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Abstract. In the present work we consider the Dirichlet problem in a
doubly-connected domain D with an arbitrary piecewise smooth boundary
I" in a class of those harmonic functions which are real parts of analytic in D
functions of Smirnov class EP1()22()(D) with variable exponents p; () and
pa(t). Tt is shown that depending on the geometry of I' and the functions
pi, © = 1,2, the problem may turn out to be uniquely and non-uniquely
solvable or, generally speaking, unsolvable at all. In the latter case we have
found additional (necessary and sufficient) conditions for the given on the
boundary functions ensuring the existence of a solution. In all cases, where
solutions do exist, they are constructed in quadratures.
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1. INTRODUCTION

In boundary value problems of the theory of analytic functions natural
sets for unknown functions are generalized Hardy classes, Smirnov classes
EP(D) of analytic in the domain D functions ® whose integral p-means along
certain curves, converging to the boundary I' of D, are uniformly bounded.
This may be accounted for the fact that this class involves all bounded in
D functions. Functions of this class possess angular boundary values on
I' and, what is of great importance, for p > 1 they are representable by
the Cauchy type integral with density from the Lebesgue class LP(T"). The
above-said makes it possible to take boundary values from L?(T").

Recently, the theory of Lebesgue spaces with a variable exponent p(t) and
their applications is being elaborated very intensively [1]-[5]. Such spaces al-
low one to take much better into account local singularities of functions than
for the constant p. Therefore it is advisable to solve boundary value prob-
lems under the assumption that the known boundary functions belong to
more natural class LP()(T'). As following from the above, in [6]-[9] we stud-
ied boundary value problems of the theory of analytic functions in classes
of functions representable by the Cauchy type integral with density from
LPW(T). For the constant p and for Carleson curves T this class coincides
with the Smirnov class EP(D) (see [10, p. 29]). In case of a variable expo-
nent, the question on behavior of integral means of Cauchy type integrals
near the boundary remained open. Thus there naturally arose a problem
of introducing into consideration such generalized Smirnov classes with a
variable exponent which, preserving important properties inherent in the
functions from classes with a constant exponent, would possess boundary
functions belonging to the Lebesgue class with a variable exponent.

This may probably be attained in different ways. In [11]-[12], we intro-
duced natural, in our opinion, Hardy and Smirnov classes with a variable
exponent in simply connected domains responding our purpose in view. In
[13], we introduced the same, but this time the weighted classes among
which are those for doubly-connected domains. In the latter case, Smirnov
class depends on two functions prescribed on the curves composing the
boundary of a domain. Therein, the Dirichlet problem is considered for
harmonic functions which are real parts of analytic Smirnov class func-
tions for a circular ring (such functions we call harmonic Smirnov class
functions). The Dirichlet problem in the classes EP()(D) for simply con-
nected domains with arbitrary piecewise smooth boundaries is investigated
in [14], where the problem is reduced to the Dirichlet problem for a ring
in the weighted Hardy class with a weight not necessarily of power type,
so conventional for such kind of problems. Generalizing the well-known
Muskhelishvili’s method of reducing the Riemann—Hilbert problem (which
includes the Dirichlet problem in the statement under consideration) to the
boundary value Riemann problem ([15, §§ 40-41]), we have succeeded in
studying the appearing problem with that general weight and, as a result,
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we have obtained a full picture of solvability of the Dirichlet problem in the
class Re Ep(')(D) when the boundary D is an arbitrary piecewise smooth
curve, and p(¢) is a function satisfying a certain Log-Holder condition.

Certainly, it is desirable to solve the Dirichlet problem for doubly-con-
nected domains, other than a circular ring. In the present work we solve
the Dirichlet problem in doubly-connected domains with piecewise smooth
boundaries in Smirnov classes Re EP1():72()(D). The problem is reduced
to the problem for a circular ring in the weighted Hardy class. But in this
case we will fail to reduce it to the Riemann problem (even in the case
of a constant exponent we have to find another ways for its investigation
(see, e.g., [16])). Having used the results obtained in [6], [12] and [14]
and revealed new properties of conformal mapping of a circular ring onto a
doubly-connected domain with piecewise smooth boundaries (see item 3°),
enable us to investigate the obtained problem and to get a full picture of
the Dirichlet problem in view. Depending both on the geometry of the
boundary and on the functions p;(t) and pa(t), the problem may turn out
to be uniquely or non-uniquely solvable, and in the presence of cusps on
the boundary it may, generally speaking, be unsolvable. When the problem
fails to be solvable, necessary and sufficient conditions are found regarding
the given boundary functions which guarantee the existence of a solution.
Solutions are constructed for all cases in which they exist.

In our opinion, the novelty of the results of the present paper is a progress
in the theory of plane boundary value problems in three directions: inves-
tigation of the problem in the framework of the variable exponent analysis,
passage from simply- to doubly-connected domains and solution of the prob-
lem when boundaries of the domain have complicated geometrical structure.

It should be noted that the plane boundary value problems for analytic
and harmonic functions were investigated in the framework of the classical
function spaces in domains with nonsmooth boundaries by G. Iakovlev,
I. I. Danilyuk, M. Dauge, V. Kondrat’ev, V. Maz’ya, V. Maz’ya and A. So-
lov’ev, V. Rabinovich and B. V. Schulze, N. Tarkhanov, R. Duduchava,
A. Saginashvili and T. Latsabidze, R. Duduchava and B. S. Silberman,
V. Kokilashvili and V. Paatashvili, G. Khuskivadze and V. Paatashvili,
E. Gordadze, etc.

20, NOTATION, DEFINITIONS AND AUXILIARY STATEMENTS

2.1. Lebesgue classes with a variable exponent. Let ' = {t € C, ¢t =
t(s), 0 < s < I} be a simple rectifiable curve whose equation is given
with respect to the arc abscissa, and p = p(t(s)) be a positive measurable
function given on I'. If w is measurable, almost everywhere different from
zero function on T, then by LP()(T',w) we denote the set of all measurable



The Dirichlet Problem for Variable Exponent Smirnov Class ... 135

on I' functions f for which

1

||f||Lp<»>(p;w) = inf{)\ >0: /‘M’dm < 1}
0

is finite.

2.2. One Property of a Derivative of Conformal Mapping of a Cir-
cle Onto the Domain with a Piecewise Smooth Boundary. If a
simple closed piecewise smooth curve I' is given with a finite number of an-
gular points t, k = 1,n, at which angle values with respect to the domain
D bounded by the curve I' are equal to mrg, 0 < v < 2, then we write
I € Ch(t1,...,tn;v1,..., ). The set of the same curves, but piecewise

Lyapounov ones, we denote by C’BL(tl, R S TNy Ve

Let D be a doubly-connected domain bounded by simple closed piecewise
smooth curves I'y and I'y. Assume I' =Ty UT'y. If ¢4, ..., ¢, are all angular
points on I' with angle values 7y, with respect to D, we likewise write
I'e Cb(t17-~-7tn§yl7~-~7yn)~

If D is the domain bounded by the curve I' € Ch(t1, ..., tn; V1, .., Vn),
z = z(w) is a conformal mapping of the circle U = {w : |w| < 1} onto the
domain D, and z(ay) = ty, then

2 (w) ~ H(w —ay) ! exp/ ;/}ETZU dr, wevU, (1)
k=1 e

where v is a real continuous function on I', and the writing f ~ g denotes
that 0 <m < inf|§| < sup|§| = M < oo (see [10, p. 144]).

2.3. The classes of functions P(I'), P(I') and Q(I). Let I be a simple
closed rectifiable curve. By Py 4.(T'), € > 0, we denote the set of positive
measurable on I' functions p for which the following conditions are fulfilled:

(a) there exists a constant A depending on p and e such that for any
t1, ta € I we have |p(t1) — p(t2)| < A|ln [t; — t2]|*T;
(b) infp(t) =p> 1.

Assume P(T') = P, (T"), P(T') = |J P1+(D).
e>0
The following statements are valid.

(i) Let D be the domain bounded by a simple closed rectifiable curve
T, z = z(w) be a conformal mapping of the circle U onto D, and
p € P(I'). Then if 2/ € |J H?, where H? is the Hardy class of

5>1
analytic in U functions, then the function I(7) = p(2(7)), 7 € 7,

v ={7: |r| =1} belongs to P(v). In particular, if " is a piecewise
smooth curve free from zero angles, and p € P(I"), then [ € P(y)
([13, Theorem 7.2]).
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(i) T € Ch(tr,.. stuivi,.oytn), 0 < v < 2 and p € ]S(I‘), then
I € P() ([8, Lemma 2]).
If D is the interior domain bounded by a simple closed rectifiable curve
I' and z = z(w) is a conformal mapping of the circle U with the boundary

7 onto the domain D, then we say that the given on I' function p belongs
to the class Q(I") if p € P(T') and I € P(T"), (1) = p(2(7)), T € 7.

2.4. The set of weighted functions W?()(T). Let p be a given on T’
measurable function, and p > 1. We say that a measurable, almost every-
where different from zero on T’ function w belongs to the class WP()(T) if
the Cauchy singular operator
Sp:f—=Scf, (Scf)t) = w(?) / fir) dr
i w(
r

)  teT,
T)T—t

is continuous in LPC)(T).

Examples.

(1) Let p € P(v), ax € v, k = 1,n. We fix an arbitrary branch of the
functions (w—ay)*, ai € R, analytic in the plane cut along the curve lying
outside of U and connecting the point ax with z = co. The function

p(w) = T (w—ap), (2)

k=1

1 1
e <ap < ——
plax) ' (ak)
belongs to W»()(v) [17].
(2) If z = z(w) is a conformal mapping of U onto the domain D bounded
by the curve from Ch(t1,... ,tn;v1,. .. ), 0 < v < 2, and z(ag) = ty,
then the function

w(r) = ,i[l(T — ag)** exp (p(lT) 7/ ;ﬁ(_cz_ d(), TE"Y, (4)

where v is the function appearing in the relation (1) for p € P(y) and
0 < g < p(tx), belongs to WP (v) [17].

p(t) =

p
p(t)—1 ®)

2.5. The classes of functions EP()(D;w), HPO)(w), ePO)(D;w), h*()(w)
and h?(), Let D be the interior domain bounded by a simple closed rec-
tifiable curve I', p be a given on I" measurable function, w be measurable,
almost everywhere different from zero function in D, and 2z = z(w) be a
conformal mapping of the circle U onto D. By Ep(')(D;w) we denote the
set of those analytic in D functions ® for which

p(z(e’)) )
’ |2/ (re™)| dv < oo.
0<r<1

sup /‘q)(z(rew))w(z(rew))
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The class EP)(U;w) we denote by HP()(w). These classes for the con-
stant p and w = 1 coincide with Smirnov EP(D) and Hardy H? classes,
respectively (for these classes see, e.g., [18], [19, Chs. IX-X]).

When w(z) is a function which almost everywhere on I' has angular
boundary values w*(7), then the functions ® of the class EP()(D;w)
have likewise angular boundary values almost everywhere on I', and &1 ¢
17O (y;wt) [14].

Assume

e’ (D;w) = {u :u=Re®d, & Ep(')(D;w)},
PO (W) = ?O(Usw), hPO) = hPO(1).

2.6. The classes of functions EP*()-?2()(D) and e?*()72() (D) in doub-
ly-connected domains D. Let I';, i = 1,2, be simple closed rectifiable
curves, where I'y lies in the bounded domain with boundary I'y. By D we
denote a doubly-connected domain with boundary I' = T’y UI's. This domain
can be conformally mapped onto the circular ring K = {w: p < |w| < 1}
(see, for e.g., [19, p. 207]). Let w = w(z) be such a mapping and z = z(w)
be the inverse mapping.

Let p; be a positive measurable on T';, ¢ = 1,2, function. Assume p;(¢) =
p1(2(e™?)), p2(V9) = pa(2(pe?)). Further, let w be the different from zero
almost everywhere in D measurable function.

We say that the analytic in D function ® belongs to the class
EP1()22()(D), if for any ro € (p; 1) we have

27
(psup /|(<I>w)(z(7“e“9))‘p2(19)|z’(re“9)|d19+
0

<r<ro

2m
+ sup /’(@w)(z(rew))|p1w)|z/(re“9)| dﬁ) < 0.
ro<r<l
0
For D = K and p; = ps = p = const > 0, w = 1, the class EPP(K;1)
coincides with the class EP(K) (for these classes, see [20]). If D is a doubly-
connected domain bounded by simple rectifiable curves and z = z(w) is a
conformal mapping of the ring K onto D, then 2’ € E'(K) (see, e.g., [16]).
Assume EP1O)r20)(D) = EPOp20)(D;1). If & € EP()P20)(D) and
p; > 0. Then EP1()r2()(D) C EPo(D), py = minp; and &F(t) € LPi(T;),
t € T;. Next, if p; € P(T';), then

D(2) = B1(2) + Pa(2), ®; € EPO(Dy), (5)

where D; is the domain bounded by the curve I'; which contains D, and
vice versa, if ® is representable in the form (5), then & € EP1():P2()(D)
([13, Lemma 6.2]).
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Let
e Or2O(D) = {u: u=Red(z), & € ENOP20(D)}.
It follows from the above-said that if u € eP1()P2()(D), then u = u; +us,

where u; € ePi(D;), 1 = 1,2, and vice versa if u = u; + ug, u; € epi(')(Di),
then u € 61’1(')7172(')(D).

2.7. Some auxiliary statements.

Theorem A ([13, Theorem 6.3]). Let D be a doubly-connected domain
with the boundary I' =T UL, ' € C’BL(tl, ces by V1, V), 0 < <2,
k=T,n. Then if fi € LPiC)('), then the Cauchy type integral

_ 1 [ A0

0(2) = (Er, f) () + (Ko f2)(2) = 5o [ 1 di+
I
1 f2(t)
_A'_% tfzdt’ Z€D17
s

belongs to EP1()»2() (D).
Theorem B ([6, Theorem 6.1)). Let pe WP() (), %GL”/(')“W), e>0,

and ¢ be a real continuous function. Then the function p(t) expf% dr,
¥

t € 7y, belongs to WP0)(v).

@ T—t

Corollary. Letp € P(v), x,(t) =exp [ 2(1) (47, t € ~, where ¢ is a real
vy

continuous function on vy, p be given by the equality (2) and the conditions
(3) be fulfilled. Then the function

n

1 1
. (@) = TT¢ —an)®x. (1), tery, ——— <ap < ——,
p(t)x, (¢) kl;[l( X (0, L€ s <an < s
belongs to WPG) (v).

Theorem C ([12, Theorem 3]). If ® € HP), p > 0, and @+ € LP10)(y),
p1 € P(v), then ® € HPC) | p(t) = max(p(t), p1(t)).

2.8. The Dirichlet problem in the class h?()(w).

Theorem D ([14, Theorem 3]). Let p € P(v) and w be given by the
equality (4), where

1
—— <ap < ——, k=T1,m,
p(ax) p'(ax)

1 -
— <oy < —+1, k=m+1,m+j,
P (ak) P (ak)

, k=m+j+Lm+]+s,
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1
plar)
Then for the Dirichlet problem

ag = — , k=m+j+s+1,n.

Au =0, u € hPO) (W),
ut(t)=f(t), ter, fellV(yw),

to be solvable, it is necessary and sufficient that the conditions

w1(5)/ g(r) dr e LV (), g= fw,

i wi(r) T—=¢
¥
be fulfilled; here
m+j+s
wi(¢) =p(QOw(¢), pw)= J[ w—a)™ ifj+s>1
k=m+1

and
plw)y=11if j+s=0.
If (6) holds, then a general solution is given by the equality

w(w) = uo(w) + ug(w),

where
m+j+s ax + w
ug(w) = k_ZH My (p) Re p—.

0 when m+j<k<m+j+s, if Xz €HPO),
X (w) = (w = a) 7o, (w),

My (p) = { My, is an arbitrary constant
for m+1<k<k+j and
m+j<k<m4j+s, but X, e HO),

— 7(_1)j+1wj+1 ”ﬁj aky/f(cop()clﬁ)}

21

m+j
[ ««=1ifji=o.

k=m+1

139
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2.9. The classes of functions HP)(CU ;&) and the Dirichlet Prob-
lem in H?O(CU,;@). Let U, = {w : |w| < p}, p € (0,1) and CU,
C\ U,. Assume

n —a
:U(w wO) w(’LU), ak € Yp,

Yo =A{w:|;lw|=p}, wo €U, weCU, Imp=0, ¢ C(y,).

We say that an analytic in CU, function ® belongs to the class
HPO(CU ;@) if

27
X . i _
sup/ |(I>(re“9)&(re“9)|p(p ) — sup / |<I>(C)w(()|p(o d¢ < oo.
r>p 0 T>p\(\=r

For the Dirichlet problem
Au =0, u € h?O)(CU ;@) = Re HPO) (CU 3 @),
ut(t) = f(t), te, felrD(y;ah),

the analogue of Theorem D is valid. However, due to the fact that the
functions of the class H?()(CU ,;@) must vanish at infinity, the condition

/f(pew) dy =0 (11)
0

is to be fulfilled, and hence a general solution of the homogeneous problem
is, this time, given by the equality
m+j+s

w—l—ak
E M. (p ,
w— ag

k=m+1

where My (p) are defined according to (9), but with the additional condition
m-+j+s

S Mi(p) = 0. (12)

k=m+1

39, ON THE CONFORMAL MAPPING OF A CIRCULAR RING ONTO A
DoUBLY-CONNECTED DOMAIN WITH A PIECEWISE SMOOTH BOUNDARY

In [16], we proved the following

Statement 1. If D is a doubly-connected domain with the boundary
I =T1UDy, T € Ch(ts, .o stuivi,.o ), 0 < vy <2, k= 1,n and
z = z(w) is a conformal mapping of the ring K = {w : p < |w| < 1} onto
D such that z(ax) = tg, 2(vi) =T, i ={t: |t| =1}, 2 ={t: |t| = p},

then
n
H 7ak Vk ! 0(10)7
k=1
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where

Le () E(K)
5>1
[20(e")]*! € ﬂ W (m), [z0(pe™)*" € ﬂ W (72).
6>1 6>1

In addition to the above statement we first prove that the statement
below is valid.

Statement 2. Under the assumptions of Statement 1, for every point ty,
k =1,n, there exists a real continuous on v function @y, such that in some
subdomain G, C K containing the point ar, = w(ty) and with the boundary
having with the boundary v1 U~y of the ring K a common arc lg, ay € l,
we have

2'(w) ~ (w — ak)”’“_lxw,c (Cr(w)),

where ¢ = (i(w) is a conformal mapping of the circle U onto Gj.

Proof. Let G be such a subdomain of the ring K which is bounded by a
closed Lyapounov curve A having one arc I, common with the boundary of
K, where ay, € I, and [ does not contain points from the set {aq,...,a,},
except the point ar. Consider the restriction of the function z(w) on Gj
and denote it by zx(w). Then z; is a conformal mapping of G}, onto some
simply connected domain Dy, the subdomain of D containing the point
tr but not containing another angular points of T'. Let w = wg({) be a
conformal mapping of U onto Gy, and wi(by) = ag; then zi(wg(€)) is a
conformal mapping of U onto Dj. Since the boundary of the domain Dy, is
a piecewise smooth curve with one angular point ¢, therefore 2 (wi(¢)) ~
(¢ = br)"*1Z(¢), where

Z0(C) ~ x,, (€), Impr =0, ¢ € C(y)
(see item 2.4). Thus we find that

2 (w) ~ (Ce(w) — Ck(ak))xwk (Cr(w)).

Since wy(¢) is a conformal mapping of the circle U onto the domain Gy,
with Lyapounov boundary, therefore (i (w)— (i (an) ~ (w—ag ), (w), where
Ck, belongs to the Holder class, and (g, (ax) # 0 (see, e.g., [10, p. 146]).
Consequently,

zh(w) ~ (w—ap)™ " x,, (Gr(w)). N

Theorem 1. Let D be a doubly-connected domain with the boundary I’ =
Ul T € Ch(te,. . tu;vi, ... V), 2= z(w) conformally map the ring
K ={w: p<|w| <1} with the boundary v =y U~yz, 1 = {7 |7] =1},
vo ={7: |7| = p} onto the domain D, and z(ay) = ty. Then

H w — ay)”* " exp wl(u)} T exp :_/}2_(72)d7', (13)

k=1

Y1 Y2
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where ; is a continuous real function on v;, i =1,2.

Proof. Consider first only the points t; lying on I';. Let Gy be subdo-
mains of the ring K with Lyapounov boundaries constructed when prov-
ing Statement 2. If (, = (x(w) maps conformally the circle U onto Gy,

or(t) = or(Cr(7)), then
al) [ aldn
/T—Ck(w)d K Ck(t)—g‘k(w)dt

:/%“){cmt);“—@(w)‘t—lw} dt*/%dt:

Ak Ag
= Ikl(w) —+ Ikg(w).
Since ¢, is Holder continuous in U and |((t) — {(w)| > m|t — w|, it is not
difficult to show that
A
Ge(t) = CGe(w)  t—wl ™ [t —wp’
¢(s)

(analogously to the reasoning in [21, p. 18], where the difference ORI
):tl

are bounded functions.

~

A< 1,

ctg 5 is considered); thus we have that (exp Iy,
Consequently,
Z(w) ~ (w—a)*'x, (w), we Gy

The curve A contains the arc [ € 71, hence

t t t
/@k()dt:/sﬁk()dH_ / P(t) 50
t—w t—w t—w
Ay Iy Ap—lk
The second summand here is a bounded in the subdomain G} C G
function adjoining to y; along the curve lj, C Iy, such that I} C ;. Therefore
in G}, we have

l/kfl

2 (w) ~ (w = ax)™ "y, (w),

Xeg (w) = eXp/ (pk(t) dt.

t—w

where we recall that

Y

The domains Gy, and G}, can be chosen in such a way that the following
conditions are fulfilled:
(i) UGY, covers a one-sided neighborhood G) of the curve 71, i.e., a
set of those w € K for which 1 — 6 < |w| < 1;
(ii) the curves lj intersect only with the curves lx_; and k41 (lo = ln,,
ln,+1 = l1), where n; is the number of points ay lying on ;. Then

2 (w) ~ H (w—ag)"* ! exp/ fk(t) dt, weGW,

—w

aR €Y1 Ix
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Assume
Yi(t) =
or(t), tel\lk, li=lx\ [l Nl U (L N lgs1) ]
= gpk(t)—F(pk_l(t), trE lk\(lk N lk_1), te.

r(t)+orr1(t), €l \(lx Nlky1),
Then for ny > 0 we have

k1

exp M dt ~ exp M dt, we aW.
t—w t—w
k=1 U 71

Obviously, v; is continuous on ;. Thus

2 (w) ~ H (w—ag)*t exp/ fl—(i)) dt, weGW, (144)
71

aR€EY1L

Analogously, we prove the existence of the neighborhood G®) of the curve
~v2 and of the function ¥s € C(vy2) such that

2 (w) ~ H (w — ag)" ! exp/ thi(g dt, we G®, (145)
Y2

ar €2

The validity of the theorem follows from the above-proven relations (144 )—
(145). O

4%, THE DIRICHLET PROBLEM IN THE CLASS eP()P2()(D); 118
REDUCTION TO THE PROBLEM IN THE CLASS h't()10) (K w)

4.1. Statement of the problem. Let D be a doubly-connected domain
bounded by simple closed curves I'y and I's, where I's lies in the bounded
domain with boundary I';.
We assume that I' € Ch(t1,...,tp;v1,...,v,) and p; € Q(Ty), i = 1, 2.
Consider the Dirichlet problem formulated as follows: find a harmonic
function U(z) satistying the conditions

U(2) € err()r20) (D), (1s)
u|p. = fi7 fi € Lpl()(rz), 1= 1,2

4.2. Reduction of the problem (15) to the problem for a ring.

Lemma 1. IfU(z) € er*OP2()(D) and p; € Q(T;), then the function
u(w) = U(z(w)), where z = z(w) is a conformal mapping of the ring K
onto D, belongs to the class h'*)=2C) (K w), where 1;(¢) =p;(2(¢)), € i,

e wot Q) dC Y2(C) d¢
w<w>‘,£[f‘”‘“’“) TR0 o TP B0 T

71 2

(16)
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v, i = 1,2, are the functions defined by means of 2z’ appearing in (13),
ar = w(ty), p(t) = pi(t), tx €T

Proof. Let U(z) = Re ®(2), ® € EP+()-P2()(D). This implies that

27
I = < sup /|¢(Z(7’ei19))|?1(19)|Z'('r'ei19)|d19+
0

ro<r<l

27
+ sup /|¢(z(re“9))}p2(q9)’z’(rew)’d19) < 00,
0

p<r<ro

where

pr(9) =pi(z()) (= 0L(C), ¢em),
p2(9) = pa(2(pe™)) (= (12(Q)), ¢ €72).

From Lemmas 4 and 5 of [14], it directly follows that the functions

(I (@) |77 (w(w)) )™, w=re”,

are bounded in K. We now obtain

ro<r<l

27
= su 2(re?))w(z(ret?)) [P
f-( p !w<< Neo(zre D o+

+ sup /W(Z’(T@m))w(z(rem))‘pr“w)dﬁ)<oo,
0

p<r<ro

This means that ®(z(re’)) = ®(z(w)) € H'OEO(K;w) and since
U(z(w)) = Re ®(2(w)), we have u(w) € h)O(K:w). O

Corollary. It follows from Lemma 1 that every solution U(z) of the
problem (15) generates a solution u(w) = U(z(w)) of the problem

{AUQ w € hhOERO (K w), (17)

ul, =gi, gi(r) = f(2(7)), fi € LPOT),

where 1;(1) = pi(2(7)), T € i, and w is the function given by the equality
(16). Conwversely, if u(w) is a solution of the problem (17), then U(z) =
u(w(z)) is a solution of the problem (15).

Remark. The condition p; € Q(I';) allows us to conclude that [;({) =
pi(2(€)), ¢ € v, belongs to P(v;), i =1,2.
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5%, SOLUTION OF THE PROBLEM (17)

5.1. On some properties of solution of the problem (17). Under the
assumptions adopted in item 4.1 regarding I' and the function p;, every
function u € A1) (K:w) is representable in the form u = wu; + ug,
where u; € h'()(K;;w;), ua(oo) = 0, and

R7%= P1(¢) d¢
wi(w) = (w — ag) 1@ exp _—, (184)
w e Ky, har) =pits), ar=w(te),
B W — ay,\ Tokay P2(Q)  d¢
= 11 (=) R AGRETS (18:)

w € Ky, |wo| <p, l2(ar) = pa(ty).
According to Lemma 3 of [14], we have w; € H"()(K;). Moreover, if uy
is representable by the Poisson integral, then
2
/uz(pem) d¥ = 0.
0

If now u = uy +wug is a solution of the problem (17), then we can conclude
that

{Aul =0, uy € hll(')(Kl;wl), (19)
uf (") = gi(e) —us(e), g1 € LhO(Tysw), '
and
{AUQ =0, Uy € hlz(')(Kg;wg), (195)
ug (€)= ga(pe™) —ur(pe’), g € L0 (Ta;07). ’

5.2. The problem (17) in case ; has points at which [;(ax) = vi(z(ax))
or vi(z(ax)) =0.

Lemma 2. IfT' has points at which vy, = 0, then the problem (17) is,
generally speaking, unsolvable.

Proof. Let, for example, tg € T'1, v(tg) = 0 and z(tg) = a. Then "—;1 =

1
—m s and

wi(w) = (w—a) T x, (w), ¢1 =11/l

Assume now that the statement of the lemma is invalid. Then for any
fixed go € L") (y9;w5) and any g; € L0 (y1;w]") there exists a solution
of the problem (17), u = uj + ug, where u; = Re ®q, &, € Hll(‘)(Kl;wl) =
H"O)(w;), and for u; the condition (19,) is fulfilled. Thus ®; = wy 'F,
F, € H"() ¢ H'. But every function ® of H' is representable by the
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Schwarz integral with density Re @ (see, e.g., [22, p. 84]). This easily results
in

1 Re ® —
P = — dt — ®(0). 20
() = [ 7 dt =0 (20)
i
Therefore
1 Re @4 (¢t 1 t) — t
Dy (w) = —,/eil()dt—i—const: —,/Mdt—&—const.
uys t—w e’ t—w
71 71

Since us is differentiable on «y;, the Cauchy type integral K., us is a boun-
ded function, and hence, it belongs to H"'()(w;) because w; € H'*(). The
last statement follows directly from Theorem C. Thus since ®; = K., g1 —
K., ug+const and ®; € H'*) (wy), it follows that K., g1 € H'*)(w;) for any
g1 € Lll(')(wl;wfr). By virtue of Sokhotskii—Plamelj formulas, we conclude
that Sﬂ,lgleLll(')('yl;wf) for any g1€L"()(y1;w]"). This implies that w; €
W) (41) [10, Theorem 3.3]. Moreover, (wi)™' ~ (1 — a)ll%(xm(T)_l,
and hence (wf)~! € LA()*e(y;). Therefore according to Theorem B, we
conclude that w; (w)x,, (w) belongs to W' () (y,) for any real, continuous on
~1 function . Assuming ¢ = —p7, we obtain (7 — a)fﬁ € Whi)(yy),
but this is impossible because (7 — a)® belongs to W ()(~1) if and only if
aE(fﬁyﬁ%HN]

Similar contradiction is obtained under the assumption that ¢y € vs.

Thus the lemma, is proved. O

Lemma 3. IfT has points ty, at which vy, = p(ty), then the problem (17)
is, generally speaking, unsolvable.

Proof. For the sake of simplicity, let there is only one point tx, € I';, such
that v(tg,) = pi(tk,) and w(ty,) = a, a € ;. Then
1
wi(w) = (w —a)4® Xos (w), @i =1vi/l;.
+

Assume that the problem is solvable for any given g; € L'()(y;;wi),
1 = 1,2. For its solution © = u1 +us we have u; = Re ®;, ®; € Hli(')(Ki;wi).
Consider the functions ¥, (w) = ®;(w)(w—a)~"'. In this case ¥; € H (@),

Ti(w) = wiw)(w—a) ™" ~ (w—a) TPy, (@), (21)

Let g;(1) = ¢;(7)(1 —a)7?, then g; € L0 (v;&;7), and when g; runs
through L'()(y;;w), then g; runs through L4()(v;;&:F). The functions
%; = Re U, belong to A1 () (w;), and @ = uy + ug is a solution of the problem

Au=0, uehhtkOW),
Ul = pi, i € L0 (i3 0),
where p; ~ g;.

According to our assumption, this problem turns out to be solvable for

any p; from L'()(y;;@,). But this is impossible on account of Lemma 2. [
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From Lemmas 2 and 3 it follows

Statement 3. IfT' has angular points ty for which vy = p(ty), or vy =0
(p(tr) = pi(ti), tr € T;), then the problem (17) (and hence Problem (15))
is, generally speaking, unsolvable.

5.3. A necessary condition for the solvability of the problem (17).
From the results set out in items 2.8 and 2.9 it follows that for the conditions
(191) and (192) to be fulfilled, it is necessary that the functions g;(7) =
fi(2(7)) satisfy the conditions

pi(T)wi (1) 9i(¢) d¢ LYo
i /wm S e 1M, =12, (22)
Yi
where
wilw)= J[ (= a) T x, (), pi=wi/li, ps(w)= [ (w - )™
akr€Yi kET;

for T; = {k: v > pi(tx), tx €T3} # @, and p;(w) =1 for T; = 2.

Lemma 4. If the conditions (22) are fulfilled, then g; € L0)=%(,),
e > 0.

Proof. Since g;(1) = fi(2(7)) and f; € L4C)(T;), in view of the fact that I; €
B(), we obtain g € LA (y5;w?), i.e., g = ga(wi") ™", where g; € L1O)(3).
Since in the absence of the points from the set {t; : vx = p(tx) or v, =
0, t;, € T;} the functions w;'g; belong to W()(,), the conditions (22) are
equivalent to the conditions

L win) [ aQ) dC
)\2(7-)_ /w;{-(c) C_

™

€ LH0) (),
- (73)

where this time

aitw) = [] (w=a) T exp [
Vi

keT!

Yi(¢)  dC
1Li(¢) ¢(—w’

T/ = {k: v = p(ts), or v =0, tg €T},

whence

L @ d¢ _ AN(m) g 4N
e B R S s R
i
The above equality yields S, (5., 5+) =9, Aj'r . Since L& € LHO () ¢

L504) and I; > 1, we have S, (S, 51) = 3+ (see, e.g., [21, p. 35-36)).

Finally, we obtain ¢; = w;"S., )‘+ . But then g; = ¢;(w)™t =89, ;\+ €

w

LEO =2 () (because A€ Ll"(')(%‘): and (w;") 7€ L (7))- H
6>1
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5.4. On the existence of a particular solution v = u; + us of the
problem (17) whose summands u; are representable by the Poisson
integral in the domains K;. Relying on Lemma 4, we will show that
under the conditions (22) there exists a particular solution of the problem
(17) admitting the representation v = wuj + up, where u;, i = 1,2, are
representable by the Poisson integrals in the domains K; with density from
LYi=¢(w;), if and only if

2mi 21
/gl(ew)dﬂ: /gg(ew)dﬁ. (23)
0 0

Lemma 5. If u = uy + uz is a solution of the problem (17), where g;,
i = 1,2, satisfy the condition (22), then the functions u; are representable
by the Poisson integrals in domains K; with density from L5~%(v;), € > 0.

Proof. Let us prove that u; € hl=(K1). u; satisfies the condition (19,).

Without restriction of generality, we may assume that {tx : vx > p(tx),

tr € 11} = @. (Indeed, in the presence of such points we would be able to

reduce the problem (17) to an analogous problem of the class h'1():2()(w,),

where w, = w 11 (t —tx)~1.) Now, according to Theorem D, u; is
{kt vi>p(te)}

given by the equality

sy (w) = Re{wl(w) / 91(e"”) —uz(e”™) (+w d<}7 ¢ =it

211, wf(ew) (—w

71

Since ug(e™”) = ug(¢) is differentiable on v, and w; € H1()~¢ we can
easily verify that

w1 (w) uz(¢) ¢+w Li()—e
2mi /MT(C)C—wdCGH '

71

Therefore, our lemma will be completed if we show that

(G1(g1))(w) = wr (w) / 9(0) _dC_ puoy—e.

wi(¢) C—w
71

As wy € H" n > 0, and the Cauchy type integral with density £ belongs
Wy
to () H° (see, e.g., [18, p. 33]), we have G1(g1) € H™, ng > 0. Show
6<1
that G1(g1) € H“~¢. Towards this end, owing to the well-known Smirnov’s
theorem (see also Theorem C of item 2.7), it suffices to prove that (G1g1)" €
LY¢(y;), and to this end, by virtue of the Sokhotskii-Plemelj formulas and
Lemma 4 it suffices to establish that wi 5—1 € LY==, But this function in
ot
view of (22) belongs to L"()(yy) € LL17%(+1). Analogously, we can prove
that uy € hl27¢(Ky). O
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5.5. Integral equation with respect to the functions uy(pe’”). To
solve the problem (17), we refer to the condition (192). This problem will
be considered as the Dirichlet problem in the class h2()(Ky;wy). To make
use of the results of item 2.9, we have to fulfil the condition (11).

Lemma 6. If the conditions (22) and (23) are fulfilled, and v = uy +ug
is a solution of the problem (17), then

2

I= / [gg(pem) - ul(pem)] dd = 0. (24)

0
Proof. Since

1 2m 1 9

i ia —p
I d
wi(pe™) 27T/u1(e )1—|—p2—2pcos(oz—19) @
0
we have
27 27

) 1 ) 1—p?
I = i —_ — e d d'l9 =
/ [gg(pe ) 27 /ul(e ) 1+ p? —2pcos(a— 1) “

0 0
27 27 1 27 9
. . 1—p

_ 09 _ o\ T _
_/gz(pe ) dv /ul(e )%/sz_QPCOS(a_ﬁ) dd dov

0 0 0

27 27
= [ gof w)dﬂ— (e'") da

0 0

27

Moreover, since uy € h'(K3), therefore [ us(e'®)da = 0. As far as u =
0
u1 +ug is a solution of the problem (17), we have uy (') +uz(e'®) = g1 (e'®).
27 2m
Consequently, f uy (') da = f g1(e'*) da, and by virtue of the assumption

(23), we conclude that I = 0.

Thus assuming that the conditions (22) and (23) are fulfilled, we have
the equality (24), and hence we are able to apply the results of item 2.9
according to which the problem (192) is solvable, and its solution wug is
given by the formula us = uy(-), where uy is given by the equality (10) in
which f is replaced by [g2(7) — u1(7)]. Thus the restriction of the function

uz(re’’) on ; is contained in the set of functions
119
+ ak ;
2 M) Re o = ua(e"”) + uzo(9)
keT> k

Ty = {k: vp > pa(ty), tx € T2},
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where
uzo(e”) = > My(p)Re [(e"” + ar)(e” —ar)™'], > Mi(p
k€T, k€T,

and the real constants My (p) are defined by virtue of (9).
u1 now is contained in the set of functions satisfying the condition

U1 Ehll(')(Kl;wl) K1 =U,

T+a
up (1) = g1(1) — ua(r E M. (p k, TEM. (25)
ag
keTs

In view of Theorem D, if for ¢g; the condition (22) is fulfilled, then the
problem (25) is solvable, and

= 3 M) Re 22 4y (w), we U, (26)
keT) k

where w3 is a particular solution of the problem (25) representable by the
Poisson integral. Hence

2m
; 1 ; 11—
0 1o
. — da—
uyg(re™) 277/91(6 )1+r2—2rcos(a—19) @
0
1 2m 1 9
4 —r
27 ua(e )1+r2727’cos(a719) da
0
-y / Rofltor _Lort
2 et —ay 14+r2—2rcos(a—1)
2
= (Pgl>( 719) - (PUQ)(T? 19) - (PUZO)(rv 19)7 (27)
where
(Puz,0)(r, ¥) =
w‘—l—ak 1—1r2 0
M ( da, re' € Kj.
/Z K(p @ —ag 1412 —2r cos(a — ) @ e !

This implies that in the ring K, we have

u(w) =

= 3 Mi(p) Re S (Puy) 1)+ (Pgy) (1) (P o) () s ().
keT,

Since u is a solution of the problem (17), therefore u(pe’”) = go(pe™”), and
the last equality results in
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27
ua( ew)—i/“ (') Lo doc+ (Pg1)(p,9)—
2P 27 2 1+ p2 —2pcos(a — 1) g,
0
e +a :
— (Puz0)(p,9) + Y My(p) Re ot = gy (pei?).
kel pe A
As far as ug € h'(K3), we have
1 2m 9 9
A iB r—=p d
uz(re’) 27 /uz(pe ) r2 4 p2 — 2rpcos(B — V) .
0
Hence ,
; 1 [ : 1—p?
oy i3 d
u2(e ) 27T/u2(pe )1+p2—2pCOS(/6—’L9) ﬁ
0

Substituting this value into (28), we obtain

2m 27

. 1—p?
79
d
uz(pe’™) = /{ /u2 1+p2—2pcos(a—6) hx
0
L ot (Pgr)(p, ) — (Puso) (o, )+
o — (Pu
1+p2—2pcos(a—19) GNP 2008,
el19+a )
+ 3 Mi(p)Re 2 = gy (pe'?),
pe” — ag
keTy
that is,
uz(pe™”) + (Nuz)(p,?) = g2(p, )
where
1 27 1 27 1 9
Nup)(p, ) = — [ | — i P d
(Nuz)(p, ) QW/{QW/W(P@ )1+p272pcos(a7,6’) B x
0 0
1— 2
p dao,

7 + p? — 2pcos(a — V)
92(p,9) = g2(pe'’) = (Pg1)(p,9) + (Puz,o)(p,9)~

X,
— 3 Milp) Re 20
keT, pe = ak

The lemma is proved.

(28)

(30)

O

5.6. Solution of the equation (29) and construction of a solution of
the problem (17). Since it suffices to find only one solution of the equation
(29), we put My (p) =0, k € Ty. Then g» satisfies the condition (22), and

hence by Lemma 4, gy € Lt27¢.
We will now proceed to investigating the equation (29).
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We fix £ > 0 such that I = I, —e > 1 and consider the equation (29) in
the space LE (72).

The kernel of the operator N is a continuous function, hence it is com-
pletely continuous in Ll; (7). The equations u + Nu =0 and v+ N*v =0
in the capacity of solutions have only constant functions [16]. Taking this
fact into account, the equation (29) is solvable if and only if

2
[ aato.0)d0 =0,
0
i.e.,
27 2 i
/(Pgl)( Ydd+ > My(p /R L
per — ay
0 keT, 0
2 27
~ [Pu)o.0) 00 = [ gatoety 0. 1)
0 0
It can be easily verified that
27 27
[Rao.0)do = [ o) a
0 0
and
27 . .
,06“9 +ap de? t+ap dt
— T = — =1, |ag| =1
petv — ay 1pet t—ay it
2
Moreover,
21
/(P'LLQ,O) dd =
0
27 1 27 9 1 9
e +ay —p
/27r/ Z k(p) eew—ak 1+ p? —2pcos(a— 1) @
0 0 keT>
2 ZOZ
= Z My (p / + ak da = 0.
—ay
keT> )

With regard for the above equations, the condition (31) takes the form

2w 27

/91(6“9)6119— > Mi(p) = /gz(pew)dﬁ.

0 ket 0
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It now suffices to take My (p) = 0, k € T1, and the last equality coincides
with the condition (23).

Thus if the conditions (22) and (23) are fulfilled, and My (p) =0, k € T3,
then the condition (31) is likewise fulfilled, and hence the equation (29) is
solvable. Since the homogeneous equation has in the capacity of solutions

only constant functions, it follows that a solution satisfying the condition
2T

[ ua(pe?) d9 = 0 is unique. Further, let uy = Re ®o, &5 € H2. If we apply
0

the formula (20) to the function ®, and take into account that us(pe’”) =
g2(pe?) —uy (pet?), then making use of the condition (22) and the fact that
wy € h20) | we can conclude that us € hl2(')(CUP;w2).

Having the function ug(pe) at hand, by means of the Poisson integral
we find the function ug(w), |w| > p, and hence the function uz(e™®), as well.
Next, the equality (27) allows us to find the function uq5. In view of the
condition (22) and taking into account the fact that w; € h'*(") (see proof of
Lemma 2), from the equality (27) we conclude that u;5 € h'*() (w;). Having
w1, by means of the equality (26) we find the function wu;(w). It is not
difficult to verify that if u(w) = u1 (w)+ug(w), where u; € h'i()(K;;w;), and
w; are given by the equalities (18;), then u € W) (K;wiwy) = A0 (K;w), in
which w is the function defined by the equality (16). Thus we have proved
that u is a solution of the problem (17) of the class h'()(K;w).

6°. THE BASIC RESULT REFERRING TO THE DIRICHLET PROBLEM OF
THE CrLAss eP1():P20)(D)

Having a picture of solvability of the Dirichlet problem (17) in the ring
K, we can, relying on corollary of Lemma 1, get a picture of solvability of
the Dirichlet problem in the class e?*()*2()(D). From the results of item
50 it follows

Theorem 2. Let

(1) the doubly-connected domain D be bounded by simple closed curves
'y and T's, where I's lies inside of 'y, while I' =Ty UT belongs to
Ch(tr, .. ostnivr, .o yvy), 0 <y <25

(2) w = w(z) be a conformal mapping of the domain D onto the ring
K={w: p<|w| <1}; z = z(w) be the inverse mapping,z(t;) =
a, 2(vi) = Ti, where i = {72 |7| =1}, yo = {7 |7] = p};

(3) pi € Q).

Then for the Dirichlet problem

AU=0, Ueen)r20)(D),
u’l—‘i :fi7 fzeLp7(Fl)7

the following statements are valid.
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I. The homogeneous problem is solvable and its general solution is
given by the equality

Up(z) = Y Mi(p) RewEZ;J_rak7
keT UT> wiz @ (32)
E:{k Vg Zp(tk)7 tkerz}a ZMk(p):07
keTs

0, if 0 < <p(ty), or v=p(t)
for ax € vi, Xp;€HUO),

i

(1) dr
)

1 i
My (p) = Xiaw) = (w—a) &0 exp/ Li(t) T—w
Vi

My, is an arbitrary constant for p(ty) < v, <2 or
v = p(tk), Xk,i € Hli('),

where ¥; are functions defined by means of 2z’ appearing in (13).
II. If among the points ty there are such that v, = p(ty) or v = 0,
then the Dirichlet problem is, generally speaking, unsolvable.
III. The problem is solvable if and only if for the functions g;(7) =
fi(z(7)), T € 4, the following conditions are fulfilled:

(a)

ot gi(r) _dr L) (.
Ho [ B T et on), (33)
Vi
where
I 3 d
itw) = T (0= an) 77 exp [ 14 AT,
kET! S

T ={k: vi = p(te) orvg =0, tp € T };
(b)

27 2
/91 (ew) dy = /gg(pew) dv. (34)
0 0

IV. If the conditions (33) and (34) are fulfilled, then the Dirichlet prob-
lem is solvable, and its general solution is given by the equality
U(z) = Uo(z) + u" (w(z)),

where Uy (z) is given by the equality (32), and u*(w) = wui(w) +
uz(w), where ui(w) is the function given by the equalities (27) and
(26), and

P2 p?

do,
r2 4+ p? — 2rpcos(a — )

ug(w) = ug(re’’) = /uz(pem)
0

where ug(pe'?) is a solution of the equation (29).
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Remark. For p(t) = const, the work [10] presents an easily verifiable

condition referring to the function f(¢) which guarantees the existence of a
solution. It consists in that the function

f(t) II In |w(7) — w(ty)]

{w(tr)=0, v(tr)=p(tr)}

is to belong to LP(T).

10.

11.

12.

13.

ACKNOWLEDGEMENT

This research was supported by the grant GNSF/ST09_23_3-100.

REFERENCES

0. KovACIK AND J. RAKOSNIK, On spaces LP(#) and W) Czechoslovak Math.
J. 41(116) (1991), No. 4, 592-618.

V. KOKILASHVILI AND S. SAMKO, Maximal and fractional operators in weighted LP(*)
spaces. Rev. Mat. Iberoamericana 20 (2004), No. 2, 493-515.

. M. RUZICKA, Electrorheological fluids: modeling and mathematical theory. Lecture

Notes in Mathematics, 1748. Springer-Verlag, Berlin, 2000.

. L. DIENING AND M. RUZICKA, Calderén—Zygmund operators on generalized Lebesgue

spaces LP() and problems related to fluid dynamics. J. Reine Angew. Math. 563
(2003), 197-220.

. A. Yu. KArLOVICH, Fredholmness of singular integral operators with piecewise con-

tinuous coefficients on weighted Banach function spaces. J. Integral Equations Appl.
15 (2003), No. 3, 263-320.

. V. KOKILASHVILI, V. PAATASHVILI, AND S. SAMKO, Boundary value problems for

analytic functions in the class of Cauchy-type integrals with density in LP(‘>(I")A
Bound. Value Probl. 2005, No. 1, 43-71.

. V. KOKILASHVILI AND V. PAATASHVILI, The Riemann—Hilbert problem in weighted

classes of Cauchy type integrals with density from Lp(')(F). Complex Anal. Oper.
Theory 2 (2008), No. 4, 569-591.

. V. KOKILASHVILI AND V. PAATASHVILI, The Riemann—Hilbert problem in a domain

with piecewise smooth boundaries in weight classes of Cauchy type integrals with a
density from variable exponent Lebesgue spaces. Georgian Math. J. 16 (2009), No.
4, 737-755.

. V. KOKILASHVILI AND V. PAATASHVILI, Generalization of I. Vekua’s integral repre-

sentation of holomorphic functions and their application to the Riemann—Hilbert—
Poincaré problem. J. Function Spaces € Appl. (accepted)

G. KHUSKIVADZE, V. KOKILASHVILI AND V. PAATASHVILI, Boundary value problems
for analytic and harmonic functions in domains with nonsmooth boundaries. Appli-
cations to conformal mappings. Mem. Differential Equations Math. Phys. 14 (1998),
1-195.

V. KOKILASHVILI AND V. PAATASHVILI, On Hardy classes of analytic functions with
a variable exponent. Proc. A. Razmadze Math. Inst. 142 (2006), 134-137.

V. KOKILASHVILI AND V. PAATASHVILI, On variable Hardy and Smirnov classes of
analytic functions. Georgian International Journal of Science 1 (2008), No. 2, 67—
81.

V. KOKILASHVILI AND V. PaaTAsHVILI, Weighted Hardy and Smirnov classes and the
Dirichlet problem for a ring. Complex Anal. Elliptic Equations (accepted).



156

14.

15.

16.

17.

18.

19.

20.

21.

22.

G. Khuskivadze, V. Kokilashvili, and V. Paatashvili

V. KOKILASHVILI AND V. PAATAsHVILI, The Dirichlet problem for harmonic func-
tions from variable exponent piecewise smooth boundary. Journal of Math. Sci. 172
(2011), No. 3.

N. I. MUSKHELISHVILI, Singular integral equations. (Russian) Boundary value prob-
lems in the theory of function and some applications of them to mathematical physics.
Third, corrected and augmented edition. With an appendix by B. Bojarski. Izdat.
“Nauka”, Moscow, 1968.

G. KHUSKIVADZE AND V. PAATASHVILI, On the Dirichlet problem for harmonic func-
tions from Smirnov classes in doubly-connected domains. Proc. A. Razmadze Math.
Inst. 144 (2007), 41-60.

V. KOKILASHVILI, V. PAATASHVILI AND S. SAMKO, Boundedness in Lebesgue spaces
with variable exponent of the Cauchy singular operator on Carleson curves. Mod-
ern operator theory and applications, 167-186, Oper. Theory Adv. Appl., 170,
Birkhauser, Basel, 2007.

P. L. DUREN, Theory of H? spaces. Pure and Applied Mathematics, Vol. 38 Academic
Press, New York—London, 1970.

G. M. GovruziN, Geometrical theory of functions of a complex variable. Second edi-
tion. Edited by V. I. Smirnov. With a supplement by N. A. Lebedev, G. V. Kuzmina
and Ju. E. Alenicyn, Izdat. “Nauka”, Moscow, 1966.

S. I. HAVINSON AND G. Ts. TUMARKIN, Classes of analytic functions on multiply
connected domains. (Russian) 1960 Issledovaniya po sovremennym problemam teoris
funkcit kompleksnogo peremennogo, pp. 45-77, Gosudarstv. Izdat. Fiz.-Mat. Lit.,
Moscow.

B. V. KHVEDELIDZE, Linear discontinuous boundary value problems in the theory of
functions, singular integral equations and some of their applications. (Russian) Trudy
Tbiliss. Mat. Inst. Razmadze 23 (1956), 3—-158.

1. DANILYUK, Nonregular boundary value problems in the plane. (Russian) Izdat.
“Nauka”, Moscow, 1975.

(Received 06.12.2010)

Authors’ address:

Andrea Razmadze Mathematical Institute

I. Javakhishvili Thbilisi State Universirty

2 University Str., Thilisi 0186

Georgia

E-mail: kokil@rmi.ge
paatashvilitam@gmail.com



