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Abstract. We investigate an asymptotic behaviour of homoclinic solu-
tions of the singular differential equation (p(t)u′)′ = p(t)f(u). Here f is
Lipschitz continuous on R and has at least two zeros 0 and L > 0. The
function p is continuous on [0,∞), has a positive continuous derivative on
(0,∞) and p(0) = 0.
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îâäæñéâ. àŽéëçãèâñèæŽ (p(t)u′)′ = p(t)f(u) ïæêàñèŽîñèæ áæòâîâê-
ùæŽèñîæ àŽêðëèâĲæï ßëéëçèæêæçñîæ ŽéëêŽýïêâĲæï Žïæéìðëðñîæ åãæïâĲâĲæ.
Žó f : R → R èæìöæùñîŽá ñûõãâðæ, ýëèë p : [0,∞) → [0,∞) ñûõãâðæ áŽ
(0,∞) öñŽèâáöæ ûŽîéëâĲŽáæ òñêóùæŽŽ. ŽéŽïåŽê f(0) = f(L) = 0, ïŽáŽù
L > 0, p(0) = 0 áŽ p′(t) > 0, îëùŽ t > 0.
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1. Introduction

We investigate the differential equation

(p(t)u′)′ = p(t)f(u), t ∈ (0,∞), (1)

and throughout the paper it will be assumed that f satisfies

f ∈ Liploc(R), ∃L ∈ (0,∞) : f(L) = 0, (2)

∃L0 ∈ [−∞, 0) : xf(x) < 0, x ∈ (L0, 0) ∪ (0, L), (3)

∃B̄∈(L0, 0) : F (B̄)=F (L), where F (x)=−
x∫

0

f(z) dz, x∈R, (4)

and p fulfils
p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, (5)

p′(t) > 0, t ∈ (0,∞), lim
t→∞

p′(t)
p(t)

= 0. (6)

Due to p(0) = 0, equation (1) has a singularity at t = 0.

Definition 1. A function u ∈ C1[0,∞)∩C2(0,∞) which satisfies equa-
tion (1) for all t ∈ (0,∞) is called a solution of equation (1).

Consider a solution u of equation (1). Since u ∈ C1[0,∞), we have
u(0), u′(0) ∈ R, and the assumption p(0) = 0 yields p(0)u′(0) = 0. We
can find that M > 0 and δ > 0 such that |f(u(t))| ≤ M for t ∈ (0, δ).
Integrating equation (1) and using the fact that p is increasing, we get

|u′(t)| =
∣∣∣∣∣∣

1
p(t)

t∫

0

p(s)f(u(s)) ds

∣∣∣∣∣∣
≤ M

p(t)

t∫

0

p(s) ds ≤ Mt, t ∈ (0, δ).

Consequently, the condition u′(0) = 0 is necessary for each solution u of
equation (1). Therefore the set of all solutions of equation (1) forms a
one-parameter system of functions u satisfying u(0) = A, A ∈ R.

Definition 2. Let u be a solution of equation (1) and let L be of (2)
and (3). Denote usup = sup{u(t) : t ∈ [0,∞)}. If usup = L (usup < L or
usup > L), then u is called a homoclinic solution (a damped solution or an
escape solution).

The existence and properties of these three types of solutions have been
investigated in [19]–[23]. In particular, we have proved that if u(0) ∈ (0, L),
than u is a damped solution ([22], Theorem 2.3). Clearly, for u(0) = 0 and
u(0) = L, equation (1) has a unique solution u ≡ 0 and u ≡ L, respectively.

In this paper we focus our attention on homoclinic solutions. Accord-
ing to the above considerations, such solutions have to satisfy the initial
conditions

u(0) = B, u′(0) = 0, B < 0. (7)
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Note that if we extend the function p(t) in equation (1) from the half–line
onto R (as an even function), then a homoclinic solution of (1) has the same
limit L as t → −∞ and t →∞. This is a motivation for Definition 2.

We have proved in [21], Lemma 3.5, that a solution u of equation (1)
is homoclinic if and only if u is strictly increasing and lim

t→∞
u(t) = L. If

such homoclinic solution exists, then many important physical properties of
corresponding models (see below) can be obtained. In particular, equation
(1) is a generalization of the equation

u′′ +
k − 1

t
u′ = f(u), t ∈ (0,∞), (8)

and we can find in [16] that equation (8) with k > 1 and special forms of f
arise in many areas, for example, in the study of phase transitions of Van
der Waals fluids [3], [10], [24], in the population genetics, where it serves as a
model for the spatial distribution of the genetic composition of a population
[8], [9], in the homogeneous nucleation theory [1], in relativistic cosmology
for description of particles which can be treated as domains in the universe
[18], in the nonlinear field theory, in particular, when describing bubbles
generated by scalar fields of the Higgs type in the Minkowski spaces [7].
Numerical simulations of solutions of (8), where f is a polynomial with
three zeros, have been presented in [6], [14], [17]. Close problems on the
existence of positive solutions are investigated in [2], [4], [5].

The main result of the present paper is contained in Section 3, Theorem
12, where we deduce an asymptotic formula for homoclinic solutions of
equation (1). Note that many important results dealing with asymptotic
properties of various types of differential equations can be found in the
monograph by I. Kiguradze and T. Chanturia [12].

2. The Existence of Homoclinic Solutions

Here we cite theorems on the existence of homoclinic solutions. Remind
that assumptions (2)–(6) are common for all these theorems. For a given
B < 0, we denote the solution of problem (1), (7) by uB .

Theorem 3. Assume that problem (1), (7) has an escape solution and
let B̄ be of (4). Then there exists B∗ < B̄ such that uB∗ is a homoclinic
solution of problem (1), (7) with B = B∗.

Proof. Theorem 2.3 in [22] shows that for any B ∈ [B̄, 0) there exists a
unique solution uB of problem (1), (7) and uB is damped. Thus, if we denote
by Md a set of all B < 0 such that uB is a damped solution of problem
(1), (7), then we obtain Md 6= ∅. Moreover, Md is open in (−∞, 0), due
to Theorem 14 in [19]. Further, denote by Me a set of all B < 0 such that
uB is an escape solution of problem (1), (7). By our assumption, we have
Me 6= ∅ and, by Theorem 20 in [19], the set Me is open in (−∞, 0), as
well. Therefore, the set Mh = (−∞, 0) \ (Md ∪Me) is non-empty. Let
us choose B∗ ∈ Mh. Then B∗ < B̄, and by virtue of Definition 2, the
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supremum of the solution uB∗ on (0,∞) cannot be less than L and cannot
be greater than L. Consequently, this supremum is equal to L, and uB∗ is
a homoclinic solution of problem (1), (7) with B = B∗. ¤

Theorem 4. Assume that L0 of (3) satisfies

L0 ∈ (−∞, 0), f(L0) = 0. (9)

Then there exists B∗ ∈ (L0, B̄) such that uB∗ is a homoclinic solution of
problem (1), (7) with B = B∗.

Proof. Define

f̃(x) =
{

f(x) for x ≤ L,
0 for x > L,

and consider the auxiliary equation

(p(t)u′)′ = p(t)f̃(u), t ∈ (0,∞). (10)

By Theorem 10 and Lemma 9 in [20], there exists B ∈ (L0, B̄) such that
uB is an escape solution of problem (10), (7). If we modify the proof of
Theorem 3 working on (L0, 0) instead of on (−∞, 0), we get a homoclinic
solution uB∗ of problem (10), (7) having its starting value B∗ in (L0, B̄).
Since uB∗ is increasing on (0,∞) (see e.g., Lemma 3.5 in [21]), we have

B∗ ≤ uB∗(t) < L, t ∈ [0,∞), (11)

and uB∗ is likewise a solution of equation (1). ¤

Theorem 4 assumes that f has the negative finite zero L0. The following
two theorems concern the case that L0 = −∞ and f is positive on (−∞, 0).
Then a behavior of f near −∞ plays an important role. Equations with f
having sublinear or linear behavior near −∞ are discussed in the following
theorem.

Theorem 5. Assume that f(x) > 0 for x ∈ (−∞, 0) and

0 ≤ lim sup
x→−∞

f(x)
|x| < ∞. (12)

Then there exists B∗ < B̄ such that uB∗ is a homoclinic solution of problem
(1), (7) with B = B∗.

Proof. In the linear case, that is if we assume

0 < lim sup
x→−∞

f(x)
|x| < ∞,

the assertion follows from Theorem 5.1 in [21]. Consider the sublinear case
in which we work with the condition

lim sup
x→−∞

f(x)
|x| = 0.
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Assumption f > 0 on (−∞, 0) provides us with

lim
x→−∞

f(x)
|x| = 0,

and Theorem 19 in [19] guarantees the existence of B < B̄ such that uB is
an escape solution of problem (10), (7). Theorem 3 and estimate (11) yield
B∗ < B̄ such that uB∗ is a homoclinic solution of problem (1), (7) with
B = B∗. ¤

Theorem 6. Assume that f(x) > 0 for x ∈ (−∞, 0) and there exists
k ≥ 2 such that

lim
t→0+

p′(t)
tk−2

∈ (0,∞). (13)

Further, let r ∈ (1, k+2
k−2 ) be such that f fulfils

lim
x→−∞

f(x)
|x|r ∈ (0,∞). (14)

Then there exists B∗ < B̄ such that uB∗ is a homoclinic solution of problem
(1), (7) with B = B∗.

Proof. Theorem 2.10 in [23] guarantees the existence of B < B̄ such that
uB is an escape solution of problem (10), (7) . Theorem 3 and estimate
(11) yield B∗ < B̄ such that uB∗ is a homoclinic solution of problem (1),
(7) with B = B∗. ¤

Theorem 6 discusses a superlinear behavior of f near −∞. Note that if
k = 2, we can take arbitrary r ∈ (0,∞). The last existence theorem imposes
an additional assumption on p only.

Theorem 7. Assume that p satisfies
1∫

0

ds

p(s)
< ∞. (15)

Then there exists B∗ < B̄ such that uB∗ is a homoclinic solution of problem
(1), (7) with B = B∗.

Proof. Using Theorem 18 in [19] instead of Theorem 2.10 in [23], we argue
just as in the proof of Theorem 6. ¤

In the next section, the use will be made of the generalized Matell’s the-
orem which can be found as Theorem 6.5 in the monograph by I. Kiguradze
[11]. For our purpose we provide its following special case.

Consider an interval J ⊂ R. We write AC(J) for the set of functions,
absolutely continuous on J , and ACloc(J) for the set of functions belonging
to AC(I) for each compact interval I ⊂ J . Choose T > 0 and a function
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matrix A(t) = (ai,j(t))i,j≤2 which is defined on (T,∞). Denote by λ(t) and
µ(t) the eigenvalues of A(t), t ∈ (T,∞). Further, suppose that

λ = lim
t→∞

λ(t) and µ = lim
t→∞

µ(t)

are different eigenvalues of the matrix A = lim
t→∞

A(t) and let l and m be
eigenvectors of A corresponding to λ and µ, respectively.

Theorem 8 ([11]). Assume that

ai,j ∈ ACloc(T,∞),

∣∣∣∣∣∣

∞∫

T

a′i,j(t) dt

∣∣∣∣∣∣
< ∞, i, j = 1, 2, (16)

and there exists c0 > 0 such that
t∫

s

Re(λ(τ)− µ(τ)) dτ ≤ c0, T ≤ s < t, (17)

or
∞∫

T

Re(λ(τ)− µ(τ)) dτ = ∞,

t∫

s

Re(λ(τ)− µ(τ)) dτ ≥ −c0, T ≤ s < t.

(18)

Then the differential system

x′(t) = A(t)x(t) (19)

has a fundamental system of solutions x(t), y(t) such that

lim
t→∞

x(t)e−
∫ t

T
λ(τ) dτ = l, lim

t→∞
y(t)e−

∫ t
T

µ(τ) dτ = m. (20)

3. Asymptotic Behavior of Homoclinic Solutions

In this section we assume that B < B̄ is such that the corresponding
solution u of the initial problem (1), (7) is homoclinic. Hence u fulfils

u(0) = B, u′(0) = 0, u′(t) > 0, t ∈ (0,∞), lim
t→∞

u(t) = L. (21)

Moreover, due to (1),

u′′(t) +
p′(t)
p(t)

u′(t) = f(u(t)), t > 0, (22)

and, by multiplication and integration over [0, t],

u′2(t)
2

+

t∫

0

p′(s)
p(s)

u′2(s) ds = F (u(0))− F (u(t)), t > 0. (23)
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Therefore

0 ≤ lim
t→∞

t∫

0

p′(s)
p(s)

u′2(s) ds ≤ F (B)− F (L) < ∞,

and hence there exists

lim
t→∞

t∫

0

p′(s)
p(s)

u′2(s) ds.

Consequently, according to (23), lim
t→∞

u′2(t) exists, as well. Since u is

bounded on [0,∞), we get

lim
t→∞

u′2(t) = lim
t→∞

u′(t) = 0. (24)

In order to derive an asymptotic formula for u we have to characterize a
behavior of p in ∞ and that of f near L more precisely. In particular, we
put

h(x) :=
f(x)
x− L

, x < L,

and work with the following assumptions:

∃c, η > 0 : h ∈ C1[L− η, L], lim
x→L−

h(x) = h(L) = c, (25)

p′ ∈ ACloc(0,∞), ∃n ≥ 2 : lim
t→∞

p′(t)
tn−2

∈ (0,∞). (26)

For the sake of simplicity we transform L to the origin by the substitution

z(t) = L− u(t), t ∈ [0,∞), (27)

and put
g(y) = −f(L− y), y > 0. (28)

Then the function z given by (27) is a solution of the equation

(p(t)z′)′ = p(t)g(z), t ∈ (0,∞), (29)

satisfies

z(0) = L + |B|, z′(0) = 0, z′(t) < 0, t ∈ (0,∞), (30)

lim
t→∞

z(t) = 0, lim
t→∞

z′(t) = 0. (31)

Lemma 9. Assume the above condition (25) holds and let z be given by
(27). Then there exists T > 0 such that

|z′(t)| >
√

c

2
z(t), t ≥ T. (32)
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Proof. According to (29), the function z fulfils the following equation:

z′′(t) = −p′(t)
p(t)

z′(t) + g(z(t)), t ∈ (0,∞). (33)

Define the Lyapunov function V by

V (t) =
z′2(t)

2
+ G(z(t)), (34)

where

G(x) = −
x∫

0

g(s) ds.

Owing to (3), (4) and B < B̄, the function G fulfils

G(L + |B|) = −
L+|B|∫

0

g(s) ds =

L∫

B

f(s) ds = F (B)− F (L) > 0.

Thus V (0) = G(L + |B|) > 0. Further, using (33), we have

V ′(t) = z′(t)z′′(t)− g(z(t))z′(t) = −p′(t)
p(t)

z′2(t) < 0, t > 0.

Hence V is decreasing on (0,∞) and, by (31), (34), we get lim
t→∞

V (t) = 0.

Consequently, V (t) > 0 for t ∈ [0,∞) which implies that

z′2(t)
2

> −G(z(t)), t > 0. (35)

Let y = L− x. Then, using (25) and (28), we deduce

− lim
y→0+

G(y)
y2

= lim
y→0+

g(y)
2y

=
1
2

lim
x→L−

f(x)
x− L

=
c

2
.

Hence by virtue of (31), there exists T > 0 such that

−G(z(t))
z2(t)

>
c

4
, t ≥ T.

This, together with (35), results in

z′2(t)
2

>
c

4
z2(t), t ≥ T.

Consequently, we get (32). ¤

Lemma 10. Assume that the condition (25) holds and let z and g be
given by (27) and (28), respectively. Then

∞∫

1

∣∣∣∣
g(z(τ))
z(τ)

− c

∣∣∣∣ dτ < ∞. (36)
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Proof. Let us put

h̃(y) =
g(y)
y

, y > 0. (37)

By (25) and (28), we have

h(L− y) = h̃(y), y > 0, h̃ ∈ C1[0, η], lim
y→0+

h̃(y) = h̃(0) = c, (38)

and there exists M0 ∈ (0,∞) such that
∣∣∣∣∣
dh̃(y)

dy

∣∣∣∣∣ ≤ M0, y ∈ [0, η].

The Mean Value Theorem guarantees the existence of θ ∈ (0, 1) such that

h̃(y) = c + y
dh̃(θy)

dy
, y ∈ (0, η].

By (31), there exists T ≥ 1 such that 0 < z(t) ≤ η for t ≥ T and hence,
according to (37),

∣∣∣∣
g(z(t))
z(t)

− c

∣∣∣∣ ≤ M0z(t), t ≥ T. (39)

Using (2), (28) and z > 0 on [1, T ], we can find M1 ∈ (0,∞) such that

T∫

1

∣∣∣∣
g(z(τ))
z(τ)

− c

∣∣∣∣ dτ ≤ M1,

and, without loss of generality, we may assume that T is chosen in such a
way that (32) is valid, as well. Therefore, using (32) and (39), we get

t∫

1

∣∣∣∣
g(z(τ))
z(τ)

− c

∣∣∣∣ dτ ≤ M1 + M0

t∫

T

z(τ) dτ <

< M1 +

√
2
c
M0

t∫

T

|z′(τ)| dτ = M1 −
√

2
c
M0

t∫

T

z′(τ) dτ =

= M1 +
√

2cM0(z(T )− z(t)), t ≥ T.

Letting t →∞ and using (31), we obtain (36). ¤

Lemma 11. Assume that the condition (26) holds. Then
∞∫

1

(
p′(τ)
p(τ)

)2

dτ < ∞. (40)
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Proof. The condition (26) implies that there exists c0 ∈ (0,∞) such that

lim
t→∞

p′(t)
tn−2

= c0, lim
t→∞

p(t)
tn−1

=
c0

n− 1
.

Therefore

lim
t→∞

t2
(

p′(t)
p(t)

)2

= (n− 1)2.

Hence we can find T ≥ 1 such that
(

p′(t)
p(t)

)2

<
n2

t2
, t ≥ T, (41)

and due to (5) and (6), we can find M3 ∈ (0,∞) such that
T∫

1

(
p′(τ)
p(τ)

)2

dτ ≤ M3.

Consequently,
t∫

1

(
p′(τ)
p(τ)

)2

dτ < M3 + n2

t∫

T

dτ

τ2
= n2

(
1
T
− 1

t

)
, t ≥ T.

Letting t →∞, we get (40). ¤

The main result on the asymptotic behavior of homoclinic solutions is
contained in the following theorem.

Theorem 12. Assume that (25) and (26) hold. Let B < B̄ be such that
the corresponding solution u of the initial problem (1), (7) is homoclinic.
Then u fulfils the equation

lim
t→∞

(L− u(t))e
√

ct
√

p(t) ∈ (0,∞). (42)

Remark 13. A similar asymptotic formula for positive solutions of equa-
tion (8), where k > 1 and f(x) = x− |x|rsign x, r > 1, has been derived in
[13], Theorem 6.1.

Proof. Step 1. Construction of an auxiliary linear differential system. Con-
sider the function z given by (27). According to (29), z satisfies

z′′ +
p′(t)
p(t)

z′ =
g(z(t))
z(t)

z(t), t ∈ (0,∞). (43)

Having z at hand, we introduce the linear differential equation

v′′ +
p′(t)
p(t)

v′ =
g(z(t))
z(t)

v, (44)

and the corresponding linear differential system

x′1 = x2, x′2 =
g(z(t))
z(t)

x1 − p′(t)
p(t)

x2. (45)
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Denote

A(t) = (ai,j(t))i,j≤2 =

(
0 1

g(z(t))
z(t) −p′(t)

p(t)

)
, A =

(
0 1
c 0

)
.

By (6), (31), (37) and (38),

A = lim
t→∞

A(t).

Eigenvalues of A are the numbers λ =
√

c and µ = −√c, eigenvectors of A
are l = (1,

√
c) and m = (1,−√c), respectively. Denote

D(t) =
(

p′(t)
2p(t)

)2

+
g(z(t))
z(t)

, t ∈ (0,∞). (46)

Then eigenvalues of A(t) have the form

λ(t) = − p′(t)
2p(t)

+
√

D(t), µ(t) = − p′(t)
2p(t)

−
√

D(t), t ∈ (0,∞). (47)

We can see that
lim

t→∞
λ(t) = λ, lim

t→∞
µ(t) = µ.

Step 2. Verification of the Assumptions of Theorem 8. Due to (31) and
(38), we can find T ≥ 1 such that

0 < z(t) ≤ η, D(t) > 0, t ∈ (T,∞). (48)

Therefore, by (37) and (38),

a21(t) =
g(z(t))
z(t)

∈ ACloc(T,∞),

and hence∣∣∣∣∣∣

∞∫

T

(
g(z(t))
z(t)

)′
dt

∣∣∣∣∣∣
=

∣∣∣∣ lim
t→∞

g(z(t))
z(t)

− g(z(T ))
z(T )

∣∣∣∣ =
∣∣∣∣c−

g(z(T ))
z(T )

∣∣∣∣ < ∞.

Further, by (26), a22(t) = −p′(t)
p(t) ∈ ACloc(T,∞). Hence due to (6),

∣∣∣∣∣∣

∞∫

T

(
p′(t)
p(t)

)′
dt

∣∣∣∣∣∣
=

∣∣∣∣ lim
t→∞

p′(t)
p(t)

− p′(T )
p(T )

∣∣∣∣ =
p′(T )
p(T )

< ∞.

Since a11(t) ≡ 0 and a12(t) ≡ 1, it is not difficult to see that (16) is satisfied.
Using (47), we get Re(λ(t) − µ(t)) = 2

√
D(t) > 0 for t ∈ (T,∞). Since

lim
t→∞

√
D(t) =

√
c > 0, we have

∞∫

T

Re(λ(τ)− µ(τ)) dτ = ∞,

t∫

s

Re(λ(τ)− µ(τ)) dτ > 0, T ≤ s < t.

Consequently, (18) is valid.
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Step 3. Application of Theorem 8. By Theorem 8, there exists a funda-
mental system x(t) = (x1(t), x2(t)), y(t) = (y1(t), y2(t)) of solutions of (45)
such that (20) is valid. Hence

lim
t→∞

x1(t)e−
∫ t

T
λ(τ) dτ = 1, lim

t→∞
y1(t)e−

∫ t
T

µ(τ) dτ = 1. (49)

Using (47), for t ≥ T we get

exp
(
−

t∫

T

λ(τ) dτ

)
= exp

( t∫

T

(
p′(τ)
2p(τ)

−
√

D(τ)
)

dτ

)
=

= exp
(

1
2

ln
p(t)
p(T )

)
exp

(
−

t∫

T

√
D(τ) dτ

)
=

=

√
p(t)
p(T )

exp
(
−

t∫

T

√
D(τ) dτ

)
,

and

exp
(
−

t∫

T

µ(τ) dτ

)
= exp

( t∫

T

(
p′(τ)
2p(τ)

+
√

D(τ)
)

dτ

)
=

= exp
(

1
2

ln
p(t)
p(T )

)
exp

( t∫

T

√
D(τ) dτ

)
=

=

√
p(t)
p(T )

exp
( t∫

T

√
D(τ) dτ

)
.

Further,
t∫

T

√
D(τ) dτ = E0(t) +

√
c(t− T ),

where

E0(t) =

t∫

T

D(τ)− c√
D(τ) +

√
c

dτ, t ≥ T. (50)

Hence

exp
(
−

t∫

T

λ(τ) dτ

)
=

√
p(t)
p(T )

e−E0(t)e−
√

c(t−T ), t ≥ T, (51)

exp
(
−

t∫

T

µ(τ) dτ

)
=

√
p(t)
p(T )

eE0(t)e
√

c(t−T ), t ≥ T. (52)
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Using (36), (40) and (46), we can find K0 ∈ (0,∞) such that for t ≥ T ,

t∫

T

∣∣∣∣∣
D(τ)− c√
D(τ) +

√
c

∣∣∣∣∣ dτ ≤

≤ 1√
c




t∫

T

(
p′(τ)
2p(τ)

)2

dτ +

t∫

T

∣∣∣∣
g(z(τ))
z(τ)

− c

∣∣∣∣ dτ


 ≤ K0.

Consequently, due to (50),

lim
t→∞

E0(t) = E0 ∈ R.

Therefore (49), (51) and (52) imply

1 = lim
t→∞

x1(t)

√
p(t)
p(T )

e−E0e−
√

c(t−T ),

1 = lim
t→∞

y1(t)

√
p(t)
p(T )

eE0e
√

c(t−T ).

Since by (26),

lim
t→∞

√
p(t)e−

√
ct = lim

t→∞

√
p(t)
tn−1

t(n−1)/2e−
√

ct = 0,

lim
t→∞

√
p(t)e

√
ct = ∞,

we obtain

lim
t→∞

x1(t) = ∞, lim
t→∞

y1(t) = 0. (53)

Step 4. Asymptotic Formula. According to (43), z is likewise a solution
of (44). Therefore there are c1, c2 ∈ R such that z(t) = c1x1(t) + c2y1(t),
t ∈ (0,∞). Having in mind (30), (31), (49) and (53), we get c1 = 0,
c2y1(t) > 0 on (0,∞), and c2 ∈ (0,∞). Consequently, z(t) = c2y1(t) and

1 = lim
t→∞

1
c2

z(t)

√
p(t)
p(T )

eE0e
√

c(t−T ),

which together with (27) yields (42). ¤
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