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Abstract. The aim of this study is to prove the global existence of
solutions for reaction-diffusion systems with a tridiagonal matrix of diffusion
coefficients and nonhomogeneous boundary conditions. Towards this end,
we make use of the appropriate techniques which are based on the invariant
domains and on Lyapunov functional methods. The nonlinear reaction term
has been supposed to be of polynomial growth. This result is a continuation
of that due to Kouachi and Rebiai [13].
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îâäæñéâ. êŽöîëéæï éæäŽêæŽ áŽéðçæùáâï áæòñäææï çëâòæùæâêðâĲæï ðîæ-
áæŽàëêŽèñîæ éŽðîæùæŽêæ îâŽóùæñè-áæòñäæñîæ ïæïðâéâĲæï àèëĲŽèñîæ Žéë-
êŽýïêâĲæï ŽîïâĲëĲŽ ŽîŽâîåàãŽîëãŽê ïŽïŽäôãîë ìæîëĲâĲöæ. Žé éæäêæå àŽéë-
æõâêâĲŽ öâïŽĲŽéæïæ ðâóêæçŽ, îëéâèæù áŽòñúêâĲñèæŽ æêãŽîæŽêðñè ŽîââĲäâ áŽ
èæŽìñêëãæï òñêóùæëêŽèæï éâåëáâĲäâ. ŽîŽûîòæãæ îâŽóùæñèæ ûâãîæï öâ-
ïŽýâĲ àŽçâåâĲñèæŽ áŽöãâĲŽ, îëé éæïæ äîáæï îæàæ ìëèæêëéæŽèñîæŽ. âï öâ-
áâàæ ûŽîéëáàâêï çñŽøæïŽ áŽ îâĲæŽæï [13] öâáâàæï àŽãîùâèâĲŽï.
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1. Introduction

We consider the reaction-diffusion system

∂u

∂t
− a11∆u− a12∆v = f(u, v, w) in R+ × Ω, (1.1)

∂v

∂t
− a21∆u− a22∆v − a23∆w = g(u, v, w) in R+ × Ω, (1.2)

∂w

∂t
− a32∆v − a33∆w = h(u, v, w) in R+ × Ω, (1.3)

with the boundary conditions

λu+(1−λ)
∂u

∂η
=β1, λv+(1−λ)

∂v

∂η
=β2, λw+(1−λ)

∂w

∂η
=β3, (1.4)

on R+ × ∂Ω,

and the initial data

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x) in Ω, (1.5)

where

(i) 0 < λ < 1 and βi ∈ R, i = 1, 2, 3, for nonhomogeneous Robin
boundary conditions.

(ii) λ = βi = 0, i = 1, 2, 3, for homogeneous Neumann boundary condi-
tions.

(iii) 1 − λ = βi = 0, i = 1, 2, 3, for homogeneous Dirichlet boundary
conditions.

Ω is an open bounded domain of class C1 in RN with boundary ∂Ω and
∂
∂η denotes the outward normal derivative on ∂Ω. The diffusion terms aij

(i, j = 1, 2, 3 and (i, j) 6= (1, 3), (3, 1)) are supposed to be positive constants
such that

a12a21(a22 − a33) = a23a32(a11 − a22)

and
a33(a12 + a21)2 + a11(a23 + a32)2 < 4a11a22a33

which reflects the parabolicity of the system and implies at the same time
that the matrix of diffusion

A =




a11 a12 0
a21 a22 a23

0 a32 a33




is positive definite. The eigenvalues λ1, λ2 and λ3 (λ1 < λ2 = a22 < λ3) of
A are positive. If we put

a = min{a11, a33} and a = max{a11, a33},
then the positivity of the aij implies that

λ1 < a < λ2 < a < λ3.



82 Belgacem Rebiai

The initial data are assumed to be in the domain

Σ =





{
(u0, v0, w0) ∈ R3 : µiu0 + νiw0 ≤ v0, i = 1, 2, 3

}

if µiβ1 + νiβ3 ≤ β2, i = 1, 2, 3,{
(u0, v0, w0) ∈ R3 : µiu0 + νiw0 ≤ v0 ≤ µ1u0 + ν1w0, i = 2, 3

}

if µiβ1 + νiβ3 ≤ β2 ≤ µ1β1 + ν1β3, i = 2, 3,{
(u0, v0, w0) ∈ R3 : µiu0 + νiw0 ≤ v0 ≤ µ2u0 + ν2w0, i = 1, 3

}

if µiβ1 + νiβ3 ≤ β2 ≤ µ2β1 + ν2β3, i = 1, 3,{
(u0, v0, w0) ∈ R3 : µ3u0 + ν3w0 ≤ v0 ≤ µiu0 + νiw0, i = 1, 2

}

if µ3β1 + ν3β3 ≤ v0 ≤ µiβ1 + νiβ3, i = 1, 2,

where µ1 = a21/(a11−λ1) > 0 > µ2 = a21/(a11−λ2) > µ3 = a21/(a11−λ3),
ν1 = a23/(a33− λ1) > ν2 = a23/(a33− λ2) > 0 > ν3 = a23/(a33− λ3) , if we
assume without loss of generality that a11 < a33.

Since we use the same methods to treat all the cases, we will tackle only
with the first one. We suppose that the functions f, g and h are continuously
differentiable, polynomially bounded on Σ,

(
f(r1, r2, r3), g(r1, r2, r3), h(r1, r2, r3)

)
is in Σ for all (r1, r2, r3) in ∂Σ

(we say that (f, g, h) points into Σ on ∂Σ), i.e.,

µif(r1, r2, r3) + νih(r1, r2, r3) ≤ g(r1, r2, r3), (1.6)

for all r1, r2 and r3 such that µjr1 + νjr3 ≤ r2 = µir1 + νir3, j = 1, 2, 3
(j 6= i), i = 1, 2, 3, and for positive constants E and D, we have

(Ef + Dg + h)(u, v, w) ≤ C1(u + v + w + 1) (1.7)

for all (u, v, w) in Σ, where C1 is a positive constant.
In the two-component case, where a12 = 0, Kouachi and Youkana [14]

generalized the method of Haraux and Youkana [4] with the reaction terms
f(u, v) = −λF (u, v) and g(u, v) = +µF (u, v) with F (u, v) ≥ 0, requiring
the condition

lim
s→+∞

[ ln(1 + F (r, s))
s

]
< α∗ for any r ≥ 0,

with

α∗ =
2a11a22

n(a11 − a22)2‖u0‖∞ min
{λ

µ
,
a11 − a22

a21

}
,

where the positive diffusion coefficients a11, a22 satisfy a11 > a22 and a21, λ,
µ are positive constants. This condition reflects a weak exponential growth
of the function F . Kanel and Kirane [6] proved the global existence in
the case where g(u, v) = −f(u, v) = uvn and n is an odd integer, under
the embarrassing condition |a12 − a21| < Cp, where Cp contains a constant
from Solonnikov’s estimate [19]. Later, in [7] they improved their results to
obtain the global existence under the restrictions

H1. a22 < a11 + a21,
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H2. a12 < ε0 =
a11a22(a11 + a21 − a22)

a11a22 + a21(a11 + a21 − a22)
if a11 ≤ a22 < a11 + a21,

H3. a12 < min
{1

2
(a11 + a21), ε0

}
if a22 < a11,

and |F (v)| ≤ CF (1 + |v|1−ε), vF (v) ≥ 0 for all v ∈ R, where ε and CF are
positive constants with ε<1 and g(u, v)=−f(u, v)=uF (v).

Kouachi [12] has proved the global existence for solutions of two-compo-
nent reaction-diffusion systems with a general full matrix of diffusion co-
efficients and nonhomogeneous boundary conditions. Recently, we proved
the global existence for solutions of three-component reaction-diffusion sys-
tems with a tridiagonal matrix of diffusion coefficients and nonhomogeneous
boundary conditions where the positive diffusion coefficients a11, a33 are
equal (see Kouachi and Rebiai [13]).

The present investigation is a continuation work of that obtained in [13].
In this study we will treat the case where a11 6= a33.

We note that the case of strongly coupled systems which are not trian-
gular in the diffusion part is quite more difficult. As a consequence of the
blow-up of the solutions found in [17], we can indeed prove that there is
the blow-up of the solutions in finite time for such nontriangular systems
even though the initial data are regular, the solutions are positive and the
nonlinear terms are negative, a structure that ensured the global existence
in the diagonal case. For this purpose, we construct the invariant domains
in which we can demonstrate that for any initial data in those domains,
problem (1.1)–(1.5) is equivalent to the problem for which the global exis-
tence follows from the usual techniques based on Lyapunov functionals (see
Kirane and Kouachi [8], Kouachi and Youkana [14] and Kouachi [12]).

Many chemical and biological operations are described by means of re-
action diffusion systems with a tridiagonal matrix of diffusion coefficients.
The components u(t, x), v(t, x) and w(t, x) can be represented either by
chemical concentrations or biological population densities (see, e.g., Cussler
[1] and [2]). For example, in chemistry, an n-species reaction-diffusion sys-
tem with cross-diffusion can be described by the following system of partial
differential equations

∂ci

∂t
− div(∇Diici)−

∑

j 6=i

div(∇Dijcj) = Ri(c1, . . . , cn), i, j = 1, 2, . . . , n,

where Ri(c1, . . . , cn) are the reactive terms, Dii are the main-diffusion coeffi-
cients and the cross-diffusion term div(∇Dijcj) links the gradient of species
cj to the flux of species ci. If Dij ≥ 0 , then the ith species diffuses from
larger to smaller concentrations of the jth species, analogous to the case
of ordinary self-diffusion. If Dij < 0, then the ith species diffuses in the
opposite direction, against the gradient ∇cj .

Throughout this work, we denote by ‖·‖p, p ∈ [1, +∞[ the norm in Lp(Ω)
and ‖ · ‖∞ the norm in C(Ω) or L∞(Ω).
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2. The Local Existence and Invariant Domains

The study of local existence and uniqueness of solutions (u, v, w) of (1.1)–
(1.5) follows from the basic existence theory for parabolic semilinear equa-
tions (see, e.g., [3], [5] and [16]). As a consequence, for any initial data in
C(Ω) or L∞(Ω) there exists T ∗ ∈ ]0, +∞] such that (1.1)–(1.5) has a unique
classical solution on [0, T ∗[×Ω. Furthermore, if T ∗ < +∞, then

lim
t↑T∗

(‖u(t)‖∞ + ‖v(t)‖∞ + ‖w(t)‖∞
)

= +∞.

Therefore, if there exists a positive constant C such that

‖u(t)‖∞ + ‖v(t)‖∞ + ‖w(t)‖∞ ≤ C for all t ∈ [0, T ∗[ ,

then T ∗ = +∞.
Since the initial conditions are in Σ, then under the assumptions (1.6), the

next proposition says that the classical solution of (1.1)–(1.5) on [0, T ∗[×Ω
remains in Σ for all t in [0, T ∗[ .

Proposition 1. Suppose that (f, g, h) points into Σ on ∂Σ. Then for any
(u0, v0, w0) in Σ the solution (u, v, w) of the problem (1.1)–(1.5) remains in
Σ for all t in [0, T ∗[ .

Proof. Let (xi1, xi2, xi3)t, i = 1, 2, 3, be the eigenvectors of the matrix At

associate with its eigenvalues λi, i = 1, 2, 3 (λ1 < λ2 < λ3). Multiplying
equations (1.1), (1.2) and (1.3) of the given reaction-diffusion system by xi1,
xi2 and xi3, respectively, and summing the resulting equations, we get

∂

∂t
z1 − λ1∆z1 = F1(z1, z2, z3) in ]0, T ∗[×Ω, (2.1)

∂

∂t
z2 − λ2∆z2 = F2(z1, z2, z3) in ]0, T ∗[×Ω, (2.2)

∂

∂t
z3 − λ3∆z3 = F3(z1, z2, z3) in ]0, T ∗[×Ω, (2.3)

with the boundary conditions

λzi + (1− λ)
∂zi

∂η
= ρi, i = 1, 2, 3, on ]0, T ∗[×∂Ω, (2.4)

and the initial data

zi(0, x) = z0
i (x), i = 1, 2, 3, in Ω, (2.5)

where

zi = xi1u + xi2v + xi3w, i = 1, 2, 3, in ]0, T ∗[×Ω, (2.6)
ρi = xi1β1 + xi2β2 + xi3β3, i = 1, 2, 3,

and
Fi(z1, z2, z3) = xi1f + xi2g + xi3h, i = 1, 2, 3, (2.7)

for all (u, v, w) in Σ.
We note that the condition of the parabolicity of the system (1.1)–(1.3)

implies one of (2.1)–(2.3). Since λ1, λ2 and λ3 are the eigenvalues of the
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matrix At, the problem (1.1)–(1.5) is equivalent to the problem (2.1)–(2.5),
and to prove that Σ is an invariant domain for the system (1.1)–(1.3) it
suffices to prove that the domain

{
(z0

1 , z0
2 , z0

3) ∈ R3 : z0
i ≥ 0, i = 1, 2, 3

}
= (R+)3 (2.8)

is invariant for the system (2.1)–(2.3) and there exist some constants xij ,
i, j = 1, 2, 3, such that

Σ =
{
(u0, v0, w0) ∈ R3 : z0

i = xi1u0+xi2v0+xi3w0 ≥ 0, i = 1, 2, 3
}
. (2.9)

Since (xi1, xi2, xi3)t is an eigenvector of the matrix At associated to the
eigenvalue λi, i = 1, 2, 3, we have

{
(a11 − λi)xi1 + a21xi2 = 0,

a23xi2 + (a33 − λi)xi3 = 0,
i = 1, 2, 3.

If we assume, without loss of generality, that a11 < a33 and choose x12 =
x22 = x32 = 1, then we have xi1u0 + xi2v0 + xi3w0 ≥ 0, i = 1, 2, 3 ⇐⇒
µiu0+νiw0 ≤ v0, i = 1, 2, 3. Thus (2.9) is proved and (2.6) can be written as

zi = −µiu + v − νiw, i = 1, 2, 3. (2.6a)

Now, to prove that the domain (R+)3 is invariant for the system (2.1)–(2.3),
it suffices to show that Fi(z1, z2, z3) ≥ 0 for all (z1, z2, z3) such that zi = 0
and zj ≥ 0, j = 1, 2, 3 (j 6= i), i = 1, 2, 3, thanks to the invariant domain
method (see Smoller [18]). Using the expressions (2.7), we get

Fi = −µif + g − νih, i = 1, 2, 3, (2.7a)

for all (u, v, w) in Σ. Since from (1.6) we have Fi(z1, z2, z3) ≥ 0 for all
(z1, z2, z3) such that zi = 0 and zj ≥ 0, j = 1, 2, 3 (j 6= i), i = 1, 2, 3, we
obtain zi(t, x) ≥ 0, i = 1, 2, 3, for all (t, x) ∈ [0, T ∗[×Ω. As a consequence,
Σ is an invariant domain for the system (1.1)–(1.3). ¤

In addition, the system (1.1)–(1.3) with the boundary conditions (1.4)
and initial data in Σ is equivalent to the system (2.1)–(2.3) with the boun-
dary conditions (2.4) and positive initial data (2.5).

Once the invariant domains are constructed and since ρi, i = 1, 2, 3,
given by ρi = −µiβ1 + β2 − νiβ3, i = 1, 2, 3, are positive, we can apply the
Lyapunov technique and establish the global existence of unique solutions
for (1.1)–(1.5).

3. Global Existence

As the determinant of the linear algebraic system (2.6), with respect to
variables u, v and w, is different from zero, to prove the global existence of
solutions of the problem (1.1)–(1.5) one needs to prove it for the problem
(2.1)–(2.5). To this end, it is well known that (see Henry [5]) it suffices to
derive a uniform estimate of ‖Fi(z1, z2, z3)‖p, i = 1, 2, 3, on [0, T ], T < T ∗,
for some p > N/2.
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Let θ and σ be two positive constants such that

θ > A12, (3.1)

(θ2 −A2
12)(σ

2 −A2
23) > (A13 −A12A23)2, (3.2)

where Aij = λi+λj

2
√

λiλj

, i, j = 1, 2, 3 (i < j), and let

θq = θq2
and σp = σp2

for q = 0, 1, . . . , p and p = 0, 1, . . . , n, (3.3)

with n as a positive integer. The main result of this section is

Theorem 1. Let (z1, z2, z3) be any positive solution of (2.1)–(2.5) on
[0, T ∗[×Ω; let the functional

t 7−→ L(t) =
∫

Ω

Hn

(
z1(t, x), z2(t, x), z3(t, x)

)
dx, (3.4)

where

Hn(z1, z2, z3) =
n∑

p=0

p∑
q=0

Cp
nCq

pθqσpz
q
1zp−q

2 zn−p
3 , (3.5)

with n being a positive integer and Cp
n = n!

(n−p)!p! .
Then, the functional L is uniformly bounded on [0, T ], T < T ∗.

For the proof of Theorem 1 we need some preparatory Lemmas.

Lemma 1. Let Hn be the homogeneous polynomial defined by (3.5).
Then

∂Hn

∂z1
= n

n−1∑
p=0

p∑
q=0

Cp
n−1C

q
pθq+1σp+1z

q
1zp−q

2 z
(n−1)−p
3 , (3.6)

∂Hn

∂z2
= n

n−1∑
p=0

p∑
q=0

Cp
n−1C

q
pθqσp+1z

q
1zp−q

2 z
(n−1)−p
3 , (3.7)

∂Hn

∂z3
= n

n−1∑
p=0

p∑
q=0

Cp
n−1C

q
pθqσpz

q
1zp−q

2 z
(n−1)−p
3 . (3.8)

Proof. Differentiating Hn with respect to z1 and using the fact that

qCq
p = pCq−1

p−1 and pCp
n = nCp−1

n−1 (3.9)

for q = 1, 2, . . . , p, p = 1, 2, . . . , n, we get

∂Hn

∂z1
= n

n∑
p=1

p∑
q=1

Cp−1
n−1C

q−1
p−1θqσpz

q−1
1 zp−q

2 zn−p
3 .

Replacing in the sums the indices q − 1 by q and p − 1 by p, we deduce
(3.6). For the formula (3.7), differentiating Hn with respect to z2, taking
into account

Cq
p = Cp−q

p , q = 0, 1, . . . , p− 1 and p = 1, 2, . . . , n, (3.10)
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using (3.9) and replacing the index p− 1 by p, we get (3.7).
Finally, we have

∂Hn

∂z3
=

n−1∑
p=0

p∑
q=0

(n− p)Cp
nCq

pθqσpz
q
1zp−q

2 zn−p−1
3 .

Since (n− p)Cp
n = (n− p)Cn−p

n = nCn−p−1
n−1 = nCp

n−1, we get (3.8). ¤

Lemma 2. The second partial derivatives of Hn are given by

∂2Hn

∂z2
1

= n(n− 1)
n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθq+2σp+2z

q
1zp−q

2 z
(n−2)−p
3 , (3.11)

∂2Hn

∂z1∂z2
= n(n− 1)

n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθq+1σp+2z

q
1zp−q

2 z
(n−2)−p
3 , (3.12)

∂2Hn

∂z1∂z3
= n(n− 1)

n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθq+1σp+1z

q
1zp−q

2 z
(n−2)−p
3 , (3.13)

∂2Hn

∂z2
2

= n(n− 1)
n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθqσp+2z

q
1zp−q

2 z
(n−2)−p
3 , (3.14)

∂2Hn

∂z2∂z3
= n(n− 1)

n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθqσp+1z

q
1zp−q

2 z
(n−2)−p
3 , (3.15)

∂2Hn

∂z2
3

= n(n− 1)
n−2∑
p=0

p∑
q=0

Cp
n−2C

q
pθqσpz

q
1zp−q

2 z
(n−2)−p
3 . (3.16)

Proof. Differentiating ∂Hn

∂z1
given by (3.6) with respect to z1, we obtain

∂2Hn

∂z2
1

= n

n−1∑
p=1

p∑
q=1

qCp
n−1C

q
pθq+1σq+1z

q−1
1 zp−q

2 z
(n−1)−p
3 .

Using (3.9), we get (3.11).

∂2Hn

∂z1∂z2
= n

n−1∑
p=1

p−1∑
q=0

(p− q)Cp
n−1C

q
pθq+1σp+1z

q
1zp−q−1

2 z
(n−1)−p
3 .

Applying (3.10) and then (3.9), we get (3.12).

∂2Hn

∂z1∂z3
= n

n−2∑
p=0

p∑
q=0

((n− 1)− p)Cp
n−1C

q
pθq+1σp+1z

q
1zp−q

2 z
(n−2)−p
3 .

Applying successively (3.10), (3.9) and (3.10) for the second time, we de-
duce (3.13).
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∂2Hn

∂z2
2

= n

n−1∑
p=1

p−1∑
q=0

(p− q)Cp
n−1C

q
pθqσp+1z

q
1zp−q−1

2 z
(n−1)−p
3 .

The application of (3.10) and then (3.9) yields (3.14).

∂2Hn

∂z2∂z3
= n

n−2∑
p=0

p∑
q=0

((n− 1)− p)Cp
n−1C

q
pθqσpz

q
1zp−q

2 z
(n−2)−p
3 .

Applying (3.10) and then (3.9), we get (3.15). Finally, we get (3.16) by
differentiating ∂Hn

∂z3
with respect to z3 and applying successively (3.10), (3.9)

and (3.10) for the second time. ¤

Proof of Theorem 1. Differentiating L with respect to t, we find that

L′(t) =
∫

Ω

(∂Hn

∂z1

∂z1

∂t
+

∂Hn

∂z2

∂z2

∂t
+

∂Hn

∂z3

∂z3

∂t

)
dx =

=
∫

Ω

(
λ1

∂Hn

∂z1
∆z1 + λ2

∂Hn

∂z2
∆z2 + λ3

∂Hn

∂z3
∆z3

)
dx+

+
∫

Ω

(∂Hn

∂z1
F1 +

∂Hn

∂z2
F2 +

∂Hn

∂z3
F3

)
dx =: I + J,

Using Green’s formula in I, we get I = I1 + I2, where

I1 =
∫

∂Ω

(
λ1

∂Hn

∂z1

∂z1

∂η
+ λ2

∂Hn

∂z2

∂z2

∂η
+ λ3

∂Hn

∂z3

∂z3

∂η

)
ds,

where ds denotes the (n− 1)-dimensional surface element, and

I2 = −
∫

Ω

[
λ1

∂2Hn

∂z2
1

|∇z1|2 + (λ1 + λ2)
∂2Hn

∂z1∂z2
∇z1∇z2+

+ (λ1 + λ3)
∂2Hn

∂z1∂z3
∇z1∇z3 + λ2

∂2Hn

∂z2
2

|∇z2|2+

+ (λ2 + λ3)
∂2Hn

∂z2∂z3
∇z2∇z3 + λ3

∂2Hn

∂z2
3

|∇z3|2
]

dx.

We prove that there exists a positive constant C2 independent of t ∈ [0, T ∗[
such that

I1 ≤ C2 for all t ∈ [0, T ∗[ , (3.17)
and that

I2 ≤ 0. (3.18)
To see this, we follow the same reasoning as in [11].

(i) If 0 < λ < 1, using the boundary conditions (2.4), we get

I1 =
∫

∂Ω

(
λ1

∂Hn

∂z1
(γ1−αz1)+λ2

∂Hn

∂z2
(γ2−αz2)+λ3

∂Hn

∂z3
(γ3−αz3)

)
ds,

where α = λ
1−λ and γi = ρi

1−λ , i = 1, 2, 3. Since
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H(z1, z2, z3) = λ1
∂Hn

∂z1
(γ1 − αz1) + λ2

∂Hn

∂z2
(γ2 − αz2)+

+ λ3
∂Hn

∂z3
(γ3 − αz3) = Pn−1(z1, z2, z3)−Qn(z1, z2, z3),

where Pn−1 and Qn are polynomials with positive coefficients and
respective degrees n − 1 and n, and since the solution is positive,
we obtain

lim sup
(|z1|+|z2|+|z3|)→+∞

H(z1, z2, z3) = −∞, (3.19)

which proves that H is uniformly bounded on (R+)3, and conse-
quently (3.17).

(ii) If λ = 0, then I1 = 0 on [0, T ∗[ .

(iii) The case of homogeneous Dirichlet conditions is trivial, since in this
case the positivity of the solution on [0, T ∗[×Ω implies ∂z1/∂η ≤ 0,
∂z2/∂η ≤ 0 and ∂z3/∂η ≤ 0 on [0, T ∗[×∂Ω. Consequently, one
again gets (3.17) with C2 = 0.

We now prove (3.18). Applying Lemma 2, we obtain

I2 = −n(n− 1)
∫

Ω

n−2∑
p=0

p∑
q=0

Cp
n−2C

q
p

[
(Bpqz) · z]

dx,

where

Bpq =




λ1θq+2σp+2
λ1 + λ2

2
θq+1σp+2

λ1 + λ3

2
θq+1σp+1

λ1 + λ2

2
θq+1σp+2 λ2θqσp+2

λ2 + λ3

2
θqσp+1

λ1 + λ3

2
θq+1σp+1

λ2 + λ3

2
θqσp+1 λ3θqσp




for q = 0, 1, . . . , p, p = 0, 1, . . . , n− 2 and z = (∇z1,∇z2,∇z3)t.
The quadratic forms (with respect to ∇z1,∇z2 and ∇z3) associated with

the matrices Bpq, q = 0, 1, . . . , p, p = 0, 1, . . . , n − 2, are positive, since
their main determinants ∆1, ∆2 and ∆3 are positive too, according to the
Sylvester criterion. To see this, we have

1) ∆1 = λ1θq+2σp+2 > 0 for q = 0, 1, . . . , p p = 0, 1, . . . , n− 2.

2) ∆2=

∣∣∣∣∣∣∣

λ1θq+2σp+2
λ1+λ2

2
θq+1σp+2

λ1+λ2

2
θq+1σp+2 λ2θqσp+2

∣∣∣∣∣∣∣
=λ1λ2θ

2
q+1σ

2
p+2(θ

2−A2
12),

for q = 0, 1, . . . , p and p = 0, 1, . . . , n− 2.
Using (3.1), we get ∆2 > 0.
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3) ∆3 =

∣∣∣∣∣∣∣∣∣∣

λ1θq+2σp+2
λ1+λ2

2
θq+1σp+2

λ1+λ3

2
θq+1σp+1

λ1+λ2

2
θq+1σp+2 λ2θqσp+2

λ2+λ3

2
θqσp+1

λ1+λ3

2
θq+1σp+1

λ2+λ3

2
θqσp+1 λ3θqσp

∣∣∣∣∣∣∣∣∣∣

=

= λ1λ2λ3θ
2
q+1θqσp+2σ

2
p+1

[
(θ2 −A2

12)(σ
2 −A2

23)− (A13 −A12A23)2
]
,

for q = 0, 1, . . . , p and p = 0, 1, . . . , n− 2.
Using (3.2), we get ∆3 > 0. Consequently we have (3.18).

Substitution of the expressions of the partial derivatives given by Lemma 1
in the second integral yields

J =
∫

Ω

[
n

n−1∑
p=0

p∑
q=0

Cp
n−1C

q
pzq

1zp−q
2 z

(n−1)−p
3 ]×

× (θq+1σp+1F1 + θqσp+1F2 + θqσpF3) dx.

Using the expressions (2.7a), we obtain

θq+1σp+1F1+θqσp+1F2+θqσpF3=−(µ1θq+1σp+1+µ2θqσp+1+µ3θqσp)f+

+ (θq+1σp+1 + θqσp+1 + θqσp)g − (ν1θq+1σp+1 + ν2θqσp+1 + ν3θqσp)h =

= −θq+1σp+1

(
ν1 + ν2

θq

θq+1
+ ν3

θq

θq+1

σp

σp+1

)
×

×
(µ1 + µ2

θq

θq+1
+ µ3

θq

θq+1

σp

σp+1

ν1 + ν2
θq

θq+1
+ ν3

θq

θq+1

σp

σp+1

f −
1 + θq

θq+1
+ θq

θq+1

σp

σp+1

ν1 + ν2
θq

θq+1
+ ν3

θq

θq+1

σp

σp+1

g + h

)
.

Since θq

θq+1
and σp

σp+1
are sufficiently large if we choose θ and σ sufficiently

large, by using the condition (1.7) and the relation (2.6a) successively, for
an appropriate constant C3, we get

J ≤ C3

∫

Ω

[ n−1∑
p=0

p∑
q=0

(z1 + z2 + z3 + 1)Cp
n−1C

q
pzq

1zp−q
2 z

(n−1)−p
3

]
dx.

To prove that the functional L is uniformly bounded on the interval [0, T ],
we first write

n−1∑
p=0

p∑
q=0

(z1 + z2 + z3 + 1)Cp
n−1C

q
pzq

1zp−q
2 z

(n−1)−p
3 =

= Rn(z1, z2, z3) + Sn−1(z1, z2, z3),

where Rn(z1, z2, z3) and Sn−1(z1, z2, z3) are two homogeneous polynomi-
als of degrees n and n − 1, respectively. First, since the polynomials Hn

and Rn are of degree n, there exists a positive constant C4 such that∫
Ω

Rn(z1, z2, z3) dx ≤ C4

∫
Ω

Hn(z1, z2, z3) dx. Applying Hölder’s inequality
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to the integral
∫
Ω

Sn−1(z1, z2, z3) dx, one gets

∫

Ω

Sn−1(z1, z2, z3) dx ≤ (meas Ω)
1
n

( ∫

Ω

(
Sn−1(z1, z2, z3)

) n
n−1 dx

)n−1
n

.

Since for all z1 ≥ 0 and z2, z3 > 0,

(Sn−1(z1, z2, z3))
n

n−1

Hn(z1, z2, z3)
=

(Sn−1(ξ1, ξ2, 1))
n

n−1

Hn(ξ1, ξ2, 1)
,

where ξ1 = z1/z2, ξ2 = z2/z3 and

lim
ξ1→+∞
ξ2→+∞

(Sn−1(ξ1, ξ2, 1))
n

n−1

Hn(ξ1, ξ2, 1)
< +∞,

one asserts that there exists a positive constant C5 such that

(Sn−1(z1, z2, z3))
n

n−1

Hn(z1, z2, z3)
≤ C5 for all z1, z2, z3 ≥ 0.

Due to (3.19), there exist ηi, i = 1, 2, 3, such that for all zi > ηi the
functional L satisfies the differential inequality L′(t) ≤ C6L(t)+C7L

n−1
n (t),

which for Z = L
1
n can be written as nZ ′ ≤ C6Z + C7. A simple integration

gives a uniform bound of the functional L on the interval [0, T ].
On the other hand, if zi is in the compact interval [0, ηi], then the con-

tinuous function (z1, z2, z3) 7−→ Hn(z1, z2, z3) is bounded. Thus, the func-
tional L is uniformly bounded on [0, T ]. This completes the proof of Theo-
rem 1. ¤

Corollary 1. Suppose that the functions f , g and h are continuously
differentiable on Σ, point into Σ on ∂Σ and satisfy the condition (1.7).
Then all uniformly bounded solutions on Ω of (1.1)–(1.5) with initial data
in Σ are in L∞(0, T ; Lp(Ω)) for all p ≥ 1.

Proof. The proof of this Corollary is an immediate consequence of Theo-
rem 1, the trivial inequality

∫
Ω

(z1+z2+z3)p dx≤L(t) on [0, T ∗[ , and (2.6a). ¤

Proposition 2. Under the hypothesis of Corollary 1, if the functions f ,
g and h are polynomially bounded on Σ, then all uniformly bounded solutions
on Ω of (1.1)–(1.4) with the initial data in Σ are global in time.

Proof. As it has been mentioned above, it suffices to derive a uniform es-
timate of ‖F1(z1, z2, z3)‖p, ‖F2(z1, z2, z3)‖p and ‖F3(z1, z2, z3)‖p on [0, T ],
T < T ∗ for some p > N

2 . Since the reaction terms f(u, v, w), g(u, v, w) and
h(u, v, w) are polynomially bounded on Σ, by using the relations (2.6a) and
(2.7a) we get that such are F1(z1, z2, z3), F2(z1, z2, z3) and F3(z1, z2, z3),
and the proof becomes an immediate consequence of Corollary 1. ¤
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