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Abstract. In the present work we consider the Dirichlet problem in a
doubly-connected domain D with an arbitrary piecewise smooth boundary
Γ in a class of those harmonic functions which are real parts of analytic in D
functions of Smirnov class Ep1(t),p2(t)(D) with variable exponents p1(t) and
p2(t). It is shown that depending on the geometry of Γ and the functions
pi, i = 1, 2, the problem may turn out to be uniquely and non-uniquely
solvable or, generally speaking, unsolvable at all. In the latter case we have
found additional (necessary and sufficient) conditions for the given on the
boundary functions ensuring the existence of a solution. In all cases, where
solutions do exist, they are constructed in quadratures.
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îâäæñéâ. êŽöîëéöæ ñĲŽê-ñĲŽê àèñãïŽäôãîæŽê ëîŽáĲéñè D Žîâöæ Žéëý-
ïêæèæŽ áæîæýèâï ŽéëùŽêŽ æé ßŽîéëêæñè òñêóùæŽåŽ çèŽïöæ, îëéèâĲæù ûŽî-
éëŽáàâêâê ïéæîêëãæï ùãèŽáéŽøãâêâĲèæŽêæ Ep1(t),p2(t)(D) çèŽïæï ŽêŽèæäñîæ
òñêóùæâĲæï êŽéáãæè êŽûæèâĲï. àŽéëãèâêæèæŽ ïŽäôãîæï îåñèæ àâëéâðîæ-
ñèæ ĲñêâĲæïŽ áŽ pi, i = 1, 2, òñêóùæŽåŽ àŽãèâêŽ ŽéëýïêŽáëĲæï ïñîŽåäâ.
éŽöæê, îëùŽ ïŽïŽäôãîë ìæîëĲæï êâĲæïéæâîæ éŽîþãâêŽ éýŽîæïŽåãæï ŽéëùŽêŽ
Žî Žîæï ŽéëýïêŽáæ, ïŽïŽäôãîë òñêóùææïŽåãæï áŽáàâêæèæŽ æï ŽñùæèâĲâèæ
áŽ ïŽçéŽîæïæ ìæîëĲŽ, îëéâèæù àŽêŽìæîëĲâĲï ŽéëýïêŽáëĲŽï. ŽéëýïêŽáëĲæï
õãâèŽ öâéåýãâãŽöæ ŽéëêŽýïêâĲæ ŽàâĲñèæŽ âòâóðñîŽá.
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1. Introduction

In boundary value problems of the theory of analytic functions natural
sets for unknown functions are generalized Hardy classes, Smirnov classes
Ep(D) of analytic in the domain D functions Φ whose integral p-means along
certain curves, converging to the boundary Γ of D, are uniformly bounded.
This may be accounted for the fact that this class involves all bounded in
D functions. Functions of this class possess angular boundary values on
Γ and, what is of great importance, for p ≥ 1 they are representable by
the Cauchy type integral with density from the Lebesgue class Lp(Γ). The
above-said makes it possible to take boundary values from Lp(Γ).

Recently, the theory of Lebesgue spaces with a variable exponent p(t) and
their applications is being elaborated very intensively [1]–[5]. Such spaces al-
low one to take much better into account local singularities of functions than
for the constant p. Therefore it is advisable to solve boundary value prob-
lems under the assumption that the known boundary functions belong to
more natural class Lp(·)(Γ). As following from the above, in [6]–[9] we stud-
ied boundary value problems of the theory of analytic functions in classes
of functions representable by the Cauchy type integral with density from
Lp(t)(Γ). For the constant p and for Carleson curves Γ this class coincides
with the Smirnov class Ep(D) (see [10, p. 29]). In case of a variable expo-
nent, the question on behavior of integral means of Cauchy type integrals
near the boundary remained open. Thus there naturally arose a problem
of introducing into consideration such generalized Smirnov classes with a
variable exponent which, preserving important properties inherent in the
functions from classes with a constant exponent, would possess boundary
functions belonging to the Lebesgue class with a variable exponent.

This may probably be attained in different ways. In [11]–[12], we intro-
duced natural, in our opinion, Hardy and Smirnov classes with a variable
exponent in simply connected domains responding our purpose in view. In
[13], we introduced the same, but this time the weighted classes among
which are those for doubly-connected domains. In the latter case, Smirnov
class depends on two functions prescribed on the curves composing the
boundary of a domain. Therein, the Dirichlet problem is considered for
harmonic functions which are real parts of analytic Smirnov class func-
tions for a circular ring (such functions we call harmonic Smirnov class
functions). The Dirichlet problem in the classes Ep(·)(D) for simply con-
nected domains with arbitrary piecewise smooth boundaries is investigated
in [14], where the problem is reduced to the Dirichlet problem for a ring
in the weighted Hardy class with a weight not necessarily of power type,
so conventional for such kind of problems. Generalizing the well-known
Muskhelishvili’s method of reducing the Riemann–Hilbert problem (which
includes the Dirichlet problem in the statement under consideration) to the
boundary value Riemann problem ([15, §§ 40–41]), we have succeeded in
studying the appearing problem with that general weight and, as a result,
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we have obtained a full picture of solvability of the Dirichlet problem in the
class Re Ep(·)(D) when the boundary D is an arbitrary piecewise smooth
curve, and p(t) is a function satisfying a certain Log-Hölder condition.

Certainly, it is desirable to solve the Dirichlet problem for doubly-con-
nected domains, other than a circular ring. In the present work we solve
the Dirichlet problem in doubly-connected domains with piecewise smooth
boundaries in Smirnov classes Re Ep1(·),p2(·)(D). The problem is reduced
to the problem for a circular ring in the weighted Hardy class. But in this
case we will fail to reduce it to the Riemann problem (even in the case
of a constant exponent we have to find another ways for its investigation
(see, e.g., [16])). Having used the results obtained in [6], [12] and [14]
and revealed new properties of conformal mapping of a circular ring onto a
doubly-connected domain with piecewise smooth boundaries (see item 30),
enable us to investigate the obtained problem and to get a full picture of
the Dirichlet problem in view. Depending both on the geometry of the
boundary and on the functions p1(t) and p2(t), the problem may turn out
to be uniquely or non-uniquely solvable, and in the presence of cusps on
the boundary it may, generally speaking, be unsolvable. When the problem
fails to be solvable, necessary and sufficient conditions are found regarding
the given boundary functions which guarantee the existence of a solution.
Solutions are constructed for all cases in which they exist.

In our opinion, the novelty of the results of the present paper is a progress
in the theory of plane boundary value problems in three directions: inves-
tigation of the problem in the framework of the variable exponent analysis,
passage from simply- to doubly-connected domains and solution of the prob-
lem when boundaries of the domain have complicated geometrical structure.

It should be noted that the plane boundary value problems for analytic
and harmonic functions were investigated in the framework of the classical
function spaces in domains with nonsmooth boundaries by G. Iakovlev,
I. I. Danilyuk, M. Dauge, V. Kondrat’ev, V. Maz’ya, V. Maz’ya and A. So-
lov’ev, V. Rabinovich and B. V. Schulze, N. Tarkhanov, R. Duduchava,
A. Saginashvili and T. Latsabidze, R. Duduchava and B. S. Silberman,
V. Kokilashvili and V. Paatashvili, G. Khuskivadze and V. Paatashvili,
E. Gordadze, etc.

20. Notation, Definitions and Auxiliary Statements

2.1. Lebesgue classes with a variable exponent. Let Γ = {t ∈ C, t =
t(s), 0 ≤ s ≤ l} be a simple rectifiable curve whose equation is given
with respect to the arc abscissa, and p = p(t(s)) be a positive measurable
function given on Γ. If ω is measurable, almost everywhere different from
zero function on Γ, then by Lp(·)(Γ, ω) we denote the set of all measurable
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on Γ functions f for which

‖f‖Lp(·)(Γ;ω) = inf
{

λ > 0 :

1∫

0

∣∣∣f(t(s))ω(t(s))
λ

∣∣∣ dx ≤ 1
}

is finite.

2.2. One Property of a Derivative of Conformal Mapping of a Cir-
cle Onto the Domain with a Piecewise Smooth Boundary. If a
simple closed piecewise smooth curve Γ is given with a finite number of an-
gular points tk, k = 1, n, at which angle values with respect to the domain
D bounded by the curve Γ are equal to πνk, 0 ≤ νk ≤ 2, then we write
Γ ∈ C1

D(t1, . . . , tn; ν1, . . . , νn). The set of the same curves, but piecewise
Lyapounov ones, we denote by C1,L

D (t1, . . . , tn; ν1, . . . , νn).
Let D be a doubly-connected domain bounded by simple closed piecewise

smooth curves Γ1 and Γ2. Assume Γ = Γ1 ∪Γ2. If t1, . . . , tn are all angular
points on Γ with angle values πνk with respect to D, we likewise write
Γ ∈ C1

D(t1, . . . , tn; ν1, . . . , νn).
If D is the domain bounded by the curve Γ ∈ C1

D(t1, . . . , tn; ν1, . . . , νn),
z = z(w) is a conformal mapping of the circle U = {w : |w| < 1} onto the
domain D, and z(ak) = tk, then

z′(w) ∼
n∏

k=1

(w − ak)νk−1 exp
∫

γ

ψ(τ)
τ − w

dτ, w ∈ U, (1)

where ψ is a real continuous function on Γ, and the writing f ∼ g denotes
that 0 < m ≤ inf | fg | ≤ sup | fg | = M < ∞ (see [10, p. 144]).

2.3. The classes of functions P (Γ), P̃ (Γ) and Q(Γ). Let Γ be a simple
closed rectifiable curve. By P1+ε(Γ), ε ≥ 0, we denote the set of positive
measurable on Γ functions p for which the following conditions are fulfilled:

(a) there exists a constant A depending on p and ε such that for any
t1, t2 ∈ Γ we have |p(t1)− p(t2)| < A| ln |t1 − t2||1+ε;

(b) inf p(t) = p > 1.

Assume P (Γ) = P1(Γ), P̃ (Γ) =
⋃

ε>0
P1+ε(Γ).

The following statements are valid.

(i) Let D be the domain bounded by a simple closed rectifiable curve
Γ, z = z(w) be a conformal mapping of the circle U onto D, and
p ∈ P (Γ). Then if z′ ∈ ⋃

δ>1

Hδ, where Hδ is the Hardy class of

analytic in U functions, then the function l(τ) = p(z(τ)), τ ∈ γ,
γ = {τ : |τ | = 1} belongs to P (γ). In particular, if Γ is a piecewise
smooth curve free from zero angles, and p ∈ P (Γ), then l ∈ P (γ)
([13, Theorem 7.2]).



136 G. Khuskivadze, V. Kokilashvili, and V. Paatashvili

(ii) If Γ ∈ C1
D(t1, . . . , tn; ν1, . . . , νn), 0 < νk ≤ 2 and p ∈ P̃ (Γ), then

l ∈ P̃ (Γ) ([8, Lemma 2]).
If D is the interior domain bounded by a simple closed rectifiable curve

Γ and z = z(w) is a conformal mapping of the circle U with the boundary
γ onto the domain D, then we say that the given on Γ function p belongs
to the class Q(Γ) if p ∈ P̃ (Γ) and l ∈ P̃ (Γ), l(τ) = p(z(τ)), τ ∈ γ.

2.4. The set of weighted functions W p(·)(Γ). Let p be a given on Γ
measurable function, and p > 1. We say that a measurable, almost every-
where different from zero on Γ function ω belongs to the class W p(·)(Γ) if
the Cauchy singular operator

SΓ : f → SΓf, (SΓf)(t) =
ω(t)
πi

∫

Γ

f(τ)
ω(τ)

dτ

τ − t
, t ∈ Γ,

is continuous in Lp(·)(Γ).

Examples.
(1) Let p ∈ P (γ), ak ∈ γ, k = 1, n. We fix an arbitrary branch of the

functions (w−ak)αk , αk ∈ R, analytic in the plane cut along the curve lying
outside of U and connecting the point ak with z = ∞. The function

ρ(w) =
n∏

k=1

(w − ak)αk , (2)

− 1
p(ak)

< αk <
1

p′(ak)
, p′(t) =

p(t)
p(t)− 1

(3)

belongs to W p(·)(γ) [17].
(2) If z = z(w) is a conformal mapping of U onto the domain D bounded

by the curve from C1
D(t1, . . . , tn; ν1, . . . , νn), 0 ≤ νk ≤ 2, and z(ak) = tk,

then the function

ω(τ) =
n∏

k=1

(τ − ak)αk exp
(

1
p(τ)

∫

γ

ψ(ζ)
ζ − τ

dζ

)
, τ ∈ γ, (4)

where ψ is the function appearing in the relation (1) for p ∈ P (γ) and
0 < νk < p(tk), belongs to W p(·)(γ) [17].

2.5. The classes of functions Ep(·)(D;ω), Hp(·)(ω), ep(·)(D; ω), hp(·)(ω)
and hp(·). Let D be the interior domain bounded by a simple closed rec-
tifiable curve Γ, p be a given on Γ measurable function, ω be measurable,
almost everywhere different from zero function in D, and z = z(w) be a
conformal mapping of the circle U onto D. By Ep(·)(D;ω) we denote the
set of those analytic in D functions Φ for which

sup
0<r<1

2π∫

0

∣∣∣Φ(z(reiϑ))ω(z(reiϑ))
∣∣∣
p(z(eiϑ))∣∣z′(reiϑ)

∣∣ dϑ < ∞.
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The class Ep(·)(U ; ω) we denote by Hp(·)(ω). These classes for the con-
stant p and ω = 1 coincide with Smirnov Ep(D) and Hardy Hp classes,
respectively (for these classes see, e.g., [18], [19, Chs. IX–X]).

When ω(z) is a function which almost everywhere on Γ has angular
boundary values ω+(τ), then the functions Φ of the class Ep(·)(D; ω)
have likewise angular boundary values almost everywhere on Γ, and Φ+ ∈
Lp(·)(γ; ω+) [14].

Assume

ep(·)(D; ω) =
{

u : u = ReΦ, Φ ∈ Ep(·)(D; ω)
}

,

hp(·)(ω) = ep(·)(U ;ω), hp(·) = hp(·)(1).

2.6. The classes of functions Ep1(·),p2(·)(D) and ep1(·),p2(·)(D) in doub-
ly-connected domains D. Let Γi, i = 1, 2, be simple closed rectifiable
curves, where Γ2 lies in the bounded domain with boundary Γ1. By D we
denote a doubly-connected domain with boundary Γ = Γ1∪Γ2. This domain
can be conformally mapped onto the circular ring K = {w : ρ < |w| < 1}
(see, for e.g., [19, p. 207]). Let w = w(z) be such a mapping and z = z(w)
be the inverse mapping.

Let pi be a positive measurable on Γi, i = 1, 2, function. Assume p1(ϑ) =
p1(z(eiϑ)), p2(ϑ) = p2(z(ρeiϑ)). Further, let ω be the different from zero
almost everywhere in D measurable function.

We say that the analytic in D function Φ belongs to the class
Ep1(·),p2(·)(D), if for any r0 ∈ (ρ; 1) we have

(
sup

ρ<r<r0

2π∫

0

∣∣(Φω)(z(reiϑ))
∣∣p2(ϑ)∣∣z′(reiϑ)

∣∣ dϑ+

+ sup
r0<r<1

2π∫

0

∣∣(Φω)(z(reiϑ))
∣∣p1(ϑ)|z′(reiϑ)| dϑ

)
< ∞.

For D = K and p1 = p2 = p = const > 0, ω = 1, the class Ep,p(K; 1)
coincides with the class Ep(K) (for these classes, see [20]). If D is a doubly-
connected domain bounded by simple rectifiable curves and z = z(w) is a
conformal mapping of the ring K onto D, then z′ ∈ E1(K) (see, e.g., [16]).

Assume Ep1(·),p2(·)(D) = Ep1(·),p2(·)(D; 1). If Φ ∈ Ep1(·),p2(·)(D) and
pi > 0. Then Ep1(·),p2(·)(D) ⊂ Ep0(D), p0 = min pi and Φ+(t) ∈ Lpi(Γi),
t ∈ Γi. Next, if pi ∈ P (Γi), then

Φ(z) = Φ1(z) + Φ2(z), Φi ∈ Epi(·)(Di), (5)

where Di is the domain bounded by the curve Γi which contains D, and
vice versa, if Φ is representable in the form (5), then Φ ∈ Ep1(·),p2(·)(D)
([13, Lemma 6.2]).
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Let

ep1(·),p2(·)(D) =
{
u : u = ReΦ(z), Φ ∈ Ep1(·),p2(·)(D)

}
.

It follows from the above-said that if u ∈ ep1(·),p2(·)(D), then u = u1 +u2,
where ui ∈ epi(Di), i = 1, 2, and vice versa if u = u1 + u2, ui ∈ epi(·)(Di),
then u ∈ ep1(·),p2(·)(D).

2.7. Some auxiliary statements.

Theorem A ([13, Theorem 6.3]). Let D be a doubly-connected domain
with the boundary Γ = Γ1 ∪Γ2, Γ ∈ C1,L

D (t1, . . . , tn; ν1, . . . , νn), 0 < νk ≤ 2,
k = 1, n. Then if fi ∈ Lpi(·)(Γ), then the Cauchy type integral

Φ(z) = (KΓ1f1)(z) + (KΓ2f2)(z) =
1

2πi

∫

Γ1

f1(t)
t− z

dt+

+
1

2πi

∫

Γ2

f2(t)
t− z

dt , z ∈ D1,

belongs to Ep1(·),p2(·)(D).

Theorem B ([6, Theorem 6.1]). Let ρ∈W p(·)(γ), 1
ρ ∈Lp′(·)+ε(γ), ε> 0,

and ϕ be a real continuous function. Then the function ρ(t) exp
∫
γ

ϕ(τ)
τ−t dτ ,

t ∈ γ, belongs to W p(·)(γ).

Corollary. Let p ∈ P (γ), χϕ(t) = exp
∫
γ

ϕ(τ)
τ−t dτ , t ∈ γ, where ϕ is a real

continuous function on γ, ρ be given by the equality (2) and the conditions
(3) be fulfilled. Then the function

ρ(t)χϕ(t) =
n∏

k=1

(t− ak)αkχϕ(t), t ∈ γ, − 1
p(αk)

< αk <
1

p′(αk)
,

belongs to W p(·)(γ).

Theorem C ([12, Theorem 3]). If Φ ∈ Hp(·), p > 0, and Φ+ ∈ Lp1(·)(γ),
p1 ∈ P (γ), then Φ ∈ H p̃(·), p̃(t) = max(p(t), p1(t)).

2.8. The Dirichlet problem in the class hp(·)(ω).

Theorem D ([14, Theorem 3]). Let p ∈ P (γ) and ω be given by the
equality (4), where

− 1
p(ak)

< αk <
1

p′(ak)
, k = 1, m,

1
p′(ak)

< αk <
1

p′(ak)
+ 1, k = m + 1,m + j,

αk =
1

p′(ak)
, k = m + j + 1,m + j + s,
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αk = − 1
p(ak)

, k = m + j + s + 1, n.

Then for the Dirichlet problem
{

∆u = 0, u ∈ hp(·)(ω),
u+(t) = f(t), t ∈ γ, f ∈ Lp(·)(γ; ω),

to be solvable, it is necessary and sufficient that the conditions

ω1(s)
πi

∫

γ

g(τ)
ω1(τ)

dτ

τ − ζ
∈ Lp(·)(γ), g = fω, (6)

be fulfilled; here

ω1(ζ) = ρ(ζ)ω(ζ), ρ(w) =
m+j+s∏

k=m+1

(w − ak)−1 if j + s ≥ 1

and

ρ(w) = 1 if j + s = 0.

If (6) holds, then a general solution is given by the equality

u(w) = u0(w) + uf (w), (7)

where

u0(w) =
m+j+s∑

k=m+1

Mk(p)Re
ak + w

ak − w
, (8)

Mk(p) =





0 when m+j <k≤m+j+s, if Xk ∈Hp(·),

Xk(w) = (w − ak)−
1

p(ak) χϕ(w),
Mk is an arbitrary constant
for m + 1 ≤ k ≤ k + j and
m + j < k ≤ m + j + s, but Xk ∈ Hρ(·),

(9)

uf (w) = Re
[

1
ρ(w)

(
1

2πi

∫

γ

f(ζ)ρ(ζ)
ζ − w

dζ−

− (−1)j+1wj+1

2πi

m+j∏

k=m+1

ak

∫

γ

f(ζ)
ζ

ρ(ζ)
ζ − w

dζ

)]
, (10)

m+j∏

k=m+1

ak = 1 if j = 0.
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2.9. The classes of functions Hp(·)(CUρ; ω̃) and the Dirichlet Prob-
lem in Hp(·)(CUρ; ω̃). Let Uρ = {w : |w| < ρ}, ρ ∈ (0, 1) and CUρ =
C \ Uρ. Assume

ω̃(w) =
n∏

k=1

( w − ak

w − w0

)αk

χϕ(w), ak ∈ γρ,

γρ = {w : |; |w| = ρ}, w0 ∈ U, w ∈ CUρ, Im ϕ = 0, ϕ ∈ C(γρ).

We say that an analytic in CUρ function Φ belongs to the class
Hp(·)(CUρ; ω̃) if

sup
r>ρ

2π∫

0

∣∣Φ(reiϑ)ω̃(reiϑ)
∣∣p(ρeiϑ) = sup

r>ρ

∫

|ζ|=r

∣∣Φ(ζ)ω̃(ζ)
∣∣p(ζ)

dζ < ∞.

For the Dirichlet problem{
∆u = 0, u ∈ hp(·)(CUρ; ω̃) = Re Hp(·)(CUρ; ω̃),
u+(t) = f(t), t ∈ γρ, f ∈ Lp(·)(γρ; ω̃+),

the analogue of Theorem D is valid. However, due to the fact that the
functions of the class Hp(·)(CUρ; ω̃) must vanish at infinity, the condition

2π∫

0

f(ρeiϑ) dϑ = 0 (11)

is to be fulfilled, and hence a general solution of the homogeneous problem
is, this time, given by the equality

u0(w) =
m+j+s∑

k=m+1

Mk(p)Re
w + ak

w − ak
,

where Mk(p) are defined according to (9), but with the additional condition
m+j+s∑

k=m+1

Mk(p) = 0. (12)

30. On The Conformal Mapping of a Circular Ring onto a
Doubly-Connected Domain with a Piecewise Smooth Boundary

In [16], we proved the following

Statement 1. If D is a doubly-connected domain with the boundary
Γ = Γ1 ∪ Γ2, Γ ∈ C1

D(t1, . . . , tn; ν1, . . . , νn), 0 ≤ νk ≤ 2, k = 1, n and
z = z(w) is a conformal mapping of the ring K = {w : ρ < |w| < 1} onto
D such that z(ak) = tk, z(γi) = Γi, γ1 = {t : |t‖ = 1}, γ2 = {t : |t| = ρ},
then

z′(w) ∼
n∏

k=1

(w − ak)νk−1z0(w),
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where

[z0(w)]±1 ∈
⋂

δ>1

Eδ(K),

[z0(eiϑ)]±1 ∈
⋂

δ>1

W δ(γ1), [z0(ρeiϑ)]±1 ∈
⋂

δ>1

W δ(γ2).

In addition to the above statement we first prove that the statement
below is valid.

Statement 2. Under the assumptions of Statement 1, for every point tk,
k = 1, n, there exists a real continuous on γ function ϕk such that in some
subdomain Gk ⊂ K containing the point ak = w(tk) and with the boundary
having with the boundary γ1 ∪ γ2 of the ring K a common arc lk, ak ∈ lk,
we have

z′(w) ∼ (w − ak)νk−1χ
ϕk

(ζk(w)),

where ζ = ζk(w) is a conformal mapping of the circle U onto Gk.

Proof. Let Gk be such a subdomain of the ring K which is bounded by a
closed Lyapounov curve Λk having one arc lk, common with the boundary of
K, where ak ∈ lk, and lk does not contain points from the set {a1, . . . , an},
except the point ak. Consider the restriction of the function z(w) on Gk

and denote it by zk(w). Then zk is a conformal mapping of Gk onto some
simply connected domain Dk, the subdomain of D containing the point
tk but not containing another angular points of Γ. Let w = wk(ζ) be a
conformal mapping of U onto Gk, and wk(bk) = ak; then zk(wk(ζ)) is a
conformal mapping of U onto Dk. Since the boundary of the domain Dk is
a piecewise smooth curve with one angular point tk, therefore z′k(wk(ζ)) ∼
(ζ − bk)νk−1z̃0(ζ), where

z̃0(ζ) ∼ χϕk
(ζ), Imϕk = 0, ϕk ∈ C(γ)

(see item 2.4). Thus we find that

z′k(w) ∼ (
ζk(w)− ζk(ak)

)
χϕk

(ζk(w)).

Since wk(ζ) is a conformal mapping of the circle U onto the domain Gk

with Lyapounov boundary, therefore ζk(w)−ζk(an) ∼ (w−ak)ζk0(w), where
ζk0 belongs to the Hölder class, and ζk0(ak) 6= 0 (see, e.g., [10, p. 146]).
Consequently,

z′k(w) ∼ (w − ak)νk−1χϕk
(ζk(w)). ¤

Theorem 1. Let D be a doubly-connected domain with the boundary Γ =
Γ1 ∪ Γ2, Γ ∈ C1

D(t1, . . . , tn; ν1, . . . , νn), z = z(w) conformally map the ring
K = {w : ρ < |w| < 1} with the boundary γ = γ1 ∪ γ2, γ1 = {τ : |τ | = 1},
γ2 = {τ : |τ | = ρ} onto the domain D, and z(ak) = tk. Then

z′(w) ∼
n∏

k=1

(w − ak)νk−1 exp
∫

γ1

ψ1(τ)
τ − w

dτ exp
∫

γ2

ψ2(τ)
τ − w

dτ , (13)
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where ψi is a continuous real function on γi, i = 1, 2.

Proof. Consider first only the points tk lying on Γ1. Let Gk be subdo-
mains of the ring K with Lyapounov boundaries constructed when prov-
ing Statement 2. If ζk = ζk(w) maps conformally the circle U onto Gk,
ϕk(t) = ϕk(ζk(τ)), then

∫

γ

ϕk(τ)
τ − ζk(w)

dτ =
∫

Λk

ϕk(t)ζ ′k(t)
ζk(t)− ζk(w)

dt =

=
∫

Λk

ϕk(t)
[ ζ ′k(t)
ζk(t)−ζk(w)

− 1
t−w

]
dt +

∫

Λk

ϕk(t)
t− w

dt =

= Ik1(w) + Ik2(w).

Since ζ ′k is Hölder continuous in U and |ζ(t)− ζ(w)| ≥ m|t−w|, it is not
difficult to show that

∣∣∣ ζ ′k(t)
ζk(t)− ζk(w)

− 1
t− w

∣∣∣ ≤ M

|t− w|λ , λ < 1,

(analogously to the reasoning in [21, p. 18], where the difference ζ′(s)
ζ(s)−ζ(s0)

−
ctg s−s0

2 is considered); thus we have that (exp Ik1)
±1 are bounded functions.

Consequently,
z′(w) ∼ (w − a)νk−1χϕk

(w), w ∈ Gk.

The curve Λk contains the arc lk ∈ γ1, hence
∫

Λk

ϕk(t)
t− w

dt =
∫

lk

ϕk(t)
t− w

dt +
∫

Λk−lk

ϕk(t)
t− w

dt.

The second summand here is a bounded in the subdomain G′k ⊂ Gk

function adjoining to γ1 along the curve l′k ⊂ lk, such that l′k ⊂ lk. Therefore
in G′k we have

z′k(w) ∼ (w − ak)νk−1χϕk
(w),

where we recall that

χϕk
(w) = exp

∫

γ

ϕk(t)
t− w

dt.

The domains Gk and G′k can be chosen in such a way that the following
conditions are fulfilled:

(i) ∪G′k covers a one-sided neighborhood G(1) of the curve γ1, i.e., a
set of those w ∈ K for which 1− δ < |w| < 1;

(ii) the curves lk intersect only with the curves lk−1 and lk+1 (l0 = ln1 ,
ln1+1 = l1), where n1 is the number of points ak lying on γ1. Then

z′(w) ∼
∏

ak∈γ1

(w − ak)νk−1 exp
∫

lk

ϕk(t)
t− w

dt, w ∈ G(1).
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Assume

ψ1(t) =

=





ϕk(t), t∈ lk\ l̃k, l̃k= lk\
[
(lk ∩ lk−1 ∪ (lk ∩ lk+1)

]
,

ϕk(t)+ϕk−1(t), tk∈ lk\(lk ∩ lk−1),
ϕk(t)+ϕk+1(t), tk∈ lk\(lk ∩ lk+1),

t∈γ1.

Then for n1 > 0 we have
k1∏

k=1

exp
∫

lk

ϕk(t)
t− w

dt ∼ exp
∫

γ1

ψ1(t)
t− w

dt, w ∈ G(1).

Obviously, ψ1 is continuous on γ1. Thus

z′(w) ∼
∏

ak∈γ1

(w − ak)νk−1 exp
∫

γ1

ψ1(t)
t− w

dt, w ∈ G(1). (141)

Analogously, we prove the existence of the neighborhood G(2) of the curve
γ2 and of the function ψ2 ∈ C(γ2) such that

z′(w) ∼
∏

ak∈γ2

(w − ak)νk−1 exp
∫

γ2

ψ2(t)
t− w

dt, w ∈ G(2). (142)

The validity of the theorem follows from the above-proven relations (141)–
(142). ¤

40. The Dirichlet Problem in the Class ep1(·),p2(·)(D); its
Reduction to the Problem in the Class hl1(·),l(·)(K; ω)

4.1. Statement of the problem. Let D be a doubly-connected domain
bounded by simple closed curves Γ1 and Γ2, where Γ2 lies in the bounded
domain with boundary Γ1.

We assume that Γ ∈ C1
D(t1, . . . , tn; ν1, . . . , νn) and pi ∈ Q(Γi), i = 1, 2.

Consider the Dirichlet problem formulated as follows: find a harmonic
function U(z) satisfying the conditions

{
U(z) ∈ ep1(·),p2(·)(D),
U∣∣

Γi
= fi, fi ∈ Lpi(·)(Γi), i = 1, 2.

(15)

4.2. Reduction of the problem (15) to the problem for a ring.

Lemma 1. If U(z) ∈ ep1(·),p2(·)(D) and pi ∈ Q(Γi), then the function
u(w) = U(z(w)), where z = z(w) is a conformal mapping of the ring K
onto D, belongs to the class hl1(·),l2(·)(K; ω), where li(ζ)=pi(z(ζ)), ζ∈ γi,

ω(w)=
n∏

k=1

(w−ak)
νk−1
p(tk) exp

∫

γ1

ψ1(ζ)
l1(ζ)

dζ

ζ−w
exp

∫

γ2

ψ2(ζ)
l2(ζ)

dζ

ζ−w
, (16)
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ψi, i = 1, 2, are the functions defined by means of z′ appearing in (13),
ak = w(tk), p(tk) = pi(tk), tk ∈ Γi.

Proof. Let U(z) = ReΦ(z), Φ ∈ Ep1(·),p2(·)(D). This implies that

I =
(

sup
r0<r<1

2π∫

0

∣∣φ(z(reiϑ))
∣∣p1(ϑ)∣∣z′(reiϑ)

∣∣ dϑ+

+ sup
ρ<r≤r0

2π∫

0

∣∣φ(z(reiϑ))
∣∣p2(ϑ)∣∣z′(reiϑ)

∣∣ dϑ

)
< ∞,

where

p1(ϑ) = p1(z(eiϑ))
(

= (l1(ζ)), ζ ∈ γ1

)
,

p2(ϑ) = p2(z(ρeiϑ))
(

= (l2(ζ)), ζ ∈ γ2

)
.

From Lemmas 4 and 5 of [14], it directly follows that the functions

(|z′(w)| 1
p1(ϑ) (ω(w))−1

)±1
, w = reiϑ,

are bounded in K. We now obtain

I =
(

sup
r0<r<1

2π∫

0

∣∣φ(z(reiϑ))ω(z(reiϑ))
∣∣p1(ϑ)

dϑ+

+ sup
ρ<r≤r0

2π∫

0

∣∣φ(z(reiϑ))ω(z(reiϑ))
∣∣p2(ϑ)

dϑ

)
< ∞.

This means that Φ(z(reiϑ)) = Φ(z(w)) ∈ H l1(·),l2(·)(K; ω) and since
U(z(w)) = Re Φ(z(w)), we have u(w) ∈ hl1(·),l2(·)(K;ω). ¤

Corollary. It follows from Lemma 1 that every solution U(z) of the
problem (15) generates a solution u(w) = U(z(w)) of the problem

{
∆u = 0, u ∈ hl1(·),l2(·)(K; ω),
u
∣∣
γi

= gi, gi(τ) = f(z(τ)), fi ∈ Lpi(·)(Γi),
(17)

where li(τ) = pi(z(τ)), τ ∈ γi, and ω is the function given by the equality
(16). Conversely, if u(w) is a solution of the problem (17), then U(z) =
u(w(z)) is a solution of the problem (15).

Remark. The condition pi ∈ Q(Γi) allows us to conclude that li(ζ) =
pi(z(ζ)), ζ ∈ γi, belongs to P (γi), i = 1, 2.
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50. Solution of the Problem (17)

5.1. On some properties of solution of the problem (17). Under the
assumptions adopted in item 4.1 regarding Γ and the function pi, every
function u ∈ hl1(·),l2(·)(K;ω) is representable in the form u = u1 + u2,
where ui ∈ hli(·)(Ki;ωi), u2(∞) = 0, and

ω1(w) =
∏

ak∈γ1

(w − ak)
νk−1
l1(ak) exp

∫

γ1

ψ1(ζ)
l1(ζ)

dζ

ζ − w
, (181)

w ∈ K1, l1(ak) = p1(tk), ak = w(tk),

ω2(w) =
∏

ak∈γ2

( w − ak

w − w0

) νk−1
l2(ak)

exp
∫

γ2

ψ2(ζ)
l2(ζ)

dζ

ζ − w
, (182)

w ∈ K2, |w0| < ρ, l2(ak) = p2(tk).

According to Lemma 3 of [14], we have ωi ∈ H li(·)(Ki). Moreover, if u2

is representable by the Poisson integral, then

2π∫

0

u2(ρeiϑ) dϑ = 0.

If now u = u1+u2 is a solution of the problem (17), then we can conclude
that {

∆u1 = 0, u1 ∈ hl1(·)(K1;ω1),
u+

1 (eiϑ) = g1(eiϑ)− u2(eiϑ), g1 ∈ Ll1(·)(Γ1; ω+
1 ),

(191)

and {
∆u2 = 0, u2 ∈ hl2(·)(K2;ω2),
u+

2 (eiϑ) = g2(ρeiϑ)− u1(ρeiϑ), g2 ∈ Ll2(·)(Γ2; ω+
2 ).

(192)

5.2. The problem (17) in case γi has points at which li(ak) = νk(z(ak))
or νk(z(ak)) = 0.

Lemma 2. If Γ has points at which νk = 0, then the problem (17) is,
generally speaking, unsolvable.

Proof. Let, for example, t0 ∈ Γ1, ν(t0) = 0 and z(t0) = a. Then ν−1
l(a) =

− 1
l(a) , and

ω1(w) = (w − a)−
1

l(a) χϕ1
(w), ϕ1 = ψ1/l1.

Assume now that the statement of the lemma is invalid. Then for any
fixed g2 ∈ Ll2(·)(γ2; ω+

2 ) and any g1 ∈ Ll1(·)(γ1; ω+
1 ) there exists a solution

of the problem (17), u = u1 + u2, where u1 = Re Φ1, Φ1 ∈ H l1(·)(K1; ω1) =
H l1(·)(ω1), and for u1 the condition (191) is fulfilled. Thus Φ1 = ω−1

1 F1,
F1 ∈ H l1(·) ⊂ H1. But every function Φ of H1 is representable by the
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Schwarz integral with density Re Φ (see, e.g., [22, p. 84]). This easily results
in

Φ(w) =
1
πi

∫

γi

ReΦ
t− w

dt− Φ(0). (20)

Therefore

Φ1(w) =
1
πi

∫

γ1

ReΦ1(t)
t− w

dt + const =
1
πi

∫

γ1

g1(t)− u2(t)
t− w

dt + const .

Since u2 is differentiable on γ1, the Cauchy type integral Kγ1u2 is a boun-
ded function, and hence, it belongs to H l1(·)(ω1) because ω1 ∈ H l1(·). The
last statement follows directly from Theorem C. Thus since Φ1 = Kγ1g1 −
Kγ1u2+const and Φ1 ∈ H l1(·)(ω1), it follows that Kγ1g1 ∈ H l1(·)(ω1) for any
g1 ∈ Ll1(·)(γ1;ω+

1 ). By virtue of Sokhotskǐı–Plamelj formulas, we conclude
that Sγ1g1∈Ll1(·)(γ1;ω+

1 ) for any g1∈Ll1(·)(γ1;ω+
1 ). This implies that ω+

1 ∈
W l1(·)(γ1) [10, Theorem 3.3]. Moreover, (ω+

1 )−1 ∼ (τ − a)
1

l1(a) (χϕ1
(τ)−1,

and hence (ω+
1 )−1 ∈ Ll′1(·)+ε(γ1). Therefore according to Theorem B, we

conclude that ω+
1 (w)χ

ψ
(w) belongs to W l1(·)(γ1) for any real, continuous on

γ1 function ψ. Assuming ψ = −ϕ1, we obtain (τ − a)−
1

l(a) ∈ W l1(·)(γ1),
but this is impossible because (τ − a)α belongs to W l1(·)(γ1) if and only if
α ∈ (− 1

l(a) , 1
l′(a)

)
[17].

Similar contradiction is obtained under the assumption that t0 ∈ γ2.
Thus the lemma is proved. ¤
Lemma 3. If Γ has points tk at which νk = p(tk), then the problem (17)

is, generally speaking, unsolvable.

Proof. For the sake of simplicity, let there is only one point tk0 ∈ Γi, such
that ν(tk0) = pi(tk0) and w(tk0) = a, a ∈ γi. Then

ωi(w) = (w − a)
1

l′
i
(a) χϕi

(w), ϕi = ψi/li.

Assume that the problem is solvable for any given gi ∈ Lli(·)(γi;ω+
i ),

i = 1, 2. For its solution u = u1+u2 we have ui = ReΦi, Φi ∈ H li(·)(Ki; ωi).
Consider the functions Ψi(w) = Φi(w)(w−a)−1. In this case Ψi ∈ H li(·)(ω̃i),

ω̃i(w) = ωi(w)(w − a)−1 ∼ (w − a)−
1

li(a) χϕi
(ω). (21)

Let g̃i(τ) = gi(τ)(τ − a)−1, then g̃i ∈ Lli(·)(γi; ω̃+
i ), and when gi runs

through Lli(·)(γi; ω+
i ), then g̃i runs through Lli(·)(γi; ω̃+

i ). The functions
ũi = Re Ψi belong to hl1(·)(ω̃i), and ũ = ũ1 + ũ2 is a solution of the problem{

∆ũ = 0, u ∈ hl1(·),l2(·)(ω),
ũi

∣∣
γi

= µi, µi ∈ Lli(·)(γi;ω+
i ),

where µi ∼ g̃i.
According to our assumption, this problem turns out to be solvable for

any µi from Lli(·)(γi;ω̃i). But this is impossible on account of Lemma 2. ¤
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From Lemmas 2 and 3 it follows

Statement 3. If Γ has angular points tk for which νk = p(tk), or νk = 0
(p(tk) = pi(tk), tk ∈ Γi), then the problem (17) (and hence Problem (15))
is, generally speaking, unsolvable.

5.3. A necessary condition for the solvability of the problem (17).
From the results set out in items 2.8 and 2.9 it follows that for the conditions
(191) and (192) to be fulfilled, it is necessary that the functions gi(τ) =
fi(z(τ)) satisfy the conditions

ρi(τ)ω+
i (τ)

πi

∫

γi

gi(ζ)
ω+

i (ζ)
dζ

ζ − τ
∈ Lli(·)(γi), i = 1, 2, (22)

where

ωi(w)=
∏

ak∈γi

(w − ak)
νk−1
li(ak) χ

ϕi
(w), ϕi =ψi/li, ρi(w)=

∏

k∈Ti

(w − ak)−1

for Ti = {k : νk ≥ pi(tk), tk ∈ Γi} 6= ∅, and ρi(w) = 1 for Ti = ∅.

Lemma 4. If the conditions (22) are fulfilled, then gi ∈ Lli(·)−ε(γi),
ε > 0.

Proof. Since gi(τ) = fi(z(τ)) and fi ∈ Lli(·)(Γi), in view of the fact that li ∈
P̃ (γi), we obtain gi ∈ Lli(·)(γi; ω+

i ), i.e., gi = qi(ω+
i )−1, where qi ∈ Lli(·)(γ).

Since in the absence of the points from the set {tk : νk = p(tk) or νk =
0, tk ∈ Γi} the functions ω+

i qi belong to W li(·)(γi), the conditions (22) are
equivalent to the conditions

λi(τ) =
ω+

i (τ)
πi

∫

i

qi(ζ)
ω+

i (ζ)
dζ

ζ − τ
∈ Lli(·)(γi),

where this time

ωi(w) =
∏

k∈T ′i

(w − ak)−
1

li(ak) exp
∫

γi

ψi(ζ)
li(ζ)

dζ

ζ − w
,

T ′i = {k : νk = p(tk), or νk = 0, tk ∈ Γi},
whence

1
πi

∫

γi

qi(ζ)
ω+

i (ζ)
dζ

ζ − τ
=

λi(τ)
ω+

i (τ)
, i.e., Sγi

qi

ω+
i

=
λi

ω+
i

.

The above equality yields Sγi

(
Sγi

qi

ω+
i

)
= Sγi

λi

ω+
i

. Since qi

ω+
i

∈ Lli(·)(γi) ⊂
Lli(γi) and li > 1, we have Sγi

(
Sγi

qi

ω+
i

)
= λi

ω+
i

(see, e.g., [21, p. 35–36]).

Finally, we obtain qi = ω+
i Sγi

λi

ω+
i

. But then gi = qi(ω+
i )−1 = Sγi

λi

ω+
i

∈
Lli(·)−ε(γi) (because λi∈Lli(·)(γi), and (ω+

i )−1∈⋂
δ>1

Lδ(γi)). ¤
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5.4. On the existence of a particular solution u = u1 + u2 of the
problem (17) whose summands ui are representable by the Poisson
integral in the domains Ki. Relying on Lemma 4, we will show that
under the conditions (22) there exists a particular solution of the problem
(17) admitting the representation u = u1 + u2, where ui, i = 1, 2, are
representable by the Poisson integrals in the domains Ki with density from
Lli−ε(γi), if and only if

2πi∫

0

g1(eiϑ) dϑ =

2πi∫

0

g2(eiϑ) dϑ. (23)

Lemma 5. If u = u1 + u2 is a solution of the problem (17), where gi,
i = 1, 2, satisfy the condition (22), then the functions ui are representable
by the Poisson integrals in domains Ki with density from Lli−ε(γi), ε > 0.

Proof. Let us prove that u1 ∈ hli−ε(K1). u1 satisfies the condition (191).
Without restriction of generality, we may assume that {tk : νk > p(tk),
tk ∈ γ1} = ∅. (Indeed, in the presence of such points we would be able to
reduce the problem (17) to an analogous problem of the class hl1(·),l2(·)(ω∗),
where ω∗ = ω

∏
{k: νk>µ(tk)}

(t− tk)−1.) Now, according to Theorem D, u1 is

given by the equality

u1(w) = Re
{

ω1(w)
2πi

∫

γ1

g1(eiϑ)− u2(eiϑ)
ω+

1 (eiϑ)
ζ + w

ζ − w
dζ

}
, ζ = eiϑ.

Since u2(eiϑ) = u2(ζ) is differentiable on γ1 and ω1 ∈ H l1(·)−ε, we can
easily verify that

ω1(w)
2πi

∫

γ1

u2(ζ)
ω+

1 (ζ)
ζ + w

ζ − w
dζ ∈ H l1(·)−ε.

Therefore, our lemma will be completed if we show that

(G1(g1))(w) = ω1(w)
∫

γ1

g1(ζ)
ω+

1 (ζ)
dζ

ζ − w
∈ H l1(·)−ε.

As ω1 ∈ Hη, η > 0, and the Cauchy type integral with density g1

ω+
1

belongs

to
⋂

δ<1

Hδ (see, e.g., [18, p. 33]), we have G1(g1) ∈ Hη0 , η0 > 0. Show

that G1(g1) ∈ H li−ε. Towards this end, owing to the well-known Smirnov’s
theorem (see also Theorem C of item 2.7), it suffices to prove that (G1g1)+ ∈
Lli−ε(γ1), and to this end, by virtue of the Sokhotskǐı–Plemelj formulas and
Lemma 4 it suffices to establish that ω+

1

∫
γ1

g1

ω+
1
∈ Ll 1−ε. But this function in

view of (22) belongs to Ll1(·)(γ1) ⊂ Ll 1−ε(γ1). Analogously, we can prove
that u2 ∈ hl 2−ε(K2). ¤
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5.5. Integral equation with respect to the functions u2(ρeiϑ). To
solve the problem (17), we refer to the condition (192). This problem will
be considered as the Dirichlet problem in the class hl2(·)(K2; ω+

2 ). To make
use of the results of item 2.9, we have to fulfil the condition (11).

Lemma 6. If the conditions (22) and (23) are fulfilled, and u = u1 +u2

is a solution of the problem (17), then

I =

2π∫

0

[
g2(ρeiϑ)− u1(ρeiϑ)

]
dϑ = 0. (24)

Proof. Since

u1(ρeiϑ) =
1
2π

2π∫

0

u1(eiα)
1− ρ2

1 + ρ2 − 2ρ cos(α− ϑ)
dα,

we have

I =

2π∫

0

[
g2(ρeiϑ)− 1

2π

2π∫

0

u1(eiα)
1− ρ2

1 + ρ2 − 2ρ cos(α− ϑ)
dα

]
dϑ =

=

2π∫

0

g2(ρeiϑ) dϑ−
2π∫

0

u1(eiα)
1
2π

2π∫

0

1−ρ2

1+ρ2−2ρ cos(α−ϑ)
dϑ dα =

=

2π∫

0

g2(ρeiϑ) dϑ−
2π∫

0

u1(eiα) dα.

Moreover, since u2 ∈ h1(K2), therefore
2π∫
0

u2(eiα) dα = 0. As far as u =

u1+u2 is a solution of the problem (17), we have u1(eiα)+u2(eiα) = g1(eiα).

Consequently,
2π∫
0

u1(eiα) dα =
2π∫
0

g1(eiα) dα, and by virtue of the assumption

(23), we conclude that I = 0.
Thus assuming that the conditions (22) and (23) are fulfilled, we have

the equality (24), and hence we are able to apply the results of item 2.9
according to which the problem (192) is solvable, and its solution u2 is
given by the formula u2 = uf (·), where uf is given by the equality (10) in
which f is replaced by [g2(τ)− u1(τ)]. Thus the restriction of the function
u2(reiϑ) on γ1 is contained in the set of functions

u2(eiϑ) +
∑

k∈T2

Mk(p)Re
eiϑ + ak

eiϑ − ak
= u2(eiϑ) + u2,0(ϑ),

T2 =
{
k : νk ≥ p2(tk), tk ∈ Γ2

}
,
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where

u2,0(eiϑ) =
∑

k∈T2

Mk(p)Re
[
(eiϑ + ak)(eiϑ − ak)−1

]
,

∑

k∈T2

Mk(p) = 0,

and the real constants Mk(p) are defined by virtue of (9).
u1 now is contained in the set of functions satisfying the condition





u1 ∈ hl1(·)(K1; ω1), K1 = U,

u1(τ) = g1(τ)− u2(τ)−
∑

k∈T2

Mk(p)Re
τ + ak

τ − ak
, τ ∈ γ1.

(25)

In view of Theorem D, if for g1 the condition (22) is fulfilled, then the
problem (25) is solvable, and

u1(w) =
∑

k∈T1

Mk(p)Re
w + ak

w − ak
+ u1g̃(w), w ∈ U, (26)

where u1g̃ is a particular solution of the problem (25) representable by the
Poisson integral. Hence

u1g̃(reiϑ) =
1
2π

2π∫

0

g1(eiα)
1− r2

1 + r2 − 2r cos(α− ϑ)
dα−

− 1
2π

2π∫

0

u2(eiα)
1− r2

1 + r2 − 2r cos(α− ϑ)
dα−

−
∑

k∈T2

1
2π

2π∫

0

Mk(p)Re
eiα+ak

eiα−ak

1−r2

1+r2−2r cos(α−ϑ)
dα =

= (Pg1)(r, ϑ)− (Pu2)(r, ϑ)− (Pu2,0)(r, ϑ), (27)

where

(Pu2,0)(r, ϑ) =

=
1
2π

2π∫

0

∑

k∈T2

Mk(p)Re
eiα+ak

eiα−ak

1− r2

1+r2−2r cos(α− ϑ)
dα, reiϑ ∈ K1.

This implies that in the ring K, we have

u(w) =

=
∑

k∈T1

Mk(p)Re
w+ak

w−ak
−(Pu2)(w)+(Pg1)(w)−(Pu2,0)(w)+u2(w).

Since u is a solution of the problem (17), therefore u(ρeiϑ)= g2(ρeiϑ), and
the last equality results in
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u2(ρeiϑ)− 1
2π

2π∫

0

u2(eiα)
1− ρ2

1 + ρ2 − 2ρ cos(α− ϑ)
dα + (Pg1)(ρ, ϑ)−

− (Pu2,0)(ρ, ϑ) +
∑

k∈T1

Mk(p)Re
ρeiϑ + ak

ρeiϑ − ak
= g2(ρeiϑ). (28)

As far as u2 ∈ h1(K2), we have

u2(reiϑ) =
1
2π

2π∫

0

u2(ρeiβ)
r2 − ρ2

r2 + ρ2 − 2rρ cos(β − ϑ)
dβ.

Hence

u2(eiα) =
1
2π

2π∫

0

u2(ρeiβ)
1− ρ2

1 + ρ2 − 2ρ cos(β − ϑ)
dβ.

Substituting this value into (28), we obtain

u2(ρeiϑ)− 1
2π

2π∫

0

[
1
2π

2π∫

0

u2(ρeiβ)
1− ρ2

1 + ρ2 − 2ρ cos(α− β)
dβ

]
×

× 1− ρ2

1 + ρ2 − 2ρ cos(α− ϑ)
dα + (Pg1)(ρ, ϑ)− (Pu2,0)(ρ, ϑ)+

+
∑

k∈T1

Mk(p)Re
ρeiϑ + ak

ρeiϑ − ak
= g2(ρeiϑ), (29)

that is,
u2(ρeiϑ) + (Nu2)(ρ, ϑ) = g̃2(ρ, ϑ),

where

(Nu2)(ρ, ϑ) =
1
2π

2π∫

0

[
1
2π

2π∫

0

u2(ρeiβ)
1−ρ2

1+ρ2−2ρ cos(α−β)
dβ

]
×

× 1− ρ2

1 + ρ2 − 2ρ cos(α− ϑ)
dα,

g̃2(ρ, ϑ) = g2(ρeiϑ)− (Pg1)(ρ, ϑ) + (Pu2,0)(ρ, ϑ)−

−
∑

k∈T1

Mk(p) Re
ρeiϑ + ak

ρeiϑ − ak
.

(30)

The lemma is proved. ¤

5.6. Solution of the equation (29) and construction of a solution of
the problem (17). Since it suffices to find only one solution of the equation
(29), we put Mk(p) = 0, k ∈ T1. Then g̃2 satisfies the condition (22), and
hence by Lemma 4, g2 ∈ Ll 2−ε.

We will now proceed to investigating the equation (29).
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We fix ε > 0 such that l̃2 = l 2 − ε > 1 and consider the equation (29) in
the space Ll̃2

2 (γ2).
The kernel of the operator N is a continuous function, hence it is com-

pletely continuous in Ll̃2
2 (γ). The equations u + Nu = 0 and v + N∗v = 0

in the capacity of solutions have only constant functions [16]. Taking this
fact into account, the equation (29) is solvable if and only if

2π∫

0

g̃2(ρ, ϑ) dϑ = 0,

i.e.,

2π∫

0

(Pg1)(ρ, ϑ) dϑ +
∑

k∈T1

Mk(p)

2π∫

0

Re
ρeiϑ + ak

ρeiϑ − ak
dϑ−

−
2π∫

0

(Pu2,0)(ρ, ϑ) dϑ =

2π∫

0

g2(ρeiϑ) dϑ. (31)

It can be easily verified that
2π∫

0

(Pg1)(ρ, ϑ) dϑ =

2π∫

0

g1(eiϑ) dϑ,

and
2π∫

0

ρeiϑ + ak

ρeiϑ − ak

deiϑ

iρeiϑ
=

∫

γ2

t + ak

t− ak

dt

it
= 1, |ak| = 1.

Moreover,

2π∫

0

(Pu2,0) dϑ =

=

2π∫

0

1
2π

2π∫

0

∑

k∈T2

Mk(p)Re
eiϑ + ak

eiϑ − ak

1− ρ2

1 + ρ2 − 2ρ cos(α− ϑ)
dα dϑ =

=
∑

k∈T2

Mk(p)

2π∫

0

Re
eiα + ak

eiα − ak
dα = 0.

With regard for the above equations, the condition (31) takes the form
2π∫

0

g1(eiϑ) dϑ−
∑

k∈T1

Mk(p) =

2π∫

0

g2(ρeiϑ) dϑ.
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It now suffices to take Mk(p) = 0, k ∈ T1, and the last equality coincides
with the condition (23).

Thus if the conditions (22) and (23) are fulfilled, and Mk(p) = 0, k ∈ T1,
then the condition (31) is likewise fulfilled, and hence the equation (29) is
solvable. Since the homogeneous equation has in the capacity of solutions
only constant functions, it follows that a solution satisfying the condition
2π∫
0

u2(ρeiϑ) dϑ = 0 is unique. Further, let u2 = Re Φ2, Φ2 ∈ H l̃2 . If we apply

the formula (20) to the function Φ2 and take into account that u2(ρeiϑ) =
g2(ρeiϑ)−u1(ρeiϑ), then making use of the condition (22) and the fact that
ω2 ∈ hl2(·), we can conclude that u2 ∈ hl2(·)(CUρ; ω2).

Having the function u2(ρeiϑ) at hand, by means of the Poisson integral
we find the function u2(w), |w| > ρ, and hence the function u2(eiα), as well.
Next, the equality (27) allows us to find the function u1g̃. In view of the
condition (22) and taking into account the fact that ω1 ∈ hl1(·) (see proof of
Lemma 2), from the equality (27) we conclude that u1g̃ ∈ hl1(·)(ω1). Having
u1g̃, by means of the equality (26) we find the function u1(w). It is not
difficult to verify that if u(w) = u1(w)+u2(w), where ui ∈ hli(·)(Ki; ωi), and
ωi are given by the equalities (18i), then u ∈ hl(·)(K;ω1ω2) = hl(·)(K; ω), in
which ω is the function defined by the equality (16). Thus we have proved
that u is a solution of the problem (17) of the class hl(·)(K;ω).

60. The Basic Result Referring to the Dirichlet Problem of
the Class ep1(·),p2(·)(D)

Having a picture of solvability of the Dirichlet problem (17) in the ring
K, we can, relying on corollary of Lemma 1, get a picture of solvability of
the Dirichlet problem in the class ep1(·),p2(·)(D). From the results of item
50 it follows

Theorem 2. Let

(1) the doubly-connected domain D be bounded by simple closed curves
Γ1 and Γ2, where Γ2 lies inside of Γ1, while Γ = Γ1 ∪ Γ2 belongs to
C1

D(t1, . . . , tn; ν1, . . . , νn), 0 ≤ νk ≤ 2;
(2) w = w(z) be a conformal mapping of the domain D onto the ring

K = {w : ρ < |w| < 1}; z = z(w) be the inverse mapping,z(tk) =
ak, z(γi) = Γi, where γ1 = {τ : |τ | = 1

}
, γ2 = {τ : |τ | = ρ

}
;

(3) pi ∈ Q(Γi).

Then for the Dirichlet problem
{

∆U = 0, U ∈ ep1(·),p2(·)(D),
U

∣∣
Γi

= fi, fi ∈ Lpi(Γi),

the following statements are valid.
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I. The homogeneous problem is solvable and its general solution is
given by the equality

U0(z) =
∑

k∈T1∪T2

Mk(p)Re
w(z) + ak

w(z)− ak
,

Ti =
{
k : νk ≥ p(tk), tk ∈ Γi

}
,

∑

k∈T2

Mk(p) = 0,
(32)

Mk(p) =





0, if 0 ≤ νk < p(tk), or ν = p(tk)
for ak ∈ γi, Xk,i ∈H li(·),

Xk,i(w) = (w − ak)−
1

li(ak) exp
∫

γi

ψi(τ)
li(τ)

dτ

τ − w
,

Mk is an arbitrary constant for p(tk) < νk ≤ 2 or
νk = p(tk), Xk,i ∈ H li(·),

where ψi are functions defined by means of z′ appearing in (13).
II. If among the points tk there are such that νk = p(tk) or νk = 0,

then the Dirichlet problem is, generally speaking, unsolvable.
III. The problem is solvable if and only if for the functions gi(τ) =

fi(z(τ)), τ ∈ γi, the following conditions are fulfilled:
(a)

ω+
i (ζ)

∫

γi

gi(τ)
ω+

i (τ)
dτ

τ − ζ
∈ Lli(·)(γi), (33)

where

ωi(w) =
∏

k∈T ′i

(w − ak)−
1

li(ak) exp
∫

γi

ψi(τ)
li(τ)

dτ

τ − w
,

T ′i =
{
k : νk = p(tk) or νk = 0, tk ∈ Γi

}
;

(b)
2π∫

0

g1(eiϑ) dϑ =

2π∫

0

g2(ρeiϑ) dϑ. (34)

IV. If the conditions (33) and (34) are fulfilled, then the Dirichlet prob-
lem is solvable, and its general solution is given by the equality

U(z) = U0(z) + u∗(w(z)),

where U0(z) is given by the equality (32), and u∗(w) = u1(w) +
u2(w), where u1(w) is the function given by the equalities (27) and
(26), and

u2(w) = u2(reiϑ) =

2π∫

0

u2(ρeiα)
r2 − ρ2

r2 + ρ2 − 2rρ cos(α− ϑ)
dα,

where u2(ρeiϑ) is a solution of the equation (29).
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Remark. For p(t) = const, the work [10] presents an easily verifiable
condition referring to the function f(t) which guarantees the existence of a
solution. It consists in that the function

f(t)
∏

{ν(tk)=0, ν(tk)=p(tk)}
ln |w(τ)− w(tk)|

is to belong to Lp(Γ).
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