G. GIorgadze

ON OSCILLATORY PROPERTIES OF THE n-TH ORDER SYSTEM OF DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS

(Reported on November 27, 1995)

Consider the system

$$
\begin{equation*}
x_{i}^{\prime}(t)=f_{i}\left(t, x_{1}\left(\delta_{i 1}(t)\right), \ldots, x_{n}\left(\delta_{i n}(t)\right)\right), \quad(i=1, \ldots, n) \tag{1}
\end{equation*}
$$

where $n \geq 2$, the vector function $\left(f_{i}\right)_{i=1}^{n}: R_{+} \times R^{n} \rightarrow R^{n}$ satisfies the local Caratheodory conditions, $\delta_{i j}: R_{+} \rightarrow R$ are nondecreasing and

$$
\begin{aligned}
& \quad \lim _{t \rightarrow+\infty} \delta_{i j}(t)=+\infty \quad(i, j=1, \ldots, n), \quad \delta_{i, i+1} \in C^{\prime}\left(R_{+}, R\right) \quad(i=1, \ldots, n-1) . \\
& \text { Define } \sigma: R_{+} \rightarrow R_{+} \text {by } \\
& \sigma(t)=\inf \left\{s: s \in R_{+}, s \geq t, \delta_{i j}(\xi) \geq t, \quad \text { for } \quad \xi \in[s,+\infty[\quad(i, j=1, \ldots, n)\} .\right.
\end{aligned}
$$

Definition 1. A continuous vector function $X=\left(X_{i}\right)_{i=1}^{n}:\left[t_{0},+\infty\left[\rightarrow R^{n}\right.\right.$ with $t_{0} \in$ R_{+}is said to be a proper solution of the system (1) if it is locally absolutely continuous on $\left[\sigma\left(t_{0}\right),+\infty[\right.$, almost everywhere on this interval the equality (1) is fulfilled, and

$$
\sup \left\{\|x(s)\|: s \in\left[t , \infty [\} > 0 , \quad \text { for } t \in \left[t_{0},+\infty[\right.\right.\right.
$$

Definition 2. A proper solution of the system (1) is said to be oscillatory if every component of this solution has a sequence of zeroes tending to $+\infty$. Otherwise the solution is said to be nonoscillatory.

Definition 3. We say that the system (1) has the property A provided its every proper solution is oscillatory if n is even, and either is oscillatory or satisfies

$$
\begin{equation*}
\left|x_{i}(t)\right| \downarrow 0, \quad \text { for } \quad t \uparrow+\infty, \quad(i=1, \ldots, n) \tag{2}
\end{equation*}
$$

if n is odd.

Definition 4. We say that the system (1) has the property B provided its every proper solution either is oscillatory or satisfies either (2) or

$$
\begin{equation*}
\left|x_{i}(t)\right| \uparrow+\infty, \quad \text { for } \quad t \uparrow+\infty, \quad(i=1, \ldots, n) \tag{3}
\end{equation*}
$$

if n is even, and either is oscillatory or satisfies (3) if n is odd.

[^0]We will assume that there exist $\nu_{i} \in\{0 ; 1\}$ such that

$$
(-1)^{\nu_{i}} f_{i}\left(t, x_{1}, \ldots, x_{n}\right) \operatorname{sign} x_{i+1} \geq p_{i}(t)\left|x_{i+1}\right|
$$

$$
\begin{equation*}
(-1)^{\nu_{n}} f_{n}\left(t, x_{1}, \ldots, x_{n}\right) \operatorname{sign} x_{1} \geq g\left(t,\left|x_{1}\right|\right), \quad \text { for } t \in R_{+} ; \quad x_{1}, \ldots, x_{n} \in R, \tag{4}
\end{equation*}
$$

where the function $g \in K_{l o c}\left(R_{+} \times R_{+} ; R_{+}\right)$is nondecreasing in the second argument, $p_{i} \in L_{l o c}\left(R_{+}, R_{+}\right)$and

$$
\begin{equation*}
\int_{0}^{+\infty} p_{i}(t) d t=+\infty \quad(i=1, \ldots, n-1) \tag{5}
\end{equation*}
$$

Besides, introduce the notation

$$
\begin{aligned}
\nu= & \sum_{i=1}^{n} \nu_{i} . \\
\tau_{i}(t)= & \delta_{i-1, i}(t) \quad(i=2, \ldots, n), \quad \tau_{1}(t)=\tau_{n+1}(t)=\delta_{n 1}(t) . \\
\tau_{j i}^{*}(t)= & \begin{cases}\tau_{j}\left(\tau_{j-1}\left(\ldots\left(\tau_{i+1}(t)\right) \ldots\right)\right), & \text { if } 1 \leq i<j \leq n+1, \\
t, & \text { if } i=j \quad(i=1, \ldots, n),\end{cases} \\
\gamma_{j i}^{*}(t)= & \inf \left\{s: s \in R_{+}, \tau_{k i}^{*}(s) \geq t(k=i, \ldots, j)\right\} \quad(1 \leq i \leq j \leq n), \\
I^{0}= & 1, \quad I^{j}\left(s, t ; p_{i+j-1}, \ldots, p_{i}\right)= \\
& =\int_{t}^{s} p_{i+j-1}\left(\tau_{i+j-1, i}(\xi)\right)\left(\tau_{i+j-1, i}^{*^{\prime}}(\xi) I^{j-1}\left(\xi, t ; p_{i+j-2}, \ldots, p_{i}\right) d \xi,\right. \\
J_{0}= & 1, \quad J^{j}\left(t, s ; p_{i}, \ldots, p_{i+j-1}\right)=\int_{s}^{t} p_{i}(\xi) J^{j-1}\left(\tau_{i+1}(\xi), \tau_{i+1}(s) ; p_{i+1}, \ldots, p_{i+j-1} d \xi\right), \\
& (i=1, \ldots, n-1 ; \quad j=1, \ldots, n-i) .
\end{aligned}
$$

Note that the functions $\gamma_{j i}^{*}: R \rightarrow R_{+}$are increasing,

$$
\begin{gathered}
\gamma_{k i}^{*}(t) \geq \gamma_{j i}^{*}(t) \quad(1 \leq i \leq j \leq k \leq n) \\
\gamma_{j i}^{*}(t) \geq t \quad(1 \leq i \leq j \leq n), \quad \text { for } \quad t \in R
\end{gathered}
$$

and the expressions $I^{j}\left(s, t ; p_{i+j-1}, \ldots, p_{i}\right)$ and $J^{j}\left(t, s ; p_{i}, \ldots, p_{i+j-1}\right)$ have the meaning iff $t, s \geq \gamma_{i+j-1, i}^{*}(0)(i=1, \ldots, n-1 ; j=1, \ldots, n-i)$.

Theorem -1. Suppose that the conditions (4) and (5) are fulfilled, ν is odd and for every $l \in\{1, \ldots, n-1\}$ such that $l+n$ is odd, the equation

$$
\begin{equation*}
v^{\prime}(t)=I^{n-l}\left(\tau_{l 1}^{*}(t), t_{* l} ; p_{n-1}, \ldots, p_{l}\right) g\left(\tau_{n 1}^{*}(t), z_{l}\left(\tau_{n+1,1}^{*}(t)\right)\right) \tau_{n 1}^{* \prime}(t) \tag{6}
\end{equation*}
$$

with $z_{l}(t)=\frac{J^{l}\left(t, \gamma_{l 1}^{*}(0) ; p_{1}, \ldots, p_{l}\right)}{J^{\prime}\left(\tau_{l 1}^{*}(t), 0 ; p_{l}\right)}, t_{* l}=\gamma_{n-1, l}^{*}(0)$, has no positive proper solution. In the case where n is odd, let, moreover,

$$
\begin{equation*}
\int_{\gamma_{n 1}^{*}(0)}^{+\infty} I^{n-1}\left(\xi, \gamma_{n-1,1}^{*}(0) ; p_{n-1, \ldots, p_{1}}\right) g\left(\tau_{n 1}^{*}(\xi), c\right) \tau_{n 1}^{*^{\prime}}(\xi) d \xi=+\infty, \quad \text { for } \quad c>0 \tag{7}
\end{equation*}
$$

Then the system (1) has the property A.

Theorem 0. Suppose that the conditions (4) and (5) are fulfilled, ν is even and for every $l \in\{1, \ldots, n-2\}$ such that $l+n$ is even, the equation (6) has no positive proper solution. Let, moreover,

$$
\begin{equation*}
\int_{\gamma(0)}^{+\infty} g\left(t, c J^{n-1}\left(\tau_{1}(t), \gamma_{n 1}^{*}(0) ; p_{1}, \ldots, p_{n-1}\right)\right) d t=+\infty . \tag{8}
\end{equation*}
$$

for any $c>0$, and, in the case where n is even, the condition (7) be fulfilled. Then the system (1) has the property B.

Consider now the case where the inequalities

$$
\begin{equation*}
(-1)^{\nu_{i}} f_{i}\left(t, x_{1}, \ldots, x_{n}\right) \operatorname{sign} x_{i+1} \geq p_{i}(t)\left|x_{i+1}\right| \quad\left(i=1, \ldots, n ; x_{n+1=x_{1}}\right) \tag{9}
\end{equation*}
$$

are fulfilled, where $p_{i} \in L_{l o c}\left(R_{+}, R_{+}\right)(i=1, \ldots, n)$ and (5) holds.
Theorem 1. Suppose that (12) is fulfilled, ν is odd and for every $i \in\{1, \ldots, n-1\}$ such that $i+n$ is odd, the inequalites

$$
\begin{align*}
\lim _{t \rightarrow+\infty} & \sup \frac{I^{n-i}\left(t, t_{* i}, p_{n-1}, \ldots, p_{i}\right)}{I^{n-i-1}\left(\tau_{i+1}(t), \tau_{i+1}\left(t_{* i}\right) ; p_{n-1}, \ldots, p_{i+1}\right)} \times \\
& \times \int_{t}^{+\infty} I^{n-i-1}\left(\tau_{i+1}(s), \tau_{i+1}\left(t_{* i}\right) ; p_{n-1}, \ldots, p_{i+1}\right) \times \\
& \times \frac{J^{i}\left(\tau_{n+1}^{*}(s), \gamma_{i 1}^{*}(0) ; p_{1}, \ldots, p_{i}\right)}{J^{\prime}\left(\tau_{i 1}^{*}\left(\tau_{n+1}^{*}(s)\right), 0 ; p_{i}\right)} p_{n}\left(\tau_{n i}^{*}(s)\right) \tau_{n i}^{*^{\prime}}(s) d s>1 \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
\tau_{i 1}^{*}\left(\tau_{n+1, i}^{*}(t)\right) \geq t, \quad \text { textfor } \quad t \geq \gamma(0) \tag{11}
\end{equation*}
$$

hold, where $t_{* i}=\gamma_{n-1, i}^{*}(0)$. In the case where n is odd, let, moreover,

$$
\begin{equation*}
\int_{\gamma_{n 1}^{*}(0)}^{+\infty} I^{n-1}\left(\xi, \gamma_{n-1,1}^{*}(0) ; p_{n-1}, \ldots, p_{1}\right) p_{n}\left(\tau_{n 1}^{*}(\xi)\right) \tau_{n 1}^{*^{\prime}}(\xi) d \xi=+\infty \tag{12}
\end{equation*}
$$

Then the system (1) has the property A.
Theorem 2. Suppose that (12) is fulfilled and for every $i \in\{1, \ldots, n-1\}$ such that $i+n$ is even, the inequalities (13) and (14) are fulfilled. Let. moreover,

$$
\int_{\gamma(0)}^{+\infty} J^{n-1}\left(\tau_{1}(t), \gamma_{n-1,1}^{*}(0) ; p_{1}, \ldots, p_{n-1}\right) p_{n}(t) d t=+\infty
$$

and, in the case where n is odd, (15) hold. Then the system (1) has the property B.

Author's address:
Georgian Technical University
72, Kostava St., Tbilisi 380093
Georgia

[^0]: 1991 Mathematics Subject Classification. 34K15.
 Key words and phrases. Oscillatory solution, nonoscillatory solution, property A, property B.

