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ON THE CONTI–OPIAL TYPE EXISTENCE AND
UNIQUENESS THEOREMS FOR GENERAL NONLINEAR

BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF
IMPULSIVE EQUATIONS WITH FINITE AND

FIXED POINTS OF IMPULSES ACTIONS

Abstract. The general nonlocal boundary value problem is considered
for systems of impulsive equations with finite and fixed points of impulses
actions. Sufficient conditions are given for the solvability and unique solv-
ability of the problem.

îâäæñéâ. ïŽïîñè áŽ òæóïæîâĲñè æéìñèïæî ûâîðæèâĲæŽê àŽêðëèâ-
ĲŽåŽ ïæïðâéâĲæïåãæï àŽêýæèñèæŽ äëàŽáæ ïŽýæï ŽîŽûîòæãæ ïŽïŽäôã-
îë ŽéëùŽêŽ. éëõãŽêæèæŽ Žé ŽéëùŽêæï ŽéëýïêŽáëĲæïŽ áŽ ùŽèïŽýŽá Žéë-
ýïêŽáëĲæï ïŽçéŽîæïæ ìæîëĲâĲæ.
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In the present paper, we consider the system of nonlinear impulsive equa-
tions with a finite number of impulses points

dx

dt
= f(t, x) almost everywhere on [a, b] \ {τ1, . . . , τm0}, (1)

x(τl+)− x(τl−) = Il(x(τl)) (l = 1, . . . , m0), (2)

with the general boundary value condition

h(x) = 0, (3)

where a < τ1 < · · · < τm0 ≤ b (we will assume τ0 = a and τm0+1 = b, if nec-
essary), −∞ < a < b < +∞, m0 is a natural number, f = (fi)n

i=1 belongs
to Carathéodory class Car([a, b] × Rn,Rn), Il = (Ili)n

i=1 : Rn → Rn (l =
1, . . . , m0) are continuous operators, and h : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

is a continuous, nonlinear, in general, vector-functional.
In the paper, the sufficient (among them the effective sufficient) condi-

tions are given for solvability and unique solvability of the general nonlinear
impulsive boundary value problem (1), (2); (3). We have established the
Conti–Opial type theorems for the solvability and unique solvability of this
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problem. Analogous problems investigated in [8]– [11], [13] (see also the ref-
erences therein) deal with the general nonlinear boundary value problems
for ordinary differential and functional-differential systems.

Certain results obtained in the paper are more general than those already
known even for ordinary differential case.

Quite a number of issues of the theory of systems of differential equa-
tions with impulsive effect (both linear and nonlinear) have been studied
sufficiently well (for a survey of the results on impulsive systems see e.g. [1]–
[7], [12], [14] and the references therein). But the above-mentioned works,
as we know, do not contain the results obtained in the present paper.

Throughout the paper, the following notation and definitions will be used.
R = ]−∞,+∞[ , R+ = [0, +∞[ ; [a, b] (a, b ∈ R) is a closed segment.
Rn×m is the space of all real n × m-matrices X = (xij)

n,m
i,j=1 with the

norm

‖X‖ = max
j=1,...,m

n∑

i=1

|xij |;

|X| = (|xij |)n,m
i,j , [X]+ =

|X|+ X

2
;

Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . , m)

}
;

R(n×n)×m = Rn×n × · · · × Rn×n (m-times).

Rn = Rn×1 is the space of all real column n-vectors x = (xi)n
i=1; Rn

+ =
Rn×1

+ .
If X ∈ Rn×n, then X−1, det X and r(X) are, respectively, the matrix,

inverse to X, the determinant of X and the spectral radius of X; In×n is
the identity n× n-matrix.

b∨
a
(X) is the total variation of the matrix-function X : [a, b] → Rn×m,

i.e., the sum of total variations of the latter components;

V (X)(t) = (v(xij)(t))
n,m
i,j=1,

where v(xij)(a) = 0, v(xij)(t) =
t∨
a
(xij) for a < t ≤ b;

X(t−) and X(t+) are, respectively, the left and the right limit of the
matrix-function X : [a, b] → Rn×m at the point t (we will assume X(t) =
X(a) for t ≤ a and X(t) = X(b) for t ≥ b, if necessary);

‖X‖s = sup
{‖X(t)‖ : t ∈ [a, b]

}
.

BV([a, b], Rn×m) is the set of all matrix-functions of bounded variation

X : [a, b] → Rn×m (i.e., such that
b∨
a
(X) < +∞);

C([a, b], D), where D ⊂ Rn×m, is the set of all continuous matrix-functi-
ons X : [a, b] → D;

C([a, b], D; τ1, . . . , τm0) is the set of all matrix-functions X : [a, b] →
D, having the one-sided limits X(τl−) (l = 1, . . . , m0) and X(τl+) (l =
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1, . . . , m0), whose restrictions to an arbitrary closed interval [c, d] from [a, b]\
{τ1, . . . , τm0 l} belong to C([c, d], D);

Cs([a, b],Rn×m; τ1, . . . , τm0) is the Banach space of all X ∈
C([a, b],Rn×m; τ1, . . . , τm0) with the norm ‖X‖s.

C̃([a, b], D), where D ⊂ Rn×m, is the set of all absolutely continuous
matrix-functions X : [a, b] → D;

C̃([a, b], D; τ1, . . . , τm0) is the set of all matrix-functions X : [a, b] →
D, having the one-sided limits X(τl−) (l = 1, . . . , m0) and X(τl+) (l =
1, . . . , m0), whose restrictions to an arbitrary closed interval [c, d] from
[a, b] \ {τk}m

k=1 belong to C̃([c, d], D).
If B1 and B2 are the normed spaces, then the operator g : B1 → B2

(nonlinear, in general) is positive homogeneous if g(λx) = λg(x) for every
λ ∈ R+ and x ∈ B1.

The operator ϕ : C([a, b],Rn×m; τ1, . . . , τm0) → Rn is called nondecreas-
ing if for every x, y ∈ C([a, b],Rn×m; τ1, . . . , τm0) such that x(t) ≤ y(t) for
t ∈ [a, b] the inequality ϕ(x)(t) ≤ ϕ(y)(t) holds for t ∈ [a, b].

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

L([a, b], D), where D ⊂ Rn×m, is the set of all measurable and integrable
matrix-functions X : [a, b] → D.

If D1 ⊂ Rn and D2 ⊂ Rn×m, then Car([a, b] ×D1, D2) is the Carathé-
odory class, i.e., the set of all mappings F = (fkj)

n,m
k,j=1 : [a, b] ×D1 → D2

such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . , m} and k ∈ {1, . . . , n}:
(a) the function fkj(·, x) : [a, b] → D2 is measurable for every x ∈ D1;
(b) the function fkj(t, · ) : D1 → D2 is continuous for almost all t ∈ [a, b],

and

sup
{|fkj(·, x)| : x ∈ D0

} ∈ L([a, b], R; gik) for every compact D0 ⊂ D1.

Car0([a, b] ×D1, D2) is the set of all mappings F = (fkj)
n,m
k,j=1 : [a, b] ×

D1 → D2 such that the functions fkj(·, x(·)) (i = 1, . . . , l; k = 1, . . . , n) are
measurable for every vector-function x : [a, b] → Rn with a bounded total
variation.

By a solution of the impulsive system (1), (2) we understand a continuous
from the left vector-function x ∈ C̃([a, b],Rn; τ1, . . . , τm0) satisfying both
the system (1) a.e. on [a, b] \ {τ1 . . . , τm0} and the relation (2) for every
k ∈ {1, . . . , m0}.

Definition 1. Let ` : Cs([a, b],Rn; τ1, . . . , τm0) → Rn be a linear con-
tinuous operator, and let `0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+ be a positive
homogeneous operator. We say that a pair (P, {Jl}m0

l=1), consisting of a
matrix-function P ∈ Car([a, b]×Rn,Rn×n) and a finite sequence of contin-
uous operators Jl = (Jli)n

i=1 : Rn → Rn (l = 1, . . . , m0), satisfy the Opial
condition with respect to the pair (`, `0) if:
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(a) there exist a matrix-function Φ ∈ L([a, b],Rn
+) and constant matri-

ces Ψl ∈ Rn×n(l = 1, . . . , m0) such that

|P (t, x)| ≤ Φ(t) a.e. on [a, b], x ∈ Rn

and

|Jl(x)| ≤ Ψl for x ∈ Rn (l = 1, . . . , m0);

(b)

det(In×n + Gl) 6= 0 (l = 1, . . . ,m0) (4)

and the problem
dx

dt
= A(t)x a.e. on [a, b] \ {τ1, . . . , τm0}, (5)

x(τl+)− x(τl−) = Glx(τl) (l = 1, . . . , m0), (6)

|`(x)| ≤ `0(x) (7)
has only the trivial solution for every matrix-function A ∈
L([a, b],Rn×n) and constant matrices Gl (l = 1, . . . , m0) for which
there exists a sequence yk ∈ C̃([a, b],Rn; τ1, . . . , τm0) (k = 1, 2, . . . )
such that

lim
k→+∞

t∫

a

P (τ, yk(τ)) dτ =

t∫

a

A(τ) dτ uniformly on [a, b]

and

lim
k→+∞

Jl(yk(τl)) = Gl (l = 1, . . . ,m0).

Remark 1. In particular, the condition (4) holds if

‖Ψl‖ < 1 (l = 1, . . . , m0).

Below, we will assume that f = (fi)n
i=1 ∈ Car([a, b]×Rn,Rn×n) and, in

addition, f(τl, x) is arbitrary for x ∈ Rn (l = 1, . . . , m0).

Theorem 1. Let the conditions∥∥f(t, x)−P (t, x)x
∥∥≤α(t, ‖x‖) a.e. on [a, b]\{τ1, . . . , τm0}, x∈Rn, (8)

∥∥Il(x)− Jl(x)x
∥∥ ≤ βl(‖x‖) for x ∈ Rn (l = 1, . . . ,m0) (9)

and ∣∣h(x)− `(x)
∣∣ ≤ `0(x) + `1(‖x‖s) for x ∈ BV([a, b],Rn) (10)

hold, where

` : Cs([a, b],Rn; τ1, . . . , τm0)→Rn and `0 : Cs([a, b],Rn; τ1, . . . , τm0)→Rn
+

are, respectively, linear continuous and positive homogeneous continuous
operators, the pair (P, {Jl}m0

l=1) satisfies the Opial condition with respect to
the pair (`, `0); α ∈ Car([a, b]×R+,R+) is a function, nondecreasing in the
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second variable, and βl ∈ C([a, b],R+) (l = 1, . . . ,m0) and `1 ∈ C(R,Rn
+)

are nondecreasing, respectively, functions and vector-function such that

lim sup
ρ→+∞

1
ρ

(
‖`1(ρ)‖+

b∫

a

α(t, ρ) dt +
m0∑

l=1

βl(ρ)
)

< 1. (11)

Then the problem (1), (2); (3) is solvable.

Theorem 2. Let the conditions (8)–(10),

P1(t) ≤ P (t, x) ≤ P2(t) a.e. on [a, b] \ {τ1, . . . , τm0}, x ∈ Rn,

and
J1l ≤ Ik(x) ≤ J2l for x ∈ Rn (l = 1, . . . ,m0)

hold, where P ∈ Car0([a, b] × Rn,Rn×n), Pi ∈ L([a, b],Rn×n) (i = 1, 2),
Jil ∈ Rn×n (i = 1, 2; l = 1, . . . ,m0), ` : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

and `0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn
+ are, respectively, linear continuous

and positive homogeneous continuous operators; α ∈ Car([a, b] × R+,R+)
is a function, nondecreasing in the second variable, and βl ∈ C([a, b],R+)
(l = 1, . . . , m0) and `1 ∈ C(R,Rn

+) are nondecreasing, respectively, functions
and vector-function such that the condition (11) holds. Let, moreover, the
condition (4) hold and the problem (5), (6); (7) have only the trivial solution
for every matrix-function A ∈ L([a, b],Rn×n) and constant matrices Gl ∈
Rn×n (l = 1, . . . ,m0) such that

P1(t) ≤ A(t) ≤ P2(t) a.e. on [a, b] \ {τ1, . . . , τm0}, x ∈ Rn

and
J1l ≤ Gl ≤ J2l for x ∈ Rn (l = 1, . . . , m0).

Then the problem (1), (2); (3) is solvable.

Remark 2. Theorem 1.2 is of interest only in the case where P 6∈
Car([a, b]×Rn,Rn×n), because the theorem follows immediately from The-
orem 1.1 in the case where P ∈ Car([a, b]× Rn,Rn×n).

Theorem 3. Let the conditions (10),

|f(t, x)− P0(t)x| ≤
≤ Q(t)|x|+ q(t, ‖x‖) a.e. on [a, b] \ {τ1, . . . , τm0}, x ∈ Rn,

and
∣∣Il(x)− J0l · x

∣∣ ≤ Hl|x|+ hl(‖x‖) for x ∈ Rn (l = 1, . . . , m0)

hold, where P0 ∈ L([a, b],Rn×n), Q ∈ L([a, b],Rn×n
+ ), J0l and Hl ∈ Rn×n

(l = 1, . . . ,m0) are the constant matrices, ` : Cs([a, b],Rn; τ1, . . . , τm0) →
Rn and `0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+ are, respectively, the linear
continuous and positive homogeneous continuous operators; q ∈ Car([a, b]×
R+,Rn

+) is a vector-function, nondecreasing in the second variable, and
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hl ∈ C([a, b],R+) (l = 1, . . . , m0) and `1 ∈ C(R,Rn
+) are nondecreasing,

respectively, functions and vector-function such that

det(In×n + J0l) 6= 0 (l = 1, . . . , m0) (12)

and

‖Hl‖ · ‖(In×n + J0l)−1‖ < 1 (j = 1, 2; l = 1, . . . , m0) (13)

hold, and the system of impulsive inequalities

∣∣∣dx

dt
− P0(t)x

∣∣∣ ≤ Q(t)x a.e. on [a, b] \ {τ1, . . . , τm0}, (14)

∣∣x(τl+)− x(τl−)− J0lx(τl)
∣∣ ≤ Hl · x(τl) (l = 1, . . . , m0) (15)

have only the trivial solution under the condition (7). Then the problem
(1), (2); (3) is solvable.

Corollary 1. Let the conditions (12)
∣∣f(t, x)− P0(t)x

∣∣ ≤ q(t, ‖x‖) a.e. on [a, b] \ {τ1, . . . , τm0}, x ∈ Rn, (16)

and
∣∣Il(x)− J0l · x

∣∣ ≤ hl(‖x‖) for x ∈ Rn (l = 1, . . . ,m0) (17)

hold, where P0 ∈ L([a, b],Rn×n), J0l ∈ Rn×n (l = 1, . . . , m0) are the
constant matrices, ` : Cs([a, b],Rn; τ1, . . . , τm0) → Rn and `0 :
Cs([a, b],Rn×m; τ1, . . . , τm0) → Rn

+ are, respectively, linear continuous and
positive homogeneous continuous operators; q ∈ Car([a, b] × R+,Rn

+) is a
vector-function, nondecreasing in the second variable, and hl ∈ C([a, b],R+)
(l = 1, . . . , m0) and `1 ∈ C(R,Rn

+) are nondecreasing, respectively, functions
and vector-function such that the condition (11) holds. Let, moreover,

∣∣h(x)− `(x)
∣∣ ≤ `1(‖x‖s) for x ∈ BV([a, b],Rn) (18)

and the impulsive system

dx

dt
= P0(t)x a.e. on [a, b] \ {τ1, . . . , τm0},

x(τl+)− x(τl−) = J0lx(τl) (l = 1, . . . ,m0)

have only the trivial solution under the condition

`(x) = 0.

Then the problem (1), (2); (3) is solvable.
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For every matrix-function X ∈ L([a, b],Rn×n) and a sequence of constant
matrices Yk ∈ Rn×n (k = 1, . . . , m0) we introduce the operators[

(X, Y1, . . . , Ym0)(t)
]
0

= In for a ≤ t ≤ b,
[
(X, Y1, . . . , Ym0)(a)

]
i
= On×n (i = 1, 2, . . . ),

[
(X, Y1, . . . , Ym0)(t)

]
i+1

=

t∫

a

X(τ) · [(X, Y1, . . . , Ym0)(τ)
]
i
dτ+

+
∑

a≤τl<t

Yl ·
[
(X, Y1, . . . , Ym0)(τl)

]
i

for a < t ≤ b (i = 1, 2, . . . ). (19)

Corollary 2. Let the conditions (12), (16)–(18) hold, where

`(x) ≡
b∫

a

dL(t) · x(t),

P0 ∈ L([a, b],Rn×n), J0l ∈ Rn×n(l = 1, . . . , m0) are constant matrices,
L ∈ L([a, b],Rn×n), `0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+ is a positive homo-
geneous continuous operator; q ∈ Car([a, b]×R+,Rn

+) is a vector-function,
nondecreasing in the second variable, and hl ∈ C([a, b],R+) (l = 1, . . . , m0)
and `1 ∈ C(R,Rn

+) are nondecreasing, respectively, functions and vector-
function such that the condition (11) holds. Let, moreover, there exist nat-
ural numbers k and m such that the matrix

Mk = −
k−1∑

i=0

b∫

a

dL(t) · [(P0, Gl, . . . , Gm0)(t)
]
i

is nonsingular and

r(Mk,m) < 1, (20)

where the operators [(P0, G1, . . . , Gm0)(t)]i (i = 0, 1, . . . ) are defined by (19),
and

Mk,m =
[(|P0|, |G1|, . . . , |Gm0 |

)
(b)

]
m

+

+
m−1∑

i=0

[(|P0|, |G1|, . . . , |Gm0 |
)
(b)

]
i
×

×
b∫

a

dV (M−1
k L)(t) ·

[(|P0|, |G1|, . . . , |Gm0 |
)
(t)

]
k
.

Then the problem (1), (2); (3) is solvable.

Corollary 3. Let the conditions (12), (16)–(18) and

`(x) ≡
n0∑

j=1

Ljx(tj) (21)
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hold, where P0 ∈ L([a, b],Rn×n), J0l ∈ Rn×n (l = 1, . . . , m0) are cons-
tant matrices, tj ∈ [a, b] and Lj ∈ Rn×n (j = 1, . . . , n0), `0 :
Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+ is a positive homogeneous continuous op-
erator; q ∈ Car([a, b] × R+,Rn

+) is a vector-function, nondecreasing in the
second variable, and hl ∈ C([a, b],R+) (l = 1, . . . , m0) and `1 ∈ C(R,Rn

+)
are nondecreasing, respectively, functions and vector-function such that the
condition (11) holds. Let, moreover, there exist natural numbers l and m
such that the matrix

Mk =
n0∑

j=1

k−1∑

i=0

Lj

[
(P0, Gl, . . . , Gm0)(tj)

]
i

is nonsingular and the inequality (20) holds, where

Mk,m =
[(|P0|, |Gl|, . . . , |Gm0 |

)
(b)

]
m

+

+
( m−1∑

i=0

[(|P0|, |Gl|, . . . , |Gm0 |
)
(b)

]
i

)
×

×
n0∑

j=1

|M−1
k Lj | ·

[(|P0|, |Gl|, . . . , |Gm0 |)(tj)
]

k
.

Then the problem (1), (2); (3) is solvable.

Corollary 4. Let the conditions (12), (16)–(18) and (21) hold, where
P0 ∈ L([a, b],Rn×n), J0l ∈ Rn×n (l = 1, . . . ,m0) are the constant matrices,
tj ∈ [a, b] and Lj ∈ Rn×n (j = 1, . . . , n0), `0 : Cs([a, b],Rn; τ1, . . . , τm0) →
Rn

+ is a positive homogeneous continuous operator; q ∈ Car([a, b]×R+,Rn
+)

is a vector-function, nondecreasing in the second variable, and hl ∈
C([a, b],R+) (l = 1, . . . , m0) and `1 ∈ C(R,Rn

+) are nondecreasing, respec-
tively, functions and vector-function such that the condition (11) holds. Let,
moreover,

det
( n0∑

j=1

Lj

)
6= 0 and r(L0 · V (A)(b)) < 1,

where

L0 = In×n +
∣∣∣∣
( n0∑

j=1

Lj

)−1
∣∣∣∣ ·

n0∑

j=1

|Lj | and A0 =

b∫

a

|P0(t)| dt +
m0∑

l=1

|Gl|.

Then the problem (1), (2); (3) is solvable.

Theorem 4. Let the conditions (12), (13),
∣∣f(t, x)− f(t, y)− P0(t)(x− y)

∣∣ ≤ Q(t)|x− y|
a.e. on [a, b] \ {τ1, . . . , τm0}, x, y ∈ Rn,∣∣Il(x)−Il(y)−J0l · (x−y)

∣∣≤Hk · |x−y| for x, y∈Rn (k= l, . . . ,m0)
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and ∣∣h(x)− h(y)− `(x− y)
∣∣ ≤ `0(x− y) for x, y ∈ BV([a, b],Rn)

hold, where P0 ∈ L([a, b],Rn×n), Q ∈ L([a, b],Rn×n
+ ), J0k and Hl ∈ Rn×n

(l = 1, . . . ,m0) are the constant matrices, ` : Cs([a, b],Rn; τ1, . . . , τm0) →
Rn and `0 : Cs([a, b],Rn; τ1, . . . , τm0) → Rn

+ are, respectively, linear con-
tinuous and positive homogeneous continuous operators. Let, moreover, the
system of impulsive inequalities (14), (15) have only the trivial solution un-
der the condition (7). Then the problem (1), (2); (3) is solvable.
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