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îâäæñéâ. êŽöîëéæ âúôãêâĲŽ éâëîâ îæàæï ŽîŽûîòæãæ òñêóùæëêŽèñî áæ-
òâîâêùæŽèñîæ àŽêðëèâĲãĲæï áŽáâĲæåæ ŽéëêŽýïêâĲæï Žïæéìðëðñî ŽêŽèæäï
îâàñèŽîñèæ ãŽîæŽùææï øŽîøëâĲöæ. êŽøãâêâĲæŽ, îëé àŽêýæèñèæ àŽêðëèâ-
ĲâĲæï öñŽèâáñîæ áŽáâĲæåæ ŽéëêŽýïêâĲæï Žïæéìðëðñîæ õæòŽóùâãŽ öâæúèâĲŽ
áŽáàâêæè æóêŽï çŽîŽéŽðŽï æêðâàîæîâĲæï åâëîâéæïŽ áŽ ñúîŽãæ ûâîðæèæï
ðâóêæçæï öâîûõéæå.
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1. Introduction

This paper is devoted to the study of the existence and asymptotic be-
havior of positive solutions of second order Emden–Fowler type functional
differential equations of the form

x′′(t) + q(t)|x(g(t))|γsgn x(g(t)) = 0, (A)

where

(a) γ is a positive constant less than 1,

(b) q : [a,∞) → (0,∞) is a continuous function, a > 0,

(c) g : [a,∞) → (0,∞) is a continuous increasing function such that

g(t) < t and lim
t→∞

g(t) = ∞.

This equation (A) is called sublinear. Equation (A) with γ > 1 is said to
be superlinear.

By a proper solution of equation (A) we mean a function x(t) which is
defined in a neighborhood of infinity and is nontrivial in the sense that

sup
{|x(t)| : t = T

}
> 0 for any sufficiently large T > a.

A proper solution of (A) is said to be oscillatory if it has an infinite se-
quence of zeros clustering at infinity and nonoscillatory otherwise. Thus a
nonoscillatory solution is eventually positive or negative.

We are interested in the existence and asymptotic behavior of possible
nonoscillatory solutions of (A). If x(t) is a solution of (A), then so is −x(t),
and hence in studying nonoscillatory solutions it suffices to restrict our
consideration to positive solutions. It is known that any positive solution
x(t) falls into one of the following three types:

(I) lim
t→∞

x(t) = const > 0,

(II) lim
t→∞

x(t) = ∞, lim
t→∞

x(t)
t

= 0,

(III) lim
t→∞

x(t)
t

= const > 0.

Our primary concern in this paper will be with type (II)-solutions, which
are referred to as intermediate solutions of (A), because the other two types
of solutions are fully understood as the following statements show:

(i) (A) has solutions of type (I) if and only if
∞∫
a

tq(t) dt < ∞;

(ii) (A) has solutions of type (III) if and only if
∞∫
a

g(t)γq(t) dt < ∞.

It seems to be very difficult to obtain detailed information about the
existence of intermediate solutions of (A) having precise asymptotic behav-
ior at infinity in the case of general positive continuous q(t), and hence we
limit ourselves to the case where the coefficient q(t) is a regularly varying
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function (in the sense of Karamata) and focus our attention on regularly
varying solutions of (A). Analyzing equation (A) in the framework of regular
variation was motivated by a recent interesting paper [2] in which complete
analysis has been made of positive regularly varying solutions of type (II)
of the sublinear Emden–Folwer equation

x′′ + q(t)|x|γsgn x = 0,

under the assumption that q(t) is regularly varying.
It is natural to obtain the desired solutions of (A) by solving the integral

equation

x(t) = x0 +

t∫

T0

∞∫

s

q(r)x(g(r))γ dr ds, t = T0, (B)

where x0 > 0 and T0 > a. Note that any type (II)-solution of (A) satisfies
(B) for some x0 and T0. In view of the difficulty in the analysis of (B) for
general retarded argument g(t) we confine our attention to the class of g(t)
such that

lim
t→∞

g(t)
t

= 1. (1.1)

Associated with (B) is the following integral asymptotic relation

x(t) ∼
t∫

T0

∞∫

s

q(r)x(g(r))γ dr ds, t →∞, (C)

which is regarded as an approximation at infinity of (B). Here and through-
out, the symbol ∼ is used to mean the asymptotic equivalence

f(t) ∼ g(t), t →∞ ⇐⇒ lim
t→∞

g(t)
f(t)

= 1.

It is shown that if q(t) is regularly varying and g(t) satisfies (1.1), then
one can acquire full knowledge of the structure of all possible regularly
varying solutions of (C), and that the results for (C) thus obtained play
a central role in establishing the existence of intermediate solutions with
accurate asymptotic behavior at infinity for equation (A).

Our main results are presented in Section 3 consisting of three subsec-
tions. The first subsection is devoted to the analysis of relation (C) with
regularly varying q(t) by means of regular variation under condition (1.1),
and three types of its regularly varying solutions are shown to exist. These
three types of solutions are effectively used in the second subsection to con-
struct three kinds of intermediate solutions for equation (A) with the help
of fixed point techniques. In the third subsection two kinds of intermedi-
ate solutions thus constructed will be verified to be regularly varying. The
definition and some basic properties of regularly varying functions will be
summarized in Section 2 of preliminary nature.
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2. Regularly Varying Functions

We state here the definition and some basic properties of regularly varying
functions which will be needed in developing our main results in the next
section.

Definition 2.1. A measurable function f : [0,∞) → (0,∞) is called
regularly varying of index ρ ∈ R if

lim
t→∞

f(λt)
f(t)

= λρ for all λ > 0.

The totality of regularly varying functions of index ρ is denoted by RV(ρ).
We often use the symbol SV to denote RV(0), and call members of SV
slowly varying functions. Any function f(t) ∈ RV(ρ) is written as f(t) =
tρg(t) with g(t) ∈ SV, and so the class SV of slowly varying functions is
of fundamental importance in the theory of regular variation. One of the
most important properties of regularly varying functions is the following
representation theorem.

Definition 2.2. f(t) ∈ RV(ρ) if and only if f(t) is represented in the
form

f(t) = c(t) exp
{ t∫

t0

δ(s)
s

ds

}
, t = t0,

for some t0 > 0 and for some measurable functions c(t) and δ(t) such that

lim
t→∞

c(t) = c0 ∈ (0,∞) and lim
t→∞

δ(t) = ρ.

If c(t) ≡ c0, then f(t) is referred to as a normalized regularly varying
function of index ρ, and is denoted by f(t) ∈ n-RV(ρ).

Typical examples of slowly varying functions are: all functions tending
to some positive constants as t →∞,

N∏
n=1

(logn t)αn , αn ∈ R, and exp
{ N∏

n=1

(logn t)βn

}
, βn ∈ (0, 1),

where logn t denotes the n-th iteration of the logarithm. It is known that
the function L(t) = exp

{
(log t)

1
3 cos (log t)

1
3
}

is a slowly varying function
which is oscillating in the sense that lim sup

t→∞
L(t) = ∞ and lim inf

t→∞
L(t) = 0.

The following result concerns operations which preserve slow variation.

Proposition 2.1. Let L(t), L1(t), L2(t) be slowly varying. Then, L(t)α

for any α ∈ R, L1(t) + L2(t), L1(t)L2(t) and L1(L2(t)) (if L2(t) →∞) are
slowly varying.

A slowly varying function may grow to infinity or decay to 0 as t →∞.
But its order of growth or decay is severely limited as is shown in the
following
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Proposition 2.2. Let f(t) ∈ SV. Then, for any ε > 0,

lim
t→∞

tεf(t) = ∞, lim
t→∞

t−εf(t) = 0.

A simple criterion for determining the regularity of differentiable positive
functions follows.

Proposition 2.3. A differentiable positive function f(t) is a normalized
regularly varying function of index ρ if and only if

lim
t→∞

t
f ′(t)
f(t)

= ρ.

The following result which is called Karamata’s integration theorem is
useful in handling slowly and regularly varying functions analytically.

Proposition 2.4. Let L(t) ∈ SV. Then,
(i) if α > −1,

t∫

a

sαL(s) ds ∼ 1
α + 1

tα+1L(t), t →∞.

(ii) if α < −1,
∞∫

t

sαL(s) ds ∼ − 1
α + 1

tα+1L(t), t →∞.

(iii) if α = −1,

l(t) =

t∫

a

L(s)
s

ds ∈ SV and lim
t→∞

L(t)
l(t)

= 0,

and

m(t) =

∞∫

t

L(s)
s

ds ∈ SV and lim
t→∞

L(t)
m(t)

= 0.

Definition 2.3. A function f(t) ∈ RV(ρ) is called a trivial regularly
varying function of index ρ if it is expressed in the form f(t) = tρL(t) with
L(t) ∈ SV satisfying lim

t→∞
L(t) = const > 0. Otherwise f(t) is called a

nontrivial regularly varying function of index ρ. The symbol tr-RV(ρ) (or
ntr-RV(ρ)) denotes the set of all trivial RV(ρ)-functions (or the set of all
nontrivial RV(ρ)-functions)

For the most complete exposition of the theory of regular variation and
its applications the reader is referred to the book of Bingham, Goldie and
Teugels [1]. See also Seneta [7]. A comprehensive survey of results up to
2000 on the asymptotic analysis of ordinary differential equations by means
of regular variation can be found in the monograph of Marić [6].
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3. Existence of Intermediate Solutions of Equation (A)

Intermediate solutions of (A), that is, positive solutions x(t) such that

lim
t→∞

x(t) = ∞ and lim
t→∞

x(t)
t

= 0, (3.1)

are constructed as solutions of the integral equation (B) under the assump-
tion that q(t) ∈ RV(σ) (σ ∈ R) and g(t) satisfy (1.1). For this purpose an
essential role is played by the fact that regularly varying solutions of the
integral asymptotic relation (C) satisfying (3.1) can be thoroughly analyzed
in the framework of regular variation. Throughout this section, the use is
made of the following expression for q(t)

q(t) = tσl(t), l(t) ∈ SV. (3.2)

3.1. Regularly varying solutions of asymptotic relation (C). Let
x(t) = tρξ(t), ξ(t) ∈ SV, be a regularly varying solution of (C) satisfying
(3.1). We see that ρ must satisfy ρ ∈ [0, 1], and that ξ(t) → ∞, t → ∞, if
ρ = 0 and ξ(t) → 0, t →∞, if ρ = 1, which means that x(t) must be in one
of the following three classes of regularly varying functions:

ntr− SV, RV(ρ) with ρ ∈ (0, 1), ntr− RV(1). (3.3)

One can establish the existence of these three kinds of regularly varying
solutions of (C) as the following theorems demonstrate.

Theorem 3.1. Relation (C) has nontrivial slowly varying solutions if
and only if σ = −2 and

∞∫

a

tq(t) dt = ∞, (3.4)

in which case any such solution x(t) has one and the same asymptotic be-
havior

x(t) ∼
[
(1− γ)

t∫

a

sq(s) ds

] 1
1−γ

, t →∞. (3.5)

Theorem 3.2. Relation (C) has regularly varying solutions of index ρ ∈
(0, 1) if and only if σ ∈ (−2,−γ − 1), in which case ρ is given by

ρ =
σ + 2
1− γ

(3.6)

and any such solution x(t) has one and the same asymptotic behavior

x(t) ∼
[ t2q(t)
ρ(1− ρ)

] 1
1−γ

, t →∞. (3.7)
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Theorem 3.3. Relation (C) has nontrivial regularly varying solutions of
index 1 if and only if σ = −γ − 1 and

∞∫

a

tγq(t) dt < ∞, (3.8)

in which case any such solution x(t) has one and the same asymptotic be-
havior

x(t) ∼ t

[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

, t →∞. (3.9)

Lemma 3.1. If f(t) is regularly varying and g(t) satisfies (1.1), then
f(g(t)) ∼ f(t) as t →∞.

Proof. Suppose that f(t) ∈ RV(ρ). Then by Proposition 2.1 it is ex-
pressed as

f(t) = c(t) exp
{ t∫

t0

δ(s)
s

ds

}
, t = t0,

for some constant t0 > 0 and some functions c(t) and δ(t) such that c(t) →
c0 > 0 and δ(t) → ρ as t →∞. Then, we have

f(g(t))
f(t)

=
c(g(t))
c(t)

exp
{
−

t∫

g(t)

δ(s)
s

ds

}
, t = t0. (3.10)

Noting that |δ(t)| 5 k, t = t0, for some constant k > 0, we see because of
(1.1) that

∣∣∣∣
t∫

g(t)

δ(s)
s

ds

∣∣∣∣ 5 k

∣∣∣∣
t∫

g(t)

ds

s

∣∣∣∣ 5 k log
∣∣∣ t

g(t)

∣∣∣ −→ 0, t →∞,

which, combined with (3.10), implies that f(g(t))/f(t) → 1 or f(g(t)) ∼
f(t) as t →∞. This completes the proof. ¤

Proof of the “only if” parts of Theorems 3.1, 3.2 and 3.3. Let x(t)= tρξ(t),
ξ(t) ∈ SV, be a solution of (C) satisfying (3.1). Using (3.2) and Lemma 3.1,
we have

∞∫

t

q(s)x(g(s))γ ds∼
∞∫

t

q(s)x(s)γ ds=

∞∫

t

sσ+ργ l(s)ξ(s)γ ds, t→∞. (3.11)

The convergence of the last integral in (3.11) implies σ + ργ 5 −1.
(i) We first consider the case where σ + ργ = −1. Then, since

∞∫

t

s−1l(s)ξ(s)γ ds ∈ SV,
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we have by Karamata’s integration theorem ((i) of Proposition 2.5)

t∫

T0

∞∫

s

r−1l(r)ξ(r)γ dr ds ∼ t

∞∫

t

s−1l(s)ξ(s)γ ds,

and hence by (C)

x(t) ∼ t

∞∫

t

s−1l(s)ξ(s)γ ds ∈ RV(1), t →∞. (3.12)

This means that ρ = 1, so that σ = −γ − 1. From (3.12) we see that

ξ(t) ∼
∞∫

t

s−1l(s)ξ(s)γ ds, t →∞. (3.13)

Let η(t) denote the right-hand side of (3.13). Then, we obtain the following
differential asymptotic relation for η(t):

−η(t)−γη′(t) ∼ t−1l(t) = tγq(t), t →∞. (3.14)

Since the left-hand side of (3.14) is integrable on [T0,∞), so is tγq(t), which
shows that (3.8) is satisfied, and integrating (3.14) from t to ∞, we obtain

ξ(t) ∼ η(t) ∼
[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

, t →∞,

which, in view of (3.13), leads to

x(t) ∼ t

[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

, t →∞,

implying that x(t) satisfies (3.9).
(ii) Next, we consider the case where σ + ργ < −1. Then, applying

Karamata’s integration theorem ((ii) of Proposition 2.5) to (3.11), we have

∞∫

t

q(s)x(s)γ ds ∼ tσ+ργ+1l(t)ξ(t)γ

−(σ + ργ + 1)
, t →∞. (3.15)

We distinguish the three cases:
(a) σ + ργ + 2 > 0,
(b) σ + ργ + 2 = 0,
(c) σ + ργ + 2 < 0.
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If (a) holds, then applying Karamata’s integration theorem to (3.15), we
find that

x(t) ∼
t∫

T0

∞∫

s

q(r)x(r)γ dr ds ∼

∼ tσ+ργ+2l(t)ξ(t)γ

[−(σ + ργ + 1)](σ + ργ + 2)
, t →∞, (3.16)

which shows that x(t) ∈ RV(σ + ργ + 2), where σ + ργ + 2 ∈ (0, 1). This
means that ρ = σ + ργ + 2 or ρ = (σ + 2)/(1 − γ), that is, ρ is given by
(3.6). From ρ ∈ (0, 1) the range of σ is determined to be σ ∈ (−2,−γ − 1).
Note that (3.16) is rewritten as

x(t) ∼ tσ+2l(t)x(t)γ

ρ(1− ρ)
=

t2q(t)x(t)γ

ρ(1− ρ)
,

from which it follows that

x(t) ∼
[

t2q(t)
ρ(1− ρ)

] 1
1−γ

, t →∞.

This shows that x(t) satisfies (3.7).

If (b) holds, then (3.15) takes the form
∞∫
t

q(s)x(s)γ ds ∼ t−1l(t)ξ(t)γ and

we have

x(t) ∼
t∫

T0

∞∫

s

q(r)x(r)γ dr ds ∼
t∫

T0

s−1l(s)ξ(s)γ ds ∈ SV, t →∞, (3.17)

which implies that ρ = 0, so that x(t) = ξ(t) and σ = −2. Denoting the
right-hand side of (3.17) by y(t), we obtain from (3.17)

y(t)−γy′(t) ∼ t−1l(t) = tq(t), t →∞. (3.18)

Noting that the left-hand side of (3.18) and hence tq(t) is not integrable on
[T0,∞) because y(t) →∞ as t →∞, we see that (3.4) holds and integrating
(3.18) on [T0, t] yields

x(t) ∼ y(t)∼
[
(1− γ)

t∫

T0

sq(s) ds

] 1
1−γ

∼
[
(1−γ)

t∫

a

sq(s) ds

] 1
1−γ

, t→∞,

showing that x(t) satisfies (3.5).
Finally, we note that case (c) is impossible. In fact, if (c) would hold,

then the last integral in (3.15) would be integrable over [T0,∞), which would
imply that x(t) tends to a constant as t → ∞, that is, x(t) ∈ ntr− SV, an
impossibility.

Let us now suppose that relation (C) admits a regularly varying solution
x(t) belonging to one of the three classes in (3.3). If x(t) ∈ ntr− SV and
x(t) → ∞, t → ∞, then from the above observations it is clear that x(t)
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must fall into case (b) of (ii), which means that σ = −2 and (3.4) holds
and that the asymptotic behavior of x(t) is given by (3.5). Next, let (C)
have a solution x(t) ∈ RV(ρ) with ρ ∈ (0, 1). Then, only case (a) of (ii) is
admissible, showing that σ ∈ (−2,−γ − 1) and x(t) must satisfy (3.7) with
ρ defined by (3.6). Finally, if x(t) ∈ ntr− RV(1) and its slowly varying
part ξ(t) tends to 0 as t → ∞, then case (i) necessarily fits x(t), so that
σ = −γ − 1, (3.8) holds and the asymptotic behavior of x(t) is governed by
the formula (3.9). ¤

Proof of the “if” parts of Theorems 3.1, 3.2 and 3.3. Let X(t) denote any
one of the functions Xi(t), i = 1, 2, 3, defined on [a,∞) as follows:

X1(t) =
[
(1− γ)

t∫

a

sq(s) ds

] 1
1−γ

∈ SV, (3.19)

if σ = −2 and (3.4) holds,

X2(t) =
[ t2q(t)
ρ(1− ρ)

] 1
1−γ ∈ RV(ρ), (3.20)

if σ ∈ (−2,−γ − 1), where ρ =
σ + 2
1− γ

∈ (0, 1),

X3(t) = t

[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

∈ RV(1), (3.21)

if σ = −γ − 1 and (3.8) holds.

It suffices to verify that X(t) satisfies the asymptotic relation

X(t) ∼
t∫

T

∞∫

s

q(r)X(g(r))γ dr ds ∼
t∫

T

∞∫

s

q(r)X(r)γ dr ds, t →∞, (3.22)

for any T > a such that g(t) = a for t = T , where the last relation follows
from Lemma 3.1 ensuring that X(g(t)) ∼ X(t) as t →∞.

Suppose that σ = −2 and (3.4) holds. Then, X1(t) satisfies
∞∫

t

q(s)X1(s)γ ds ∼ t−1l(t)

[
(1− γ)

t∫

a

s−1l(s) ds

] γ
1−γ

and hence
t∫

T

∞∫

s

q(r)X1(r)γ dr ds ∼
t∫

T

s−1l(s)
[
(1− γ)

s∫

a

r−1l(r) dr

] γ
1−γ

ds ∼

∼
[
(1−γ)

t∫

a

s−1l(s) ds

] 1
1−γ

=
[
(1−γ)

t∫

a

sq(s) ds

] 1
1−γ

= X1(t), t →∞.
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Suppose next that σ∈(−2,−γ−1). Rewriting X2(t) as X2(t) = tρ(l(t)/ρ(1−
ρ))

1
1−γ and applying Karamata’s integration theorem twice, we see that

∞∫

t

q(s)X2(s)γ ds =

∞∫
t

sρ−2l(s)
1

1−γ ds

(ρ(1− ρ))
γ

1−γ

∼ tρ−1l(t)
1

1−γ

(ρ(1− ρ))
γ

1−γ (1− ρ)
,

and
t∫

T

∞∫

s

q(r)X2(r) dr ds ∼ tρl(t)
1

1−γ

(ρ(1− ρ))
γ

1−γ (1− ρ)ρ
= X2(t), t →∞.

Suppose finally that σ = −γ − 1 and (3.8) holds. Then, using
∞∫

t

q(s)X3(s)γ ds =
[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

,

we conclude via Karamata’s integration theorem that

t∫

T

∞∫

s

q(r)X3(r)γ dr ds ∼ t

[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

= X3(t), t →∞.

This completes the proof of Theorems 3.1, 3.2 and 3.3. ¤

3.2. Construction of Intermediate Solutions of Equation (A). The
purpose of this subsection is to prove the existence of three kinds of interme-
diate solutions for equation (A) with regularly varying coefficient q(t) and
retarded argument g(t) satisfying (1.1), and furthermore to verify that two
kinds of them are really regularly varying solutions. Our discussions here
essentially depend on the results on regularly varying solutions of the as-
ymptotic relation (C) developed in the first subsection. We use the following
notation.

Notation 3.1. Let f(t) and g(t) be positive functions defined on [t0,∞).
We write f(t) ³ g(t), t → ∞, to denote that there exist positive constants
m and M such that mg(t) 5 f(t) 5 Mg(t) for t = t0. Clearly, f(t) ∼ g(t),
t → ∞, implies f(t) ³ g(t), t → ∞, but not conversely. If f(t) ³ g(t),
t →∞, and lim

t→∞
g(t) = 0, then lim

t→∞
f(t) = 0. Our main results follow.

Theorem 3.4. Suppose that q(t) ∈ RV(−2) satisfies (3.4) and g(t) sat-
isfies (1.1). Then equation (A) possesses an intermediate solution x(t)
such that

x(t) ³
[
(1− γ)

t∫

a

sq(s) ds

] 1
1−γ

, t →∞. (3.23)
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Theorem 3.5. Suppose that q(t) ∈ RV(σ) with σ ∈ (−2,−γ − 1) and
g(t) satisfies (1.1). Then equation (A) possesses an intermediate solution
x(t) such that

x(t) ³
[ t2q(t)
ρ(1− ρ)

] 1
1−γ

, t →∞, (3.24)

where ρ is given by (3.6).

Theorem 3.6. Suppose that q(t) ∈ RV(−γ − 1) satisfies (3.8) and g(t)
satisfies (1.1). Then, equation (A) possesses an intermediate solution x(t)
such that

x(t) ³ t

[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

, t →∞. (3.25)

Proof of Theorems 3.4, 3.5 and 3.6. Under the assumptions of these theo-
rems one can define the functions Xi(t), i = 1, 2, 3, by (3.19), (3.20) or
(3.21). Let X(t) denote one of Xi(t), i = 1, 2, 3, depending on the indi-
cated values of σ. Since X(t) satisfies (3.22), there exists T0 > a such that
g(t) = a for t = T0 and

t∫

T0

∞∫

s

q(r)X(g(r))γ dr ds 5 2X(t), t = T0. (3.26)

We may assume that X(t) is increasing for t = g(T0). Using (3.21) again,
one can choose T1 > T0 such that

t∫

T0

∞∫

s

q(r)X(g(r))γ dr ds = 1
2

X(t), t = T1. (3.27)

Furthermore, choose positive constants k < 1 and K > 1 satisfying

k1−γ 5 1
2

, K1−γ = 4, kX(T1) 5 1
2

KX(g(T0)), (3.28)

and define the set X and the mapping F : X → C[g(T0),∞) as follows:

X =
{

x(t) ∈ C[g(T0),∞) : kX(t) 5 x(t) 5 KX(t), t = g(T0)
}

, (3.29)



Fx(t) = x0 +

t∫

T0

∞∫

s

q(r)x(g(t))γ dr ds, t = T0,

Fx(t) = x0, g(T0) 5 t 5 T0,

(3.30)

where x0 is a constant such that

kX(T1) 5 x0 5 1
2

KX(g(T0)). (3.31)

It can be shown that F is a continuous self-map of X which sends X into a
relatively compact subset of C[g(T0),∞).
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(i) F(X ) ⊂ X . This follows from the following calculations in which
(3.26)–(3.31) are used:

Fx(t) = x0 = kX(T1) = kX(t) for g(T0) 5 t 5 T1,

Fx(t) =
t∫

T0

∞∫

s

q(r)(kX(g(r)))γ dr ds = 1
2

kγX(t) = kX(t) for t = T1,

Fx(t) 5 1
2

KX(g(T0)) 5 1
2

KX(t) 5 KX(t) for g(T0) 5 t 5 T0,

Fx(t) 5 1
2

KX(T0) +

t∫

T0

∞∫

s

q(r)(KX(g(r)))γ dr ds

5 1
2

KX(t)+2KγX(t)5 1
2

KX(t)+
1
2

KX(t)=KX(t) for t=T0.

(ii) F(X ) is relatively compact. The set F(X ) is locally uniformly
bounded on [g(T0),∞), since it is a subset of X . The inequality 0 5
(Fx)′(t) 5 Kγ

∞∫
t

q(s)X(g(s))γ ds, t = T0, holding for all x(t) ∈ X guaran-

tees that F(X ) is locally equicontinuous on [T0,∞) and hence on [g(T0),∞).
The desired relative compactness then follows from Arzela–Ascoli’s lemma.

(iii) F is continuous. Let {xn(t)} be a sequence in X converging as
n → ∞ to x(t) ∈ X uniformly on every compact subinterval of [g(T0),∞).
Naturally, we need only to study the convergence on [T0,∞). Our aim is to
prove that Fxn(t) → Fx(t) as n → ∞ uniformly on compact subintervals
of [T0,∞). But this follows immediately from the Lebesgue dominated
convergence theorem applied to the inner integral of the right-hand side of
the inequality

∣∣Fxn(t)−Fx(t)
∣∣ 5

t∫

T0

∞∫

s

q(r)
∣∣xn(g(r))γ − x(g(r))γ

∣∣ dr ds, t = T0.

Therefore, all the hypotheses of the Schauder–Tychonoff fixed point the-
orem are fulfilled and so there exists x(t) ∈ X such that x(t) = Fx(t) for
t = g(T0), which implies in particular that

x(t) = x0 +

t∫

T0

∞∫

s

q(r)x(g(r))γ dr ds, t = T0.

This implies that x(t) is a solution of (A) on [T0,∞). Since x(t) ∈ X , i.e.,
x(t) ³ X(t), t →∞, x(t) is an intermediate solution of (A). This completes
the simultaneous proof of Theorems 3.4, 3.5 and 3.6. ¤

3.3. Regularity of Intermediate Solutions. It is shown that the two
kinds of intermediate solutions of (A) obtained in Theorems 3.4 and 3.6 are
actually regularly varying of indices 0 and 1, respectively. Combining this
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fact with Theorems 3.1 and 3.3 on the asymptotic relation (C), one can
characterize completely the situation in which the sublinear equation (A)
with regularly varying q(t) possesses nontrivial regularly varying solutions
of indices 0 and 1.

Theorem 3.7. Let q(t) ∈ RV(σ) and suppose that g(t) satisfies (1.1).
Equation (A) possesses nontrivial slowly varying solutions if and only if
σ = −2 and (3.4) holds, in which case the asymptotic behavior of any such
solution x(t) is governed by the unique formula (3.5).

Proof. (The “if” part) Suppose that σ = −2 and (3.4) holds. Then q(t) =

t−2l(t) and (3.4) is expressed as
∞∫
a

s−1l(s) ds = ∞. Let x(t) be an interme-

diate solution of (A) constructed in Theorem 3.4 as a solution of the integral
equation (B). It is known that

x(t) ³ X1(t) =
[
(1− γ)

t∫

a

s−1l(s) ds

] 1
1−γ

, t →∞. (3.32)

Using (B), (3.32) and one of the properties of X1(t) mentioned in the proof
of the “if” part of Theorem 3.1, we find that

x′(t) =

∞∫

t

q(s)x(g(s))γ ds ³
∞∫

t

q(s)X1(g(s))γ ds ∼

∼
∞∫

t

q(s)X1(s)γ ds ∼ t−1l(t)

[
(1− γ)

t∫

a

s−1l(s) ds

] γ
1−γ

, t →∞. (3.33)

We combine (3.32) and (3.33) to obtain

t
x′(t)
x(t)

³ l(t)

(1− γ)
t∫

a

s−1l(s) ds

, t →∞,

from which, noting that the right-hand side of the above tends to 0 as t →∞
by (iii) of Proposition 2.5, we conclude that lim

t→∞
tx′(t)/x(t) = 0. From

Proposition 2.4 it follows that x(t) is a nontrivial slowly varying function.
(The “only if” part) If x(t) is a nontrivial slowly varying solution of (A),

then it clearly satisfies relation (C) and hence from the “only if” part of
Theorem 3.1 it follows that σ = −2 and (3.4) holds and, moreover, that the
asymptotic behavior of x(t) is given by (3.5). This completes the proof of
Theorem 3.7. ¤

Theorem 3.8. Let q(t) ∈ RV(σ) and suppose that g(t) satisfies (1.1).
Equation (A) possesses nontrivial regularly varying solutions of index 1 if
and only if σ = −γ−1 and (3.8) holds, in which case the asymptotic behavior
of any such solution x(t) is governed by the unique formula (3.9).
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Proof. (The “if” part) Suppose that σ = −γ − 1 and (3.8) holds. Then,

q(t) = t−γ−1l(t) and (3.8) is expressed as
∞∫
a

s−1l(s) ds < ∞. Let x(t) be an

intermediate solution of (A) obtained in Theorem 3.4 as a solution of the
integral equation (B). It satisfies

x(t) ³ X3(t) = t

[
(1− γ)

∞∫

t

s−1l(s) ds

] 1
1−γ

, t →∞,

which implies that

− x′′(t) = q(t)x(g(t))γ ³ q(t)X3(g(t))γ ∼

∼ q(t)X3(t)γ = t−γ−1l(t)
[
(1− γ)

∞∫

t

s−1l(s) ds

] γ
1−γ

, t →∞. (3.34)

On the other hand, taking the proof of the “if” part of Theorem 3.3, we see
that x′(t) satisfies

x′(t) =

∞∫

t

q(s)x(g(s))γ ds ³
∞∫

t

q(s)X3(g(s))γ ds ∼

∼
∞∫

t

q(s)X3(s)γ ds =
[
(1− γ)

∞∫

t

s−1l(s) ds

] 1
1−γ

, t →∞. (3.35)

Using (3.34) and (3.35), we obtain

−t
x′′(t)
x′(t)

³ l(t)

(1− γ)
∞∫
t

s−1l(s) ds

→ 0, t →∞,

where (iii) of Proposition 2.5 has been used. This means by Proposition 2.4
that x′(t) is slowly varying, and from (i) of Proposition 2.5 we conclude that

x(t) ∼
t∫

T0

x′(s) ds ∼ tx′(t) ∈ RV(1), t →∞,

which implies that x(t) is a nontrivial regularly varying solution of index 1.
(The “only if” part) Let x(t) be a nontrivial RV(1)-solution of (A). Then,

since it satisfies relation (C), from the “only if” part of Theorem 3.3 it
follows that σ = −γ − 1 and (3.8) holds and, moreover, that the asympto-
tic behavior of x(t) is given by (3.9). This completes the proof of Theo-
rem 3.8. ¤

Remark 3.1. It is impossible for us to prove that the solution obtained
in Theorem 3.5 is regularly varying of index ρ ∈ (0, 1). A more powerful
criterion than Proposition 2.4 seems to be necessary.
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Example 3.1. Consider equation (A) with g(t) satisfying (1.1). Suppose
that q(t) satisfies

q(t) ∼ c

t2 log t(log log t)γ
, t →∞,

for some positive constant c > 0. It is clear that q(t) ∈ RV(−2) and (3.4)
is satisfied, and that

[
(1− γ)

t∫

a

sq(s) ds

] 1
1−γ

∼ c
1

1−γ log log t, t →∞.

By Theorem 3.7, we see that equation (A) possesses nontrivial SV-solutions
x(t), all of which have one and the same asymptotic behavior x(t) ∼
c

1
1−γ log log t, t →∞, for any retarded argument g(t). If, in particular,

q(t) =
1

t2 log t(log log g(t))γ

(
1 +

1
log t

)
,

then equation (A) has an exact solution x0(t) = log log t ∈ ntr− SV.

Example 3.2. Consider equation (A) with g(t) satisfying (1.1). Suppose
that q(t) satisfies

q(t) ∼ c

tγ+1 log t(log log t)2−γ
∈ RV(−γ − 1), t →∞,

for some constant c > 0. As is easily checked, (3.8) is satisfied and
[
(1− γ)

∞∫

t

sγq(s) ds

] 1
1−γ

∼ c
1

1−γ

log log t
, t →∞,

and hence by Theorem 3.8, equation (A) possesses nontrivial RV(1)-solutions

x(t), all of which have one and the same asymptotic behavior x(t) ∼ c
1

1−γ t
log log t ,

t →∞, for any retarded argument g(t). If, in particular,

q(t) =
(log log g(t))γ

tg(t)γ log t(log log t)2
(
1− 1

log t
− 2

log t· log log t

)
,

then equation (A) has an exact solution x1(t) = t/ log log t.

Example 3.3. Consider the equation

x′′(t) + t−
3
2
(
2 + sin(log log t)

)2
x(g(t))

1
3 = 0, (3.36)

which is a special case of (A) in which

γ =
1
3

and q(t) = t−
3
2

(
2 + sin(log log t)

)2

∈ RV
(
− 3

2

)
.

Since σ = − 3
2 satisfies −2 < σ < −γ−1 = − 4

3 , Theorem 3.5 is applicable to
(3.35) and ensures the existence of its intermediate solution x(t) such that

x(t) ³
(16

3

) 3
2
t

3
4
(
2 + sin(log log t)

)3
, t →∞.
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It is impossible to decide whether or not this solution is regularly varying
of index 3

4 .

Remark 3.2. A question naturally arises: what will happen if condition
(1.1) on g(t) is not required? The problem of investigating the accurate
asymptotic behavior of positive solutions of (A) for general retarded argu-
ment is much more difficult to handle as the following example indicates. It
is to be noted that very little is known about regularly varying solutions of
functional differential equations, linear or nonlinear, with general deviating
arguments. See e.g. the papers [3]–[5].

Example 3.4. Consider the equation

x′′(t) + q(t)x(log t)γ = 0, 0 < γ < 1, (3.37)

where q(t) is given by

q(t) =
(log log log t)γ

t(log t)γ+1(log log t)2
(
1− 1

log t
− 2

log t· log log t

)
∈ RV(−1).

As is easily checked, equation (3.37) has a nontrivial RV(1)-solution x(t) =
t/ log log t in marked contrast to Theorem 3.6 or Theorem 3.8.
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4. T. Kusano and V. Marić, Slowly varying solutions of functional differential equa-
tions with retarded and advanced arguments. Georgian Math. J. 14 (2007), No. 2,
301–314.
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