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The following equation is under consideration
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Under a solution of (1)-(2) we understand an absolutely continuous on every interval
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condition (2), and satisfying for almost all t 2 [0; b] the equation (1).

Let us point out that equations of type (1)-(2) are intensively studied. A large number

of works are devoted to such equations. Among them there are several monographs (see,

for example [1], [2], [3]) which have appeared recently.
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Assume that the n � n matricies A
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is continuous. The specialty of the equation

Lx = f (3)

in comparison with the types of the functional di�erential equations studied before is

that the domain of the operator L consists not of absolutely continuous functions but of

piecewise absolutely continuous ones.
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Basing on this fact, we suggest the following scheme for investigating of the equation

(3). Namely, between the two spaces D(0; t
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establishes linear isomorphism between the spaces D(0; t

1

; : : : ; t
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;b) and D(0;b).

Here �

(�;�)

is the characteristic function of the interval (�; �), E is the identity matrix,

B
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= E. Substituting (6) into (1), we obtain
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Equation (7) is of the type of functional di�erential equations with delayed argument.

Basics of general theory for such equations where introduced in [4]. The essential role in

that investigations is assigned to the Cauchy matrix. Due to this, establishing connection

between the Cauchy matrix C(t; s) of (1)-(2) and the Cauchy matrix

e

C(t; s) of (7) proves

to be very useful.

Lemma 2. The equality
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determines a relation between the Cauchy matrices of the equations (1) � (2) and (7).
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The equations which

e

C(t; s) satis�es as a function in both the �rst and the second

arguments are found in the works of V. P. Maksimov (see, for example, [5]). With the help

of the last lemma, it is possible to to take advantage of those statements for constructing

the corresponding equations for C(t; s).
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