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Abstract. The purpose of this paper is to consider two-dimensional
version of quasistatic Aifantis’ equation of the theory of consolidation with
double porosity and to study the uniqueness and existence of solutions of
basic boundary value problems (BVPs). The fundamental and some other
matrices of singular solutions are constructed in terms of elementary func-
tions for the steady-state quasistatic equations of the theory of consolidation
with double porosity. Using the fundamental matrix we construct the simple
and double layer potentials and study their properties near the boundary.
Using these potentials, for the solution of the first basic BVP we construct
Fredholm type integral equation of the second kind and prove the existence
theorem of solution for the finite and infinite domains.
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îâäæñéâ. êŽöîëéæï éæäŽêæŽ àŽêãæýæèëå ŽæòŽêðæï çãŽäæïðŽðæçæï àŽê-
ðëèâĲâĲæ ëîàãŽîæ òëîëãêëĲæï éóëêâ ëîàŽêäëéæèâĲæŽêæ ïýâñèâĲæïŽåãæï.
áŽéðçæùâĲñèæŽ úæîæåŽáæ ïŽïŽäôãîë ŽéëùŽêâĲæï ŽéëêŽýïêæï âîåŽáâîåëĲæï
åâëîâéâĲæ çãŽäæïðŽðæçæï àŽêðëèâĲâĲæïŽåãæï ëîàãŽîæ òëîëãêâĲæï àŽåãŽ-
èæïûæêâĲæå. ŽàâĲñèæŽ ŽéëêŽýïêåŽ òñêáŽéâêðñîæ áŽ ïýãŽ éŽðîæùâĲæ âèâ-
éâêðŽîñèæ òñêóùæâĲæï ïŽöñŽèâĲæå. Žé éŽðîæùâĲæï ïŽöñŽèâĲæå öâáàâêæèæŽ
éŽîðæãæ áŽ ëîéŽàæ òâêæï ìëðâêùæŽèâĲæ áŽ öâïûŽãèæèæŽ éŽåæ åãæïâĲâĲæ.
Žé ìëðâêùæŽèâĲæï àŽéëõâêâĲæå ìæîãâèæ ïŽïŽäôãîë ŽéëùŽêæïŽåãæï ŽàâĲñèæŽ
òîâáßëèéæï éâëîâ àãŽîæï æêðâàîŽèñîæ àŽêðëèâĲâĲæ áŽ áŽéðçæùâĲñèæŽ
éæïæ ŽéëêŽýïêæï ŽîïâĲëĲæï åâëîâéŽ îëàëîù ïŽïîñèæ, æïâ ñïŽïîñèë Žîæ-
ïŽåãæï.
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Introduction

A theory of consolidation with double porosity has been proposed by
Aifantis. This theory unifies a model proposed by Biot for the consolida-
tion of deformable single porosity media with a model proposed by Baren-
blatt for seepage in undeformable media with two degrees of porosity. In
a material with two degrees of porosity, there are two pore systems, the
primary and the secondary. For example, in a fissured rock (i.e. a mass
of porous blocks separated from each other by an interconnected and con-
tinuously distributed system of fissures) most of the porosity is provided
by the pores of the blocks or primary porosity, while most of permeability
is provided by the fissures or the secondary porosity. When fluid flow and
deformations processes occur simultaneously, three coupled partial differen-
tial equations can be derived [1], [2] to describe the relationships governing
pressure in the primary and secondary pores (and therefore the mass ex-
change between them) and the displacement of the solid. Inertia effects are
neglected as they are in Biot’s theory.

The physical and mathematical foundations of the theory of double poros-
ity were considered in the papers [1]–[3]. In part I of a series of papers on
the subject, R. K. Wilson and E. C. Aifantis [1] gave detailed physical in-
terpretations of the phenomenological coefficients appearing in the double
porosity theory. They also solved several representative boundary value
problems. In part II of this series, uniqueness and variational principles
were established by D. E. Beskos and E. C. Aifantis [2] for the equations of
double porosity, while in part III Khaled, Beskos and Aifantis [3] provided
a related finite element to consider the numerical solution of Aifantis’ equa-
tions of double porosoty (see [1]–[3] and the references cited therein). The
basic results and the historical information on the theory of porous media
were summarized by Boer [4].

The purpose of this paper is to consider a two-dimensional version of
quasistatic Aifantis’ equation of the theory of consolidation with double
porosity and to study the uniqueness and existence of solutions of basic
boundary value problems (BVPs). The fundamental and some other ma-
trices of singular solutions are constructed in terms of elementary functions
for the steady-state quasistatic equations of the theory of consolidation with
double porosity. Using the fundamental matrix, we construct the simple and
double layer potentials and study their properties near the boundary. Using
these potentials, for solving the first basic BVP we construct a Fredholm
type integral equation of the second kind and prove the existence theorem
of solution for the finite and infinite domains.

1. Basic Equations, Boundary Value Problems and Uniqueness
Theorems

The basic steady-state quasistatic Aifantis’ equations of the theory of
consolidation with double porosity in the case of plane deformation are
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given by partial differential equations of the form [1], [2]

µ∆u + (λ + µ) grad div u− grad (β1p1 + β2p2) = 0,

iωβ1

m1
div u +

(
∆ +

α3

m1

)
p1 +

k

m1
p2 = 0,

iωβ2

m2
div u +

k

m2
p1 +

(
∆ +

α4

m2

)
p2 = 0,

(1.1)

where u = (u1, u2) is the displacement vector, p1 is the fluid pressure within
the primary pores and p2 is the fluid pressure within the secondary pores.
α3 = iωα1 − k, α4 = iωα2 − k, mj = kj

µ∗ , j = 1, 2. The constant λ is
the Lame modulus, µ is the shear modulus and the constants β1 and β2

measure the change of porosities due to an applied volumetric strain. The
constants α1 and α2 measure the compressibilities of primary and secondary
pores filled with pore fluid.The constants k1 and k2 are the permeabilities
of the primary and secondary systems of pores, the constant µ∗ denotes the
viscosity of the pore fluid and the constant k measures the transfer of fluid
from the secondary pores to the primary pores. The quantities λ, µ, αj ,
βj , kj (j = 1, 2) and µ∗ are all positive constants. 4 = ∂2

∂x2
1

+ ∂2

∂x2
2

is the
two-dimensional Laplace operator, ω is the oscilation frequency (ω > 0).

We also rewrite the equation (1.1) in the matrix form

B(∂x)U = 0, (1.2)

where

B(∂x) =‖ Bpq(∂x) ‖4x4, p, q = 1, 2, 3, 4,

Bjj(∂x) = µ∆ + (λ + µ)
∂2

∂x2
j

, j = 1, 2,

B12(∂x) = B21(∂x) = (λ + µ)
∂2

∂x1∂x2
,

Bj3(∂x) = −β1
∂

∂xj
, Bj4(∂x) = −β2

∂

∂xj
, j = 1, 2,

B3j(∂x) =
iωβ1

m1

∂

∂xj
, B4j(∂x) =

iωβ2

m2

∂

∂xj
, j = 1, 2,

B33(∂x) = ∆ +
α3

m1
, B34(∂x) =

k

m1
, B43(∂x) =

k

m2
,

B44(∂x) = ∆ +
α4

m2
, U(u1, u2, p1, p2).

The conjugate system of the equation (2) is

B̃(∂x)U = BT (−∂x)U = 0.

Throughout this paper “T” denotes transposition.
Now we write the expressions for the components of the stress vector,

which acts on elements of the arc with the normal n = (n1, n2). Denoting
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the stress vector by P (∂x, n)u, we have

P (∂x, n)u = T (∂x, n)u− n(β1p1 + β2p2), (1.3)

where [9]

T (∂x, n) =‖ Tkj(∂x, n) ‖2x2,

Tkj(∂x, n) = µδkj
∂

∂n
+ λnk

∂

∂xj
+ µnj

∂

∂xk
, k, j = 1, 2.

(1.4)

Let D+(D−) be a finite (an infinite) two-dimensional region bounded by
the contour S. Suppose that S ∈ C1,β , 0 < β ≤ 1, i.e., S is a Lyapunov
curve.

Introduce the definition of a regular vector-function.

Definition 1. A vector-function U(x) = (u1, u2, p1, p2) defined in the
domain D+(D−) is called regular if it has integrable continuous second
derivatives in D+ (D−), and U itself and its first order derivatives are
continuously extendable at every point of the boundary of D+(D−), i.e.,
U ∈ C2(D+)∩C1(D+), (U ∈ C2(D+)∩C1(D+)). Note that for the infinite
domain D− the vector U(x) additionally satisfies the following conditions
at infinity:

U(x) = O(1),
∂Uk

∂xj
= O(|x|−2), |x|2 = x2

1 + x2
2, j = 1, 2, (1.5)

where O(1) denotes a bounded function.

For the equation (1.1) we pose the following boundary value problems:
Find a regular vector U satisfying in D+ (D−) the equation (1.1), and

on the boundary S one of the following conditions:

Problem 1. The displacement vector and the fluid pressures are given
in the form

u±(z) = f(z)±, p±1 (z) = f±3 , p±2 (z) = f±4 (z), z ∈ S;

Problem 2. The stress vector and the normal derivatives of the preasure
functions ∂pj

∂n are given in the form

(Pu)± = f(z)±,
(∂p1(z)

∂n

)±
= f±3 ,

(∂p2(z)
∂n

)±
= f±4 (z), z ∈ S;

Problem 3.

u±(z) = f(z)±,
(∂p1(z)

∂n

)±
= f±3 (z),

(∂p2(z)
∂n

)±
= f±4 (z), z ∈ S;

Problem 4.

(Pu(z))± = f(z)±, p±1 (z) = f±3 (z), p±2 (z) = f±4 (z), z ∈ S,

where ( · )± denotes the limiting values on S from D± and f = (f1, f2), f3,
f4 are given functions.
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Generalized Green’s Formulas. Let u and u be two regular solutions
of the equation (1.1) in D+. Multiply the first equation of (1.1) by u, the
second one by p1 and the third one by p2, where u, p1 and p2 are the
complex conjugate functions of u, p1 and p2 respectively, integrate over
D+ and sum to obtain

∫

D+

[
E(u, ū) + α1|p1|2 + α2|p2|2+

+
k

iω
|p1 − p2|2 +

m1

iω
| grad p1|2 +

m2

iω
| grad p2|2

]
dx =

=
∫

S

[
uP (∂x, n)u +

m1

iω
p1

∂p1

∂n
+

m2

iω
p2

∂p2

∂n

]
ds, (1.6)

where

E(u, u) = (λ + µ)(div u)2 + µ
(∂u1

∂x1
− ∂u2

∂x2

)2

+ µ
(∂u2

∂x1
+

∂u1

∂x2

)2

.

For positive definiteness of the potential energy the inequalities λ+µ > 0,
µ > 0 are necessary and sufficient.

One can generalize the formula (1.6) to the infinite domain D−, provided
the condition

lim
R→∞

∫

S(0,R)

[
uP (∂x, n)u +

m1

iω
p1

∂p1

∂n
+

m2

iω
p2

∂p2

∂n

]
ds = 0 (1.7)

is fulfilled, where S(0, R) is a circumference of radius R with center at the
point O lying inside D+. The radius R is taken so large that the region D+

lies entirely inside the circumference S(0, R).
Obviously, the condition (1.7) is fulfilled if the vector u and u satisfy the

conditions (1.5).
If (1.7) is fulfilled, then Green’s formula for the domain D− takes the

form
∫

D−

[
E(u, u) + α1|p1|2 + α2|p2|2+

+
k

iω
|p1 − p2|2 +

m1

iω
| grad p1|2 +

m2

iω
| grad p2|2

]
dx =

= −
∫

S

[
uP (∂x, n)u +

m1

iω
p1

∂p1

∂n
+

m2

iω
p2

∂p2

∂n

]
ds. (1.8)

The Uniqueness Theorems. In this subsection we investigate the
question of uniqueness of solutions of the above-mentioned problems.

Now let us prove the following theorems.
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Theorem 1. The first boundary value problem has at most one regular
solution in the finite domain D+.

Proof. Let the first BVP have in the domain D+ two regular solutions U (1)

and U (2). Denote u = U (1) − U (2). Evidently, the vector u satisfies (1.1)
and the boundary condition u+ = 0 on S. Note that if u is a regular
solution of the equation (1.1), we have Green’s formula (1.6). Using (1.6)
and taking into account the fact that the potential energy is positive definite,
we conclude that U = C, x ∈ D+, where C = const. Since U+ = 0, we have
C = 0 and U(x) = 0, x ∈ D+. ¤

Theorem 2. The first boundary value problem has at most one regular
solution in the infinite domain D−.

Proof. The vectors U (1) and U (2) in the domain D− must satisfy the con-
dition (1.5). In this case the formula (1.8) is valid and U(x) = C, x ∈ D−,
where C is again a constant vector. But U on the boundary satisfies the
condition U− = 0, which implies that C = 0 and U(x) = 0, x ∈ D−. ¤

Theorem 3. A regular solution of the second boundary value problem
is not unique in the domain D+. Two regular solutions may differ by the
vector (u, p1, p2), where u is a rigid displacement vector and pj = 0, j = 1, 2.

Proof. Let

(P (∂x, n)u)+ = 0,
(∂p1

∂n

)+

= 0,
(∂p2

∂n

)+

= 0, x ∈ S.

The positive definiteness of the potential energy implies

u1 = c1 − εx2, u2 = c2 + εx1, p1 = 0, p2 = 0, x ∈ D+. ¤

Theorem 4. Two regular solutions of the second boundary value problem
in the domain D− may differ by the vector (u, p1, p2), where u is a constant
vector and pj = 0, j = 1, 2.

Proof. For the exterior second homogeneous boundary value problem the
vector u must satisfy the condition at infinity (1.5). In this case, the formula
(1.8) is valid for a regular u. Using this formula, we obtain

u1 = c1 − εx2, u2 = c2 + εx1, p1 = 0, p2 = 0, x ∈ D−.

Bearing in mind (1.5), we have ε = 0 and

u1 = c1, u2 = c2, p1 = 0, p2 = 0, x ∈ D−. ¤

Analogously, the following theorems are valid:

Theorem 5. The boundary value problems (III)± have in the domains
D± at most one regular solution.



50 M. Basheleishvili and L. Bitsadze

Theorem 6. Two regular solutions of the boundary value problem (IV )+

may differ by the vector U(u, p1, p2), where u is a rigid displacement and
pj = 0, j = 1, 2. Two regular solutions of the boundary value problem (IV )−

may differ by the vector (u, p1, p2), where u is a constant vector and pj = 0,
j = 1, 2.

2. Matrix of Fundamental Solutions

Here we construct the matrix of fundamental solutions for the system
(1.1).

Let

B∗ =
1
aµ




B∗
11 −B∗

12ξ
2
1 −B∗

12ξ1ξ2 µB∗
13ξ1 µB∗

14ξ1

−B∗
12ξ1ξ2 B∗

11 −B∗
12ξ

2
2 µB∗

13ξ2 µB∗
14ξ2

−ιωµB∗
31ξ1 −ιωµB∗

31ξ2 µB∗
33∆∆ −µB∗

34∆∆

−ιωµB∗
41ξ1 −ιωµB∗

41ξ2 −µB∗
43∆∆ µB∗

44∆∆




,

where

B∗
11 = a∆(∆ + λ2

1)(∆ + λ2
2),

B∗
12 = a(∆ + λ2

1)(∆ + λ2
2)− µ

[
∆∆ +

( α4

m2
+

α3

m1

)
∆ +

α3α4 − k2

m1m2

]
,

B∗
13 = β1∆∆ + ∆

α4β1 − kβ2

m2
, B∗

14 = β2∆∆ + ∆
α3β2 − kβ1

m1
,

B∗
31 =

β1

m1
∆∆ + ∆

α4β1 − kβ2

m1m2
, B∗

41 =
β2

m2
∆∆ + ∆

α3β2 − kβ1

m1m2
,

B∗
33 = a

(
∆ +

α4

m2

)
+

iωβ2
2

m2
, B∗

34 =
ka + iωβ2β1

m1
,

B∗
43 =

ka + iωβ2β1

m2
, B∗

44 = a
(
∆ +

α3

m1

)
+

iωβ2
1

m1
.

Supposing
U(x) = B∗(∂x)Ψ, (2.1)

where Ψ = (Ψ1, Ψ2, Ψ3,Ψ4) is a four-dimensional vector function, we can
write the equation (1.1) as

µa∆∆(∆ + λ2
1)(∆ + λ2

2)Ψ = 0; (2.2)

here λ2
j , j = 1, 2 are the roots of the characteristic equation

x2 −
[

α4

m2
+

α3

m1
+

iω

a

( β2
2

m2
+

β2
1

m1

)]
x +

α3α4 − k2

m1m2
+

+
iω

am1m2

(
α4β

2
1 + α3β

2
2 − 2kβ1β2

)
= 0, a = λ + 2µ. (2.3)

We assume that λ2
1 6= λ2

2. Without loss of generality we assume that Imλj >
0, j = 1, 2.
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From (2.2) it follows that

Ψ(x)=−2i

π

λ2
1+λ2

2

λ4
1λ

4
2

ln r+
2i

π

r2(ln r−1)
4λ2

1λ
2
2

− H
(1)
0 (λ1r)

λ4
1(λ

2
1−λ2

2)
+

H
(1)
0 (λ2r)

λ4
2(λ

2
1−λ2

2)
, (2.4)

H
(1)
0 (λr) is the first kind Hankel function of zero order [5]

H
(1)
0 (λr) =

2i

π
ln r +

2i

π

[
J0(λr)− 1

]
ln r+

+
2i

π
J0(λr)

(
ln

λ

2
+ C − iπ

2

)
−

− 2i

π

∞∑

k=1

(−1)k

(k!)2
(λr

2

)2k(1
k

+
1

k − 1
+ · · ·+ 1

)
,

J0(λr) =
∞∑

k=0

(−1)k

(k!)2
(λr

2

)2k

.

(2.5)

Substituting Ψ(x) in (2.1), after some calculations we obtain the fun-
damental matrix of solutions for the equation (1.1) which is denoted by
Γ(x− y)

Γ(x−y)=




2i

πµ
ln r+

∂2Ψ11

∂x2
1

∂2Ψ11

∂x1∂x2

∂Ψ13

∂x1

∂Ψ14

∂x1

∂2Ψ11

∂x1∂x2

2i

πµ
ln r+

∂2Ψ11

∂x2
2

∂Ψ13

∂x2

∂Ψ14

∂x2

− iω

m1

∂Ψ13

∂x1
− iω

m1

∂Ψ13

∂x2
Ψ33 Ψ34

− iω

m2

∂Ψ14

∂x1
− iω

m2

∂Ψ14

∂x2

m1

m2
Ψ34 Ψ44




, (2.6)

where

Ψ11 = α11 ln r + α12
r2(ln r − 1)

4
+ α21H

(1)
0 (λ1r) + α22H

(1)
0 (λ2r),

Ψ13 = β11 ln r + β12H
(1)
0 (λ1r) + β13H

(1)
0 (λ2r),

Ψ14 = γ11 ln r + γ12H
(1)
0 (λ1r) + γ13H

(1)
0 (λ2r),

Ψ31 =
1

m1
Ψ13, Ψ33 = δ11H

(1)
0 (λ1r) + δ12H

(1)
0 (λ2r),

Ψ41 =
1

m2
Ψ14, Ψ34 = δ34

[
H

(1)
0 (λ2r)−H

(1)
0 (λ1r)

]
,

Ψ43 =
m1

m2
Ψ34, Ψ44 = δ41H

(1)
0 (λ1r) + δ42H

(1)
0 (λ2r),

(2.7)

α11 =
2i

πaλ2
1λ

2
2

[
α3

m1
+

α4

m2
− (λ2

1 + λ2
2)(α3α4 − k2)

m1m2λ2
1λ

2
2

]
,
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α12 =
2i

π

[
α3α4 − k2

am1m2λ2
1λ

2
2

− 1
µ

]
, δ34 = − ka + iωβ1β2

m1a(λ2
1 − λ2

2)
,

α2k =
(−1)k

a(λ2
1 − λ2

2)

[
1− 1

λ2
k

( α3

m1
+

α4

m2

)
+

α3α4 − k2

m1m2λ4
k

]
, k = 1, 2,

β11 =
2i(α4β1 − kβ2)

πm2aλ2
1λ

2
2

, γ11 =
2i(α3β2 − kβ1)

πm1aλ2
1λ

2
2

,

β1k =
(−1)k

a(λ2
1 − λ2

2)

[
− β1 +

α4β1 − kβ2

m2λ2
k−1

]
, k = 2, 3,

γ1k =
(−1)k

a(λ2
1 − λ2

2)

[
− β2 +

α3β2 − kβ1

m1λ2
k−1

]
, k = 2, 3,

δ1k =
1

λ2
1 − λ2

2

[
− λ2

k +
α4a + iωβ2

2

m2a

]
, k = 1, 2,

δ4k =
1

λ2
1 − λ2

2

[
− λ2

k +
α3a + iωβ2

1

m2a

]
, k = 1, 2,

α11 +
2i

π

[
α21 + α22

]
= 0, β11 +

2i

π

[
β12 + β13

]
= 0,

γ11 +
2i

π

[
γ12 + γ13

]
= 0,

δ11 + δ33 = 1, δ22 + δ44 = 1, r2 = (x1 − y1)2 + (x2 − y2)2.

Moreover, on the basis of the identity

H
(1)
0 (λr) =

2i

π
ln r − 2i

4π
r2 ln r + const + O(r2)

we easily conclude that Γ(x − y) has a logarithmic singularity. It can be
shown that the columns of the matrix Γ(x−y) are solutions to the equation
(1.1) with respect to x for any x 6= y.

Denote Γ̃(x) = ΓT (−x). Hence we have proved the following
Theorem. The matrix Γ(x) is a solution of the system (1.1) and the

matrix Γ̃(x) is a solution of the adjoint system B̃(∂x)U = 0.

3. Matrix of Singular Solutions

In solving boundary value problems of the theory of consolidation with
double porosity by the method of potential theory, the fundamental ma-
trix and some other matrices of singular solutions to the equation (1.1)
are of great importance. These matrices will be constructed explicitly in
the present section with the help of elementary functions. Using the ba-
sic fundamental matrix, we will construct the so-called singular matrices
of solutions. For simplicity, we will introduce the special generalized stress
vector.

Write now the expressions for the components of the generalized stress
vector, which acts on elements of the arc with the normal n = (n1, n2).
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Denoting the generalized stress vector by
κ

P(∂x, n)u, where κ is an arbitrary
constant, we have

κ

P(∂x, n)u =
κ

T(∂x, n)u− n(β1p1 + β2p2), (3.1)

where

κ

T(∂x, n)u =




µ
∂

∂n
+ (λ + µ)n1

∂

∂x1
(λ + µ)n1

∂

∂x2
− κ

∂

∂s

(λ + µ)n2
∂

∂x1
+ κ

∂

∂s
µ

∂

∂n
+ (λ + µ)n2

∂

∂x2


 u,

∂

∂s
= n1

∂

∂x2
− n2

∂

∂x1
.

If κ = µ, then we have the stress vector P (∂x, n)u. The operator which

will be obtained from
κ

P(∂x, n) for κ = κn = µ(λ+µ)
λ+3µ will be called the

operator N(∂x, n), and the vector N(∂x, n)u will be called the pseudo-stress
vector. The pseudo-stress operator succeeded in obtaining the Fredholm
integral equation of the second kind for the first boundary value problem.

We introduce the following notation
κ

R(∂x, n), R̃
κ
(∂x, n)

κ

R(∂x, n) =




κ

T(∂x, n)11
κ

T(∂x, n)12 −β1n1 −β1n1

κ

T(∂x, n)21
κ

T(∂x, n)22 −β1n2 −β2n2

0 0
∂

∂n
0

0 0 0
∂

∂n




,

R̃
κ
(∂x, n) =




κ

T(∂x, n)11
κ

T(∂x, n)12 −iωn1
β1

m1
−iωn1

β2

m2

κ

T(∂x, n)21
κ

T(∂x, n)22 −iωn2
β1

m1
−iωn2

β2

m2

0 0
∂

∂n
0

0 0 0
∂

∂n




.

By Applying the operator
κ

R(∂x, n) to the matrix Γ(x), we will con-
struct the so-called singular matrix of solutions. Let us consider the matrix
[
κ

R(∂y, n)Γ(y − x)]∗ which is obtained from
κ

R(∂x, n)Γ(x − y) = (
κ

Rpq)4x4

by transposition of the columns and rows and the variables x and y. We
can easily prove that every column of the matrix [

κ

R(∂y, n)Γ(y − x)]∗ is a
solution of the system B̃(∂x)U = 0 with respect to the point x, if x 6= y.

The elements
κ

Rpq are as follows:

κ

Rpp =
2i

π

∂

∂n
ln r + (−1)p(κ + µ)

∂

∂s

∂2Ψ11

∂x1∂x2
, p = 1, 2,
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κ

R12 = − ∂

∂s

[
2i

π

κ

µ
ln r + (κ + µ)

∂2Ψ11

∂x2
2

]
,

κ

R21 =
∂

∂s

[
2i

π

κ

µ
ln r + (κ + µ)

∂2Ψ11

∂x2
1

]
,

κ

R13 = −(κ + µ)
∂

∂s

∂Ψ13

∂x2
,

κ

R14 = −(κ + µ)
∂

∂s

∂Ψ14

∂x2
, (3.2)

κ

R23 = (κ + µ)
∂

∂s

∂Ψ13

∂x1
,

κ

R24 = (κ + µ)
∂

∂s

∂Ψ14

∂x1
,

κ

R3j = − iω

m1

∂

∂n

∂Ψ13

∂xj
,

κ

R4j = − iω

m2

∂

∂n

∂Ψ14

∂xj
, j = 1, 2,

κ

R33 =
∂Ψ33

∂n
,

κ

R34 =
∂Ψ34

∂n
,

κ

R43 =
m1

m2

∂Ψ34

∂n
,

κ

R44 =
∂Ψ44

∂n
,

Analogously, we obtain the matrix

R̃
κ
(∂y, n)Γ̃(y − x) =

(
[R̃

κ
Γ̃]pq

)
4x4

,

where
[
R̃

κ
Γ̃
]
pq

=
κ

Rpp, p = 1, 2,
[
R̃

κ
Γ̃
]
12

=
κ

R12,
[
R̃

κ
Γ̃
]
21

=
κ

R21,

[
R̃

κ
Γ̃
]
13

=
iω

m1

κ

R13,
[
R̃

κ
Γ̃
]
14

=
iω

m2

κ

R14,
[
R̃

κ
Γ̃
]
23

=
iω

m1

κ

R23,

[
R̃

κ
Γ̃
]
24

=
iω

m2

κ

R24,
[
R̃

κ
Γ̃
]
3j

= − ∂

∂n

∂Ψ13

∂xj
,

[
R̃

κ
Γ̃
]
4j

= − ∂

∂n

∂Ψ14

∂xj
, j = 1, 2,

[
R̃

κ
Γ̃
]
33

=
∂

∂n
Ψ33,

[
R̃

κ
Γ̃
]
34

=
m1

m2

∂

∂n
Ψ34,

[
R̃

κ
Γ̃
]
43

=
∂

∂n
Ψ34,

[
R̃

κ
Γ̃
]
44

=
∂

∂n
Ψ44,

The matrix
[
R̃

κ
(∂y, n)Γ̃(y−x)

]∗ is a solution of the system (1.1). It shows,

that the matrices
[
R̃

κ
(∂x, n)Γ̃

]∗ and
[ κ

R(∂x, n)Γ
]∗ contain a singular part,

which is integrable in the sense of the principal Cauchy value.

4. Potentials and Their Properties

Introduce the following definitions:

Definition 2. The vector-functions defined by the equalities

V (1)(x) =
1
4i

∫

S

Γ(y − x)h(y) dy,

V (2)(x) =
1
4i

∫

S

Γ̂(x− y)h(y) ds,

(4.1)



Two-Dimensional Boundary Value Problems 55

where Γ(x, y) is the fundamental matrix, Γ̃(x) = ΓT (−x), h is a continuous
(or Holder continuous) vector and S is a closed Lyapunov curve, will be
called simple layer potentials.

Definition 3. The vector-function defined by the equalities

U (1)(x) =
1
4i

∫

S

[Ñ(∂y, n)Γ̃(y − x)]∗h(y) dy,

U (2)(x) =
1
4i

∫

S

[N(∂y, n)Γ(y − x)]∗h(y) dy,

(4.2)

will be called double layer potentials.

The potentials V (1), U (1) are solutions of the system (1.1) and the poten-
tials V (2), U (2) are solutions of the system B̃(∂x)U = 0 both in the domains
D+ and D−. When the point x tends to a point z ∈ S, the potential (4.2)
has the discontinuity as the harmonic double layer potential

U (1)± = ±h(z) +
1
4i

∫

S

[Ñ(∂y, n)Γ̃(y − z)]∗h(y) dy,

U (2)± = ±h(z) +
1
4i

∫

S

[N(∂y, n)Γ(y − z)]∗h(y) dy.

(4.3)

Now let us investigate properties of the operation
κ

R(∂x, n) acting on a
simple layer potential. We obtain

κ

R(∂x, n)V (x) =
1
4i

∫

S

κ

R(∂x, n)Γ(y − x)h(y) dy. (4.4)

When κ = κn we obtain

[
N(∂y, n)V (1)(z)

]∓ = ∓h(z) +
1
4i

∫

S

N(∂y, n)Γ(z − y)h(y) dy,

[
Ñ(∂y, n)V (2)(z)

]∓ = ∓h(z) +
1
4i

∫

S

Ñ(∂y, n)Γ̂(z − y)h(y) dy.

(4.5)

It is well-known ([8]) that in the case of a Lyapunov curve S ∈ C1,α the
function ∂ ln r

∂n for x, y ∈ S has a week singularity and ∂ ln r
∂n is integrable in

the sense of the principal Cauchy value. Consequently, ∂ ln r
∂n is a singular

kernel on S.
It is obvious that

[ κ

R(∂y, n)Γ(y − x)
]∗ is a singular kernel (in the sense

of Cauchy). Note that if κ = κn = µ(λ+µ)
λ+3µ , then

[ κ

R(∂x, n)Γ(x − y)
]∗ is a

weakly singular kernel.
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5. Solution of the First Boundary Value Problem

Problem (I)+. Let us first prove the existence of solution of the first
boundary value problem in the domain D+. A solution is sought in the
form of the double layer potential

U(x) =
1
4i

∫

S

[
Ñ(∂y, n)Γ̃(y − x)

]∗
h(y) dy. (5.1)

Then for determining the unknown real vector function h we obtain the
following Fredholm integral equation of the second kind

−h(z) +
1
4i

∫

S

[
Ñ(∂y, n)Γ̃(y − z)

]∗
h(y) dy = f+. (5.2)

Let us prove that the equation (5.2) is solvable for any continuous right-
hand side. Consider the associated to (5.2) homogeneous equation

−h(z) +
1
4i

∫

S

N(∂y, n)Γ(y − z)h(y) dy = 0 (5.3)

and prove that it has only the trivial solution.Assume the contrary and de-
note by ϕ(z) a nonzero solution of (5.3). Compose the simple layer potential

V (x) =
1
4i

∫

S

Γ(y − x)ϕ(y) dy. (5.4)

It is obvious from (5.3), that

[N(∂z, n)V (z)]− = 0,

∫

S

ϕ(y) ds = 0.

Using the formula (1.8) for κ = κn in D−, we obtain V (x) = 0, x ∈ D−.
Now taking into account the continuity of the simple layer potential and

using the uniqueness theorem for the solution of the first boundary value
problem, we have V (x) = 0, x ∈ D+.

Note that [NV ]+− [NV ]− = 2ϕ(x) = 0 and hence the equation (5.3) has
only the trivial solution. This implies that the associated to (5.3) homoge-
neous equation also has only the trivial solution, and the equation( 5.2) is
solvable for any continuous right-hand side (according to the first Fredholm
theorem).

For the regularity of the double layer potential in the domain D+ it is
sufficient to assume that S ∈ C2,β , (0 < β < 1) and ∂f

∂s is Holder continuous
f ∈ C1,α(S) (0 < α < β).

Problem (I)−. Consider now the first boundary value problem in the
domain D−. Its solution is sought in the form

U(x) =
1
4i

∫

S

([
Ñ(∂y, n)Γ̃(y − x)

]∗ − [
Ñ(∂y, n)Γ̃(y)

]∗)
ψ(y) dy. (5.5)
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Then for determining the unknown real valued vector function ψ we obtain
the following Fredholm integral equation of the second kind

ψ(z) +
1
4i

∫

S

([
Ñ(∂y, n)Γ̃(y− z)

]∗− [
Ñ(∂y, n)Γ̃(y)

]∗)
ψ(y) dy = f−. (5.6)

Prove that the equation (5.6) is solvable for any continuous right-hand
side. We consider the associated to (5.6) homogeneous equation

h(z) +
1
4i

∫

S

[
N(∂y, n)Γ(z − y) + N(∂y, n)Γ(y)

]
h(y) dy = 0. (5.7)

Let us prove that (5.7) has only the trivial solution. Suppose that it has
a nonzero solution h(z). From (5.7) by integration we obtain∫

S

h ds = 0.

In this case the equation (5.7) corresponds to the boundary condition
[N(∂x, n)V ]+ = 0, where

V (x) =
1
4i

∫

S

Γ(y − x)h(y) dy. (5.8)

We find that V = C, x ∈ D+, where C is a constant vector.
Taking into account the equation

∫
S

h ds = 0 and the fact that the single

layer potential is continuous while passing through the boundary, and using
Green’s formula for κ = κn, we obtain V = 0, x ∈ D−. Since [NV ]+ −
[NV ]− = 2h(x) = 0, and [NV ]+ = 0, [NV ]− = 0, we get h(x) = 0.

Thus we conclude that the associated to (5.7) homogeneous equation has
only the trivial solution, and the equation (5.6) is solvable for any continuous
right-hand side.

To prove the regularity of the potential (5.5) in the domain D−, it is
sufficient to assume that S∈C2,β (0<β<1) and f ∈C1,α(S) (0<α<β).
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