S. Mukhigulashvili

ON A TWO-POINT BOUNDARY VALUE PROBLEM FOR SECOND ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

(Reported on November 13 and 20, 1995)
Let \mathbb{R} be the set of real numbers, $\mathbb{R}_{0}^{+}=\left[0,+\infty\left[, \mathbb{R}^{+}=\right] 0,+\infty\left[, a, b \in \mathbb{R}^{+}, p \geq 1\right.\right.$.
$L_{p}([a, b])$ is the space of functions $\left.f:\right] a, b\left[\rightarrow \mathbb{R}\right.$ such that $|f(x)|^{p}$ is integrable on $[a, b]$, $\|f\|_{L_{p}}=\int_{a}^{b}|f(s)|^{p} d s$.
$\widetilde{C}_{p}([a, b])$ is the space of functions $u:[a, b] \rightarrow \mathbb{R}$ such that $u^{\prime} \in L_{p}([a, b]),\|u\|_{\widetilde{C}_{p}}=$ $|u(a)|+\left\|u^{\prime}\right\|_{L_{p}}$.
$C(I, \mathbb{R})$ is the space of continuous functions $u: I \rightarrow \mathbb{R},\|u\|_{C}=\sup \{|u(t)|: t \in I\}$.
$\widetilde{C}_{p}^{\prime}([a, b])$ is the set of functions $u \in \widetilde{C}_{1}([a, b])$ such that $u^{\prime} \in \widetilde{C}_{p}([a, b])$.
Consider the boundary value problem

$$
\begin{gather*}
u^{\prime \prime}(t)=H\left(u, u^{\prime}, u^{\prime \prime}\right)(t), \quad t \in[a, b] \tag{1}\\
u(a)=0, \quad u(b)=0 \tag{2}
\end{gather*}
$$

where $H: C([a, b]) \times C([a, b]) \times L_{p}([a, b]) \rightarrow L_{p}([a, b])$ is a compact operator, i.e., H is continuous and $H(B)$ is precompact for any bounded $B \subset C([a, b]) \times C([a, b]) \times L_{p}([a, b])$.

Under a solution of equation (1) we mean a function $u \in \widetilde{C}_{p}([a, b])$ satisfying a.e. equation (1).

Below two theorems on the solvability of the problem (1), (2) are given.
Theorem 1. Let the inequality

$$
\begin{equation*}
-g(t) \leq H\left(x, x^{\prime}, z\right)(t) \cdot \operatorname{sign} x(t), \quad t \in[a, b], \quad(x, z) \in \widetilde{C}_{p}^{\prime}([a, b]) \times L_{p}([a, b]) \tag{3}
\end{equation*}
$$

be fulfilled, where $g \in L_{p}([a, b])$. Moreover, let for any $r>0$ there exist $\gamma_{r}, \alpha_{r} \in \mathbb{R}^{+}$and $f_{r} \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$such that

$$
\left\|H\left(x, x^{\prime}, z\right)\right\|_{L_{p}} \leq \alpha_{r} \cdot f_{r}\left(\|z\|_{L_{p}}\right) \quad \text { for } \quad\left\|x^{\prime}\right\|_{C} \leq r, \quad\|z\|_{L_{p}} \geq \gamma_{r}
$$

and

$$
\liminf _{\rho \rightarrow+\infty} \frac{\rho}{f_{r}(\rho)}>\alpha_{r}
$$

Then the problem (1), (2) is solvable.
Theorem 2. Let the condition (3) be fulfilled. Moreover, let for any $r \in \mathbb{R}^{+}, \alpha \in$ $] 0,(b-a) r[$ and $\beta \in] 0, \alpha\left[\right.$ there exist $\gamma_{r}, c_{r} \in \mathbb{R}^{+}, l_{r}, f_{r}, g_{\beta} \in C\left(\mathbb{R}_{0}^{+}, \mathbb{R}_{0}^{+}\right)$and $h_{\beta}(t) \in$ $L_{p}([a, b])$ such that

$$
\begin{array}{r}
h_{\beta}(t)>0 \quad \text { for } t \in[a, b], \quad l_{r}(0)=0 \\
\left\|H\left(x, x^{\prime}, z\right)\right\|_{L_{p}} \leq l_{r}\left(\|x\|_{C}\right) \cdot f_{r}\left(\|z\|_{L_{p}}\right)+c_{r} \text { for }\|x\|_{C}<\alpha \\
\left\|x^{\prime}\right\|_{C} \leq r, \quad\|z\|_{L_{p}} \geq \gamma_{r}
\end{array}
$$

1991 Mathematics Subject Classification. 34K10.
Key words and phrases. Second order functional differential equation, two-point boundary value problem.

$$
\begin{aligned}
\left|H\left(x, x^{\prime}, z\right)\right| \geq h_{\beta}(t) \cdot g_{\beta}\left(\|z\|_{L_{p}}\right) & \text { for }\|x\|_{C} \geq \alpha,\left\|x^{\prime}\right\|_{C} \leq r \\
\|z\|_{L_{p}} & \geq \gamma_{r}, \quad t \in\{t \in[a, b]:|x(t)| \geq \beta\},
\end{aligned}
$$

and

$$
\liminf _{\rho \rightarrow+\infty} \frac{\rho}{f_{r}(\rho)}>0, \quad \limsup _{\rho \rightarrow+\infty} g_{\beta}(\rho)=+\infty
$$

Then the problem (1), (2) is solvable.

Let us give some examples.
Let

$$
G_{1} \in L_{p}\left([a, b] \times[a, b] ; \mathbb{R}^{+}\right), \quad K(x, y)(t) \cdot \operatorname{sign} x(t) \geq-g(t), \quad t \in[a, b]
$$

where

$$
\begin{align*}
K: & C([a, b]) \times C([a, b]) \rightarrow L_{p}([a, b]), \quad q, g \in L_{p}([a, b]), \quad k \in \mathbb{N} \tag{4}\\
0 & <G_{2}(t, s) \leq g_{1}(t), \quad(t, s) \in[a, b] \times[a, b], \quad g_{1} \in L_{p}([a, b]) \tag{5}
\end{align*}
$$

Consider the equation

$$
\begin{align*}
u^{\prime \prime}(t) & =u^{2 k+1}(t) \int_{a}^{b} G_{1}(t, s)\left(1+\left|u^{\prime}(s)\right|^{\alpha}\right)\left[\int_{a}^{b} G_{2}(s, \tau) \cdot\left|u^{\prime \prime}(\tau)\right|^{p} d \tau\right]^{\mu} d s+ \\
& +K\left(u, u^{\prime}\right)(t)+q(t) \tag{6}
\end{align*}
$$

where $\alpha \in \mathbb{R}_{0}^{+}, p, \lambda \mu \leq 1$. Then according to Theorem 2, the problem (6), (2) is solvable. Analogously, the equations

$$
\begin{aligned}
u^{\prime \prime}(t) & =u^{2 k+1}(t)\left(1+\left|u^{\prime}(t)\right|^{\alpha}\right)\left[\int_{a}^{b} G_{2}(t, s) \cdot\left|u^{\prime \prime}(s)\right|^{p} d s\right]^{\|u\|_{C}+\varepsilon}+ \\
& +K\left(u, u^{\prime}\right)(t)+q(t), \quad \text { for } \alpha \in \mathbb{R}_{0}^{+}, \quad \varepsilon<\frac{1}{p}
\end{aligned}
$$

and

$$
u^{\prime \prime}(t)=u^{2 k+1}(t)\left\|u^{\prime}\right\|_{C}\left[\int_{a}^{b} G_{2}(t, s) \cdot\left|u^{\prime \prime}(s)\right|^{\|u\|_{C}+\varepsilon} d s\right]+K\left(u, u^{\prime}\right)(t)+q(t)
$$

where

$$
p \geq(b-a) \int_{a}^{b}|g(s)|+|q(s)| d s+\varepsilon, \quad \varepsilon>0
$$

have solutions satisfying the boundary conditions (2).
Suppose now that the conditions (4) are fulfilled, and

$$
\begin{gathered}
0 \leq G_{2}(t, s) \leq g_{1}(t), \quad(t, s) \in[a, b] \times[a, b], \quad g_{1} \in L_{p}([a, b]) \\
\lambda \mu<1, \quad \lambda \leq p, \quad \beta>0, \quad 0<\alpha<p, \quad g_{0} \in L_{p}([a, b])
\end{gathered}
$$

Then by Theorem 1, the equations

$$
\begin{aligned}
u^{\prime \prime}(t) & =u^{2 k+1}(t) \int_{a}^{b} G_{1}(t, s) \cdot\left|u^{\prime}(s)\right|\left[\int_{a}^{b} G_{2}(s, \tau) \cdot|u(\tau)|^{\beta} \cdot\left|u^{\prime \prime}(\tau)\right|^{\lambda} d \tau\right]^{\mu} d s+ \\
& +K\left(u, u^{\prime}\right)(t)+q(t), \\
u^{\prime \prime}(t) & =u^{2 k+1}(t) \cdot\left|u^{\prime}(t)\right| \ln \left(1+\int_{a}^{b} G_{2}(t, r)|u(\tau)|^{\beta} \cdot\left|u^{\prime \prime}(\tau)\right|^{\alpha} d \tau\right)+K\left(u, u^{\prime}\right)(t)+q(t)
\end{aligned}
$$

have solutions satisfying the boundary conditions (2).

References

1. I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Current Problems in Mathematics. Newest Results, vol. 30 (Russian), 3-103, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vses. Inst. Nauchn. i Tekh. Inform., Moscow, 1987.

Author's address:

A. Razmadze Mathematical Institute

Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 380093
Georgia

