Memoirs on Differential Equations and Mathematical Physics $$\mathrm{Volume}\ 51,\ 2010,\ 5\text{--}15$$

A. S. A. Al-Hammadi

EULER CASE FOR A CLASS OF THIRD-ORDER DIFFERENTIAL EQUATION

Abstract. We deal with an Euler-Case for a class of third-order differential equation. A theorem on asymptotic behaviour at the infinity of three linearly independent solutions is proved. This theorem coveres different class of coefficients.

2010 Mathematics Subject Classification. 34E05.

Key words and phrases. Differential equations, asymptotic form of solutions, Euler case.

რეზიუმე. ნაშრომში განიხილება ეილერის შემთხვევა მესამე რიგის დიფერენციალური განტოლებების ერთი კლასისთვის. დამტკიცებულია ერთი თეორემა სამი წრფივად დამოუკიდებელი ამონახსნის ასიმპტოტური ყოფაქცევის შესახებ. ეს თეორემა მოიცავს კოეფიციენტების სხვადასხვა კლასებს.

1. INTRODUCTION

In this paper we investigate the form of three linearly independent solutions for a class of the third-order differential equation

$$(q(qy')')' - (py')' - ry = 0$$
⁽¹⁾

as $x \to \infty$, where x is the independent variable and the prime denotes d/dx. The functions q, p and r are defined on the interval $[a, \infty)$, are not necessarily real-valued and continuously differentiable, and all are non-zero everywhere in this interval. In this situation where p is sufficiently small compared to q and r as $x \to \infty$, (1) can be considered as a perturbation of the equation investigated by Eastham. In this paper,we consider the opposite situation where p is large compared to q and r. In this situation, we identify the Euler case:

$$\frac{(pr)'}{pr} \sim const. \times \frac{p}{q^2},$$

$$\frac{(pq^{-1})'}{pq^{-1}} \sim const. \times \frac{p}{q^2}$$
(2)

as $x \to \infty$. The various conditions imposed on the coefficients will be introduced when they are required in the development of the method. Al-Hammadi [1] considers (1) in the case where the solutions all have a similar exponential factor. A third-order equation similar to (1) has been considered previously by Unsworth [11] and Pfeiffer[10]. Eastham [6] considered the Euler case for a fourth-order differential equation and showed that this case represents a border line between situations where all solutions have a certain exponential character as $x \to \infty$ and where only two solutions have this character. The case (2) will appear in the method in Sections 4–6, where we use the recent asymptotic theorem of Eastham [4, Section 2] to obtain the solutions of (1). Two examples are considered in Section 6.

2. The General Method

We write (1) in the standard way [8] as a first order system

T

$$Y' = AY,\tag{3}$$

where the first component of Y is y and

$$A = \begin{pmatrix} 0 & q^{-1} & 0\\ 0 & pq^{-2} & q^{-1}\\ r & 0 & 0 \end{pmatrix}.$$
 (4)

As in [2], we express A in its diagonal form

$$^{-1}AT = \Lambda \tag{5}$$

and we therefore require the eigenvalues λ_j and eigenvectors ν_j $(1 \le j \le 3)$ of A, with the eigenvalues λ_j are chosen as continuously differentiable function.

A. S. A. Al-Hammadi

Writing

$$q^2 = s, (6)$$

we obtain the characteristic equation of A as

$$s\lambda^3 - p\lambda^2 - r = 0. ag{7}$$

An eigenvector ν_j of A corresponding to λ_j is

$$\nu_j = \left(1, s^{\frac{1}{2}} \lambda_j, r \lambda_j^{-1}\right)^t, \tag{8}$$

where the superscript denotes the transpose. We assume at this stage that the λ_j are distinct, and we define the matrix T in (5) by

$$T = \begin{pmatrix} m_1^{-1}v_1 & m_2^{-1}v_2 & m_3^{-1}v_3 \end{pmatrix},$$
(9)

where the m_j $(1 \le j \le 3)$ are scalar factors to be specified according to the following procedure. Now from (4), we note that EA is symmetric, where

$$E = \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}.$$
 (10)

Hence, by [7, Section 2(i)], the v_j have the orthogonality property

$$(Ev_k)^t v_j = 0 \quad (k \neq j). \tag{11}$$

We then define the scalars

$$m_j = (Ev_j)^t v_j \tag{12}$$

and the row vectors

$$r_j = (Ev_j)^t. (13)$$

Hence by [7, Section 2]

$$T^{-1} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix}, \tag{14}$$

$$m_j = 3s\lambda_j^2 - 2p\lambda_j = s\lambda_j^2 + 2r\lambda_j^{-1}.$$
(15)

By (5), the transformation

$$Y = TZ \tag{16}$$

takes (3) into

$$Z' = (\Lambda - T^{-1}T')Z, \qquad (17)$$

where

$$\Lambda = dg(\lambda_1, \lambda_2, \lambda_3). \tag{18}$$

From (8)–(12), we obtain $T^{-1}T' = (t_{jk})$, where

$$t_{jj} = -\frac{1}{2} \frac{m'_j}{m_j}$$
(19)

and, for $j \neq k$,

$$t_{jk} = \frac{1}{2} \frac{m'_k}{m_k} + \frac{\lambda_j - \lambda_k}{m_k} \left(s\lambda'_k + \frac{1}{2} \lambda_k s' \right) - \frac{m'_k}{m_k^2} \left(r\lambda_j^{-1} + s\lambda_j \lambda_k + r\lambda_k^{-1} \right).$$
(20)

8

Now we need to work out (19) and (20) in some detail in terms of s, p and r in order to determine the form of (17).

3. The Matrices
$$\Lambda$$
 and $T^{-1}T'$

In our analysis, we impose a basic condition on the coefficients as follows: (I) p, r and s are all nowhere zero in some interval $[a, \infty)$, and

$$\left(\frac{r}{p}\right)^{\frac{1}{2}} = o\left(\frac{p}{s}\right) \ (x \to \infty),$$
 (21)

If we write

$$\delta = \frac{sr^{\frac{1}{2}}}{p^{\frac{3}{2}}},$$
(22)

then by (21)

$$\delta = o(1) \quad (x \to \infty). \tag{23}$$

Now as in [1,2], we can solve the characteristic equation (7) asymptotically as $x \to \infty$. Using (21) and (23), we obtain the distinct eigenvalues λ_j as

$$\lambda_1 = i \left(\frac{r}{p}\right)^{\frac{1}{2}} (1+\delta_1), \qquad (24)$$

$$\lambda_2 = -i\left(\frac{r}{p}\right)^{\frac{1}{2}}(1+\delta_2),\tag{25}$$

$$\lambda_3 = \left(\frac{p}{s}\right)(1+\delta_3),\tag{26}$$

where

$$\delta_1 = O(\delta), \quad \delta_2 = O(\delta), \quad \delta_3 = O(\delta^2). \tag{27}$$

By(21), the ordering of λ_j is such that

$$\lambda_j = o(\lambda_3) \quad (x \to \infty, \ j = 1, 2). \tag{28}$$

Now substituting (24)–(26) into (7) and differentiating, we obtain

$$\lambda_{1}' = \frac{1}{2} i \left(\frac{r}{p}\right)^{\frac{1}{2}} \left\{ \frac{r'}{r} - \frac{p'}{p} + O(\varepsilon) \right\},$$
(29)

$$\lambda_2' = -\frac{1}{2} i \left(\frac{r}{p}\right)^{\frac{1}{2}} \left\{ \frac{r'}{r} - \frac{p'}{p} + O(\varepsilon) \right\},\tag{30}$$

$$\lambda_3' = \left(\frac{p}{s}\right) \left\{ \frac{p'}{p} - \frac{s'}{s} + O(\delta\varepsilon) \right\}.$$
(31)

Now we work out m_j $(1 \le j \le 3)$ asymptotically as $x \to \infty$; hence by (24)–(27), (15) gives,

$$m_1 = -2i(pr)^{\frac{1}{2}} \{ 1 + O(\delta) \}, \qquad (32)$$

$$m_2 = 2i(pr)^{\frac{1}{2}} \{ 1 + O(\delta) \}, \tag{33}$$

$$m_3 = \left(\frac{p^2}{s}\right) \{1 + O(\delta^2)\}.$$
 (34)

Also by substituting λ_j (j = 1, 2, 3) into (15) and using (24), (25) and (26) respectively, and differentiating, we obtain

$$m_1' = -i(rp)^{\frac{1}{2}} \Big\{ \frac{r'}{r} + \frac{p'}{p} + O(\varepsilon) \Big\},$$
(35)

$$m'_{2} = i(rp)^{\frac{1}{2}} \Big\{ \frac{r'}{r} + \frac{p'}{p} + O(\varepsilon) \Big\},$$
(36)

$$m'_{3} = \left(\frac{p^{2}}{s}\right) \left\{ 2\frac{p'}{p} - \frac{s'}{s} + O(\delta\varepsilon) \right\},\tag{37}$$

where

$$\varepsilon = \left| \frac{r'}{r} \delta \right| + \left| \frac{s'}{s} \delta \right| + \left| \frac{p'}{p} \delta \right|. \tag{38}$$

At this stage we also require the following condition: (II)

$$\delta \frac{r'}{r}, \ \delta \frac{s'}{s}, \ \delta \frac{p'}{p}$$
 are all $L(a, \infty)$. (39)

Now by (22)

$$\delta' = O\left(\frac{r'}{r}\,\delta\right) + O\left(\frac{s'}{s}\,\delta\right) + O\left(\frac{p'}{p}\,\delta\right).\tag{40}$$

Also by substituting (24)–(25) into (7) and differentiating, we obtain

$$\delta'_{j} = O\left(\frac{r'}{r}\,\delta\right) + O\left(\frac{s'}{s}\,\delta\right) + O\left(\frac{p'}{p}\delta\right) \quad (j = 1, 2) \tag{41}$$

and

$$\delta_3' = O\left(\frac{r'}{r}\,\delta^2\right) + O\left(\frac{s'}{s}\,\delta^2\right) + O\left(\frac{p'}{p}\,\delta^2\right). \tag{42}$$

Hence by (38), (40), (41), (42) and (39)

$$\varepsilon, \, \delta', \, \delta'_j \in L(a, \infty).$$
 (43)

We can now substitute the estimates (24)–(27), (32)–(37) and (29)–(31) into (19) and (20) as in [1], we obtain the following expressions for t_{jk} ,

$$t_{11} = -\rho + O(\varepsilon), \quad t_{22} = -\rho + O(\varepsilon), t_{33} = -\eta + O(\delta\varepsilon), \quad t_{12} = \rho + O(\varepsilon), t_{21} = \rho + O(\varepsilon), \quad t_{13} = O(\varepsilon), \quad t_{23} = O(\varepsilon) t_{31} = \frac{1}{2} \eta + O(\varepsilon), \quad t_{32} = \frac{1}{2} \eta + O(\varepsilon)$$
(44)

with

$$\rho = \frac{1}{4} \frac{(rp)'}{rp}, \quad \eta = \frac{(ps^{-1/2})'}{ps^{-1/2}}.$$
(45)

It follows from (43) the O-terms in (44) are $L(a, \infty)$, and we can therefore write (17)

$$Z' = (\Lambda + R + S)Z, \tag{46}$$

where

$$R = \begin{bmatrix} \rho & -\rho & 0\\ -\rho & \rho & 0\\ -\frac{1}{2}\eta & -\frac{1}{2}\eta & \eta \end{bmatrix}$$
(47)

and $S \in L(a, \infty)$ by (43).

4. The Euler Case

Now we deal with (2) more generally. So we write (2) as

$$\frac{(pr)'}{pr} = 4\sigma \, \frac{p}{s} \, (1+\phi), \tag{48}$$

$$\frac{(ps^{-1/2})'}{ps^{-1/2}} = w \frac{p}{s} (1+\psi), \tag{49}$$

where σ and w are non zero constants, and $\phi(x) \to 0$, $\psi(x) \to 0$ $(x \to \infty)$. At this stage we let

$$\phi', \, \psi' \in L(a, \infty). \tag{50}$$

We note that by (48) and (49), the matrix Λ no longer dominates the matrix R and so Eastham's theorem [4, Section 2] is not satisfied which means that we have to carry out a second diagnolization of the system(46). First we write

$$\Lambda + R = \lambda_3 \{ S_1 + S_2 \} \tag{51}$$

and we need to work out the two matrices $S_1 = const.$ with the matrix $S_2(x) = o(1)$ as $x \to \infty$ using (24), (25), (26) and Euler case (48) and (49). Hence after some calculations, we obtain

$$S_1 = \begin{pmatrix} \sigma & -\sigma & 0\\ -\sigma & \sigma & 0\\ -\frac{1}{2}\omega & -\frac{1}{2}\omega & 1+\omega \end{pmatrix},$$
(52)

$$S_2(x) = \begin{pmatrix} u_1 & u_2 & 0\\ u_2 & u_3 & 0\\ u_4 & u_4 & u_5 \end{pmatrix},$$
(53)

where

$$u_1 = \lambda_1 \lambda_3^{-1} - u_2, \quad u_2 = -\sigma (1 + \delta_3)^{-1} (\phi - \delta_3),$$

$$u_3 = \lambda_2 \lambda_3^{-1} - u_2, \quad u_4 = -\frac{1}{2} \omega (1 + \delta_3)^{-1} (\psi - \delta_3), \quad u_5 = -2u_4.$$
 (54)

It is clear that by (28) and (27), $S_2(x) \to 0$ as $x \to \infty$. Hence we diagonalize the constant matrix S_1 . Now the eigenvalues $\alpha_j (1 \le j \le 3)$ of the matrix S_1 are given by

$$\alpha_1 = 0, \quad \alpha_2 = 2\sigma, \quad \alpha_3 = 1 + \omega. \tag{55}$$

Let

$$\omega \neq -1 \text{ and } 2\sigma - \omega \neq 1.$$
 (56)

Hence by (56), the eigenvalues α_j are distinct. Thus we use the transformation

$$Z = T_1 W \tag{57}$$

in (46), where T_1 diagonalizes the constant matrix S_1 . Then (46) transforms to

$$W' = (\Lambda_1 + M + T_1^{-1}ST_1)W,$$
(58)

where

$$\Lambda_1 = \lambda_3 T_1^{-1} S_1 T_1 = dg(v_1, v_2, v_3) = \lambda_3 dg(\alpha_1, \alpha_2, \alpha_3), M = \lambda_3 T_1^{-1} S_2 T_1, \quad T_1^{-1} S T_1 \in L(a, \infty).$$
(59)

Now we can apply the asymptotic theorem of Eastham [4, Section 2] to (58) provided only that Λ_1 and M satisfy the conditions in [4, Section 2]. We first require that the v_j $(1 \le j \le 3)$ are distinct, and this holds because α_j $(1 \le j \le 3)$ are distinct. Second, we need to show that

$$\frac{M}{v_i - v_j} \to 0 \quad (x \to \infty) \tag{60}$$

for $i \neq j$ and $1 \leq i, j \leq 3$. Now

$$\frac{M}{v_i - v_j} = (\alpha_i - \alpha_j)^{-1} T_1^{-1} S_2 T_1 = o(1) \quad (x \to \infty).$$
(61)

Thus (60) holds. Third, we need to show that

$$S_2' \in L(a, \infty). \tag{62}$$

Thus it suffices to show that

$$u'_i(x) \in L(a,\infty) \ (1 \le i \le 5).$$
 (63)

Now by (24), (25), (26) and (54)

$$u'_{1} = O(\delta') + O(\delta'_{1}\delta) + O(\delta'_{3}) + O(\phi'),$$

$$u'_{2} = O(\delta'_{3}) + O(\phi'),$$

$$u'_{3} = O(\delta') + O(\delta'_{2}\delta) + O(\delta'_{3}) + O(\phi'),$$

$$u'_{4} = O(\delta'_{3}) + O(\psi'),$$

$$u'_{5} = O(\delta'_{3}) + O(\psi').$$

(64)

Thus, by (64), (43) and (50), we see that (63) holds and consequently (62) holds. Now we state our main theorem for (1).

5. The Main Result

Theorem 5.1. Let the coefficients p, r and s are $C^{(2)}[a, \infty)$. Let (21), (38), (48), (49) and (55) hold. Let

$$Re I(x),$$
 (65)

$$Re\left[\lambda_3 + \eta - \frac{1}{2}\left(2\rho + \lambda_1 + \lambda_2 \pm I\right)\right] \tag{66}$$

12

be of one sign in $[a, \infty)$, where

$$I(x) = \left[4\rho^2 + (\lambda_1 - \lambda_2)^2\right]^{\frac{1}{2}}.$$
(67)

Then (1) has the solutions

$$y_{1}(x) = o\left\{ (r(x)p(x))^{\frac{-1}{4}} \exp\left(\frac{1}{2} \int_{a}^{x} \left[\lambda_{1}(t) + \lambda_{2}(t) - I(t)\right] dt\right) \right\},$$

$$y_{2}(x) = [-i + o(1)](r(x)p(x))^{\frac{-1}{4}} \times \\ \times \exp\left(\frac{1}{2} \int_{a}^{x} \left[\lambda_{1}(t) + \lambda_{2}(t) + I(t)\right] dt\right),$$

$$y_{3}(x) = o\left\{ (r(x)s(x))^{\frac{-1}{2}} p^{1/2}(x) \exp\left(\int_{a}^{x} \lambda_{3}(t) dt\right) \right\}.$$

(68)

Proof. Before applying the theorem in [4, Section 2], we show that the eigenvalues μ_k $(1 \le k \le 3)$ of $\Lambda_1 + M$ satisfy the dichotomy condition [9]. As in [2], the dichotomy condition holds if

$$Re(\nu_j - \nu_k) = f + g \ (j \neq k, \ 1 \le k \le 3),$$
 (69)

where f has one sign in $[a, \infty)$ and g belongs to $L(a, \infty)$ [4, (1.5)]. Now since the eigenvalues of $\Lambda_1 + M$ are the same as the eigenvalues of $\Lambda + R$, by (18) and (47) we have

$$\mu_k = \frac{1}{2} \left[2\rho + \lambda_1 + \lambda_2 + (-1)^k I \right] \quad (k = 1, 2),$$

$$\mu_3 = \lambda_3 + \eta.$$
(70)

Thus by (70) and (66), we see that (69) holds. Since (58) satisfies all the conditions for the asymptotic result [4, Section 2], it follows that, as $x \to \infty$, (58) has three linearly independent solutions

$$W_k(x) = \{e_k + o(1)\} \exp\left(\int_a^x \mu_k(t) \, dt\right),\tag{71}$$

where μ_k are given by (70) and e_k are the coordinate vectors with kth component unity and other components zero. Now we transform back to Y by means of (16) and (57), where T_1 in (57) is given by

$$T_1 = \begin{pmatrix} 1 & -1 & 0\\ 1 & 1 & 0\\ \frac{\omega}{1+\omega} & 0 & 1 \end{pmatrix}.$$
 (72)

We obtain

$$Y_k(x) = T(x)T_1W_k(x) \quad (1 \le k \le 3).$$
(73)

Now using (9), (32), (33), (34), (71), (72) and (45) in (73) and carrying out the integration of $\frac{(ps^{\frac{-1}{2}})'}{ps^{\frac{-1}{2}}}$ and $(\frac{1}{4})\frac{(rp)'}{rp}$, for $1 \le k \le 3$, we obtain (68).

6. DISCUSSION

(1) In a familiar case, the coefficients covered by Theorem 5.1 are

$$(x) = Ax^{\alpha}, \quad p(x) = Bx^{\beta}, \quad r(x) = Cx^{\gamma}, \tag{74}$$

where α , β , γ , $A(\neq 0)$, $B(\neq 0)$ and $C(\neq 0)$ are real constants. Then the Euler case (48)–(49) is given by

$$\alpha - \beta = 1. \tag{75}$$

The values of σ and ω are given by

s

$$\sigma = \frac{1}{4} \frac{(B+\gamma)A}{B}, \quad \omega = \frac{(\beta - \frac{1}{2}\alpha)A}{B}.$$
(76)

Also in this example $\phi(x) = \psi(x) = 0$ in (48) and (49).

(2) Theorem 5.1 coveres also the following class of coefficients

$$s = Ax^{\alpha}e^{x^{\flat}}, \quad p = Bx^{\beta}e^{x^{\flat}}, \quad r = Cx^{\gamma}e^{\frac{1}{2}x^{\flat}},$$
 (77)

where α , β , γ , $A(\neq 0)$, $B(\neq 0)$, $C(\neq 0)$ and b(> 0) are real constants. Then the Euler case (48)–(49) is given by

$$b - 1 = \beta - \alpha. \tag{78}$$

The values of σ and ω are given by

$$\sigma = \frac{3}{8} \frac{bA}{B}, \quad \omega = \frac{1}{2} \frac{bA}{B}.$$
(79)

Also

$$\phi(x) = \frac{2}{3} b^{-1} (\beta + \gamma) x^{-b}, \qquad (80)$$

$$\psi(x) = 2b^{-1} \left(\beta - \frac{1}{2}\alpha\right) x^{-b}.$$
(81)

References

- A. S. A. AL-HAMMADI, Asymptotic theory for third-order differential equations with extension to higher odd-order equations. *Proc. Roy. Soc. Edinburgh Sect. A* 117 (1991), No. 3-4, 215–223.
- A. S. A. AL-HAMMADI, Asymptotic theory for a class of fourth-order differential equations. *Mathematika* 43 (1996), No. 1, 198–208.
- A. S. A. AL-HAMMADI, Asymptotic formulae of Liouville-Green type for a general fourth-order differential equation. *Rocky Mountain J. Math.* 28 (1998), No. 3, 801– 812.
- M. S. P. EASTHAM, The asymptotic solutions of linear differential systems. *Mathematika* 32 (1985), No. 1, 131–138.
- M. S. P. EASTHAM, Asymptotic formulae of Liouville–Green type for higher-order differential equations. J. London Math. Soc. (2) 28 (1983), No. 3, 507–518.

Euler Case for a Class of Third-Order Differential Equation

- M. S. P. EASTHAM, A repeated transformation in the asymptotic solution of linear differential systems. Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 1-2, 173–188.
- 7. M. S. P. EASTHAM, On the eigenvectors for a class of matrices arising from quasiderivatives. *Proc. Roy. Soc. Edinburgh Sect. A* **97** (1984), 73–78.
- W. N. EVERITT AND A. ZETTL, Generalized symmetric ordinary differential expressions. I. The general theory. *Nieuw Arch. Wisk. (3)* 27 (1979), No. 3, 363–397.
- 9. N. LEVINSON, The asymptotic nature of solutions of linear systems of differential equations. Duke Math. J. 15 (1948), 111–126.
- G. W. PFEIFFER, Asymptotic solutions of y''' +qy' +ry = 0. J. Differential Equations 11 (1972), 145–155.
- K. UNSWORTH, Asymptotic expansions and deficiency indices associated with thirdorder self-adjoint differential operators. *Quart. J. Math. Oxford Ser.* (2) 24 (1973), 177–188.

(Received 20.07.2009)

Author's address:

University Of Bahrain Mathematics Department P.O. Box: 32038 E-mail: profmaths_alhammadi@hotmail.com