M. Ashordia

ON THE QUESTION OF SOLVABILITY OF THE PERIODIC BOUNDARY VALUE PROBLEM FOR A SYSTEM OF LINEAR GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

$$
\text { (Reported on October } 30 \text { and November 6, 1995) }
$$

Let ω be a positive number, $A=\left(a_{i k}\right)_{i, k=1}^{n}: R \rightarrow R^{n \times m}$ and $g=\left(g_{i}\right)_{i=1}^{n}: R \rightarrow R^{n}$ be a matrix function and a vector function from $B V_{\omega}^{n \times m}$ and $B V_{\omega}^{n}$, respectively.

We consider the ω-periodic boundary value problem

$$
\begin{equation*}
d x(t)=d A(t) \cdot x(t)+d g(t), \quad x(0)=x(\omega) . \tag{1}
\end{equation*}
$$

The use will be made of the following notation and definitions: $R=]-\infty,+\infty\left[; R^{n \times m}\right.$ is a set of all real $n \times m$-matrices; I is the identity $n \times n$-matrix; $R^{n}=R^{n \times 1}$. $B V_{\omega}^{n \times m}$ is the set of all matrix functions $X: R \rightarrow R^{n \times m}$ such that $X(t+\omega)=X(t)+X(\omega)$ for $t \in R$, and the restriction on $[0, \omega]$ of every its components has bounded total variation; $X(t-)$ and $X(t+)$ are the left and the right limits of X at the point $t \in R ; d_{1} X(t)=$ $X(t)-X(t-), d_{2} X(t)=X(t+)-X(t)$.

If $g: R \rightarrow R$ is nondecreasing, $x: R \rightarrow R$ and $s<t$, then

$$
\int_{s}^{t} x(\tau) d g(\tau)=\int_{] s, t[} x(\tau) d g(\tau)+x(t) d_{1} g(t)+x(s) d_{2} g(s)
$$

where $\int_{] s, t[} x(\tau) d g(\tau)$ is the Lebesque-Stieltjes integral over the open interval $] s, t[$ with respect to the measure μ_{g} corresponding to g, (if $s=t$, then $\int_{s}^{t} x(\tau) d g(\tau)=0$).

$$
L_{\omega}(g)=\left\{p \in B V_{\omega}: \int_{0}^{\omega}|p(t)| d g(t)<\infty\right\} .
$$

A vector function $x=\left(x_{i}\right)_{i=1}^{n} \in B V_{\omega}^{n}$ is a solution of the problem (1) if it is ω-periodic and

$$
x_{i}(t)=x_{i}(s)+\sum_{k=1}^{n} \int_{s}^{t} x_{k}(\tau) d a_{i k}(\tau) \text { for } s \leq t(i=1, \ldots, n)
$$

Let natural numbers m and $n_{1}, \ldots, n_{m}\left(0=n_{0}<n_{1}<\cdots<n_{m}=n\right)$, nondecreasing functions $c_{l j}:[0, \omega] \rightarrow R(l=1,2 ; j=1, \ldots, m)$, functions $\alpha_{l j} \in L_{\omega}\left(c_{l j}\right)(l=1,2 ; j=$ $1, \ldots, m)$ and matrix functions $P_{l j}=\left(p_{l j i k}\right)_{i, k=1}^{n}(l=1,2 ; j=1, \ldots, m), p_{l j i k} \in L_{\omega}\left(c_{l j}\right)$

[^0]Key words and phrases. Periodic boundary value problem, system of linear generalized ordinary differential equtions, Lebesque-Stieltjes integral, uniqueness solvability.
$\left(i, k=n_{j-1}+1, \ldots, n_{j}\right)$ be such that $a_{i k}(t) \equiv 0\left(i=n_{j-1}+1, \ldots, n_{j} ; k=n_{j}+1, \ldots, n ;\right.$ $j=1, \ldots, m-1$),

$$
\begin{gathered}
a_{i k}(t)-\frac{1}{2}\left(\sum_{0<\tau \leq t} \sum_{\sigma=n_{j-1}+1}^{n_{j}} d_{1} a_{\sigma i}(\tau) \cdot d_{1} a_{\sigma k}(\tau)-\right. \\
\left.-\sum_{0 \leq \tau<t} \sum_{\sigma=n_{j-1}+1}^{n_{j}} d_{2} a_{\sigma i}(\tau) \cdot d_{2} a_{\sigma k}(\tau)\right)= \\
=b_{1 j i k}(t)-b_{2 j i k}(t) \text { for } t \in[0, \omega] \quad\left(i, k=n_{j-1}+1, \ldots, n_{j} ; \quad j=1, \ldots, m\right), \\
(-1)^{l+1} \sigma_{j} \sum_{i, k=n_{j-1}+1}^{n_{j}} p_{l j i k}(t) x_{i} x_{k} \geq \alpha_{l j}(t) \sum_{i=n_{j-1}+1}^{n_{j}} x_{i}^{2}
\end{gathered}
$$

for $\mu_{c_{l j}}$ almost everywhere $t \in[0, \omega], \quad\left(x_{i}\right)_{i=1}^{n} \in R^{n} \quad(l=1,2 ; j=1, \ldots, m)$, where $\sigma_{j} \in\{-1,1\}, b_{l j i k}(t) \equiv \int_{0}^{t} p_{l j i k}(\tau) d c_{l j}(\tau)(i \neq k)$ and $b_{l j i i}$ is such that

$$
(-1)^{l+1} \sigma_{j}\left(b_{l j i i}(t)-b_{l j i i}(s)-\int_{s}^{t} p_{l j i i}(\tau) d c_{l j}(\tau)\right) \geq 0 \quad \text { for } \quad 0 \leq s \leq t \leq \omega
$$

Then we shall say that

$$
\begin{equation*}
A \in Q_{\omega}\left(m,\left(n_{j} ; c_{1 j}, c_{2 j} ; \alpha_{1 j}, \alpha_{2 j} ; P_{1 j}, P_{2 j}\right)_{j=1}^{m}\right) \tag{2}
\end{equation*}
$$

Theorem. Let there exist natural numbers m and $n_{1}, \ldots, n_{m}\left(0=n_{0}<n_{1}<\right.$ $\left.\cdots<n_{m}=n\right)$, functions $c_{l j}$ and $\alpha_{l j}(l=1,2 ; j=1, \ldots, m)$ and matrix functions $P_{l j}=\left(p_{l j i k}\right)_{i, k=1}^{n}$ such that (2) holds. Let, moreover,

$$
\begin{gathered}
\operatorname{det}\left(I+(-1)^{k} d_{k} A(t)\right) \neq 0, \quad\left(1+\sigma_{j}\right) d_{1} c_{j}(t)+\left(1-\sigma_{j}\right) d_{2} c_{j}(t)<2 \\
\left(1-\sigma_{j}\right) d_{1} c_{j}(t)+\left(1+\sigma_{j}\right) d_{2} c_{j}(t) \neq-2
\end{gathered}
$$

and

$$
\begin{gathered}
\exp \left(c_{j}(\omega)-\sum_{0<\tau \leq \omega} d_{1} c_{j}(\tau)-\sum_{0 \leq \tau<\omega} d_{2} c_{j}(\tau)\right)> \\
>\frac{1}{2}\left[\left(1+\sigma_{j}\right) \prod_{0<\tau \leq \omega}\left(1-d_{1} c_{j}(\tau)\right) \prod_{0 \leq \tau<\omega}\left(1+d_{2} c_{j}(\tau)\right)^{-1}+\right. \\
\left.+\left(1-\sigma_{j}\right) \prod_{0<\tau \leq \omega}\left(1+d_{1} c_{j}(\tau)\right)^{-1} \prod_{0 \leq \tau<\omega}\left(1-d_{2} c_{j}(\tau)\right)\right]
\end{gathered}
$$

for every $t \in[0, \omega]$ and $j \in\{1, \ldots, m\}$, where

$$
c_{j}(t) \equiv 2 \sum_{l=1}^{2} \int_{0}^{t} \alpha_{l j}(\tau) d c_{l j}(\tau)
$$

Then the problem (1) has one and only one solution.
The analogous question has been considered in [1] for a system of linear ordinary differential equations.

References

1. I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Current problems in mathematics. Newest results, vol. 30, 3-103, Itogi Nauki i Tekhniki, Akad, Nauk SSSR, Vsesoyuzn. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987.

Author's address:
Ministry of Defence of Georgia
Department of Automatic-Control Systems
1, University St., Tbilisi 380114
Georgia

[^0]: 1991 Mathematics Subject Classification. 34B05.

