Memoirs on Differential Equations and Mathematical Physics

 Volume 57, 2012, 41-50Jaroslav Jaroš

GENERALIZED PICONE IDENTITY
AND COMPARISON OF HALF-LINEAR DIFFERENTIAL EQUATIONS
OF ORDER $4 m$

Abstract. A Picone-type identity and the Sturm-type comparison theorems are established for ordinary differential equations of the form

$$
\left(p(t) \varphi\left(u^{(2 m)}\right)\right)^{(2 m)}+q(t) \varphi(u)=0
$$

and

$$
\left(P(t) \varphi\left(v^{(2 m)}\right)\right)^{(2 m)}+Q(t) \varphi(v)=0,
$$

where $m \geq 1, p, P \in C^{2 m}([a, b],(0, \infty)), q, Q \in C([a, b], \mathbf{R}), \varphi(s):=|s|^{\alpha} \operatorname{sgn} s$ and $\alpha>0$.

2010 Mathematics Subject Classification. 34C10.
Key words and phrases. Picone's identity, comparison, half-linear differential operator.

$$
\left(p(t) \varphi\left(u^{(2 m)}\right)\right)^{(2 m)}+q(t) \varphi(u)=0
$$

@๐

$$
\left(P(t) \varphi\left(v^{(2 m)}\right)\right)^{(2 m)}+Q(t) \varphi(v)=0
$$

$\operatorname{logơ}_{(} m \geq 1, p, P \in C^{2 m}([a, b],(0, \infty)), q, Q \in C([a, b], \mathbf{R}), \varphi(s):=$

1. Introduction

In the classical Sturm comparison theory for linear self-adjoint differential equations of the second order a fundamental role plays by the so-called Pi cone's formula (see [14]). It states that if $x, p x^{\prime}, y$ and $P y^{\prime}$ are continuously differentiable functions on an interval I with $y(t) \neq 0$, then

$$
\begin{gather*}
\frac{d}{d t}\left[\frac{x}{y}\left(p x^{\prime} y-P x y^{\prime}\right)\right]= \\
=-\frac{x^{2}}{y}\left(P y^{\prime}\right)^{\prime}+x\left(p x^{\prime}\right)^{\prime}+(p-P) x^{\prime 2}+P\left(x^{\prime}-\frac{x}{y} y^{\prime}\right)^{2} . \tag{1.1}
\end{gather*}
$$

If, in addition, x and y solve in I the equations

$$
\begin{equation*}
-\left(p(t) u^{\prime}\right)^{\prime}+q(t) u=0 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
-\left(P(t) v^{\prime}\right)^{\prime}+Q(t) v=0 \tag{1.3}
\end{equation*}
$$

respectively, where $0<P(t) \leq p(t)$ and $Q(t) \leq q(t)$ in I, and x have consecutive zeros at a and $b(a<b)$, then integrating (1.1) between a and b, we obtain

$$
\begin{equation*}
0=\int_{a}^{b}\left[(q(t)-Q(t)) x^{2}+(p(t)-P(t)) x^{\prime 2}+P(t)\left(x^{\prime}-\frac{x}{y} y^{\prime}\right)^{2}\right] d t \tag{1.4}
\end{equation*}
$$

and the Sturmian conclusion about the existence of a zero in $[a, b]$ for any solution y of the majorant equation (1.3) readily follows from (1.4).

Generalizations and extensions of the Sturm's comparison principle and underlying Picone-type identities to nonlinear equations and higher-order (ordinary and partial) differential operators have been obtained by various authors. We refer, in particular, to the papers [1]-[17] and the references cited therein.

The purpose of the present paper is to extend (1.1) to half-linear ordinary differential operators of the form

$$
\begin{equation*}
l_{\alpha}[x] \equiv\left(p \varphi\left(x^{(2 m)}\right)\right)^{(2 m)}+q \varphi(x) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.L_{\alpha}[y] \equiv\left(P \varphi\left(y^{(2 m)}\right)\right)^{(2 m)}+Q \varphi_{(} y\right) \tag{1.6}
\end{equation*}
$$

where $m \geq 1, p, P \in C^{2 m}([a, b],(0, \infty)), q, Q \in C([a, b], \mathbf{R})$ and $\varphi(s):=$ $|s|^{\alpha-1} s$ for $s \neq 0, \alpha>0$, and $\varphi(0)=0$. Next, in Section 3, we illustrate the usefulness of the obtained identity by deriving Sturm's comparison theorems and other qualitative results concerning half-linear differential equations of the order $4 m$.

In the linear case, i.e. if (1.5) and (1.6) reduce to a pair of $4 m$ th-order self-adjoint operators of the form $l_{1}[x] \equiv\left(p x^{(2 m)}\right)^{(2 m)}+q x$ and $L_{1}[y] \equiv$ $\left(P y^{(2 m)}\right)^{(2 m)}+Q y$, respectively, two different kinds of Picone-type identities are known in the literature. The first one which can be found in Kusano
et al. [12] says (when specialized to (1.5) and (1.6)), that if $x \in D_{l_{1}}(I)$, $y \in D_{L_{1}}(I)$, and none of $y, y^{\prime}, \ldots, y^{(2 m-1)}$ vanishes in I, then

$$
\begin{gather*}
\frac{d}{d t}\left\{\sum_{k=0}^{2 m-1}(-1)^{k} \frac{x^{(k)}}{y^{(k)}}\left[x^{(k)}\left(P y^{(2 m)}\right)^{(2 m-k-1)}-y^{(k)}\left(p x^{(2 m)}\right)^{(2 m-k-1)}\right]\right\}= \\
=\frac{x^{2}}{y} L_{1}[y]-x l_{1}[x]+(q-Q) x^{2}+(p-P)\left[x^{(2 m)}\right]^{2}+ \\
+P\left[x^{(2 m)} \frac{x^{(2 m-1)}}{y^{(2 m-1)}} y^{(2 m)}\right]^{2}-y^{(2 m-1)}\left(P y^{(2 m)}\right)^{\prime}\left[\frac{x^{(2 m-1)}}{y^{(2 m-1)}}-\frac{x^{(2 m-2)}}{y^{(2 m-2)}}\right]^{2} . \tag{1.7}
\end{gather*}
$$

A typical comparison result based on the above formula is the following theorem (see [12]).

Theorem A. Suppose there exists a nontrivial real-valued function $u \in$ $\mathcal{D}_{l_{1}}([a, b])$ which satisfies

$$
\begin{gathered}
\int_{a}^{b} u l_{1}[u] d t \leq 0 \\
u(a)=u^{\prime}(a)=\cdots=u^{(2 m-1)}(a)=u(b)=\cdots=u^{(2 m-1)}(b)=0
\end{gathered}
$$

and

$$
\int_{a}^{b}\left[(p(t)-P(t))\left(u^{(2 m)}\right)^{2}+(q(t)-Q(t)) u^{2}\right] d t \geq 0
$$

If $v \in \mathcal{D}_{L_{1}}([a, b])$ satisfies

$$
\begin{gathered}
v L_{1}[v] \geq 0 \text { in }(a, b), \text { where } P(t) \geq 0, \\
v^{(k)}\left[P(t) v^{(2 m)}\right]^{(2 m-k)} \geq 0 \quad \text { in }(a, b), \quad 1 \leq k \leq 2 m-1,
\end{gathered}
$$

and

$$
\left[P(t) v^{(2 m)}\right]^{(2 m-\nu)} \neq 0 \text { in }(a, b) \text { for some } \nu, \quad 1 \leq \nu \leq 2 m-1
$$

then at least one of $v, v^{\prime}, \ldots, v^{(2 m-1)}$ has a zero in (a, b).
Recently, Kusano-Yoshida's formula (1.7) was generalized to half-linear ordinary differential operators of an arbitrary even order (see [5]).

The second Picone type identity applied to (1.5) and (1.6) has been obtained by N . Yoshida [16]. The specialization to the one-dimensional case studied here says that if $x \in D_{l_{1}}(I), y \in D_{L_{1}}(I)$ and none of $y, y^{\prime}, \ldots, y^{(2 m-2)}$ vanishes in I, then

$$
\begin{aligned}
& \frac{d}{d t}\left\{\sum _ { k = 0 } ^ { m - 1 } \frac { x ^ { (2 m - 2 k - 2) } } { y ^ { (2 m - 2 k - 2) } } \left[x^{(2 m-2 k-2)}\left(P y^{(2 m)}\right)^{(2 k+1)}-\right.\right. \\
& \left.-y^{(2 m-2 k-2)}\left(p x^{(2 m)}\right)^{(2 k+1)}\right]+
\end{aligned}
$$

$$
\begin{gather*}
\left.+\sum_{k=0}^{m-1}\left[\left(p x^{(2 m)}\right)^{(2 m-2 k-2)} x^{(2 k+1)}-\left(P y^{(2 m)}\right)^{(2 k)}\left(\frac{\left(x^{(2 m-2 k-2)}\right)^{2}}{y^{(2 m-2 k-2)}}\right)^{\prime}\right]\right\}= \\
=\frac{x^{2}}{y} L_{1}[y]-x l_{1}[x]+(p-P)\left[x^{(2 m)}\right]^{2}+(q-Q) x^{2}+ \\
+P\left[x^{(2 m)}-\frac{x^{(2 m-2)}}{y^{(2 m-2)}} y^{(2 m)}\right]^{2}+ \\
+\sum_{k=1}^{m-1} \frac{\left(P y^{(2 m)}\right)^{(2 k)}}{y^{(2 m-2 k)}}\left[x^{(2 m-2 k)}-\frac{x^{(2 m-2 k-2)}}{y^{(2 m-2 k-2)}} y^{(2 m-2 k)}\right]^{2}- \\
-2 \sum_{k=0}^{m-1} \frac{\left(P y^{(2 m)}\right)^{(2 k)}}{y^{(2 m-2 k-2)}}\left[x^{(2 m-2 k-1)}-\frac{x^{(2 m-2 k-2)}}{y^{(2 m-2 k-2)}} y^{(2 m-2 k-1)}\right]^{2} \tag{1.8}
\end{gather*}
$$

The following comparison theorem can be easily obtained with the help of the identity (1.8) (see [16]).

Theorem B. Assume that there exists a nontrivial function $u \in D_{l_{1}}([a, b])$ which satisfies

$$
\begin{gathered}
\int_{a}^{b} u l_{1}[u] d t \leq 0 \\
u(a)=u^{\prime}(a)=\cdots=u^{(2 m-1)}(a)=u(b)=u^{\prime}(b)=\cdots=u^{(2 m-1)}(b)=0
\end{gathered}
$$

and

$$
V[u] \equiv \int_{a}^{b}\left[(p(t)-P(t))\left(u^{(2 m)}\right)^{2}+(q(t)-Q(t)) u^{2}\right] d t \geq 0
$$

If $v \in D_{L_{1}}([a, b])$ satisfies

$$
\begin{gathered}
L_{1}[v] \geq 0 \quad \text { in }(a, b), \\
(-1)^{k} v^{(2 k)}(t)>0 \text { at some point } t \in(a, b), \quad 0 \leq k \leq m-1, \\
(-1)^{m+k)}\left(P v^{(2 m)}\right)^{(2 k)} \geq 0 \text { in }(a, b), \quad 0 \leq k \leq m-2 \\
\left(P v^{(2 m)}\right)^{(2 m-2)}<0 \text { in }(a, b)
\end{gathered}
$$

then at least one of the functions $v, v^{\prime}, \ldots, v^{(2 m-2)}$ must vanish at some point of $[a, b]$.

2. The Generalized Picone's Identity

Let $p, P \in C^{2 m}([a, b],(0, \infty)), m \geq 1$ and $q, Q \in C([a, b], \mathbf{R})$. For a fixed $\alpha>0$ we define the function $\varphi: \mathbf{R} \rightarrow \mathbf{R}$ by $\varphi(s)=|s|^{\alpha-1} s$ for $s \neq 0$ and $\varphi(0)=0$, and consider ordinary differential operators of the form

$$
l_{\alpha}[x]=\left(p(t) \varphi\left(x^{(2 m)}\right)\right)^{(2 m)}+q(t) \varphi(x)
$$

and

$$
L_{\alpha}[y]=\left(P(t) \varphi\left(y^{(2 m)}\right)\right)^{(2 m)}+Q(t) \varphi(y)
$$

with the domains $D_{l_{\alpha}}(a, b)$ (resp., $\left.D_{L_{\alpha}}(a, b)\right)$ defined to be the sets of all functions x (resp., y) of the class $C^{2 m}([a, b], \mathbf{R})$ such that $p \varphi\left(x^{(2 m)}\right)$ (resp., $\left.P \varphi\left(y^{(2 m)}\right)\right)$ are in $C^{2 m}((a, b), \mathbf{R}) \bigcap C([a, b], \mathbf{R})$.

Also, by Φ_{α} we denote the form defined for $X, Y \in \mathbf{R}$ and $\alpha>0$ by

$$
\Phi_{\alpha}(X, Y):=|X|^{\alpha+1}+\alpha|Y|^{\alpha+1}-(\alpha+1) X \varphi(Y)
$$

According to the Young inequality, it follows that $\Phi_{\alpha}(X, Y) \geq 0$ for all $X, Y \in \mathbf{R}$ and the equality holds if and only if $X=Y$.

We begin with the following lemma which can be verified by a routine computation.

Lemma 2.1. If $x \in C^{2 m}([a, b], \mathbf{R}), y \in D_{L_{\alpha}}((a, b))$ and none of y, y^{\prime}, \ldots, $y^{(2 m-2)}$ vanishes in (a, b), then

$$
\begin{align*}
& \frac{d}{d t}\left\{\sum _ { k = 0 } ^ { m - 1 } \left[-\frac{\left|x^{(2 m-2 k-2)}\right|^{\alpha+1}}{\varphi\left(y^{(2 m-2 k-2)}\right)}\left(P \varphi\left(y^{(2 m)}\right)\right)^{(2 k+1)}+\right.\right. \\
& \left.\left.\quad+\left(\frac{\left|x^{(2 m-2 k-2)}\right|^{\alpha+1}}{\varphi\left(y^{(2 m-2 k-2)}\right)}\right)^{\prime}\left(P \varphi\left(y^{(2 m)}\right)\right)^{(2 k)}\right]\right\}= \\
& =-\frac{|x|^{\alpha+1}}{\varphi(y)} L_{\alpha}[y]+Q|x|^{\alpha+1}+P\left|x^{(2 m)}\right|^{\alpha+1}-P \Phi_{\alpha}\left(x^{(2 m)}, \frac{x^{(2 m-2)}}{y^{(2 m-2)}} y^{(2 m)}\right)- \\
& -\sum_{k=1}^{m-1} \frac{\left(P \varphi\left(y^{(2 m)}\right)\right)^{(2 k)}}{\varphi\left(y^{(2 m-2 k)}\right)} \Phi_{\alpha}\left(x^{(2 m-2 k)}, \frac{x^{(2 m-2 k-2)}}{y^{(2 m-2 k-2)}} y^{(2 m-2 k)}\right)+ \\
& +\alpha(\alpha+1) \sum_{k=0}^{m-1} \frac{\left(P \varphi\left(y^{(2 m)}\right)\right)^{(2 k)}}{\varphi\left(y^{(2 m-2 k-2)}\right)}\left|x^{(2 m-2 k-2)}\right|^{\alpha-1} \times \\
& \times\left[x^{(2 m-2 k-1)}-\frac{x^{(2 m-2 k-2)}}{y^{(2 m-2 k-2)}} y^{(2 m-2 k-1)}\right]^{2} \tag{2.1}
\end{align*}
$$

We now establish a stronger form of Picone's identity in which the relatively weak hypothesis from Lemma 2.1 that x is any $2 m$-times continuously differentiable function is replaced by the assumption that x is from the domain $\mathcal{D}_{l_{\alpha}}$ of the operator l_{α}.

Lemma 2.2. If $x \in D_{l_{\alpha}}((a, b)), y \in D_{L_{\alpha}}((a, b))$ and none of y, y^{\prime}, \ldots, $y^{(2 m-2)}$ vanishes in (a, b), then

$$
\begin{aligned}
& \frac{d}{d t}\left\{\sum _ { k = 0 } ^ { m - 1 } \left[\frac{\left|x^{(2 m-2 k-2)}\right|^{\alpha+1}}{\varphi\left(y^{(2 m-2 k-2)}\right)}\left(P \varphi\left(y^{(2 m)}\right)\right)^{(2 k+1)}-\right.\right. \\
& -\left(P \varphi\left(y^{(2 m)}\right)\right)^{(2 k)}\left(\frac{\left|x^{(2 m-2 k-2)}\right|^{\alpha+1}}{\varphi\left(y^{(2 m-2 k-2)}\right)}\right)^{\prime}+
\end{aligned}
$$

$$
\begin{gather*}
\left.\left.+\left(p \varphi\left(x^{(2 m)}\right)\right)^{(2 m-2 k-2)} x^{(2 k+1)}-x^{(2 m-2 k-2)}\left(p \varphi\left(x^{(2 m)}\right)\right)^{(2 k+1)}\right]\right\}= \\
=\frac{|x|^{\alpha+1}}{\varphi(y)} L_{\alpha}[y]-x l_{\alpha}[x]+(p-P)\left|x^{(2 m)}\right|^{\alpha+1}+(q-Q)|u|^{\alpha+1}+ \\
+P \Phi_{\alpha}\left(x^{(2 m)}, \frac{x^{(2 m-2)}}{y^{(2 m-2)}} y^{(2 m)}\right)+ \\
+\sum_{k=1}^{m-1} \frac{\left(P \varphi\left(y^{(2 m)}\right)\right)^{(2 k)}}{\varphi\left(y^{(2 m-2 k)}\right)} \Phi_{\alpha}\left(x^{(2 m-2 k)}, \frac{x^{(2 m-2 k-2)}}{y^{(2 m-2 k-2)}} y^{(2 m-2 k)}\right)- \\
\quad-\alpha(\alpha+1) \sum_{k=0}^{m-1} \frac{\left(P \varphi\left(y^{(2 m)}\right)\right)^{(2 k)}}{\varphi\left(y^{(2 m-2 k-2)}\right)}\left|x^{(2 m-2 k-2)}\right|^{\alpha-1} \times \\
\times \tag{2.2}
\end{gather*}
$$

3. Applications

As the first application of the identity (2.1) we obtain the following result.
Theorem 3.1. If there exists a nontrivial function $u \in C^{2 m}([a, b], \mathbf{R})$ such that

$$
\begin{equation*}
u(a)=u^{\prime}(a)=\cdots=u^{(2 m-1)}(a)=u(b)=\cdots=u^{(2 m-1)}(b)=0 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{\alpha}[u] \equiv \int_{a}^{b}\left[P(t)\left|u^{(2 m)}\right|^{\alpha+1}+Q(t)|u|^{\alpha+1}\right] d t \leq 0 \tag{3.2}
\end{equation*}
$$

then there does not exist a $v \in \mathcal{D}_{L_{\alpha}}([a, b])$ satisfying

$$
\begin{gather*}
L_{\alpha}[v] \geq 0 \text { in }(a, b), \tag{3.3}\\
v(a)>0, \quad v(b)>0 \tag{3.4}\\
(-1)^{k} v^{(2 k)}>0 \text { in }[a, b], \quad 1 \leq k \leq m-1, \tag{3.5}\\
(-1)^{m+k}\left(P \varphi\left(v^{(2 m)}\right)\right)^{(2 k)} \geq 0 \quad \text { in }(a, b), \quad 0 \leq k \leq m-2 \tag{3.6}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(P \varphi\left(v^{(2 m)}\right)\right)^{(2 m-2)}<0 \text { in }(a, b) . \tag{3.7}
\end{equation*}
$$

Proof. Suppose to the contrary that there exists a $v \in \mathcal{D}_{L_{\alpha}}([a, b])$ satisfying (3.3)-(3.7). Since $v(a)>0, v(b)>0$ and $v^{\prime \prime}(t)<0$ in (a, b), it follows that $v(t)>0$ on $[a, b]$. Integrating the identity (2.1) on $[a, b]$, we obtain

$$
0 \geq M_{\alpha}[u]-\int_{a}^{b} \frac{|u|^{\alpha+1}}{v^{\alpha}} L_{\alpha}[v] d t \geq
$$

$$
\geq-\alpha(\alpha+1) \int_{a}^{b} \frac{\left(P \varphi\left(v^{(2 m)}\right)\right)^{(2 m-2)}}{v^{\alpha}}|u|^{\alpha-1}\left(u^{\prime}-\frac{u}{v} v^{\prime}\right)^{2} d t \geq 0
$$

It follows that $u^{\prime}-u v^{\prime} / v=0$ in (a, b) and therefore $u / v=k$ in $[a, b]$ for some nonzero constant k. Since $u(a)=u(b)=0$ and $v(a)>0, v(b)>0$, we have a contradiction. Hence there can exist no v satisfying (3.3)-(3.7).

Theorem 3.2. If there exists a nontrivial $u \in C^{2 m}([a, b], \mathbf{R})$ satisfying (3.1) and (3.2), then every solution $v \in \mathcal{D}_{L_{\alpha}}((a, b))$ of the inequality (3.3) satisfying (3.5)-(3.7) and

$$
\begin{equation*}
v\left(t_{0}\right)>0 \text { for some } t_{0} \in(a, b) \tag{3.8}
\end{equation*}
$$

has zero in $[a, b]$.
Proof. If the function v satisfies (3.3), (3.5)-(3.7) and (3.8), then either $v(a)<0$, and hence v, must vanish somewhere in (a, b), or $v(a) \geq 0$. In the latter case, however, Theorem 3.1 implies that $v(a)=0$ or $v(b)=0$, and thus the proof is complete.

As an application of the identity (2.2), we derive the Sturm-type comparison theorem. It belongs to weak comparison results in the sense that the conclusion regarding to v applies to $[a, b]$ rather than (a, b).

Theorem 3.3. If there exists a nontrivial $u \in \mathcal{D}_{l_{\alpha}}((a, b))$ such that

$$
\begin{gather*}
\int_{a}^{b} u l_{\alpha}[u] d t \leq 0 \tag{3.9}\\
u(a)=u^{\prime}(a)=\cdots=u^{(2 m-1)}(a)=u(b)=\cdots=u^{(2 m-1)}(b)=0, \tag{3.10}\\
V_{\alpha}[u] \equiv \int_{a}^{b}\left[(p(t)-P(t))\left|u^{(2 m)}\right|^{\alpha+1}+(q(t)-Q(t))|u|^{\alpha+1}\right] d t \geq 0, \tag{3.11}
\end{gather*}
$$

and if $v \in \mathcal{D}_{L_{\alpha}}((a, b))$ satisfies

$$
\begin{equation*}
L_{\alpha}[v] \geq 0 \text { in }(a, b) \tag{3.12}
\end{equation*}
$$

$$
\begin{gather*}
(-1)^{k} v^{(2 k)}\left(t_{k}\right)>0 \text { at some point } t_{k} \in(a, b), \quad 0 \leq k \leq m-1 \tag{3.13}\\
(-1)^{m+k}\left(P \varphi\left(v^{(2 m)}\right)\right)^{(2 k)} \geq 0 \quad \text { in }(a, b), \quad 0 \leq k \leq m-2 \tag{3.14}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(P \varphi\left(v^{(2 m)}\right)\right)^{(2 m-2)}<0 \text { in }(a, b) \tag{3.15}
\end{equation*}
$$

then at least one of $v, v^{\prime \prime}, \ldots, v^{(2 m-2)}$ vanishes somewhere in $[a, b]$.
Proof. Suppose that none of $v, v^{\prime}, \ldots, v^{(2 m-2)}$ vanishes in $[a, b]$. From the identity (2.2) integrated on $[a, b]$ we obtain, in view of the the conditions of the theorem, that

$$
\begin{gathered}
0=V_{\alpha}[u]+\int_{a}^{b} \frac{|u|^{\alpha+1}}{v^{\alpha}} L_{\alpha}[v] d t-\int_{a}^{b} u l_{\alpha}[u] d t+\int_{a}^{b} P \Phi_{\alpha}\left(u^{(2 m)}, \frac{u^{(2 m-2)}}{v^{(2 m-2)}} v^{(2 m)}\right) d t+ \\
+\int_{a}^{b}\left\{\sum_{k=1}^{m-1} \frac{\left(P \varphi\left(v^{(2 m)}\right)\right)^{(2 k)}}{\varphi\left(v^{(2 m-2 k)}\right)} \Phi_{\alpha}\left(u^{(2 m-2 k)}, \frac{u^{(2 m-2 k-2)}}{v^{(2 m-2 k-2)}} v^{(2 m-2 k)}\right)\right\} d t- \\
-\alpha(\alpha+1) \int_{a}^{b}\left\{\sum_{k=0}^{m-1} \frac{\left(P \varphi\left(v^{(2 m)}\right)\right)^{(2 k)}}{\varphi\left(v^{(2 m-2 k-2)}\right)}\left|u^{(2 m-2 k-2)}\right|^{\alpha-1} \times\right. \\
\left.\times\left[u^{2 m-2 k-1)}-\frac{u^{(2 m-2 k-2)}}{v^{(2 m-2 k-2)}} v^{(2 m-2 k-1)}\right]^{2}\right\} d t \geq \\
\geq-\alpha(\alpha+1) \int_{a}^{b} \frac{\left(P \varphi\left(v^{(2 m)}\right)\right)^{(2 m-2)}}{v^{\alpha}}|u|^{\alpha-1}\left(u^{\prime}-\frac{u}{v} v^{\prime}\right)^{2} d t \geq 0
\end{gathered}
$$

Consequently, $u^{\prime}-u v^{\prime} / v=0$ in (a, b), that is, $u / v=k$ in (a, b), and hence on $[a, b]$ by continuity, for some nonzero constant k. However, this is not the case since $u(a)=u(b)=0$, whereas $v(t)>0$ on $[a, b]$. This contradiction shows that at least one of $v, v^{\prime}, \ldots, v^{(2 m-2)}$ must vanish in $[a, b]$.

Finally, we use the identity (2.2) to obtain a lower bound for the first eigenvalue of the nonlinear eigenvalue problem

$$
\begin{gather*}
l_{\alpha}[u]=\lambda \varphi(u) \text { in }(a, b) \tag{3.16}\\
u(a)=u^{\prime}(a)=\cdots=u^{(2 m-1)}(a)=u(b)=\cdots=u^{(2 m-1)}(b)=0 \tag{3.17}
\end{gather*}
$$

Theorem 3.4. Let λ_{1} be the first eigenvalue of the problem (3.16)-(3.17) and $u_{1} \in \mathcal{D}_{l_{\alpha}}((a, b))$ be the corresponding eigenfunction. If there exists a function $v \in \mathcal{D}_{L_{\alpha}}((a, b))$ such that

$$
\begin{aligned}
(-1)^{k} v^{(2 k)} & >0 \text { in }[a, b], 0 \leq k \leq m-1, \\
(-1)^{m+k}\left(P \varphi\left(v^{(2 m)}\right)\right)^{(2 k)} \geq 0 & \text { in }(a, b), \quad 0 \leq k \leq m-1,
\end{aligned}
$$

and if $V_{\alpha}\left[u_{1}\right] \geq 0$, then $\lambda_{1} \geq \inf _{t \in(a, b)}\left[\frac{L_{\alpha}[v]}{v^{\alpha}}\right]$.
Proof. The identity (2.2) in view of the above hypotheses implies that

$$
\lambda_{1} \int_{a}^{b}\left|u_{1}\right|^{\alpha+1} d t-\int_{a}^{b}\left|u_{1}\right|^{\alpha+1} \frac{L_{\alpha}[v]}{v^{\alpha}} d t \geq 0
$$

from which the conclusion follows readily.

References

1. D. R. Dunninger, A Picone integral identity for a class of fourth order elliptic differential inequalities. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 50 (1971), 630-641.
2. M. S. P. Eastham, The Picone identity for self-adjoint differential equations of even order. Mathematika 20 (1973), 197-200.
3. Á. Elbert, A half-linear second order differential equation. Qualitative theory of differential equations, Vol. I, II (Szeged, 1979), pp. 153-180, Colloq. Math. Soc. János Bolyai, 30, North-Holland, Amsterdam-New York, 1981.
4. J. Jaroš, Comparison theorems for half-linear equations of fourth order. Equadiff 9 Conference on Differential Equations and Their Applications (Brno, Czech Republic, August 25-29, 1997). Abstracts and Enlarged Abstracts (Ed. by Z. Došlá, J. Kalas, J. Vosmanský), Masaryk University, Brno, p. 233.
5. J. Jaroš, The higher-order Picone identity and comparison of half-linear differential equations of even order. Nonlinear Anal. 74 (2011), No. 18, 7513-7518.
6. J. Jaroš and T. Kusano, Second-order semilinear differential equations with external forcing terms. (Japanese) Structure of functional equations and mathematical methods (Japanese) (Kyoto, 1996). Sūrikaisekikenkyūsho Kōkyūroku No. 984 (1997), 191-197.
7. J. Jaroš and T. Kusano, A Picone type identity for second order half-linear differential equations. Acta Math. Univ. Comenian. (N.S.) 68 (1999), No. 1, 137-151.
8. K. Kreith, A comparison theorem for fourth order differential equations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 46 (1969), 664-666.
9. K. Kreith, A Picone identity for fourth order differential equations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52 (1972), 455-456.
10. K. Kreith, Oscillation theory. Lecture Notes in Mathematics. 324. Springer-Verlag, Berlin-Heidelberg-New York, 1973.
11. K. Kreith, Picone's identity and generalizations. Collection of articles dedicated to Mauro Picone on the occasion of his ninetieth birthday. Rend. Mat. (6) 8 (1975), 251-262.
12. T. Kusano and N. Yoshida, Picone's identity for ordinary differential operators of even order. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), No. 4, 524-530.
13. W. Leighton and Z. Nehari, On the oscillation of solutions of self-adjoint linear differential equations of the fourth order. Trans. Amer. Math. Soc. 89 (1958), 325377.
14. M. Picone, Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale lineare ordinaria del second'ordine. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11 (1910), 1-144.
15. T. Tanigawa and N. Yoshida, Picone identities for ordinary differential equations of fourth order. Math. J. Toyama Univ. 27 (2004), 91-99.
16. N. Yoshida, A Picone identity for elliptic differential operators of order $4 m$ with applications. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), No. 3, 306-317.
17. N. Yoshida, Nonoscillation criteria for fourth order elliptic equations. Hiroshima Math. J. 5 (1975), 23-31.
(Received 03.06.2012)

Author's address:

Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia.
e-mail: jaros@fmph.uniba.sk

