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Abstract. This contribution deals with systems of generalized linear
differential equations of the form

xk(t) = x̃k +
∫ t

a

d[Ak(s)] xk(s) + fk(t)− fk(a), t ∈ [a, b], k ∈ N,

where −∞ < a < b < ∞, X is a Banach space, L(X) is the Banach space of
linear bounded operators on X, x̃k ∈ X, Ak : [a, b] → L(X) have bounded
variations on [a, b], fk : [a, b] → X are regulated on [a, b] and the integrals
are understood in the Kurzweil–Stieltjes sense.

Our aim is to present new results on continuous dependence of solutions
to generalized linear differential equations on the parameter k. We continue
our research from [18], where we were assuming that Ak tends uniformly to
A and fk tends uniformly to f on [a, b]. Here we are interested in the cases
when these assumptions are violated.

Furthermore, we introduce a notion of a sequential solution to generalized
linear differential equations as the limit of solutions of a properly chosen
sequence of ODE’s obtained by piecewise linear approximations of functions
A and f. Theorems on the existence and uniqueness of sequential solutions
are proved and a comparison of solutions and sequential solutions is given,
as well.

The convergence effects occurring in our contribution are, in some sense,
very close to those described by Kurzweil and called by him emphatic con-
vergence.
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îâäæñéâ. àŽêýæèñèæŽ àŽêäëàŽáâĲñè ûîòæã áæòâîâêùæŽèñî àŽêðëèâ-
ĲŽåŽ ïæïðâéŽ

xk(t) = x̃k +
∫ t

a

d[Ak(s)] xk(s) + fk(t)− fk(a), t ∈ [a, b], k ∈ N,

ïŽáŽù −∞ < a < b < ∞, X Žîæï ĲŽêŽýæï ïæãîùâ, L(X) Žîæï X-æï öâñô-
èâĲñèæ ïæãîùâ, x̃k ∈ X, Ak : [a, b] → L(X) -ï Žóãï öâéëïŽäôãîñèæ ãŽîæ-
ŽùæŽ, fk : [a, b] → X îâàñèæîâĲŽáæŽ, ýëèë æêðâàîŽèæ àŽæàâĲŽ çñîùãâæè{
ïðæèðæâïæï Žäîæå.

éæôâĲñèæŽ ŽýŽèæ öâáâàâĲæ ŽéëêŽýïêâĲæï êŽðñîŽèñîæ k ìŽîŽéâðîæïŽàŽê
ñûõãâðŽá áŽéëçæáâĲñèâĲæï öâïŽýâĲ, îëùŽ k → ∞. öâéëôâĲñèæŽ àŽêäë-
àŽáâĲñèæ ûîòæãæ áæòâîâêùæŽèñîæ àŽêðëèâĲæï ïâçãâêùæŽèñîæ ŽéëêŽýïêæï
ùêâĲŽ áŽ áŽéðçæùâĲñèæŽ åâëîâéâĲæ Žïâåæ ŽéëêŽýïêæï ŽîïâĲëĲæïŽ áŽ âîåŽáâ-
îåëĲæï öâïŽýâĲ.

êŽöîëéöæ áŽáàâêæèæ ŽéëêŽýïêåŽ éæéáâãîëĲæï çîâĲŽáëĲŽ àŽîçãâñèæ Žä-
îæå Žýèëï Žîæï æ. çñîùãâæèæï éæâî Žôûâîæè çîâĲŽáëĲŽïåŽê, îëéâèïŽù
æàæ âéòŽðæçñîï ñûëáâĲï.



Emphatic Convergence and Sequential Solutions . . . 29

1. Introduction

Generalized differential equations were introduced in 1957 by J. Kurzweil
in [14]. Since then they were studied by many authors. (See e.g. the mono-
graphs by Schwabik, Tvrdý and Vejvoda [29], [25], [32] or the papers by
Ashordia [2], [3] or Fraňková [7] and the references therein). Closely related
and fundamental is also the contribution by Hildebrandt [10]. Furthermore,
during the recent decades, the interest in their special cases like equations
with impulses or discrete systems increased considerably (cf. e.g. the mono-
graphs [21], [33], [4], [24] or [1]).

Concerning integral equations in a general Banach space, it is worth to
highlight the monograph by Hönig [11] having as a background the interior
(Dushnik) integral. On the other hand, dealing with the Kurzweil–Stieltjes
integral, the contributions by Schwabik in [27] and [28] are essential for this
paper. It is well-known that the theory of generalized differential equa-
tions in Banach spaces enables the investigation of continuous and discrete
systems, including the equations on time scales and the functional differen-
tial equations with impulses, from the common standpoint. This fact can
be observed in several papers related to special kinds of equations, such
as e.g. those by Imaz and Vorel [12], Oliva and Vorel [19], Federson and
Schwabik [6].

In this paper we consider linear generalized differential equations of the
form

xk(t) = x̃k +

t∫

a

d[Ak(s)] xk(s) + fk(t)− fk(a), t ∈ [a, b], k ∈ N, (1.1)

and

x(t) = x̃ +

t∫

a

d[A(s)] x(s) + f(t)− f(a), t ∈ [a, b]. (1.2)

In particular, we are interested in finding conditions ensuring the conver-
gence of the solutions xk of (1.1) to the solution x of (1.2). We continue our
research from [9] and [18], where we supposed a.o. that Ak tends uniformly
to A and fk tends uniformly to f on [a, b]. Here we will deal, similarly to
[31] and [8], with the situation when this assumption is not satisfied.

In the paper we use the following notation:
N = {1, 2, . . . } is the set of natural numbers and R stands for the space

of real numbers. If −∞ < a < b < ∞, then [a, b] and (a, b) denote the
corresponding closed and open intervals, respectively. Furthermore, [a, b)
and (a, b] are the corresponding half-open intervals.

X is a Banach space equipped with the norm ‖ · ‖X and L(X) is the
Banach space of linear bounded operators on X equipped with the usual
operator norm. For an arbitrary function f : [a, b] → X, we set

‖f‖∞ = sup
{‖f(t)‖X ; t ∈ [a, b]

}
.
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If fk : [a, b] → X for k ∈ N and f : [a, b] → X are such that

lim
k→∞

‖fk − f‖∞ = 0,

we say that fk tends to f uniformly on [a, b] and write fk ⇒ f on [a, b].
If J ⊂ R and fk ⇒ f on [a, b] for each [a, b]⊂J, we say that fk tends to f
locally uniformly on J and write fk ⇒ f locally on J.

If for each t ∈ [a, b) and s ∈ (a, b], the function f : [a, b] → X possesses
the limits

f(t+) := lim
τ→t+

f(τ), f(s−) := lim
τ→s−

f(τ),

we say that f is regulated on [a, b]. The set of all functions with values in X
which are regulated on [a, b] is denoted by G([a, b], X). Furthermore,

∆+f(t) = f(t+)− f(t) for t ∈ [a, b), ∆+f(b) = 0,

∆−f(s) = f(s)− f(s−) for s ∈ (a, b], ∆−f(a) = 0
and

∆f(t) = f(t+)− f(t−) for t ∈ (a, b).

Clearly, each function, regulated on [a, b], is bounded on [a, b].
The set D = {α0, α1, . . . , αm} ⊂ [a, b], where m ∈ N, is called a division

of the interval [a, b], if a = α0 < α1 < · · · < αm = b. The set of all divisions
of the interval [a, b] is denoted by D[a, b]. For a function f : [a, b] → X and
a division D = {α0, α1, . . . , αm} ∈ D[a, b], we put

ν(D):=m, |D| = max
{
αi − αi−1; i = 1, 2, . . . , m

}
,

v(f, D) :=
m∑

j=1

‖f(αj)− f(αj−1)‖X

and
varb

a f := sup
{
v(f, D); D ∈ D[a, b]

}

is the variation of f over [a, b]. We say that f has a bounded variation on
[a, b] if varb

a f < ∞. The set of X-valued functions of bounded variation on
[a, b] is denoted by BV ([a, b], X) and ‖f‖BV = ‖f(a)‖X + varb

a f. Finally,
C([a, b], X) is the set of functions f : [a, b] → X which are continuous on
[a, b]. Obviously,

BV ([a, b], X) ⊂ G([a, b], X) and C([a, b], X) ⊂ G([a, b], X).

The integral which occurs in this paper is the abstract Kurzweil–Stieltjes
integral (in short the KS-integral) as defined by Schwabik in [26]. (For
its further properties see also our previous paper [17]). For the reader’s
convenience, let us recall the definition of the KS-integral.

Let −∞ < a < b < ∞, m ∈ N,

D = {α0, α1, . . . , αm} ∈ D[a, b] and ξ = (ξ1, ξ2, . . . , ξm) ∈ [a, b]m.

Then the couple P = (D, ξ) is called a partition of [a, b] if

αj−1 ≤ ξj ≤ αj for j = 1, 2, . . . , m.
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The set of all partitions of the interval [a, b] is denoted by P[a, b]. An arbi-
trary function δ : [a, b] → (0,∞) is called a gauge on [a, b]. Given a gauge δ
on [a, b], the partition

P = (D, ξ) =
({α0, α1, . . . , αm}, (ξ1, ξ2, . . . , ξm)

) ∈ P [a, b]

is said to be δ-fine, if

[αj−1, αj ] ⊂ (ξj − δ(ξj), ξj + δ(ξj)) for j = 1, 2, . . . , m.

The set of all δ-fine partitions of [a, b] is denoted by A(δ; [a, b]).
For the functions f : [a, b] → X, G : [a, b] → L(X) and a partition

P ∈ P[a, b],

P = ({α0, α1, . . . , αm}, (ξ1, ξ2, . . . , ξm)) ,

we define

Σ(∆Gf ;P ) =
m∑

j=1

[
G(αj)−G(αj−1)

]
f(ξj).

We say that q ∈ X is the KS-integral of f with respect to G from a to b if




for each ε > 0 there is a gauge δ on [a, b] such that
∥∥q − Σ(∆Gf ; P )

∥∥
X

< ε for all P ∈ A(δ; [a, b]).

In such a case we write

q =

b∫

a

d[G(t)]f(t) or, more briefly, q =

b∫

a

d[G]f.

Analogously we define the integral
b∫

a

F d[g] for F : [a, b] → L(X) and

g : [a, b] → X.
The following assertion summarizes the properties of the KS-integral

needed later. (For the proofs, see [26] and [17].)

Theorem 1.1. Let f ∈ G([a, b], X), G ∈ G([a, b], L(X)) and let at least
one of the functions f, G have a bounded variation on [a, b]. Then there

exists the integral
b∫

a

d[G]f . Furthermore,

∥∥∥∥
b∫

a

d[G]f
∥∥∥∥

X

≤ 2‖G‖∞
(‖f(a)‖X + varb

a f
)

if f ∈ BV ([a, b], X), (1.3)

∥∥∥∥
b∫

a

d[G]f
∥∥∥∥

X

≤ (varb
a G)‖f‖∞ if G ∈ BV ([a, b], L(X)), (1.4)
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t∫

a

d[G]fk ⇒
t∫

a

d[G]f on [a, b]

if G∈BV ([a, b], L(X)), fk∈G([a, b], X) for k∈N and fk ⇒f,





(1.5)

t∫

a

d[Gk]f ⇒
t∫

a

d[G]f on [a, b]

if f ∈BV ([a, b], X), Gk∈G([a, b], L(X)) for k∈N and gk ⇒g,





(1.6)

t∫

a

d[Gk]fk ⇒
t∫

a

d[G]f

if Gk ∈ BV ([a, b], L(X)), fk ∈ G([a, b], X) for k ∈ N,

sup{varb
a Gk; k ∈ N} < ∞ and fk ⇒ f, Gk ⇒ G on [a, b].





(1.7)

Remark 1.2. An assertion analogous to that of Theorem 1.1 holds also
for the integrals

b∫

a

F d[g],

b∫

a

Fkd[g],

b∫

a

F d[gk],

b∫

a

Fkd[gk], k ∈ N,

where F, Fk : [a, b] → L(X) and g, fk : [a, b] → X.

2. Generalized Differential Equations

Let A ∈ BV ([a, b], L(X)), f ∈ G([a, b], X) and x̃ ∈ X. Consider the
generalized linear differential equation (1.2). We say that a function x :

[a, b] → X is a solution of (1.2) on the interval [a, b] if the integral
b∫

a

d[A]x

has a sense and equality (1.2) is satisfied for all t ∈ [a, b].
Obviously, the generalized differential equation (1.2) is equivalent to the

equation

x(t) = x̃ +

t∫

a

d[B]x + g(t)− g(a)

whenever B −A and g− f are constant on [a, b]. Therefore, without loss of
generality we may assume that

A(a) = Ak(a) = 0 and f(a) = fk(a) = 0 for k ∈ N.

For our purposes the following property is crucial:
[
I −∆−A(t)

]−1 ∈ L(X) for each t ∈ (a, b]. (2.1)

Its importance is well illustrated by the following assertion which summa-
rizes some of the basic properties of generalized linear differential equations
in abstract spaces. (For the proof see [18, Lemma 3.2].)



Emphatic Convergence and Sequential Solutions . . . 33

Theorem 2.1. Let A ∈ BV ([a, b], L(X)) satisfy (2.1). Then for each
x̃ ∈ X and each f ∈ G([a, b], X) the equation (1.2) has a unique solution x
on [a, b] and x ∈ G([a, b], X). Moreover, x− f ∈ BV ([a, b], X)

0 < cA := sup
{ ∥∥[I −∆−A(t)]−1

∥∥
L(X)

; t ∈ (a, b]
}

< ∞, (2.2)

‖x(t)‖X≤cA (‖x̃‖X +‖f(a)‖X + ‖f‖∞) exp(cA vart
a A) for t∈ [a, b] (2.3)

and
varb

a(x− f) ≤ cA(varb
a A)

(‖x̃‖X + 2‖f‖∞
)
exp(cA varb

a A). (2.4)

The following result was proved in [18, Theorem 3.4].

Theorem 2.2. Let A,Ak ∈ BV ([a, b], L(X)) f, fk ∈ G([a, b], X), x̃, x̃k ∈
X for k ∈ N. Assume (2.1),

α∗ := sup{varb
a Ak; k ∈ N} < ∞, (2.5)

Ak ⇒ A on [a, b], (2.6)

fk ⇒ f on [a, b] (2.7)
and

lim
k→∞

x̃k = x̃. (2.8)

Then equation (1.2) has a unique solution x on [a, b]. Furthermore, for each
k ∈ N sufficiently large, there exists a unique solution xk on [a, b] for the
equation (1.1) and

xk ⇒ x on [a, b]. (2.9)

Remark 2.3. If (2.5) is not true, but (2.6) is replaced by a stronger notion
of convergence in the sense of Opial ([20, Theorem 1]) (cf. [13, Theorem
1.4.1] for extension to functional differential equations), the conclusion of
Theorem 2.2 remains true (see [18, Theorem 4.2]). If (2.6) or (2.7) does not
hold, the situation becomes rather more difficult (see [7], [8] and [31]). The
next section deals with such a case.

3. Emphatic Convergence

The proofs of the next two lemmas follow the ideas of the proof of [8,
Theorem 2.2].

Lemma 3.1. Let A,Ak ∈ BV ([a, b], L(X)), f, fk ∈ G([a, b], X), x̃, x̃k ∈
X for k ∈ N. Assume (2.1), (2.8),

[I −∆−Ak(t)]−1 ∈ L(X)

for all t ∈ (a, b] and k ∈ N sufficiently large,

}
(3.1)

Ak ⇒ A and fk ⇒ f locally on (a, b]. (3.2)

Then there exists a unique solution x of (1.2) on [a, b] and, for each k ∈ N,
sufficiently large, there exists a unique solution xk on [a, b] to the equation
(1.1).
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Moreover, let (2.5) and

∀ ε > 0 ∃ δ > 0 such that ∀ t ∈ (a, a + δ) ∃ k0 = k0(t) ∈ N
such that ‖xk(t)− x̃k −∆+A(a)x̃−∆+f(a)‖X < ε
for all k ≥ k0





(3.3)

hold. Then
lim

k→∞
xk(t) = x(t) (3.4)

is true for t ∈ [a, b], while xk ⇒ x locally on (a, b].

Proof. By (3.1), the solutions xk of (1.1) exist on [a, b] for all k sufficiently
large. Let ε > 0 be given and let δ > 0 and k1 ∈ N be such that

‖x(t)− x(a+)‖X < ε for t ∈ (a, a + δ) and ‖x̃k − x̃‖X < ε for k ≥ k1.

We may choose δ in such way that (3.3) holds. In view of this, for t ∈
(a, a + δ), let k0 ∈ N, k0 ≥ k1, be such that

‖xk(t)− x̃k −∆+A(a)x̃−∆+f(a)‖X < ε for k ≥ k0.

Then, taking into account the relations

x(a+) = x(a) + ∆+A(a)x(a) + ∆+f(a) and x(a) = x̃,

we get

‖xk(t)− x(t)‖X =

= ‖(xk(t)− x̃k) + (x̃k − x̃) + (x̃− x(a+)) + (x(a+)− x(t))‖X ≤
≤ ‖xk(t)− x̃k − x(a+) + x̃‖X + ‖x̃− x̃k‖X + ‖x(t)− x(a+)‖X =

= ‖xk(t)− x̃k −∆+A(a)x̃−∆−f(a)‖X+

+ ‖x̃− x̃k‖X + ‖x(t)− x(a+)‖X < 3ε.

This means that (3.4) holds for t ∈ [a, a + δ).
Now, let an arbitrary c ∈ (a, a+ δ) be given. We can use Theorem 2.2 to

show that the solutions xk to

xk(t) = xk(c) +

t∫

c

d[Ak]xk + fk(t)− f(t)

exist on [c, b] and xk ⇒ x on [c, b]. The assertion of the lemma follows
easily. ¤

Lemma 3.2. Let A,Ak ∈ BV ([a, b], L(X)), f, fk ∈ G([a, b], X), x̃, x̃k ∈
X for k ∈ N. Assume (2.1), (2.8), (3.1) and

Ak ⇒ A and fk ⇒ f locally on [a, b). (3.5)

Then there exists a unique solution x of (1.2) on [a, b] and, for each k ∈ N
sufficiently large, there exists a unique solution xk on [a, b] to the equa-
tion (1.1).
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Moreover, let (2.5) and

∀ ε > 0, δ > 0 ∃ τ ∈ (b− δ, b), k0 ∈ N such that
∣∣∣xk(b)− xk(τ)−∆−A(b) [I −∆−A(b)]−1

x(b−)−
− [I −∆−A(b)]−1 ∆−f(b)

∣∣∣ < ε for all k ≥ k0





(3.6)

hold. Then (3.4) is true, while xk ⇒ x locally on [a, b).

Proof. Due to (2.1) and (3.1), there exists a unique solution x of (1.2) on
[a, b], there exists k1 ∈ N such that (1.1) has a unique solution xk on [a, b]
for each k ≥ k1. Furthermore, by Theorem 2.2, xk ⇒ x locally on [a, b). It
remains to show that

lim
k→∞

xk(b) = x(b) (3.7)

is true, as well. Let ε > 0, δ ∈ (0, b− a) be given and let τ ∈ (b− δ, b) and
k0 ≥ k1 be such that (3.6) is true. We have

‖xk(b)− x(b)‖X =

= ‖(xk(b)−xk(τ))+(xk(τ)−x(τ))+(x(τ)−x(b−))+(x(b−)−x(b))‖X ≤
≤ ‖xk(b)−xk(τ)−x(b)+x(b−)‖X +‖x(τ)−x(b−)‖X +‖xk(τ)−x(τ)‖X ,

wherefrom, having in mind that x(b) = x(b−)+∆−A(b)x(b)+∆−f(b), i.e.,

x(b) = [I −∆−A(b)]−1x(b−) + [I −∆−A(b)]−1∆−f(b)
and

x(b)− x(b−) = ∆−A(b)[I −∆−A(b)]−1x(b−)+

+
[
I + ∆−A(b)[I −∆−A(b)]−1

]
∆−f(b),

we deduce that

‖xk(b)− x(b)‖X ≤ ‖xk(b)− x(τ)−∆−A(b)[I −∆−A(b)]−1x(b−)−
− [

I + ∆−A(b)[I −∆−A(b)]−1
]
∆−f(b)‖X+

+ ‖x(τ)− x(b−)‖X + ‖xk(τ)− x(τ)‖X .

We can choose δ and k0 in such a way that ‖x(t) − x(b−)‖X < ε for each
t ∈ (b − δ, b) and ‖xk(τ) − x(τ)‖X < ε for k ≥ k0, as well. Furthermore,
notice that if B ∈ L(X) is such that [I − B]−1 ∈ L(X), then [I − B]−1 =
I + B[I −B]−1. Thus, using (3.6), we get

‖xk(b)− x(b)‖X ≤ ‖xk(b)− x(τ)−∆−A(b)[I −∆−A(b)]−1x(b−)−
− [I −∆−A(b)]−1∆−f(b)‖X + ‖x(τ)−x(b−)‖X + ‖xk(τ)−x(τ)‖X < 3ε.

It follows that (3.7) is true and this completes the proof. ¤

The assertion below may be deduced from Lemmas 3.1 and 3.2
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Theorem 3.3. Let A,Ak ∈ BV ([a, b], L(X)), f, fk ∈ G([a, b], X), x̃, x̃k ∈
X for k ∈ N. Assume (2.1), (2.8) and (3.1). Furthermore, let there exist
a division D = {s0, s2, . . . , sm} of the interval [a, b] such that

Ak ⇒ A, fk ⇒ f locally on each (si−1, si), i = 1, 2, . . . ,m. (3.8)

Then there exists a unique solution x of (1.2) on [a, b] and, for each k ∈ N
sufficiently large, there exists a unique solution xk on [a, b] to the equation
(1.1).

Moreover, assume (2.5) and let

∀ ε > 0 ∃ δi ∈ (0, si − si−1) such that ∀ t ∈ (si−1, si−1 + δi)

∃ ki = ki(t) ∈ N such that

‖xk(t)−xk(si−1)−∆+A(si−1)x(si−1)−∆+f(si−1)‖X <ε

for all k ≥ ki





(3.9)

and

∀ ε > 0, δ ∈ (0, si − si−1)∃ τi ∈ (si − δ, si), `i ∈ N such that

‖xk(si)− xk(τi)−∆−A(si) [I −∆−A(si)]
−1

x(si−)−
− [I −∆−A(si)]

−1 ∆−f(si)‖X < ε for all k ≥ `i





(3.10)

hold for each i = 1, 2, . . . , m.
Then (3.4) is true for all t ∈ [a, b], while xk ⇒ x locally on each (si−1, si),

i = 1, 2, . . . ,m.

Proof. Obviously, there is a division D = {α0, α1, . . . , αr} of [a, b] such that
for each subinterval [αj−1, αj ], j = 1, 2, . . ., r, either the assumptions of Lem-
ma 3.1 or the assumptions of Lemma 3.2 are satisfied with αj−1 in place of
a and αk in place of b. Hence the proof follows by Lemmas 3.1 and 3.2. ¤

4. Sequential Solutions

The aim of this section is to disclose the relationship between the so-
lutions of generalized linear differential equation and limits of solutions of
approximating sequences of linear ordinary differential equations generated
by piecewise linear approximations of the coefficients A, f.

Let us introduce the following notation.

Notation 4.1. For A ∈ BV ([a, b], L(X)), f ∈ G([a, b], X) and

D = {α0, α1, . . ., αm} ∈ D[a, b],
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we define

AD(t) =





A(t) if t ∈ D,

A(αi−1) +
A(αi)−A(αi−1)

αi − αi−1
(t− αi−1)

if t ∈ (αi−1, αi) for some i ∈ {1, 2, . . . , m},

(4.1)

and

fD(t) =





f(t) if t ∈ D,

f(αi−1) +
f(αi)− f(αi−1)

αi − αi−1
(t− αi−1)

if t ∈ (αi−1, αi) for some i ∈ {1, 2, . . . , m}.

(4.2)

The following lemma presents some direct properties for the functions
defined in (4.1) and (4.2).

Lemma 4.2. Assume that A ∈ BV ([a, b], L(X)), f ∈ G([a, b], X). Fur-
thermore, let D ∈ D[a, b], D = {α0, α1, . . . , αm}, and let AD and fD be
defined by (4.1) and (4.2), respectively. Then AD and fD are strongly ab-
solutely continuous on [a, b] and

varb
a AD ≤ varb

a A and ‖fD‖∞ ≤ ‖f‖∞.

Proof. It is clear that AD and fD are strongly absolutely continuous on
(αi−1, αi), for each i = 1, . . . , m. Since both functions are continuous on
[a, b], the absolute continuity holds on the closed intervals [αi−1, αi], i =
1, . . . , m (cf. [30, Theorem 7.1.10]).

Let ε > 0 be given. For each i = 1, . . . , m, there exists ηi > 0 such that

p∑

j=1

‖AD(bj)−AD(aj)‖L(X) <
ε

m
, whenever

p∑

j=1

(bj − aj) < ηi,

where [aj , bj ], j = 1, . . . , p, are non-overlapping subintervals of [αi−1, αi].
Let η < min{ηi; i = 1, . . . ,m}. Consider F = {[cj , dj ]; j = 1, . . . , p}, a

collection of non-overlapping subintervals of [a, b], such that

p∑

j=1

(dj − cj) < η.

Without loss of generality, we may assume that for each j = 1, . . . , p,
[cj , dj ] ⊂ [αkj−1, αkj ], for some kj ∈ {1, . . . , m}. Thus

F =
m⋃

i=1

Fi, with Fi =
{

[c, d] ∈ F ; [c, d] ∩ [αi−1, αi] 6= ∅
}

,
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and
∑

[c,d]∈Fi

(d− c) < ηi, i = 1, . . . ,m. In view of this, we get

p∑

j=1

‖AD(dj)−AD(cj)‖L(X) ≤

≤
m∑

i=1

∑

[c,d]∈Fi

‖AD(d)−AD(c)‖L(X) <

m∑

i=1

ε

m
= ε,

which shows that AD is strongly absolutely continuous on [a, b]. Similarly
we prove for fD.

Furthermore, for each ` = 1, 2, . . . , m and each t ∈ [α`−1, α`] we have

varα`
α`−1

AD = ‖A(α`)−A(α`−1)‖L(X) ≤ varα`
α`−1

A

and

‖fD(t)‖X =
∥∥∥f(α`−1) +

f(α`)− f(α`−1)
α` − α`−1

(t− α`−1)
∥∥∥

X
=

=
∥∥∥f(α`−1)

α` − t

α` − α`−1
+ f(α`)

t− α`−1

α` − α`−1

∥∥∥
X
≤ ‖f‖∞.

Therefore,

varb
a AD =

m∑

`=1

varα`
α`−1

AD ≤

≤
m∑

`=1

varα`
α`−1

A = varb
a A and ‖fD‖∞ ≤ ‖f‖∞. ¤

Remark 4.3. Notice that the functions AD, fD, defined in (4.1) and (4.2),
respectively, are differentiable on (αi−1, αi), i = 1, . . . , m, and their deriva-
tives are given by

A′D(t) =
A(αi)−A(αi−1)

αi − αi−1
if t ∈ (αi−1, αi) for some i ∈ {1, 2, . . . ,m},

f ′D(t) =
f(αi)− f(αi−1)

αi − αi−1
if t ∈ (αi−1, αi) for some i ∈ {1, 2, . . . ,m}.

By Lemma 4.2, recalling that AD and fD are strongly absolutely continuous
on [a, b], the Bochner integral (cf. [30, Definition 7.4.16]) exists and hence
also the strong McShane and the strong Kurzweil-Henstock integrals (cf.
[30, Theorem 5.1.4] and [30, Proposition 3.6.3]). Moreover,

AD(t) =

t∫

a

A′D(s)ds, fD(t) =

t∫

a

f ′D(s)ds for t ∈ [a, b],
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(cf. [30, Theorem 7.3.10]). Consequently,
t∫

a

d[AD(s)]x(s) =

t∫

a

A′D(s)x(s)ds

holds for each x ∈ G([a, b], X) and t ∈ [a, b]. Hence, the generalized differ-
ential equation

x(t) = x̃ +

t∫

a

d[AD(s)]x(s) + fD(t)− fD(a)

is equivalent to the initial value problem for the ordinary differential equa-
tion (in the Banach space X)

x′(t) = A′D(t)x + f ′D(t), x(a) = x̃.

Theorem 4.4. Let A∈BV ([a, b], L(X))∩C([a, b], L(X)), f ∈C([a, b], X)
and x̃ ∈ X. Furthermore, let {Dk} be a sequence of divisions of the interval
[a, b] such that

Dk+1 ⊃ Dk for k ∈ N and lim
k→∞

|Dk| = 0. (4.3)

Finally, let the sequences {Ak} and {fk} be given by

Ak = ADk
and fk = fDk

for k ∈ N, (4.4)

where ADk
and fDk

are defined as in (4.1) and (4.2).
Then equation (1.2) has a unique solution x on [a, b]. Furthermore, for

each k ∈ N, equation (1.1) has a solution xk on [a, b] and (2.9) holds.

Proof. Step 1. Since A is uniformly continuous on [a, b], we have

for each ε>0 there is a δ>0 such that ‖A(t)−A(s)‖L(X) <
ε

2
holds for all t, s ∈ [a, b] such that |t− s| < δ.

}
(4.5)

By (4.3), we can choose k0 ∈ N such that |Dk| < δ, for every k ≥ k0.
Given t ∈ [a, b] and k ≥ k0, let α`−1, α` ∈ Dk be such that t ∈ [α`−1, α`).

Notice that |α` − α`−1| < δ. So, according to (4.1), (4.4) and (4.5), we get

‖Ak(t)−A(t)‖L(X) ≤ ‖A(α`)−A(α`−1)‖L(X)

[ t− α`−1

α` − α`−1

]
+

+ ‖A(α`−1)−A(t)‖L(X) ≤
ε

2
+

ε

2
= ε.

As k0 was chosen independently of t, we can conclude that (2.6) is true.

Step 2. Analogously we can show that (2.7) is true, as well.

Step 3. By Lemma 4.2, (2.5) holds. Moreover, as A and Ak, k ∈ N, are con-
tinuous, the equations (1.2) and (1.1) have unique solutions by Theorem 2.1
and we can complete the proof by using Theorem 2.2. ¤
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Notation 4.5. For the given f ∈ G([a, b], X) and k ∈ N, we denote

U+
k (f) =

{
t ∈ [a, b] : ‖∆+f(t)‖X ≥ 1

k

}
,

U−k (f) =
{

t ∈ [a, b] : ‖∆−f(t)‖X ≥ 1
k

}
,

Uk(f) = U+
k (f) ∪ U−k (f) and U(f) =

∞⋃

k=1

Uk(f).

(Thus U(f) is a set of points of discontinuity of the function f in [a, b].)
Analogous symbols are used also for the operator valued function.

Definition 4.6. Let A ∈ BV ([a, b], L(X)), f ∈ G([a, b], X) and let {Pk}
be a sequence of divisions of [a, b] such that

|Pk| = (1/2)k for k ∈ N. (4.6)

We say that the sequence {Ak, fk} is a piecewise linear approximation (PL-
approximation) of (A, f) if there exists a sequence {Dk} ⊂ D[a, b] of divi-
sions of the interval [a, b] such that

Dk ⊃ Pk∪Uk(A)∪Uk(f) for k ∈ N (4.7)

and Ak, fk are for k ∈ N defined by (4.1), (4.2) and (4.4).

Remark 4.7. Consider the case where dim X < ∞ and let {Ak, fk} be
a PL-approximation of (A, f). Then by Lemma 4.2,

varb
a Ak ≤ varb

a A and ‖fk‖∞ ≤ ‖f‖∞.

Furthermore, as Ak are continuous, due to (2.2), we have cAk
= 1 for all

k ∈ N. Hence, (2.4) yields

varb
a(xk − fk) ≤ varb

a A (‖x̃‖X + 2‖f‖∞) exp(varb
a A) < ∞ for all k ∈ N

and, by Helly’s theorem, there is a subsequence {k`} of N and w∈G([a, b], X)
such that

lim
`→∞

(xk`
(t)− fk`

(t)) = w(t)− f(t) for t ∈ [a, b].

In particular, lim
`→∞

xk`
(t) = w(t) for all t ∈ [a, b] such that lim

`→∞
fk`

(t) = f(t).

In this context, it is worth mentioning that if the set U(f) has at most
a finite number of elements, then

lim
k→∞

fk(t) = f(t) for all t ∈ [a, b].

Definition 4.8. Let A ∈ BV ([a, b], L(X)), f ∈ G([a, b], X) and x̃ ∈ X.
We say that x∗ : [a, b] → X is a sequential solution to equation (1.2) on the
interval [a, b] if there is a PL-approximation {Ak, fk} of (A, f) such that

lim
k→∞

xk(t) = x∗(t) for t ∈ [a, b] (4.8)
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holds for solutions xk, k ∈ N, of the corresponding approximating initial
value problems

x′k = A′k(t)xk + f ′k(t), xk(a) = x̃, k ∈ N. (4.9)

Remark 4.9. Notice that using the language of Definitions 4.6 and 4.8,
we can translate Theorem 4.4 into the following form:
Let A ∈ BV ([a, b], L(X)) ∩ C([a, b], L(X)), f ∈ C([a, b], X) and x̃ ∈ X.
Then equation (1.2) has a unique sequential solution x∗ on [a, b] and x∗

coincides on [a, b] with the solution of (1.2).

In the rest of this paper we consider the case where the set U(A) ∪ U(f)
of discontinuities of A, f is non-empty. We will start with the simplest case
U(A) ∪ U(f) = {b}.

The following natural assertion will be useful for our purposes and, in
our opinion, it is not available in literature.

Lemma 4.10. Let A ∈ BV ([a, b], L(X)). Then

lim
s→t−

1
t− s

( t∫

s

exp
(
[A(t)−A(s)]

t− r

t− s

)
dr

)
=

=

1∫

0

exp
(
∆−A(t)(1− σ)

)
dσ if t ∈ (a, b]





(4.10)

and

lim
s→t+

1
s− t

( s∫

t

exp
(

[A(s)−A(t)]
s− r

s− t

)
dr

)
=

=

1∫

0

exp
(
∆+A(t)(1− σ)

)
dσ if t ∈ [a, b).





(4.11)

where the integrals are the Bochner ones.

Proof. (i) Let t ∈ (a, b] and ε ∈ (0, 1) be given. Then there is a δ > 0 such
that

‖A(t−)−A(s)‖L(X) < ε whenever t− δ < s < t.

Taking now into account that∥∥ exp(Cτ)− exp(Dτ)
∥∥

L(X)
≤ ‖C −D‖L(X) exp

(
(‖C‖L(X) + ‖D‖L(X))τ

)

holds for all C, D ∈ L(X), τ ∈ R, (cf. [22, Corollary 3.1.3]), we get

∥∥∥∥
1

t− s

t∫

s

[
exp

(
[A(t)−A(s)]

t− r

t− s

)
− exp

(
∆−A(t)

t− r

t− s

)]
dr

∥∥∥∥
X

≤

≤ 1
t− s

‖A(t−)−A(s)‖L(X)

t∫

s

exp
(
ε + 2‖∆−A(t)‖L(X)

)
dr =
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= ‖A(t−)−A(s)‖L(X) exp
(
ε + 2‖∆−A(t)‖L(X)

) ≤

≤ ε exp
(
1 + 2‖∆−A(t)‖L(X)

)
for t− δ < s < t.

Therefore,

lim
s→t−

1
t− s

( t∫

s

exp
(
[A(t)−A(s)]

t− r

t− s

)
dr

)
=

= lim
s→t−

1
t− s

( t∫

s

exp
(
∆−A(t)

t− r

t− s

)
dr

)
for t ∈ (a, b].

It is now easy to see that the substitution σ = 1 − t−r
t−s into the second

integral yields (4.10).
(ii) The relation (4.11) can be justified similarly. ¤

Lemma 4.11. Let A ∈ BV ([a, b], L(X)) and f ∈ G([a, b], X) be contin-
uous on [a, b). Let x̃ ∈ X and let x be a solution of (1.2) on [a, b).

Then equation (1.2) has a unique sequential solution x∗ on [a, b].
Moreover, x∗ is continuous on [a, b), x∗ = x on [a, b) and x∗(b) = v(1),

where v is a solution on [0, 1] of the initial value problem

v′ = [∆−A(b)]v + [∆−f(b)], v(0) = x(b−). (4.12)

Proof. Let {Ak, fk} be an arbitrary PL-approximation of (A, f) and let
{Dk} be the corresponding sequence of divisions of [a, b] fulfilling (4.6) and
(4.7). Notice that under our assumptions, Dk = Pk for k ∈ N. For k ∈ N,
we put

τk = max{t ∈ Pk; t < b}.
By (4.3), we have b− b−a

2k ≤ τk < b for k ∈ N, and hence

lim
k→∞

τk = b. (4.13)

Now, for k ∈ N and t ∈ [a, b], let us define

Ãk(t) =





Ak(t) if t ∈ [a, τk],

A(τk) +
A(b−)−A(τk)

b− τk
(t− τk) if t ∈ (τk, b],

f̃k(t) =





fk(t) if t ∈ [a, τk],

f(τk) +
f(b−)− f(τk)

b− τk
(t− τk) if t ∈ (τk, b].

Furthermore, let

Ã(t) =





A(t) if t ∈ [a, b),

A(b−) if t = b,
f̃(t) =





f(t) if t ∈ [a, b),

f(b−) if t = b.
(4.14)
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It is easy to see that for k ∈ N, Ãk f̃k are strongly absolutely continuous
and differentiable a.e. on [a, b], Ã ∈ BV ([a, b], L(X))∩C([a, b], L(X)) and
f̃ ∈ C([a, b], X).

Step 1. Consider the problems

y′k = Ã′k(t)yk + f̃ ′k(t), yk(a) = x̃, k ∈ N, (4.15)
and

y(t) = x̃ +

t∫

a

d[Ã]y + f̃(t)− f̃(a). (4.16)

Taking into account Theorem 4.4 and Remark 4.9, we find that the equation
(4.16) possesses a unique solution y on [a, b] and

lim
k→∞

‖yk − y‖∞ = 0. (4.17)

where for each k ∈ N, yk is the solution on [a, b] of (4.15).
Note that y is continuous on [a, b] and y = x on [a, b). Let {xk} be a

sequence of solutions of the problems (4.9) on [a, b]. We can see that xk = yk

on [a, τk] for each k ∈ N, and, due to (4.13), we have

lim
k→∞

xk(t) = lim
k→∞

yk(t) = y(t) = x(t) for t ∈ [a, b). (4.18)

Step 2. Next, we prove that

lim
k→∞

xk(τk) = y(b). (4.19)

Indeed, let ε > 0 be given and let δ > 0 be such that

‖y(t)− y(b)‖X <
ε

2
for t ∈ [b− δ, b].

Further, by (4.17), there is a k0 ∈ N such that

τk ∈ [b− δ, b) and ‖yk − y‖∞ <
ε

2
whenever k ≥ k0.

Consequently,

‖xk(τk)− y(b)‖X ≤ ‖xk(τk)− y(τk)‖X + ‖y(τk)− y(b)‖X =

= ‖yk(τk)− y(τk)‖X + ‖y(τk)− y(b)‖X <
ε

2
+

ε

2
= ε.

holds for k ≥ k0. This completes the proof of (4.19).

Step 3. On the intervals [τk, b], the equations from (4.9) reduce to the
equations with constant coefficients

x′k = Bkxk + ek, (4.20)
where

Bk =
A(b)−A(τk)

b− τk
and ek =

f(b)− f(τk)
b− τk

.
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Their solutions xk are on [τk, b] given by

xk(t) = exp (Bk(t− τk))xk(τk) +
( t∫

τk

exp (Bk(t− r)) dr

)
ek,

(cf. [5, Chapter II]). In particular,

xk(b) = exp (A(b)−A(τk)) xk(τk)+

+
1

b− τk

( b∫

τk

exp
(
[A(b)−A(τk)]

b− r

b− τk

)
dr

)
[fk(b)− fk(τk)].

By Lemma 4.10, we have

lim
k→∞

1
b− τk

( b∫

τk

exp
(
[A(b)−A(τk)]

b− r

b− τk

)
dr

)
[f(b)− f(τk)] =

= lim
k→∞

1
b− τk

( b∫

τk

exp
(
∆−A(b)

b− r

b− τk

)
dr

)
[f(b)− f(τk)] =

=
( 1∫

0

exp
(
∆−A(b)(1− s)

)
ds

)
∆−f(b).

To summarize,

lim
k→∞

xk(b) = exp
(
∆−A(b)

)
y(b) +

( 1∫

0

exp
(
∆−A(b)(1− s)

)
ds

)
∆−f(b),

i.e.,
lim

k→∞
xk(b) = v(1), (4.21)

where v is a solution of (4.12) on [0, 1].

Step 4. Define

x∗(t) =





y(t) if t ∈ [a, b),

v(1) if t = b.

Then x∗(t) = lim
k→∞

xk(t) for t ∈ [a, b] due to (4.19) and (4.21). Therefore,

x∗ is a sequential solution of (1.2). Since it does not depend on the choice of
the approximating sequence {Ak, fk}, we can see that x∗ is also the unique
sequential solution of (1.2). This completes the proof. ¤

The following assertion concerns a situation, symmetric to that treated
by Lemma 4.11. Similarly to the proof of Lemma 4.11, we will deal with
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the modified equation

y(t) = ỹ +

t∫

a

d[Ã]y + f̃(t)− f̃(a), (4.22)

where ỹ ∈ X and

Ã(t) =





A(a+) if t = a,

A(t) if t ∈ (a, b]
and f̃(t) =





f(a+) if t = a,

f(t) if t ∈ (a, b].
(4.23)

Lemma 4.12. Let A ∈ BV ([a, b], L(X)) and f ∈ G([a, b], X) be contin-
uous on (a, b]. Then for each x̃ ∈ X, equation (1.2) has a unique sequential
solution x∗ on [a, b] which is continuous on (a, b].

Furthermore, let w be a solution of the initial value problem

w′ = [∆+A(a)]w + [∆+f(a)], w(0) = x̃ (4.24)

and let y be a solution on [a, b] of equation (4.22), where ỹ = w(1). Then
x∗ coincides with y on (a, b].

Proof. Let {Ak, fk} be an arbitrary PL-approximation of (A, f) and let
{Dk} be the corresponding sequence of divisions of [a, b] fulfilling (4.1) and
(4.2). Just as in the previous proof, Dk = Pk for k ∈ N.

For k ∈ N, we put

τk = min{t ∈ Pk : t > a}.
By (4.3), we have a + b−a

2k ≥ τk > a for k ∈ N, and hence

lim
k→∞

τk = a.

Let {xk} be a sequence of solutions of the approximating initial value prob-
lems (4.9) on [a, b].

Step 1. On the intervals [a, τk], the equations from (4.9) reduce to the
equations (4.20) with the coefficients

Bk =
A(τk)−A(a)

τk − a
, ek =

f(τk)− f(a)
τk − a

.

Their solutions xk are on [a, τk] given by

xk(t) = exp(Bk(t− a))x̃ +
( t∫

a

exp (Bk(t− r)) dr

)
ek,

(cf. [5, Chapter II]). In particular,

xk(τk) = exp (A(τk)−A(a)) x̃+

+
1

τk − a

( τk∫

a

exp
(
[A(τk)−A(a)]

τk − r

τk − a

)
dr

)
[f(τk)− f(τk)].
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By Lemma 4.10, we have

lim
k→∞

1
τk − a

( τk∫

a

exp
(
[A(τk)−A(a)]

τk − r

τk − a

)
dr

)
[f(τk)− f(a)] =

=
( 1∫

0

exp(∆+A(a)(1− s))ds

)
∆+f(a).

Thus, lim
k→∞

xk(τk) = w(1), where w is the solution of (4.24) on [0, 1].

Step 2. Consider equation (4.22) with ỹ = w(1). By Theorem 2.1, it has
a unique solution y on [a, b], y is continuous on [a, b] and, by an argument
analogous to that used in Step 1 of the proof of Lemma 4.11, we can show
that the relation

lim
k→∞

xk(t) = y(t) for t ∈ (a, b]

is true.

Step 3. Analogously to Step 4 of the proof of Lemma 4.11, we can complete
the proof by showing that the function

x∗(t) =

{
x̃ if t = a,

y(t) if t ∈ (a, b],

is the unique sequential solution of (1.2). ¤

Remark 4.13. Notice that if a < c < b and the functions x∗1 and x∗2 are,
respectively, the sequential solutions to

x(t) = x̃1 +

t∫

a

d[A]x + f(t)− f(a), t ∈ [a, c],

and

x(t) = x̃2 +

t∫

c

d[A]x + f(t)− f(c), t ∈ [c, b],

where x̃2 = x∗1(c), then the function

x∗(t) =

{
x∗1(t) if t ∈ [a, c],

x∗2(t) if t ∈ (c, b]

is a sequential solution to (1.2).

Theorem 4.14. Assume that A ∈ BV ([a, b], L(X)), f ∈ G([a, b], X) and

U(A)∪U(f) = {s1, s2, . . . , sm} ⊂ [a, b].

Then for each x̃ ∈ X, there is exactly one sequential solution x∗ of equation
(1.2) on [a, b].
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Moreover,

x∗(t) = w`(1)+

t∫

s`

d[Ã`]x∗+f̃`(t)−f̃`(s`) for t∈ [s`, s`+1), `∈N∩[0,m],

x∗(t) = v`(1) for t = s`, ` ∈ N∩[1,m + 1],

where s0 = a, sm+1 = b, w0(1) = x̃ and, for ` ∈ N∩[0,m],

Ã`(t) =

{
A(s`+) if t = s`,

A(t) if t ∈ (s`, s`+1],
f̃`(t) =

{
f(s`+) if t = s`,

f(t) if t ∈ (s`, s`+1]

and v` and w` denote, respectively, the solutions on [0, 1] of the initial value
problems

v′` = [∆−A(s`)]v` + [∆−f(s`)], v`(0) = x∗(s`−)
and

w′` = [∆+A(s`)]w` + [∆+f(s`)], w`(0) = x∗(s`).

Proof. Having in mind Remark 4.13, we deduce the assertion of Theo-
rem 4.14 by a successive use of Lemmas 4.11 and 4.12. Towards this end, it
suffices to choose a division D = {α0, α1, . . . , αr} of [a, b] such that for each
subinterval [αk−1, αk], k = 1, 2, . . . , r, either the assumptions of Lemma 4.11
or those of Lemma 4.12 are satisfied with αk−1 in place of a and αk in place
of b. ¤
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9. Z. Halas and M. Tvrdý,, Continuous dependence of solutions of generalized linear
differential equations on a parameter. Funct. Differ. Equ. 16 (2009), No. 2, 299–313.

10. T. H. Hildebrandt, On systems of linear differentio-Stieltjes-integral equations.
Illinois J. Math. 3 (1959), 352–373.

11. Ch. S. Hönig, Volterra Stieltjes-integral equations. Functional analytic methods; lin-
ear constraints. Mathematics Studies, No. 16. Notas de Matemática, No. 56. [Notes on
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