x) = Re(��E

0

ln�X)Y; (4.1)

where � is given by (2.13),

E

0

= iE +E

1

; (4.2)

E is again the unit matrix and E

1

is given by (3.5); the real matrices X

and Y will be de�ned later on.

Each column of M(x� y) is a solution to equation (1.4) with respect to

the variable x provided x 6= y.

Upon acting the operation T

x

on the matrix M(x� y) and applying the

equation (3.7), we get

T

x

M(x� y) =

@

@s(x)

Im

h

(E + iA) ln� +

B

2

�

�

+ i{

L

E

0

ln�X

i

Y: (4.3)

We will try now to determine matrices X and Y in such a way that,

on one hand, the coe�cients of singular terms in (4.3) would vanish (i.e.,

the expression (4.3) would involve only weakly singular terms) and, on the

other hand, the coe�cient of the term

@�

@s(x)

would be converted into the

unit matrix. These requirements lead to the equations

A+ {

L

E

1

X = 0; (E � {

L

�X)Y = E: (4.4)

Taking into account expressions for {

L

and E

1

, we get from the �rst

equation

A� 2

















�

1

0 �

3

0

0 �

1

0 �

3

�

3

0 �

2

0

0 �

3

0 �

2

















X = 0;

whence

X =

1

2�

1

















�

2

0 ��

3

0

0 �

2

0 ��

3

��

3

0 �

1

0

0 ��

3

0 �

1

















A;

where

�

1

= �

1

�

2

� �

2

3

: (4.5)

Later on, it will be shown that �

1

> 0.
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Further, (3.8) along with the equations

�

2

(1�A

1

) + �

3

A

3

= �

2

� 2�

1

m

1

;

�

2

A

2

+ �

3

(1�A

4

) = �

3

+ 2�

1

m

2

;

�

3

(1�A

1

) + �

1

A

3

= �

3

+ 2�

1

m

2

;

�

3

A

2

+ �

1

(1�A

4

) = �

1

� 2�

1

m

3

;

yields

X=

1

2�

1

















0 �

2

�2�

1

m

1

0 ��

3

�2�

1

m

2

��

2

+2�

1

m

1

0 �

3

+2�

1

m

2

0

0 ��

3

�2�

1

m

2

0 �

1

�2�

1

m

3

�

3

+2�

1

m

2

0 ��

1

+2�

1

m

3

0

















: (4.6)

Let us note that

{

L

X = �

















1�A

1

0 �A

2

0

0 1�A

1

0 �A

2

�A

3

0 1�A

4

0

0 �A

3

0 1�A

4

















:

Then the second equation of (4.4) implies

















2�A

1

0 �A

2

0

0 2�A

1

0 �A

2

�A

3

0 2�A

4

0

0 �A

3

0 2�A

4

















Y = E;

whence �nally we have

Y =

1

�

2

















2�A

4

0 A

2

0

0 2�A

4

0 A

2

A

3

0 2�A

1

0

0 A

3

0 2�A

1

















; (4.7)

where

�

2

= (2�A

1

)(2�A

4

)�A

2

A

3

: (4.8)

Thus we have determined matrices X and Y uniquely. Substituting them

into (4.3), we get

T

x

M(x� y) =

@

@s(x)

Im

�

E ln� +

H

2�

2

�

�

�

; (4.9)

where

H =

















H

1

iH

1

H

2

iH

2

iH

1

�H

1

iH

2

�H

2

H

3

iH

3

H

4

iH

4

iH

3

�H

3

iH

4

�H

4

















; (4.10)
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H

1

= B

1

(2�A

4

) +B

2

A

3

; H

2

= B

1

A

2

+B

2

(2�A

1

);

H

3

= B

3

(2�A

4

) +B

4

A

3

; H

4

= B

3

A

2

+B

4

(2�A

1

);

(4.11)

constants A

j

and B

j

(j = 1; 4) are given by (3.9) and (3.10).

Throughout the paper, X and Y denote matrices determined by (4.6)

and (4.7), respectively. The matrix M(x� y) (see (4.1)) is a multifunction,

since matrices X and Y are not zero-matrices. In what follows, we will show

how to get rid of the multivalence of the matrix M(x� y).

5. Generalized Green Formulas

Let u and v be four-dimensional vectors in D

+

. The equations (1.1) can

be written as follows

(Cu)

1

= @

1

�

0

11

+ @

2

�

0

12

; (Cu)

2

= @

1

�

0

12

+ @

2

�

0

22

;

(Cu)

3

= @

1

�

00

11

+ @

2

�

00

21

; (Cu)

4

= @

1

�

00

12

+ @

2

�

00

22

;

(5.1)

where the �

0

11

, : : : ,�

00

22

are the components of the generalized stress tensor

given by (1.6), (1.7) and (1.8). We note that the derivatives in (5.1) are

taken with respect to the coordinates of the point y = (y

1

; y

2

) (u and v are

functions of y and @

k

= @=@y

k

, k = 1; 2).

From (5.1) and (1.1) it follows that

(Cu)

k

=  

0

k

(y); (Cu)

k+2

=  

00

k

(y); k = 1; 2; (5.2)

Multiplicating the k-th equation of (5.1) by v

k

, integrating over D

+

and

summing the results, we arrive to

Z

D

+

vCudy

1

dy

2

=

Z

S

v

{

T

udS �

Z

D

+

{

T

(u; v)dy

1

dy

2

; (5.3)

where

{

T

(u; v) = �

0

11

@

1

v

0

1

+ �

0

21

@

2

v

0

1

+ �

0

12

@

1

v

0

2

+ �

0

22

@

2

v

0

2

+

+ �

00

11

@

1

v

00

1

+ �

00

21

@

2

v

00

1

+ �

00

12

@

1

v

00

2

+ �

00

22

@

2

v

00

2

: (5.4)

Here we have used notation

v

1

= v

0

1

; v

2

= v

0

2

; v

3

= v

00

1

; v

4

= v

00

2

: (5.5)

To give a more symmetric form to the expression (5.4), we set

�

0

= 2�

1

; �

00

= 2�

2

; @

1

u

0

1

� @

2

u

0

2

= 2�

3

;

@

1

u

00

1

� @

2

u

00

2

= 2�

4

; @

1

u

0

2

+ @

2

u

0

1

= 2�

5

;

@

1

u

00

2

+ @

2

u

00

1

= 2�

6

; !

0

= 2�

7

; !

00

= 2�

8

;

(5.6)
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@

1

v

0

1

+ @

2

v

0

2

= 2�

1

; @

1

v

00

1

+ @

2

v

00

2

= 2�

2

;

@

1

v

0

1

� @

2

v

0

2

= 2�

3

; @

1

v

00

1

� @

2

v

00

2

= 2�

4

;

@

1

v

0

2

+ @

2

v

0

1

= 2�

5

; @

1

v

00

2

+ @

2

v

00

1

= 2�

6

;

@

1

v

0

2

� @

2

v

0

1

= 2�

7

; @

1

v

00

2

� @

2

v

00

1

= 2�

8

:

(5.7)

Now (5.6) and (5.7) yield

@

1

u

0

1

= �

1

+ �

3

; @

2

u

0

2

= �

1

� �

3

;

@

1

u

00

1

= �

2

+ �

4

; @

2

u

00

2

= �

2

� �

4

;

@

1

u

0

2

= �

5

+ �

7

; @

2

u

0

1

= �

5

� �

7

;

@

1

u

00

2

= �

6

+ �

8

; @

2

u

00

1

= �

6

� �

8

;

(5.8)

@

1

v

0

1

= �

1

+ �

3

; @

2

v

0

2

= �

1

� �

3

;

@

1

v

00

1

= �

2

+ �

4

; @

2

v

00

2

= �

2

� �

4

;

@

1

v

0

2

= �

5

+ �

7

; @

2

v

0

1

= �

5

� �

7

;

@

1

v

00

2

= �

6

+ �

8

; @

2

v

00

1

= �

6

� �

8

:

(5.9)

Substitution of (5.8) and (5.9) into (5.4) leads to

{

T

(u; v) = 2[2(b

1

� �

5

) + {

1

]�

1

�

1

+ 2[2(d+ �

5

) + {

3

](�

1

�

2

+ �

2

�

1

) +

+ 2[2(b

2

� �

5

) + {

2

]�

2

�

2

+ 2(2�

1

� {

1

)(�

3

�

3

+ �

5

�

5

) +

+ 2(2�

3

� {

3

)(�

3

�

4

+ �

4

�

3

+ �

5

�

6

+ �

6

�

5

) +

+ 2(2�

2

� {

2

)(�

4

�

4

+ �

6

�

6

) + 2(�2�

5

+ {

1

)�

7

�

7

+

+ 2(2�

5

+ {

3

)(�

7

�

8

+ �

8

�

7

) + 2(�2�

5

+ {

2

)�

8

�

8

: (5.10)

Note that

{

T

(u; v) is a symmetric function with respect to �

k

and �

k

(k = 1; 8), i.e.,

{

T

(u; v) =

{

T

(v; u) (5.11)

Clearly we have (cf. (5.3))

Z

D

+

uCvdy

1

dy

2

=

Z

S

u

{

T

vds�

Z

D

+

{

T

(v; u)dy

1

dy

2

(5.12)

Now (5.3) and (5.12) along with (5.11) imply

Z

D

+

(uCv � vCu)dy

1

dy

2

=

Z

S

(u

{

T

v � v

{

T

u)ds: (5.13)
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Let u and v be complex vectors and, in addition, v = u. Then

{

T

(u; u) =

{

T

(u; u) and

Z

D

+

(uCu� uCu)dy

1

dy

2

=

Z

S

(u

{

T

u� u

{

T

u)ds: (5.14)

Let now u be a solution to (1.4) and v = u. Then from (5.3) it follows

that

Z

D

+

{

T

(u; u)dy

1

dy

2

=

Z

S

u

{

T

uds; (5.15)

where

{

T

(u; u) = 2[2(b

1

� �

5

) + {

1

]�

2

1

+ 4[2(d+ �

5

) + {

3

]�

1

�

2

+

+ 2[2(b

2

� �

5

) + {

2

]�

2

2

+ 2(2�

1

� {

1

)(�

2

3

+ �

2

5

) +

+ 4(2�

3

� {

3

)(�

3

�

4

+ �

5

�

6

) +

+ 2(2�

2

� {

2

)(�

2

4

+ �

2

6

) + 2(�2�

5

+ {

1

)�

2

7

+

+ 4(2�

5

+ {

3

)�

7

�

8

+ (�2�

5

+ {

2

)�

2

8

: (5.16)

It is evident that

{

T

(u; u) is a quadratic form in variables �

1

; : : : ; �

8

. The

necessary and su�cient conditions for

{

T

(u; u) to be positive de�nite read

2(b

1

� �

5

) + {

1

> 0;

[2(b

1

� �

5

) + {

1

][2(b

2

� �

5

) + {

2

]� [2(d+ �

5

) + {

3

]

2

> 0;

2�

1

� {

1

> 0; (2�

1

� {

1

)(2�

2

� {

2

)� (2�

3

� {

3

)

2

> 0;

�2�

5

+ {

1

> 0; (�2�

5

+ {

1

)(�2�

5

+ {

2

)� (2�

5

+ {

3

)

2

> 0:

(5.17)

If { = 0 (i.e., {

1

= {

2

= {

3

= 0), then (5.16) represents the doubled

speci�c potential energy of elastic mixture at the point y

T (u; u) = 4(b

1

� �

5

)�

2

1

+ 8(d+ �

5

)�

1

�

2

+ 4(b

2

� �

5

)�

2

2

+

+ 4�

1

(�

2

3

+ �

2

5

) + 8�

3

(�

3

�

4

+ �

5

�

6

) +

+ 4�

2

(�

2

4

+ �

2

6

)� 4�

5

(�

7

� �

8

)

2

: (5.18)

Conditions (5.17) in that case read

b

1

� �

5

> 0; (b

1

� �

5

)(b

2

� �

5

)� (d+ �

5

)

2

> 0;

�

1

> 0; �

1

�

2

� �

2

3

> 0; ��

5

> 0:

(5.19)

In what follows, these conditions are supposed to be ful�lled since from

the physical considerations it is obvious that the potential energy is a posi-

tive function.
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Let us consider one more particular case where { is given by (3.12) and

(3.14). Then

{

T

� N , and we have

N(u; u) = 2

h

2(a

1

+ b

1

)�

m

3

�

0

i

�

2

1

+ 4

h

2(c+ d) +

m

2

�

0

i

�

1

�

2

+

+ 2

h

2(a

2

+ b

2

)�

m

1

�

0

i

�

2

2

+

2m

3

�

0

(�

2

5

+�

3

5

)�

4m

2

�

0

(�

3

�

4

+ �

5

�

6

)+

+

2m

1

�

0

(�

2

4

+ �

2

6

) + 2

�

2a

1

�

m

3

�

0

�

�

2

7

+

+ 4

�

2c+

m

2

�

0

�

�

7

�

8

+ 2(2a

2

�

m

1

�

0

)�

2

8

(5.20)

due to (5.16).

Inequalities (5.17) now read as

2(a

1

+ b

1

)�

m

3

�

0

> 0;

h

2(a

1

+ b

1

)�

m

3

�

0

i h

2(a

2

+ b

2

)�

m

1

�

0

i

�

h

2(c+ d) +

m

2

�

0

i

2

> 0;

m

3

�

0

> 0;

1

�

0

> 0; 2a

1

�

m

3

�

0

> 0;

�

2a

1

�

m

3

�

0

��

2a

2

�

m

1

�

0

�

�

�

2c+

m

2

�

0

�

2

> 0:

(5.21)

Let us �rst show that (5.19) implies (5.21). We begin with the proof of

the inequalities d

1

> 0 and d

2

> 0 (see (2.2) and (2.3)).

We have

d

2

= a

1

a

2

� c

2

= (�

1

� �

5

)(�

2

� �

5

)� (�

3

+ �

5

)

2

=

= �

1

�

2

� �

2

3

� �

5

�

(

p

�

1

�

p

�

2

)

2

+ 2(

p

�

1

�

2

+ �

3

)

�

:

Since �

1

�

2

��

2

3

> 0, we get �

p

�

1

�

2

< �

3

<

p

�

1

�

2

and

p

�

1

�

2

+�

3

> 0.

Note that the inequality ��

5

> 0 implies d

2

> 0. Quite similarly we have

d

1

= (b

1

� �

5

+ �

1

)(b

2

� �

5

+ �

2

)� (d+ �

5

+ �

3

)

2

=

= (b

1

� �

5

)(b

2

� �

5

)� (d+ �

5

)

2

+ �

1

�

2

� �

2

3

+

+

�

p

�

2

(b

1

� �

5

)�

p

�

1

(b

2

� �

5

)

�

2

+

+ 2

�

p

�

1

�

2

(b

1

� �

5

)(b

2

� �

5

)� �

3

(d+ �

5

)

�

;

whence, applying again (5.19), we get the inequality d

1

> 0. Due to (2.15),

we �nd

m

1

=

1

2

�

a

2

d

2

+

a

2

+ b

2

d

1

�

; m

2

= �

1

2

�

c

d

2

+

c+ d

d

1

�

;

m

3

=

1

2

�

a

1

d

2

+

a

1

+ b

1

d

1

�

:
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It is obvious that d

1

> 0 and d

2

> 0 yield a

1

> 0, a

2

> 0, a

1

+ b

1

> 0,

a

2

+ b

2

> 0 and, consequently, m

1

> 0 and m

3

> 0.

Bearing in mind the equation m

1

m

3

�m

2

2

= �

0

, we have

4�

0

d

1

d

2

= �

0

= (2a

1

+ b

1

)(2a

2

+ b

2

)� 2c(c+ d)

2

=

= d

2

+ d

1

+ a

1

(a

2

+ b

2

) + a

2

(a

1

+ b

1

)� 2c(c+ d):

We can easily prove that

a

1

(a

2

+ b

2

) + a

2

(a

1

+ b

1

)� 2c(c+ d) > 0

from which �

0

> 0 follows immediately.

By direct evaluation, we can verify that

�
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1

�

m
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0
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2a

2

�

m
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�

�

�

2c+
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+ b
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0
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0

i

2
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d

1

d
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0

> 0;

2a

1

�

m

3

�
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1
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0
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1
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�
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(a
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1

+

+ [a
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(a
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2
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> 0;

2(a

1

+ b

1

)�

m
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0

=

1

2�

0

a

2

d

1

d

2

�

a

2

(a

1

+ b

1

)d

1

+ (c+ d)

2

d

2

+

+ [a

2

(a

1

+ b

1

)� c(c+ d)]

2

	

> 0:

Thus all inequalities in (5.21) hold.

Formulas (5.13) and (5.15) can be generalized to unbounded domains of

the type D

�

if the conditions

lim

R!1

Z

S(0;R)

u

{

T

vdS = 0; lim

R!1

Z

S(0;R)

v

{

T

udS = 0;

lim

R!1

Z

S(0;R)

u

{

T

udS = 0

(5.22)

are ful�lled, where S(0; R) is the circle centered at the origin and with the

radius R; we assume that (0; 0) 2 D

+

and S(0; R) envelopes the domain

D

+

. Clearly, the conditions (5.22) hold if u and v meet conditions (1.14).

As a result, we have the following formulas for the unbounded domain D

�

Z

D

�

(uCv � vCu)dy

1

dy

2

=

Z

S

(v

{

T

u� u

{

T

v)dS; (5.23)
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Z

D

�

{

T

(u; u)dy

1

dy

2

= �

Z

S

u

{

T

udS: (5.24)

We note that (5.13) and (5.15) remain also valid for such D

+

which is a

bounded, multiconnected domain surrounded by contours S

1

; : : : ; S

m

; S

m+1

(we assume that S

m+1

envelopes all other contours); S =

m+1

[

k=1

S

k

is the

boundary of D

+

. The positive direction on S

k

is the one which leaves the

domain D

+

left-hand side.

6. General Representation of Solution

We will start with the following assertion.

Let S 2 C

1+�

, 0 < � � 1, and let u be a regular solution

of the equation (1:1) in D

+

. Then

u(x) =

1

2�

Z

S

��

{

T

y

�(y � x)

�

0

(u)

+

��(y � x)(

{

T

u)

+

	

dS +

+

1

2�

Z

D

+

�(y � x) (y) dy

1

dy

2

; x 2 D

+

; (6.1)

where �(x� y) is the basic fundamental matrix and [

{

T

y

�(y � x)]

0

is given

by (3:24).

Proof. Let S(x; ") be a circle centered at the point x 2 D

+

and with the

radius " > 0, and let the corresponding closed disk K(x; ") � D

+

. Denote

D

"

= D

+

nK(x; "). Obviously v(y) = �

(j)

(y�x) (j-th column of the matrix

�(y � x)) is a regular solution to (1.4) in D

"

. Now the equations

C

y

�

(j)

(y � x) = 0; Cu =  (y)

together with (5.13) give

�

Z

D

"

�

(j)

(y � x) (y) dy

1

dy

2

=

=

Z

S

�

(u)

+

{

T

y

�

(j)

(y � x) ��

(j)

(y � x)(

{

T

u)

+

�

ds+

+

Z

S(x;")

�

u(y)

{

T

y

�

(j)

(y � x)��

(j)

(y � x)

{

T

u

�

dS: (6.2)

We need to calculate the following integrals

J

1

(x) =

Z

S

@ ln�

@s(y)

dS; (6.3)
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J

2

(x) =

Z

S

@

@s(y)

�

�

dS: (6.4)

Applying the equation

0 =

Z

D

+

�

@

2

u

@y

1

@y

2

�

@

2

u

@y

2

@y

1

�

dy

1

dy

2

=

Z

S

@u

@s

dS;

we get

Z

S

@ ln�

@s(y)

dS +

Z

S(x;")

@ ln�

@s(y)

dS = 0:

Clearly, if y 2 S(x; "), we have

y

1

� x

1

= " cos'; y

2

� x

2

= " sin'; dS = "d';

n

1

(y) = � cos'; n

2

(y) = � sin':

Therefore

@ ln�

@s(y)

dS = �id';

@

@s(y)

�

�

dS = �2i exp(�2i') d':

From the above results, it follows

Z

S(x;")

@ ln�

@s(y)

dS = �2�i;

Z

S

@

@s(y)

�

�

dS = 0: (6.5)

Thus

J

1

(x) = 2�i; J

2

(x) = 0; x 2 D

"

: (6.6)

By (6.5), it can be easily proved that

lim

"!0

Z

S(x;")

u(y)

{

T

y

�

(j)

(y � x)dS = �2�u

j

(x);

lim

"!0

Z

S(x;")

�

(j)

{

T

u dS = 0:

Now from (6.2) we get

�

Z

D

+

�

(j)

(y � x) (y) dy

1

dy

2

=

=

Z

S

�

(u)

+

{

T

y

�

(j)

(y � x)��

(j)

(y � x)(

{

T

u)

+

�

dS �

�2�u

j

(x); x 2 D

+

;
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which completes the proof. �

If  = 0, then (6.1) reads as

u(x)=

1

2�

Z

S

��

T

y

�(y � x)

�

0

(u)

+

��(y � x)

�

{

T

u

�

+

	

dS; x 2 D

+

: (6.7)

Quite similarly we establish that for any x 2 D

�

,

0 =

1

�

Z

S

��

T

y

�(y � x)

�

0

(u)

+

��(y � x)

�
{

T

u

�

+

	

dS; x 2 D

�

: (6.8)

The representations (6.7) and (6.8) hold for an arbitrary {. Let { = {

N

.

We apply the identity

Nu = m

�1

@v

@s

; Nv = �m

�1

@u

@s

: (6.9)

These relations have been obtained for an arbitrary matrix. In this con-

nection, if u = ReW , then v = ImW , i.e., W = u+ iv.

Taking into account (6.9) and single-valuedness of � and u, we get from

(6.7) by integration by parts

u(x) =

1

2�

Z

S

n

�

N

y

�(y � x)

�

0

(u)

+

+

@�

@s

m

�1

(v)

+

o

dS =

=

1

2�

Z

S

Im

@�(y � x)

@s(y)

m

�1

�

(u)

+

+ i(v)

+

�

dS: (6.10)

Similarly we can write

v(x) =

�1

2�

Z

S

Re

@�

@s(y)

m

�1

�

(u)

+

+ i(v)

+

�

dS: (6.11)

Further, (6.10) and (6.11) yield

W (x) =

�1

2�i

Z

S

@�(y � x)

@s(y)

m

�1

(W )

+

dS; x 2 D

+

; (6.12)

0 =

1

2�i

Z

S

@�(y � x)

@s(y)

m

�1

(W )

+

dS; x 2 D

�

: (6.13)

By quite the same way we can derive similar formulas for D

�

W (x) =W (1)�

1

2�i

Z

S

@�(y � x)

@s(y)

m

�1

(W )

�

dS; x2D

�

; (6.14)

W (x) =W (1); x 2 D

+

: (6.15)
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Equations (6.12), (6.13) and (6.14), (6.15) represent the generalized Cauchy

integral formulas in the theory of elastic mixtures.

Let {

1

= {

2

= {

3

= 0 and  = 0. Then (6.1) reads

U(x) =

1

2�

Z

S

�

T

y

�(y � x)

�

0

(u)

+

��(y � x)(Tu)

+

dS; x 2 D

+

: (6.16)

Let, in addition,

(u)

+

= '

(j)

(y) =

0

B

B

@

�

1j

�

2j

�

3j

�

4j

1

C

C

A

+ �

5j

0

B

B

@

�y

2

y

1

�y

2

y

1

1

C

C

A

; j = 1; 5; (6.17)

where �

kj

is Kronecker's symbol. Due to the equation T

y

'

(j)

(y) = 0, we

obtain

'

(j)

(x) =

1

2�

Z

S

�

T

y

�(y � x)

�

0

 

(j)

(y)dS; x 2 D

+

: (6.18)

Finally, let us note that the formula (6.12) has been derived for a regular

vector W , but nevertheless, it remains to hold true for a continuous vector

W in D

+

.

7. Uniqueness Theorems

Before going over to uniqueness theorems, let us prove

Let u be a regular vector in D and let

T (u; u) = 0 (7.1)

with T (u; u) given by (5.18).

Then

u = (u

0

; u

00

); u

0

= a

0

+ b

0

�

�x

2

x

1

�

; u

00

= a

00

+ b

0

�

�x

2

x

1

�

; (7.2)

where a

0

= (a

0

1

; a

0

2

), a

00

= (a

00

1

; a

00

2

) and a

0

1

, a

0

2

, a

00

1

, a

00

2

, b

0

are arbitrary

constants.

Proof. We have from (5.18)

@

k

u

0

j

+ @

j

u

0

k

= 0; @

k

u

00

j

+ @

j

u

00

k

= 0; k; j = 1; 2; (7.3)

!

0

= !

00

(7.4)

due to (5.19). In turn, (7.3) yields [5]

u

0

= a

0

+ b

0

�

�x

2

x

1

�

; u

00

= a

00

+ b

00

�

�x

2

x

1

�

;
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where a

0

1

, a

0

2

, a

00

1

, a

00

2

, b

0

and b

00

are arbitrary constants. Now the condition

(7.4) completes the proof. �

Now we can prove the following uniqueness results.

Let S 2 C

1+�

; 0 < � � 1. Then the homogeneous problems

(I)

�

0;0

, have no nontrivial regular solutions.

The general solution of the problem (II)

+

0;0

is represented by the formula

(7:2), while the general solution of the problem (III)

+

0;0

is

u

0

= u

00

= a

0

+ b

0

�

�x

2

x

1

�

:

The general solution of the problem (II)

�

0;0

[(III)

�

0;0

] reads u

0

= a

0

,

u

00

= a

00

(u

0

= u

00

= a

0

).

Proof. It follows from (5.15), (5.24) (with { = 0) and Lemma 7.1 since

(uTu)

�

= 0 under the conditions of the Theorem. �

8. Generalized Potentials and Their Properties

Let us introduce the following de�nitions.

The vector

u(x) =

1

�

Z

S

�(x� y)g(y) dS; (8.1)

where �(x � y) is given by (2.12) and g is a continuous vector, is called a

single layer potential.

The vector

u(x) =

1

�

Z

S

�

N

y

�(y � x)

�

0

g(y) dS; (8.2)

where [N

y

�(y�x)]

0

is given by (3.15) and g is a continuous vector, is called

a double layer potential.

The vector

u(x) =

1

�

Z

S

�

T

y

�(y � x)

�

0

g(y) dS; (8.3)

where [T

y

�(y � x)]

0

is given by (3.23) and g is a H�older continuous vector,

is called a double layer potential of the second kind.
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The vector

u(x) =

1

�

Z

S

M(x� y)g(y) dS; (8.4)

where M(x � y) is given by (4.1) and g is a continuous vector, is called a

single layer potential of the second kind.

It is evident that all potentials introduced above are solutions to the

equation (1.4) in R

2

nS. These potentials have certain continuity and jump

properties when the point x either crosses the surface S or approaches some

point t = (t

1

; t

2

) 2 S from 


�

. Those properties can be obtained very easily

since the kernel-functions of the above potentials are quite similar to those

of classical potentials of isotropic elastostatics [3].

Therefore we will only formulate �nal results.

A single layer potential de�ned by (8:1) is continuous on

the whole plane and

�

T

t

u(t)

�

�

= �g(t) +

1

�

Z

S

T

t

�(t� y)g(y) dS; (8.5)

where the symbols [�]

�

denote limits on S from 


�

.

Let u be a single layer potential (8:1). Then

�

N

t

u(t)

�

�

= �g(t) +

1

�

Z

S

N

t

�(t� y)g(y) dS (8.6)

hold for an arbitrary t 2 S.

Let u be a double layer potential given by (8:2). Then for

any t 2 S,

�

u(t)

�

�

= �g(t) +

1

�

Z

S

�

N

y

�(y � t)

�

0

g(y) dS: (8.7)

Let u be a double layer potential of the second kind given

by (8:3). Then for any t 2 S,

�

u(t)

�

�

= �g(t) +

1

�

Z

S

�

T

y

�(y � t)

�

0

g(y) dS: (8.8)

Let

u(x) =

1

�

Z

S

�

M(x� y)�M(y)

�

g(y) dS
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and let

Z

S

g(y) dS = 0: (8.9)

Then u is continuous in 


+

.

Let

u(x) =

1

�

Z

S

�

M(x� y)�M(x)

�

g(y) dS

and let (8:9) be ful�lled. Then u is continuous in 


�

.

Let u be a single layer potential of the second kind. Then

for any t 2 S,

�

T

t

u(t)

�

�

= �g(t) +

1

�

Z

S

T

t

M(t� y)g(y) dS: (8.10)

Let u be a single layer potential (8:1) with the density g

satisfying (8:9) and let u be a constant vector in 


+

. Then u is the same

constant in the whole plane.

Proof. Let u(x) = a in 


+

, where a = (a

0

; a

00

) is a constant vector. Clearly

T

x

u(x) = 0; x 2 


+

. From Theorem 8.5, it follows that (u)

+

= (u)

�

= a

and (Tu)

�

� (Tu)

+

= 2g. Now (Tu)

+

= 0 implies

Z

S

(u)

�

(Tu)

�

dS = 2a

Z

S

g dS = 0;

which together with (5.24) completes the proof. �

Let a single layer potential of the second kind be a constant

in D

+

. In addition, if (8:9) is ful�lled, then this potential is equal to the

same constant in the whole plane.

Proof. Let u(x) = a; x 2 D

+

, where a = (a

0

; a

00

) is a constant vector. Then

Nu = 0 and v(x) = b due to (6.9), where b = (b

0

; b

00

) is a constant vector.

Taking into account the equation (Tv)

+

� (Tv)

�

= 0 we get (Tv)

�

= 0.

Further, the condition (8.9) implies that v(x) is bounded at in�nity and

therefore v(x) = b; x 2 D

�

, due to (5.24) with { = 0. Now from (6.9) it

follows that u(x) = a; x 2 D

�

. �

Let u be a single layer potential. If u is a constant vector

in D

+

and, in addition,

(!

0

+ !

00

)

x=0

= 0; (8.11)

then the potential is constant on the whole plane.
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Proof. We assume, as above, that 0 2 D

+

and !

0

and !

00

are calculated

by formula (1.8) and correspond to the single layer potential (8.1). Since

u(x) � a, x 2 D

�

, we have (Tu)

�

= 0. Now (8.5) yields

Z

S

g dS = 0:

Further, note that

Z

S

(u)

+

(Tu)

+

dS = �2a

Z

S

g dS = 0:

Applying formula (5.15) with { = 0, we deduce u = (u

0

; u

00

), where

u

0

= a

0

+ b

0

�

�x

2

x

1

�

; u

00

= a

00

+ b

0

�

�x

2

x

1

�

; x 2 D

+

;

whence

!

0

+ !

00

= 2b

0

:

Finally, bearing in mind (8.11), we get b

0

= 0 and

u

0

= a

0

; u

00

= a

00

;

which completes the proof. �

If the single layer potential of the second kind u is constant

in D

�

and the equation

(!

0

+ !

00

)

x=0

= 0 (8.12)

holds, then u is constant on the whole plane.

Proof. Let u(x) = a; x 2 D

�

. Then (Tu)

�

= 0 and, due to (8.10),

Z

S

g dS = 0:

On the other hand, we have Nu = m

�1

@v

@S

= 0 in 


�

, whence

v(x) = c; x 2 D

�

follows.

We also have (Tv)

�

� (Tv)

+

= 0, i.e., (Tv)

+

= 0. By making use of

(5.15) (with { = 0) we arrive to

v

0

= a

0

+ b

0

�

�x

2

x

1

�

; v

00

= a

00

+ b

0

�

�x

2

x

1

�

;

which together with (8.14) gives b

0

= 0. Now v

0

= a

0

and v

00

= a

00

yield

u

0

= c

0

, u

00

= c

00

in D

+

. �
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9. Existence Theorems of Problems (I)

�

0;f

and (II)

�

0;F

+

0;f

�

0;F

We look for solutions to the problems

(I)

+

0;f

and (II)

�

0;F

in the form of a second kind double layer potential and a

single layer potential, respectively. Then we arrive to the singular integral

equations

g(t) +

1

�

Z

S

�

T

y

�(y � t)

�

0

g(y) dS = f(t); (9.1)

h(t) +

1

�

Z

S

T

t

�(t� y)h(y) dS = F (t); (9.2)

where g and h are unknown H�older continuous vectors { densities of the

potentials

u(x) � u(x; g) =

1

�

Z

S

�

T

y

�(y � x)

�

0

g(y) dS; (9.3)

V (x) � V (x;h) =

1

�

Z

S

�(x� y)h(y) dS: (9.4)

The kernels of the singular integral equations (9.1) and (9.2) are given

by (3.23) and (3.7), rexpectively. They are mutually adjoint kernels and

therefore (9.1) and (9.2) are mutually adjoint singular integral equations.

Now we show that they are of normal type, i.e., their indices are equal to

zero.

We begin with the equation (9.2). Due to the general theory [6], the

index is calculated by the formula

{ =

1

2�

�

arg

det(E + iA)

det(E � iA)

�

S

: (9.5)

By the direct evaluation, we get

det(E + iA) = det(E � iA) =

= 4�

0

�

1

�

(2�A

1

)(2�A

4

)�A

2

A

3

�

; (9.6)

here A

1

, A

2

, A

3

, A

4

, �

0

, �

1

are given by (3.9), (3.13), (4.5).

The positive de�niteness of the potential energy implies that �

0

> 0,

�

1

> 0 and (2�A

1

)(2�A

4

)�A

2

A

3

> 0. Therefore the index (9.5) is equal

to zero. Thus the left-hand side of the equation (9.2) (and consequently

of (9.1)) is a singular integral operator of normal type and we can apply

Fredholm theorems to them.

Let us prove that the homogeneous version of the equation (9.2) has only

the trivial solution. Indeed, let h

0

be some solution to it. Then for the
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single layer potential V (x; h

0

) we have: [T

t

V (t; h

0

)]

�

= 0. We can also

easily establish

Z

S

h

0

dS = 0; (9.7)

which implies that the corresponding single layer potential vanishes at in-

�nity. Further, from (5.24) with { = 0 and the condition [T

t

V (t; h

0

)]

�

= 0

it follows that V (x; h

0

) = 0, x 2 D

�

, whence [V (t; h

0

)]

�

= [V (t; h

0

)]

+

= 0.

Now (5.15) with { = 0 yields V (x; h

0

) = 0, x 2 D

+

.

Thus V (x; h

0

) vanishes on the whole plane and therefore h

0

= 0. Due to

the Fredholm alternative we conclude that the nonhomogeneous equation

(9.2) is solvable for an arbitrary H�older continuous vector F (t). Clearly, the

same is valid for the equation (9.1).

From the solvability of the equations (9.1) and (9.2) it follows that the

solutions of problems (I)

+

0;f

and (II)

�

0;F

are representable as second kind

double layer and single layer potentials, respectively (see (9.3) and (9.4)).

From the general theory we conclude that if S 2 C

2+�

and f 2 C

1+�

(S); 0 <

� < � � 1, then g 2 C

1+�

(S), where g solwes the equation (9.1). Therefore

the double layer potential of the second kind with density g is a regular

vector.

�

0;f

+

0;F

We look for solutions to the problems

(I)

�

0;f

and (II)

+

0;F

in the form of the second kind double layer potential

(9.3) and the single layer potential (9.4), respectively. We obtain then the

following equations

� g(t) +

1

�

Z

S

�

T

y

�(y � t)

�

0

g(y) dS = f(t); (9.8)

� h(t) +

1

�

Z

S

T

t

�(t� y)h(y)dS = F (t); (9.9)

where g and h are H�older continuous unknown vectors.

In quite the same way as in the previous subsection, it can be proved

that (9.8) and (9.9) are mutually adjoint singular integral equations with

index equal to zero (note that the corresponding determinants are the same

as for equations (9.1) and (9.2)).

From (6.18) it follows

�'

(j)

(t) +

1

�

Z

S

�

T

y

�(y � t)

�

0

'

(j)

(y) dS = 0; j = 1; 5; (9.10)

where '

(j)

are given by (6.17).

It can be easily proved that the homogeneous version of the equation

(9.8) has a 5-dimensional null-space. Clearly the same is valid for the ho-

mogeneous version of the equation (9.9). Therefore the nonhomogeneous
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equations (9.8) and (9.9) are not solvable for arbitrary right-hand side f

and F .

Let us consider the equation

�h(t) +

1

�

Z

S

T

t

�(t� y)h(y) dS+

+

1

2�

T

t

�(t) �

Z

S

h(y) dS +

1

4�

T

t

	(t) �M =F (t); (9.11)

where

	(t) =

�

�

2

��

3

2�

1

grad �

�

1

��

3

2�

2

grad �

�

; � = arctg

t

2

t

1

;

T

t

	(t) = �

 

@

@S(t)

grad ln �

@

@S(t)

grad ln �

!

; � =

q

t

2

1

+ t

2

2

;

(9.12)

M =

�

@V

0

2

(x;h)

@x

1

�

@V

0

1

(x;h)

@x

2

+

@V

00

2

(x;h)

@x

1

�

@V

00

1

(x;h)

@x

2

�

x=0

=

=

1

�

Z

S

h

(e

1

+ e

2

)

�

�

y

2

R

2

h

1

+

y

1

R

2

h

2

�

+

+ (e

2

+ e

3

)

�

�

y

2

R

2

h

3

+

y

1

R

2

h

4

�i

dS; R =

q

y

2

1

+ y

2

2

: (9.13)

The constants e

1

, e

2

, e

3

are de�ned by (2.3), while �

1

= �

1

�

2

� �

2

3

> 0.

From (9.11) by integration it follows

Z

S

h(y) dS =

Z

S

F (y) dS; (9.14)

M =

Z

S

�

y

1

F

2

(y)� y

2

F

1

(y) + y

1

F

4

(y)� y

2

F

3

(y)

�

dS: (9.15)

Therefore if the right-hand side of (9.11) is orthogonal to all solutions of

the adjoint homogeneous equation, then

Z

S

F dS = 0; (9.16)

Z

S

�

y

1

(F

2

+ F

4

)� y

2

(F

1

+ F

3

)

�

dS = 0: (9.17)

In turn, if the conditions (9.16) and (9.17) hold, then (9.14) and (9.15)

imply

Z

S

h(y) dS = 0; (9.18)
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M = 0: (9.19)

Thus if (9.16) and (9.17) are ful�lled, then an arbitrary solution h(y) of

(9.11) solves at the same time the original equation (9.9).

Now we will prove that the equation (9.11) is always solvable.

To this end, let us consider the corresponding homogeneous equation

(i.e., F = 0) and show that it has no non-trivial solutions.

Let h

0

be an arbitrary solution of the homogeneous equation under con-

sideration. Since F � 0, conditions (9.18) and (9.19) are ful�lled and the

above homogeneous equation corresponds to the boundary condition

�

T

t

V

0

(t)

�

+

= 0; (9.20)

where V

0

(x) = V (x; h

0

) is de�ned by (9.4).

Further, (9.20) and the uniqueness theorem for the problem (II)

+

o;o

yield

V

0

(x) = (V

0

0

; V

00

0

);

where

V

0

0

(x) = a

0

0

+ b

0

10

�

�x

2

x

1

�

; V

00

0

(x) = a

00

0

+ b

0

10

�

�x

2

x

1

�

; (9.21)

and a

0

0

, a

00

0

are arbitrary constant vectors while b

0

10

is an arbitrary scalar

constant.

Taking into account the equation M

0

= 0 and (9.21), we get

V

0

(x) =

�

a

0

0

a

00

0

�

; x 2 D

+

: (9.22)

Thus we have obtained that the single layer potential is constant in D

+

and (9.18) holds, in addition. Applying Theorem 8.12, we conclude

V

0

(x) =

�

a

0

0

a

00

0

�

; x 2 D

�

: (9.23)

Since

�

T

t

V

0

(t)

�

�

�

�

T

t

V

0

(t)

�

+

= 2h

0

(t);

we easily obtain that h

0

(t) = 0.

Thus the homogeneous version of the equation (9.11) has only the trivial

solution. Consequently the nonhomogeneous equation (9.11) has only one

solution h(t) for an arbitrary right-hand side F . If conditions (9.16) and

(9.17) are ful�lled, the same h(t) is a solution to (9.4) as well. Finally we

note that the problem (II)

+

0;F

is solvable if the conditions (9.16) and (9.17)

are satis�ed. In this connection, the partial the displacements are de�ned

to within the summands

a

0

+ b

0

1

�

�x

2

x

1

�

and a

00

+ b

0

1

�

�x

2

x

1

�

;
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where a

0

and a

00

are constant vectors while b

0

1

is a constant scalar. The

stress vector is de�ned uniquely.

The adjoint equation to (9.11) reads

�g(t) +

1

�

Z

S

�

T

y

�(y � t)

�

0

g(y) dS+

+

1

2�

Z

S

�

T

y

�(y)

�

0

g(y) dS +

1

4�

X(t) � L =f(t); (9.24)

where

X(t) =

�

(e

1

+ e

3

) grad �

(e

2

+ e

3

) grad �

�

; � = arctg

t

2

t

1

; (9.25)

L =

�

@u

0

2

@x

1

�

@u

0

1

@x

2

+

@u

00

2

@x

1

�

@u

00

2

@x

2

�

x=0

=

1

�

Z

S

�

T

y

	(y)

�

0

g(y) dS; (9.26)

here u = (u

0

; u

00

) is given by (9.3). The equation (9.24) corresponds to the

exterior limit on S of the potential

u(x) =

1

�

Z

S

�

T

y

�(y � x)

�

0

g(y) dS +

+

1

2�

Z

S

�

T

y

�(y)

�

0

g(y) dS +

1

4�

X(x) � L: (9.27)

It is evident that the homogeneous version of the equation (9.24) has

only the trivial solution since its adjoint possesses the same property. This

results that (9.24) is solvable for an arbitrary right-hand side f 2 C

1+�

(S)

and g 2 C

1+�

(S), povided S 2 C

2+�

, 0 < � < � � 1. Therefore the vector

u de�ned by (9.27) is a regular solution of the problem (I)

�

0;f

.

Thus we have studied the solvability of the problems (I)

�

0;f

and (II)

�

0;F

by

reduction the original boundary value problems to corresponding singular

equations.

10. An Alternative Approach to the Problem (I)

�

0;f

In this section, we will reduce the problems (I)

�

0;f

to second kind Fredholm

equations (with weakly singular kernels).

First we consider the problem (I)

+

0;f

and look for its solution in the form

of the double layer potential

u(x) =

1

�

Z

S

�

N

y

�(y � x)

�

0

g(y) dS; (10.1)

where [N

y

�(y � x)]

0

is given by (3.15) and the continuous vector g is an

unknown density.
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Due to Theorem 8.7, we get the equation on S

g(t) +

1

�

Z

S

�

N

y

�(y � t)

�

0

g(y) dS = f(t); t 2 S; (10.2)

where f(t) is a given vector.

Let us prove that (10.2) is solvable for an arbitrary continuous vector f .

The corresponding adjoint equation reads

h(t) +

1

�

Z

S

N

t

�(t� y)h(y)dS = 0: (10.3)

In what follows, we prove that the latter equation has only the zero

solution. As usual, we denote by h

0

(t) an arbitrary solution of (10.3) and

construct the single layer potential

V

0

(x) =

1

�

Z

S

�(x� y)h

0

(y) dS:

It is obvious that

�

N

t

V

0

(t)

�

�

= 0;

Z

S

h

0

(t) dS = 0:

Applying formula (5.25) with { = {

N

(in D

�

), we get

V

0

(x) = 0; x 2 D

�

:

Thus the potential V

0

(x) vanishes in D

�

and in addition

R

S

h

0

(t)dS = 0.

Since [N

t

V

0

(t)]

+

� [N

t

V

0

(t)]

�

= 2h

0

(t), we conclude

Z

S

(V

0

)

+

�

N

t

V

0

(t)

�

+

dS = 0:

Now by (5.15) with { = {

N

, we easily get V

0

(x) = 0, x 2 D

+

, whence

h

0

(t) = 0 follows directly.

From the above results it follows that the equation (10.2) is solvable for

an arbitrary continuous right-hand side f .

It can be easily proved that, if S 2 C

1+�

and f 2 C

1+�

, 0 < � < � � 1,

then g 2 C

1+�

(S), and the corresponding potential (10.1) is a regular vector

(note that the tangent derivative of the kernel of the equation (10.2) is a

H�older continuous function on S).

Let us now consider the problem (I)

�

0;f

. We look for its solution as

u(x) =

1

�

Z

S

�

N

y

�(y � x)

�

0

g(y) dS +

1

2�

Z

S

�

N

y

�(y)

�

0

g(y) dS; (10.4)
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which reduces the boundary value problem to the second kind Fredholm

equation on S with respect to g

�g(t) +

1

�

Z

S

�

N

y

�(y � t)

�

0

g(y) dS+

+

1

2�

Z

S

�

N

y

�(y)

�

0

g(y) dS =f(t) (10.5)

with f given on S.

We will show that (10.5) is uniquely solvable for an arbitrary f . To this

end, we consider the corresponding adjoint homogeneous equation

�h(t) +

1

�

Z

S

N

t

�(t� y)h(y) dS +

1

2�

N

t

�(t)

Z

S

h(y)dS = 0: (10.6)

Let h

0

be some solution to (10.6). From (10.6), by integration we obtain

Z

S

h

0

(y) dS = 0: (10.7)

But the equation (10.6) then corresponds to the boundary condition

�

N

t

V

0

(t)

�

+

= 0; (10.8)

where

V

0

(x) =

1

�

Z

S

�(x� y)h

0

(y) dS: (10.9)

Now (5.15) with { = {

N

implies

V

0

(x) = c; x 2 D

+

;

where c is a constant 4-dimensional vector.

The latter equation together with (10.7) and Theorem 8.12 yields V

0

(x) =

a; x 2 D

�

, where a is a constant vector.

Now again applying the equations [N

t

V

0

(t)]

�

� [N

t

V

0

(t)]

+

= 2h

0

(t) and

[N

t

V

0

(t)]

+

= 0, we conclude h

0

(t) = 0.

Thus (10.6) has no nontrivial solutions and therefore (10.5) is solvable

for an arbitrary continuous right-hand side vector.

Note that, if S 2 C

2+�

and f 2 C

1+�

(S); 0 < � < � � 1, then g 2

C

1+�

(S) and, clearly, the vector u de�ned by (10.4) is regular.
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11. An Alternative Approach to the Problem (II)

�

0;F

As in the previous section, here we will study the problems (II)

�

0;F

by

reduction to the second kind Fredholm integral equations.

First we consider the problem (II)

+

0;F

. We look for the solution as

u(x) =

1

�

Z

S

�

M(x� y)�M(�y)

�

g(y) dS; x 2 D

+

; (11.1)

where M(x� y) is given by (4.1) and g is a continuous unknown vector.

By Theorem 8.11, we get

�g(t) +

1

�

Z

S

T

t

M(t� y)g(y) dS = F (t): (11.2)

The adjoint (homogeneous) equation reads

�h(t) +

1

�

Z

S

�

T

y

M(y � t)

�

0

h(y) dS = 0: (11.3)

It can be easily proved that the equation (11.3) has only 5 linearly inde-

pendent solutions

h

(j)

(t) =

0

B

B

@

�

ij

�

2j

�

3j

�

4j

1

C

C

A

+ �

5j

0

B

B

@

�t

2

t

1

�t

2

t

1

1

C

C

A

; j = 1; 5: (11.4)

Therefore the equation (11.2) is not solvable for an arbitrary F .

Let us consider the following equation

�g(t) +

1

�

Z

S

T

t

M(t� y)g(y) dS+

+

1

2�

T

t

M(t)

Z

S

g dS +

1

4�

T

t

	(t)M =F (t); (11.5)

where T

t

	(t) is de�ned by (9.12), while

M =

�

@u

2

@x

1

�

@u

1

@x

2

+

@u

4

@x

1

�

@u

3

@x

2

)

x=0

=

=

1

��

2

Z

S

h

�

y

2

R

2

(A

0

h

1

+B

0

h

3

)+

y

1

R

2

(A

0

h

2

+B

0

h

4

)

i

dS; (11.6)

A

0

= (2�A

4

)(e

1

+ e

2

) +A

3

(e

2

+ e

3

);

B

0

= A

2

(e

1

+ e

2

) + (2�A

1

)(e

2

+ e

3

):

(11.7)

Note that in (11.6) u = (u

1

; : : : ; u

4

) is given by (11.1).
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From (11.5) it follows that

Z

S

g dS =

Z

S

F dS; (11.8)

M =

Z

S

�

y

1

(F

2

+ F

4

)� y

2

(F

1

+ F

3

)

�

dS: (11.9)

The conditions

Z

S

F dS = 0; (11.10)

Z

S

�

y

1

(F

2

+ F

4

)� y

2

(F

1

+ F

3

)

�

dS = 0 (11.11)

are necessary for orthogonality of the right-hand side vector F and vector-

functions '

(j)

, j = 1; 6.

If equations (11.10) and (11.11) hold, then (11.8) and (11.9) imply

Z

S

g dS = 0; (11.12)

M = 0; (11.13)

whence it follows that each solution g of the equation (11.5) with conditions

(11.10) and (11.11) at the same time solves the equation (11.2).

Now we will show that (11.5) is solvable for an arbitrary right-hand side,

i.e., we have to show that the corresponding homogeneous equation has no

nontrivial solution. In fact, let g

0

be some solution to that homogeneous

equation. It is evident that the conditions (11.12) and (11.13) are ful�lled,

since F � 0. But then the equation (11.5) coincides with (11.2) (with

F � 0); therefore we have

�

T

t

u

0

(t)

�

+

= 0; (11.14)

where u

0

(x) is given by (11.1) with g

0

instead of g.

Applying (5.15) with { = {

N

and (11.14), we get

u

0

(x) = (u

0

0

(x); u

00

0

(x));

where

u

0

0

(x) = a

0

0

+ b

0

10

�

�x

2

x

1

�

;

u

00

0

(x) = a

00

0

+ b

00

10

�

�x

2

x

1

�

;

(11.15)

a

0

0

, a

00

0

are arbitrary constant vectors, while b

0

10

is an arbitrary scalar con-

stant.
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Due to (11.15) and (11.13), we arrive to

u

0

(x) =

�

a

0

0

a

00

0

�

;

whence by the use of u

0

(0) = 0, we get

u

0

(x) = 0; x 2 D

+

:

Thus we have obtained that the single layer potential of the second kind

vanishes in D

+

and the condition M

0

= 0 holds, in addition (cf. (11.13)).

Now by Theorem 8.13 u

0

(x) = c, x 2 D

�

, where c is a constant vector. From

the above results along with the equation [T

t

u

0

(t)]

�

� [T

t

u

0

(t)]

+

= 2g

0

(t),

we have g

0

(t) = 0. Thus the homogeneous equation corresponding to (11.5)

has only the trivial solution. As a result, we have that (11.10) and (11.11)

are necessary and su�cient conditions for the nonhomogeneous equation

(11.2) to be solvable.

Now we go over to the problem (II)

�

0;F

. We look for the solution in the

form

W (x) =

1

�

Z

S

M(x� y)g(y) dS +

1

4�

�(x)"; (11.16)

where

	(x) =

�

�

2

��

3

2�

1

grad ln �

�

1

��

3

2�

1

grad ln �

�

; � =

q

x

2

1

+ x

2

2

; �

1

> 0; (11.17)

" =

�

@v

2

@x

1

�

@v

1

@x

2

+

@v

4

@x

1

�

@v

3

@x

�

x=0

; (11.18)

while the vector V is de�ned as follows: if M(x� y) = Re

e

�(x� y),

u(x) =

1

�

Z

S

Re

e

�(x� y)g(y) dS; (11.19)

then

v(x) =

1

�

Z

S

Im

e

�(x� y)g(y) dS: (11.20)

From the last equation and (4.1) we have

e

�(x� y) =

�

�(x� y)�E

0

ln�X

�

Y;

where the matrices X and Y are given by (4.6) and (4.7). Obviously, v(x)

and u(x) solve the homogeneous equation (1.4) for x =2 S.

Let us calculate TW (x):

TW (x) =

1

�

Z

S

T

x

M(x� y)g(y) dS +

1

4�

T

x

�(x)"; (11.21)
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where the matrix T

x

M(x� y) is given by (4.9), while

T

x

�(x) =

@

@s(x)

�

grad �

grad �

�

; � = arctg

x

2

x

1

: (11.22)

Applying properties of the single layer potential of the second kind, we

get from (11.21)

g(t) +

1

�

Z

S

T

t

M(t� y)g(y) dS +

1

4�

T

t

�(t)" = F (t); (11.23)

where F is a given vector.

Now we will prove that the homogeneous version of (11.23) has only the

trivial solution. Indeed, let g

0

be some of its solution. Then we easily get

Z

S

g

0

dS = 0: (11.24)

In turn, (11.24) along with the uniqueness theorem for the problem

(II)

�

0;0

, implies

W

0

(x) = u

0

(x) +

1

4�

�(x)"

0

= 0; x 2 D

�

; (11.25)

whence by (6.9) and (11.25) it follows

v

0

(x) +

1

4�

	(x)"

0

= 0; x 2 D

�

; (11.26)

where

	(x) =

�

�

2

��

3

2�

1

grad �

�

1

��

3

2�

1

grad �

�

;

� is given by (11.22).

The equation (11.26) yields

Tv

0

(x) �

1

4�

 

@

@s(x)

grad ln �

@

@s(x)

grad ln �

!

"

0

= 0; x 2 D

�

: (11.27)

Using the equations [Tv

0

(t)]

+

= [Tv

0

(t)]

�

= Tv

0

(t) and passing to limit

in (11.27), we arrive to

Tv

0

(t)�

1

4�

 

@

@s(t)

grad ln �

@

@s(t)

grad ln �

!

"

0

= 0; t 2 S; � =

q

t

2

1

+ t

2

2

:

The last equation and

Z

S

�

t

1

�

(Tv

0

)

2

+ (Tv

0

)

4

�

� t

2

�

(Tv

0

)

1

+ (Tv

0

)

3

�	

dS = 0
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result

"

0

= 0: (11.28)

Then from (11.25)

u

0

(x) = 0; x 2 D

�

; (11.29)

whence

0 = Nu

0

(x) = m

�1

@v

0

(x)

@s

:

Consequently

v

0

(x) = C; x 2 D

�

; (11.30)

where c is a 4-dimensional constant vector.

Due to the above mentioned properties of the potential v

0

(x), we get

�

Tv

0

�

�

=

�

Tv

0

�

+

= 0: (11.31)

Now applying (5.15) with { = 0, we obtain

v

0

(x) =

�

a

0

a

00

�

+ b

0

0

B

B

@

�x

2

x

1

�x

2

x

1

1

C

C

A

; x 2 D

+

:

Taking into account (11.18) and (11.28), we conclude

"

0

= 4b

0

= 0;

v

0

(x) =

�

a

0

a

00

�

; x 2 D

+

:

Therefore

u

0

(x) =

�

c

0

c

00

�

; x 2 D

+

:

We recall

�

Tu

0

(t)

�

�

�

�

Tu

0

(t)

�

+

= 2g

0

(t);

which together with [Tu

0

(t)]

+

= 0 leads to g

0

(t) = 0.

Thus the homogeneous equation corresponding to (11.23) has no non-

trivial solution and therefore the nonhomogeneous equation is solvable for

an arbitrary right-hand side. Note that if the condition

Z

S

F dS = 0

does not hold, then the single layer potential of the second kind with density

g will not be bounded at in�nity.
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12. Solution of the Third Boundary Value Problem

In this section we will investigate the third boundary value problem for-

mulated in Section 1. We reformulate the problem in question as follows:

�

u

j

(t)� u

j+2

(t)

�

�

= f

j

(t);

s(t)

Z

0

��

Tu(t)

�

j

+

�

Tu(t)

�

j+2

	

�

dS = f

j+2

(t) + c

j

; t 2 S;

(12.1)

where c

j

, j = 1; 2 are constants.

We will consider only the interior problem. The exterior one can be

treated quite similarly.

We look for the solution in the form

u(x) =

1

�

Z

S

Im

@

@s(y)

�

E ln� �

"

2

�

�

�

�

�

�

g + �

0

g +E

1

�

0

h+ i(E

1



o

g + �

0

h)

�

0

g +E

1

�

0

h+ i(E

1



0

g + �

0

h)

�

dS; (12.2)

where g and h are two-dimensional unknown (H�older continuous) vectors,

E

1

=









0; 1

�1; 0









; (12.3)

�

0

, �

0

, 

0

, �

0

are constants:

�

0

=

m

2

�m

3

2(�� �)�

0

+

(�

1

+ �

3

)(2� � �)

2�(�� �)

; �

0

=

2� � �

4�(� � �)

;



0

=

m

2

�m

3

2(�� �)�

0

+

(�

1

+ �

3

)�

2�(�� �)

; �

0

= �

�

4�(� � �)

(12.4)

with

� =

m

1

+m

3

� 2m

2

�

0

; � = �

1

+ �

2

+ 2�

3

;

�

0

= m

1

m

3

�m

2

3

;

(12.5)

all parameters involved in (12.2) are de�ned in Sections 1 and 2.

From (12.2) we get

(u)

+

=

�

g + �

0

g +E

1

�

0

h

�

0

g +E

1

�

0

h

�

+

1

�

Z

S

Im

@

@s(y)

�

E ln� �

"

2

�

�

�

�

�

�

g + �

0

g +E

1

�

0

h+ i(E

1



0

g + �

0

h)

�

0

g +E

1

�

0

h+ i(E

1



0

g + �

0

h)

�

dS; (12.6)
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s(t)

Z

0

(Tu)

+

dS = m

�1

�

E

1



0

g + �

0

h

E

1



0

g + �

0

h

�

� {

N

�

g + �

0

g +E

1

�

0

h

�

0

g +E

1

�

0

h

�

+

+

1

�

Z

S

Re

@

@s(y)

(�m

�1

+ i{

N

)

�

E ln� �

"

2

�

�

�

�

�

�

g + �

0

g +E

1

�

0

h+ i(E

1



0

g + �

0

h)

�

0

g +E

1

�

0

h+ i(E

1



0

g + �

0

h)

�

dS: (12.7)

Further, (12.6) and (12.7) along with (12.1) and (12.4) yield

g +

Z

S

(K

11

g +K

12

h)dS = f; h+

Z

S

(K

21

g +K

22

h)dS = F; (12.8)

where K

ij

are known 2� 2 matrices with weakly singular elements, while

f =

�

f

1

f

2

�

; F =

�

f

3

f

4

�

:

It can be proved that the system of Fredholm equations (12.8) is solvable

in C

1+�

(S) for arbitrary right-hand sides f

j

2 C

1+�

(S), j = 1; 4, S 2 C

2+�

,

0 < � < � � 1.

13. Explicit Solutions of Boundary Value Problems for

Concrete Domains

In this section, we will explicitly (in quadratures) construct solutions to

the above boundary value problems for a half-plane, circle and exterior to

circle. We will essentially use the results obtained in the previous sections.

Let us consider the �rst boundary value problem for a half-plane.

Let D denote the upper half-plane (x

2

> 0). Clearly the boundary of D

is x

1

axis. Let us choose the exterior unit normal n = (0;�1) and the unit

tangent vector � = (1; 0).

Let us look for the solution to the �rst boundary value problem in the

form of a double layer potential

u(x) =

1

�

1

Z

�1

�

N

y

�(y � x)

�

0

y

2

=0

g(y

1

) dy

1

; (13.1)

where the matrix [N

y

�(y � x)]

0

is de�ned by (3.15).

Taking into account the properties of the double layer potential, we arrive

to the integral equation

g(x

1

) +

1

�

1

Z

�1

�

N

y

�(y � x)

�

0

y

2

=0;x

2

=0

� g(y

1

) dy

1

= f(x

1

):
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It is easy to check that [N

y

�(y�x)]

0

y

2

=0;

x

2

=0

= 0, which results g(x

1

) = f(x

1

).

Therefore we have the following formula for the solution of the original

problem

u(x) =

1

�

1

Z

�1

d

dy

1

Im

h

E ln(z � y

1

)�

"

2

z � y

1

z � y

1

i

g(y

1

) dy

1

; (13.2)

where z = x

1

+ ix

2

.

Now let us consider the second boundary value problem. We look for the

solution as a single layer potential of the second kind, which leads to the

integral equation

�g(x

1

) +

1

�

1

Z

�1

T

x

M(x� y)

�

�

y

2

=0;

x

2

=0

g(y

1

) dy

1

= F (x

1

);

where F (x

1

) = (Tu)

+

. Here also we have T

x

M(x�y)j

x=0;

y=0

= 0, and, clearly,

g(x

1

) = �F (x

1

).

Finally, for the solution to the second boundary value problem, we have

u(x) = �

1

�

1

Z

�1

Re

�

��E

0

ln(z � y

1

)

�

f(y

1

) dy

1

:

The stress vector in this case has the form

Tu(x) = �

1

�

1

Z

�1

d

dx

1

h

E ln(z � y

1

) +

H

2�

2

z � y

1

z � y

1

i

f(y

1

) dy

1

: (13.3)

In quite the same way, we can construct the solution to the third bound-

ary value problem in D. The solution reads

u(x) =

1

�

1

Z

�1

d

dy

1

Im

h

E ln(z � y

1

)�

"

2

z � y

1

z � y

1

i

�

�

�

f + �

0

f +E

1

�

0

F + i(E

1



0

f + �

0

F )

�

0

f +E

1

�

0

F + i(E

1



0

f + �

0

F )

�

dy

1

; (13.4)

where

(u

0

)

+

� (u

00

)

+

= f =

�

f

1

f

2

�

; F =

�

f

3

f

4

�

;

and f

1

; : : : ; f

4

are given by (12.1).

Thus for the �rst, the second and the third boundary value problems we

have obtained the Poisson type formulas.



101

We note that in the above formulas, we assume the following conditions

to be ful�lled at in�nity

f = c+

a

jy

1

j

1+�

; F = d+

b

jy

1

j

1+�

; (13.5)

where a; b; c and d are constant vectors and � > 0.

Let us now consider the �rst BVP for a circle centered at the origin and

radius R.

First let us note that

@

@s(y)

Im

�

ln� �

1

2

ln �

�

= 0;

�

�

+

z

�

= 0 (13.6)

if both points belong to the circle.

Indeed, we have:

t

1

= R cos ; t

2

= R sin ; y

1

= R cos'; y

2

= R sin';

� = arctg

y

2

� x

2

y

1

� x

1

= arctg tg

�

�

2

+

'+  

2

�

=

� + '+  

2

;

@

@s(y)

�

� �

1

2

'

�

=

1

R

d

d'

�

� +  

2

�

= 0;

�

�

+

z

�

= e

�i(�+'+ )

+ e

�i('+ )

= (e

�i�

+ 1)e

�i('+ )

= 0:

Further we look for the solution to the �rst BVP as

u(x) =

1

�

Z

S

Im

@

@s(y)

h

E

�

ln� �

1

2

ln �

�

�

"

2

�

�

�

+

z

�

�i

g(y)dS; (13.7)

where g is an unknown vector, � = y

1

+iy

2

= Re

i'

, z = �e

i 

, � =

p

x

2

1

+ x

2

2

(see also (3.16) and (3.17)).

It is obvious that the additional summands to the double layer potential

(see (13.7)) do not cause di�culties, since they are solutions to the di�eren-

tial equation under consideration and represent vector-functions continuous

up to the boundary of the disk. Passing to limit as x ! t, from (13.7) we

get

g(t) +

1

�

Z

S

Im

@

@s(y)

h

E

�

ln� �

1

2

ln �

�

�

"

2

�

�

�

+

z

�

�i

g(y) dS = f(t):

The last equation together with (13.6) implies g(t) = f(t). Now (13.7)

yields (the Poisson type formula)

u(x) =

1

2�

2�

Z

0

h

E

R

2

� �

2

r

2

+

"

2

(R

2

� �

2

)

d

d'

Im

1

�(� � z)

i

f(') d'; (13.8)
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where

r

2

= �

2

� 2�R cos('�  ) +R

2

; � = Re

i'

; z = �e

i 

:

Next we consider the second BVP for the same circle as above. We look

for the solution as

u(x) =

1

�

Z

S

Re(

e

��E

0

ln�X)Y g(y) dS; (13.9)

where g is an unknown vector,

e

� = m ln� +

n

4

�

�

�

+

z

�

�

; (13.10)

other parameters involved in (13.9) and (13.10) are de�ned by (2.14),(2.15),

(4.2), (4.6) and (4.7). The representation (13.9) and the boundary condition

of the second BVP lead to the integral equation with respect to g:

�g(t) +

1

�

Z

S

@

@s(t)

Im

h

E ln� +

H

2�

2

�

�

�

+

z

�

�i

g(y) dS = F (t):

By (13.6), we get

�g( ) +

1

2�

2�

Z

0

g(') d' = F ( );

whence

g( ) = �F ( ) + c (13.11)

follows with an arbitrary constant vector c. Clearly the solution to the

integral equation exists if the following conditions hold

Z

S

F (t)'

(j)

(t) dt = 0; j = 1; 5;

where '

(j)

(t) are determined by (6.17).

Substituting (13.11) into (13.9) yields

u(x) =

1

�

Z

S

Re(E

0

ln�X �

e

�)Y F (y) dS:

The corresponding stress vector reads

Tu(x) = �

1

�

2�

Z

0

d

d 

Im

h

E ln� +

H

2�

2

�

�

�

+

z

�

�i

F (') d': (13.12)
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The solution (Poisson type formula) to the third BVP can be obtained

in the same way. It reads as

u(x) =

1

�

Z

S

Im

@

@s(y)

h

E ln� �

"

2

�

�

�

+

z

�

�i

�

�

�

f + �

0

f +E

1

�

0

F + i(E

1



0

f + �

0

F )

�

0

f +E

1

�

0

F + i(E

1



0

f + �

0

F )

�

dS; (13.13)

where

f = (u

0

)

+

� (u

00

)

+

; F =

�

f

3

f

4

�

:

Finally we treat the BVPs for the exterior domain to the above circle.

Let us �rst consider the �rst BVP. As above, we have

@

@s(y)

Im

�

ln� �

1

2

ln �

�

= 0;

�

�

+

�

z

= 0 (13.14)

if the points are on the circle.

We look for the solution of the �rst BVP in the following form

u(x) =

1

�

Z

S

Im

@

@s(y)

h

E

�

ln� �

1

2

ln �

�

�

"

2

�

�

�

+

�

z

�i

g(y) dS; (13.15)

where g is the unknown continuous vector. Here the additional terms again

facilitate the procedure of solution. Indeed, the above representation leads

to the integral equation

�g(t) +

1

�

Z

S

Im

@

@s(y)

h

E

�

ln� �

1

2

ln �

�

�

"

2

�

�

�

+

�

z

�i

g(y) dS = f(t);

whence g(t) = �f(t) follows. Finaly we get the following Poisson type

formula for the �rst BVP in the exterior to disk

u(x) =

1

2�

2�

Z

0

h

E

�

2

�R

2

r

2

+

"

2

(�

2

�R

2

)

d

d'

Im

1

z(z � �)

i

f(') d': (13.16)

The solution of the second BVP is respesented as

u(x) =

1

�

Z

S

Re(

e

��E

0

ln�X)Y g(y) dS; (13.17)

with the unknown density g and

e

� = m ln� +

n

4

�

�

�

+

�

z

�

:
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The boundary condition and the representation formula (13.17) imply

the following integral equation

g(t) +

1

�

Z

S

@

@s(t)

Im

h

E ln� +

H

2�

2

�

�

�

+

�

z

�

g(y) dS = F (t):

Now according to (13.14), we have

g( ) +

1

2�

2�

Z

0

g(') d' = F ( );

whence

g( ) = F ( )�

1

4�

2�

Z

0

F (') d':

If the displacements are bounded at in�nity, then we have

2�

Z

0

F d' = 0:

and, �nally,

g( ) = F ( ):

These results lead to the following formulas (see (13.17))

u(x) =

1

�

Z

S

Re(

e

��E

0

ln�X)Y � F (y) dS;

Tu(x) =

1

�

2�

Z

0

d

d 

Im

h

E ln� +

H

2�

2

�

�

�

+

�

z

�i

F (') d':

Quite samillary we can solve the third BVP for the exterior of disk. The

�nal expression for the solution reads

u(x) =

1

�

Z

S

Im

@

@s(y)

h

�E ln� +

"

2

�

�

�

+

�

z

�i

�

�

�

f + �

0

f +E

1

�

0

F + i(E

1



0

f + �

0

F )

�

0

f +E

1

�

0

F + i(E

1



0

f + �

0

F )

�

dS;

where

f = (u

0

)

�

� (u

00

)

�

; F =

�

f

3

f

4

�

:

Other applications of the Fredholm integral equations, obtained in the

present paper, will be treated in the forthcomming publications of the au-

thor.
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