M. Ashordia

ON THE QUESTION OF SOLVABILITY OF THE PERIODIC BOUNDARY VALUE PROBLEM FOR A SYSTEM OF LINEAR GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

(Reported on October 30 and November 6, 1995)

Let ω be a positive number, $A = (a_{ik})_{i,k=1}^n : R \to R^{n \times m}$ and $g = (g_i)_{i=1}^n : R \to R^n$ be a matrix function and a vector function from $BV_{\omega}^{n \times m}$ and BV_{ω}^n , respectively. We consider the ω -periodic boundary value problem

$$dx(t) = dA(t) \cdot x(t) + dg(t), \quad x(0) = x(\omega).$$
 (1)

The use will be made of the following notation and definitions: $R =]-\infty, +\infty[; R^{n \times m}]$ is a set of all real $n \times m$ -matrices; I is the identity $n \times n$ -matrix; $R^n = R^{n \times 1}$. $BV_{\omega}^{n \times m}$ is the set of all matrix functions $X : R \to R^{n \times m}$ such that $X(t + \omega) = X(t) + X(\omega)$ for $t \in R$, and the restriction on $[0, \omega]$ of every its components has bounded total variation; X(t-) and X(t+) are the left and the right limits of X at the point $t \in R$; $d_1X(t) = X(t) - X(t-)$, $d_2X(t) = X(t+) - X(t)$.

If $g: R \to R$ is nondecreasing, $x: R \to R$ and s < t, then

$$\int\limits_{s}^{t} x(\tau) dg(\tau) = \int\limits_{]s,t[} x(\tau) dg(\tau) + x(t) d_1 g(t) + x(s) d_2 g(s),$$

where $\int_{]s,t[} x(\tau) dg(\tau)$ is the Lebesque-Stieltjes integral over the open interval]s,t[with respect to the measure μ_g corresponding to g, (if s = t, then $\int_s^t x(\tau) dg(\tau) = 0$).

$$L_{\omega}(g) = \left\{ p \in BV_{\omega} : \int_{0}^{\omega} |p(t)| dg(t) < \infty
ight\}.$$

A vector function $x = (x_i)_{i=1}^n \in BV_{\omega}^n$ is a solution of the problem (1) if it is ω -periodic and

$$x_i(t) = x_i(s) + \sum_{k=1}^n \int_s^t x_k(\tau) da_{ik}(\tau) \text{ for } s \le t \ (i = 1, \dots, n).$$

Let natural numbers m and n_1, \ldots, n_m $(0 = n_0 < n_1 < \cdots < n_m = n)$, nondecreasing functions $c_{lj} : [0, \omega] \to R$ $(l = 1, 2; j = 1, \ldots, m)$, functions $\alpha_{lj} \in L_{\omega}(c_{lj})$ $(l = 1, 2; j = 1, \ldots, m)$ and matrix functions $P_{lj} = (p_{ljik})_{i,k=1}^n$ $(l = 1, 2; j = 1, \ldots, m)$, $p_{ljik} \in L_{\omega}(c_{lj})$

¹⁹⁹¹ Mathematics Subject Classification. 34B05.

Key words and phrases. Periodic boundary value problem, system of linear generalized ordinary differential equtions, Lebesque-Stieltjes integral, uniqueness solvability.

 $(i, k = n_{j-1} + 1, \dots, n_j)$ be such that $a_{ik}(t) \equiv 0$ $(i = n_{j-1} + 1, \dots, n_j; k = n_j + 1, \dots, n; j = 1, \dots, m-1),$

$$a_{ik}(t) - \frac{1}{2} \left(\sum_{0 < \tau \le t} \sum_{\sigma=n_{j-1}+1}^{n_j} d_1 a_{\sigma i}(\tau) \cdot d_1 a_{\sigma k}(\tau) - \sum_{0 \le \tau < t} \sum_{\sigma=n_{j-1}+1}^{n_j} d_2 a_{\sigma i}(\tau) \cdot d_2 a_{\sigma k}(\tau) \right) =$$

 $= b_{1jik}(t) - b_{2jik}(t) \text{ for } t \in [0, \omega] \quad (i, k = n_{j-1} + 1, \dots, n_j; \ j = 1, \dots, m),$

$$(-1)^{l+1}\sigma_j \sum_{i,k=n_{j-1}+1}^{n_j} p_{ljik}(t)x_i x_k \ge \alpha_{lj}(t) \sum_{i=n_{j-1}+1}^{n_j} x_i^2$$

for $\mu_{c_{lj}}$ almost everywhere $t \in [0, \omega]$, $(x_i)_{i=1}^n \in \mathbb{R}^n$ $(l = 1, 2; j = 1, \dots, m)$,

where $\sigma_j \in \{-1, 1\}, \ b_{ljik}(t) \equiv \int_0^t p_{ljik}(\tau) dc_{lj}(\tau) \ (i \neq k)$ and b_{ljii} is such that

$$(-1)^{l+1}\sigma_j(b_{ljii}(t) - b_{ljii}(s) - \int_s^t p_{ljii}(\tau)dc_{lj}(\tau)) \ge 0 \quad \text{for} \quad 0 \le s \le t \le \omega.$$

Then we shall say that

$$A \in Q_{\omega}\left(m, (n_j; c_{1j}, c_{2j}; \alpha_{1j}, \alpha_{2j}; P_{1j}, P_{2j})_{j=1}^m\right).$$
(2)

Theorem. Let there exist natural numbers m and n_1, \ldots, n_m $(0 = n_0 < n_1 < \cdots < n_m = n)$, functions c_{lj} and α_{lj} $(l = 1, 2; j = 1, \ldots, m)$ and matrix functions $P_{lj} = (p_{ljik})_{i,k=1}^n$ such that (2) holds. Let, moreover,

$$\det(I + (-1)^k d_k A(t)) \neq 0, \quad (1 + \sigma_j) d_1 c_j(t) + (1 - \sigma_j) d_2 c_j(t) < 2, (1 - \sigma_j) d_1 c_j(t) + (1 + \sigma_j) d_2 c_j(t) \neq -2$$

and

$$\exp\left(c_{j}(\omega)-\sum_{0<\tau\leq\omega}d_{1}c_{j}(\tau)-\sum_{0\leq\tau<\omega}d_{2}c_{j}(\tau)\right)>$$

$$>\frac{1}{2}\left[(1+\sigma_{j})\prod_{0<\tau\leq\omega}\left(1-d_{1}c_{j}(\tau)\right)\prod_{0\leq\tau<\omega}\left(1+d_{2}c_{j}(\tau)\right)^{-1}+\right.$$

$$\left.+(1-\sigma_{j})\prod_{0<\tau\leq\omega}\left(1+d_{1}c_{j}(\tau)\right)^{-1}\prod_{0\leq\tau<\omega}\left(1-d_{2}c_{j}(\tau)\right)\right],$$

for every $t \in [0, \omega]$ and $j \in \{1, \ldots, m\}$, where

$$c_j(t) \equiv 2 \sum_{l=1}^2 \int_0^t \alpha_{lj}(\tau) dc_{lj}(\tau).$$

Then the problem (1) has one and only one solution.

The analogous question has been considered in $\left[1\right]$ for a system of linear ordinary differential equations.

122

References

1. I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Current problems in mathematics. Newest results, vol. 30, 3–103, Itogi Nauki i Tekhniki, Akad, Nauk SSSR, Vsesoyuzn. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987.

Author's address: Ministry of Defence of Georgia Department of Automatic-Control Systems 1, University St., Tbilisi 380114 Georgia