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EULER CASE FOR A CLASS
OF THIRD-ORDER DIFFERENTIAL EQUATION



Abstract. We deal with an Euler-Case for a class of third-order differ-
ential equation. A theorem on asymptotic behaviour at the infinity of three
linearly independent solutions is proved. This theorem coveres different
class of coefficients.
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îâäæñéâ. êŽöîëéöæ àŽêæýæèâĲŽ âæèâîæï öâéåýãâãŽ éâïŽéâ îæàæï áæòâîâê-
ùæŽèñîæ àŽêðëèâĲâĲæï âîåæ çèŽïæïåãæï. áŽéðçæùâĲñèæŽ âîåæ åâëîâéŽ
ïŽéæ ûîòæãŽá áŽéëñçæáâĲâèæ ŽéëêŽýïêæï Žïæéìðëðñîæ õëòŽóùâãæï öâïŽýâĲ.
âï åâëîâéŽ éëæùŽãï çëâòæùæâêðâĲæï ïýãŽáŽïýãŽ çèŽïâĲï.
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1. Introduction

In this paper we investigate the form of three linearly independent solu-
tions for a class of the third-order differential equation

(q(qy′)′)′ − (py′)′ − ry = 0 (1)

as x → ∞, where x is the independent variable and the prime denotes
d/dx. The functions q, p and r are defined on the interval [a,∞), are not
necessarily real-valued and continuously differentiable, and all are non-zero
everywhere in this interval. In this situation where p is sufficiently small
compared to q and r as x → ∞, (1) can be considered as a perturbation
of the equation investigated by Eastham. In this paper,we consider the
opposite situation where p is large compared to q and r. In this situation,
we identify the Euler case:

(pr)′

pr
∼ const.× p

q2
,

(pq−1)′

pq−1
∼ const.× p

q2

(2)

as x → ∞. The various conditions imposed on the coefficients will be
introduced when they are required in the development of the method. Al-
Hammadi [1] considers (1) in the case where the solutions all have a similar
exponential factor. A third-order equation similar to (1) has been considered
previously by Unsworth [11] and Pfeiffer[10]. Eastham [6] considered the
Euler case for a fourth-order differential equation and showed that this
case represents a border line between situations where all solutions have a
certain exponential character as x →∞ and where only two solutions have
this character. The case (2) will appear in the method in Sections 4–6,
where we use the recent asymptotic theorem of Eastham [4, Section 2] to
obtain the solutions of (1). Two examples are considered in Section 6.

2. The General Method

We write (1) in the standard way [8] as a first order system

Y ′ = AY, (3)

where the first component of Y is y and

A =




0 q−1 0
0 pq−2 q−1

r 0 0


 . (4)

As in [2], we express A in its diagonal form

T−1AT = Λ (5)

and we therefore require the eigenvalues λj and eigenvectors νj (1 ≤ j ≤
3) of A, with the eigenvalues λj are chosen as continuously differentiable
function.
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Writing
q2 = s, (6)

we obtain the characteristic equation of A as

sλ3 − pλ2 − r = 0. (7)

An eigenvector νj of A corresponding to λj is

νj =
(
1, s

1
2 λj , rλ

−1
j

)t
, (8)

where the superscript denotes the transpose. We assume at this stage that
the λj are distinct, and we define the matrix T in (5) by

T =
(
m−1

1 v1 m−1
2 v2 m−1

3 v3

)
, (9)

where the mj (1 ≤ j ≤ 3) are scalar factors to be specified according to the
following procedure. Now from (4), we note that EA is symmetric, where

E =




0 0 1
0 1 0
1 0 0


 . (10)

Hence, by [7, Section 2(i)], the vj have the orthogonality property

(Evk)tvj = 0 (k 6= j). (11)

We then define the scalars

mj = (Evj)tvj (12)

and the row vectors
rj = (Evj)t. (13)

Hence by [7, Section 2]

T−1 =




r1

r2

r3


 , (14)

mj = 3sλ2
j − 2pλj = sλ2

j + 2rλ−1
j . (15)

By (5), the transformation
Y = TZ (16)

takes (3) into
Z ′ = (Λ− T−1T ′)Z, (17)

where
Λ = dg(λ1, λ2, λ3). (18)

From (8)–(12), we obtain T−1T ′ = (tjk), where

tjj = −1
2

m′
j

mj
(19)

and, for j 6= k,

tjk =
1
2

m′
k

mk
+

λj − λk

mk

(
sλ′k +

1
2

λks′
)
− m′

k

m2
k

(
rλ−1

j + sλjλk + rλ−1
k

)
. (20)
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Now we need to work out (19) and (20) in some detail in terms of s, p and
r in order to determine the form of (17).

3. The Matrices Λ and T−1T ′

In our analysis, we impose a basic condition on the coefficients as follows:
(I) p, r and s are all nowhere zero in some interval [a,∞), and

(r

p

) 1
2

= o
(p

s

)
(x →∞), (21)

If we write

δ =
sr

1
2

p
3
2

, (22)

then by (21)
δ = o(1) (x →∞). (23)

Now as in [1,2], we can solve the characteristic equation (7) asymptotically
as x →∞. Using (21) and (23), we obtain the distinct eigenvalues λj as

λ1 = i
(r

p

) 1
2
(1 + δ1), (24)

λ2 = −i
(r

p

) 1
2
(1 + δ2), (25)

λ3 =
(p

s

)
(1 + δ3), (26)

where
δ1 = O(δ), δ2 = O(δ), δ3 = O(δ2). (27)

By(21), the ordering of λj is such that

λj = o(λ3) (x →∞, j = 1, 2). (28)

Now substituting (24)–(26) into (7) and differentiating, we obtain

λ′1 =
1
2

i
(r

p

) 1
2
{r′

r
− p′

p
+ O(ε)

}
, (29)

λ′2 = −1
2

i
(r

p

) 1
2
{r′

r
− p′

p
+ O(ε)

}
, (30)

λ′3 =
(p

s

){p′

p
− s′

s
+ O(δε)

}
. (31)

Now we work out mj (1 ≤ j ≤ 3) asymptotically as x → ∞; hence by
(24)–(27), (15) gives,

m1 = −2i(pr)
1
2
{
1 + O(δ)

}
, (32)

m2 = 2i(pr)
1
2
{
1 + O(δ)

}
, (33)

m3 =
(p2

s

){
1 + O(δ2)

}
. (34)
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Also by substituting λj (j = 1, 2, 3) into (15) and using (24), (25) and (26)
respectively, and differentiating, we obtain

m′
1 = −i(rp)

1
2

{r′

r
+

p′

p
+ O(ε)

}
, (35)

m′
2 = i(rp)

1
2

{r′

r
+

p′

p
+ O(ε)

}
, (36)

m′
3 =

(p2

s

){
2
p′

p
− s′

s
+ O(δε)

}
, (37)

where

ε =
∣∣∣r
′

r
δ
∣∣∣ +

∣∣∣s
′

s
δ
∣∣∣ +

∣∣∣p
′

p
δ
∣∣∣. (38)

At this stage we also require the following condition:
(II)

δ
r′

r
, δ

s′

s
, δ

p′

p
are all L(a,∞). (39)

Now by (22)

δ′ = O
(r′

r
δ
)

+ O
(s′

s
δ
)

+ O
(p′

p
δ
)
. (40)

Also by substituting (24)–(25) into (7) and differentiating, we obtain

δ′j = O
(r′

r
δ
)

+ O
(s′

s
δ
)

+ O
(p′

p
δ
)

(j = 1, 2) (41)

and

δ′3 = O
(r′

r
δ2

)
+ O

(s′

s
δ2

)
+ O

(p′

p
δ2

)
. (42)

Hence by (38), (40), (41), (42) and (39)

ε, δ′, δ′j ∈ L(a,∞). (43)

We can now substitute the estimates (24)–(27), (32)–(37) and (29)–(31)
into (19) and (20) as in [1], we obtain the following expressions for tjk,

t11 = −ρ + O(ε), t22 = −ρ + O(ε),

t33 = −η + O(δε), t12 = ρ + O(ε),

t21 = ρ + O(ε), t13 = O(ε), t23 = O(ε)

t31 =
1
2

η + O(ε), t32 =
1
2

η + O(ε)

(44)

with

ρ =
1
4

(rp)′

rp
, η =

(ps−1/2)′

ps−1/2
. (45)

It follows from (43) the O-terms in (44) are L(a,∞), and we can therefore
write (17)

Z ′ = (Λ + R + S)Z, (46)
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where

R =




ρ −ρ 0
−ρ ρ 0

−1
2

η −1
2

η η


 (47)

and S ∈ L(a,∞) by (43).

4. The Euler Case

Now we deal with (2) more generally. So we write (2) as

(pr)′

pr
= 4σ

p

s
(1 + φ), (48)

(ps−1/2)′

ps−1/2
= w

p

s
(1 + ψ), (49)

where σ and w are non zero constants, and φ(x) → 0, ψ(x) → 0 (x →∞).
At this stage we let

φ′, ψ′ ∈ L(a,∞). (50)
We note that by (48) and (49), the matrix Λ no longer dominates the matrix
R and so Eastham’s theorem [4, Section 2] is not satisfied which means that
we have to carry out a second diagnolization of the system(46). First we
write

Λ + R = λ3{S1 + S2} (51)
and we need to work out the two matrices S1 = const. with the matrix
S2(x) = o(1) as x →∞ using (24), (25), (26) and Euler case (48) and (49).
Hence after some calculations, we obtain

S1 =




σ −σ 0
−σ σ 0

−1
2

ω −1
2

ω 1 + ω


 , (52)

S2(x) =




u1 u2 0
u2 u3 0
u4 u4 u5


 , (53)

where
u1 = λ1λ

−1
3 − u2, u2 = −σ(1 + δ3)−1(φ− δ3),

u3 = λ2λ
−1
3 − u2, u4 = −1

2
ω(1 + δ3)−1(ψ − δ3), u5 = −2u4.

(54)

It is clear that by (28) and (27), S2(x) → 0 as x →∞. Hence we diagonalize
the constant matrix S1. Now the eigenvalues αj(1 ≤ j ≤ 3) of the matrix
S1 are given by

α1 = 0, α2 = 2σ, α3 = 1 + ω. (55)
Let

ω 6= −1 and 2σ − ω 6= 1. (56)
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Hence by (56), the eigenvalues αj are distinct. Thus we use the transfor-
mation

Z = T1W (57)
in (46), where T1 diagonalizes the constant matrix S1. Then (46) trans-
forms to

W ′ = (Λ1 + M + T−1
1 ST1)W, (58)

where
Λ1 = λ3T

−1
1 S1T1 = dg(v1, v2, v3) = λ3dg(α1, α2, α3),

M = λ3T
−1
1 S2T1, T−1

1 ST1 ∈ L(a,∞).
(59)

Now we can apply the asymptotic theorem of Eastham [4, Section 2] to (58)
provided only that Λ1 and M satisfy the conditions in [4, Section 2]. We
first require that the vj (1 ≤ j ≤ 3) are distinct, and this holds because αj

(1 ≤ j ≤ 3) are distinct. Second, we need to show that

M

vi − vj
→ 0 (x →∞) (60)

for i 6= j and 1 ≤ i, j ≤ 3. Now
M

vi − vj
= (αi − αj)−1T−1

1 S2T1 = o(1) (x →∞). (61)

Thus (60) holds. Third, we need to show that

S′2 ∈ L(a,∞). (62)

Thus it suffices to show that

u′i(x) ∈ L(a,∞) (1 ≤ i ≤ 5). (63)

Now by (24), (25), (26) and (54)

u′1 = O(δ′) + O(δ′1δ) + O(δ′3) + O(φ′),

u′2 = O(δ′3) + O(φ′),

u′3 = O(δ′) + O(δ′2δ) + O(δ′3) + O(φ′),

u′4 = O(δ′3) + O(ψ′),

u′5 = O(δ′3) + O(ψ′).

(64)

Thus, by (64), (43) and (50), we see that (63) holds and consequently (62)
holds. Now we state our main theorem for (1).

5. The Main Result

Theorem 5.1. Let the coefficients p, r and s are C(2)[a,∞). Let (21),
(38), (48), (49) and (55) hold. Let

Re I(x), (65)

Re
[
λ3 + η − 1

2
(2ρ + λ1 + λ2 ± I)

]
(66)



Euler Case for a Class of Third-Order Differential Equation 13

be of one sign in [a,∞), where

I(x) =
[
4ρ2 + (λ1 − λ2)2

] 1
2 . (67)

Then (1) has the solutions

y1(x) = o

{
(r(x)p(x))

−1
4 exp

(
1
2

x∫

a

[
λ1(t) + λ2(t)− I(t)

]
dt

)}
,

y2(x) = [−i + o(1)](r(x)p(x))
−1
4 ×

× exp
(

1
2

x∫

a

[
λ1(t) + λ2(t) + I(t)

]
dt

)
,

y3(x) = o

{
(r(x)s(x))

−1
2 p1/2(x) exp

( x∫

a

λ3(t) dt

)}
.

(68)

Proof. Before applying the theorem in [4, Section 2], we show that the
eigenvalues µk (1 ≤ k ≤ 3) of Λ1 + M satisfy the dichotomy condition [9].
As in [2], the dichotomy condition holds if

Re(νj − νk) = f + g (j 6= k, 1 ≤ k ≤ 3), (69)

where f has one sign in [a,∞) and g belongs to L(a,∞) [4, (1.5)]. Now
since the eigenvalues of Λ1 + M are the same as the eigenvalues of Λ + R,
by (18) and (47) we have

µk =
1
2

[
2ρ + λ1 + λ2 + (−1)kI

]
(k = 1, 2),

µ3 = λ3 + η.
(70)

Thus by (70) and (66), we see that (69) holds. Since (58) satisfies all the
conditions for the asymptotic result [4, Section 2], it follows that, as x →∞,
(58) has three linearly independent solutions

Wk(x) = {ek + o(1)} exp
( x∫

a

µk(t) dt

)
, (71)

where µk are given by (70) and ek are the coordinate vectors with kth
component unity and other components zero. Now we transform back to Y
by means of (16) and (57), where T1 in (57) is given by

T1 =




1 −1 0
1 1 0
ω

1 + ω
0 1


 . (72)

We obtain
Yk(x) = T (x)T1Wk(x) (1 ≤ k ≤ 3). (73)
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Now using (9), (32), (33), (34), (71), (72) and (45) in (73) and carrying out

the integration of (ps
−1
2 )′

ps
−1
2

and ( 1
4 ) (rp)′

rp , for 1 ≤ k ≤ 3, we obtain (68). ¤

6. Discussion

(1) In a familiar case, the coefficients covered by Theorem 5.1 are

s(x) = Axα, p(x) = Bxβ , r(x) = Cxγ , (74)

where α, β, γ, A(6= 0), B(6= 0) and C( 6= 0) are real constants. Then
the Euler case (48)–(49) is given by

α− β = 1. (75)

The values of σ and ω are given by

σ =
1
4

(B + γ)A
B

, ω =
(β − 1

2 α)A
B

. (76)

Also in this example φ(x) = ψ(x) = 0 in (48) and (49).
(2) Theorem 5.1 coveres also the following class of coefficients

s = Axαexb

, p = Bxβexb

, r = Cxγe
1
2 xb

, (77)

where α, β, γ, A( 6= 0), B(6= 0), C(6= 0) and b(> 0) are real con-
stants. Then the Euler case (48)–(49) is given by

b− 1 = β − α. (78)

The values of σ and ω are given by

σ =
3
8

bA

B
, ω =

1
2

bA

B
. (79)

Also

φ(x) =
2
3

b−1(β + γ)x−b, (80)

ψ(x) = 2b−1
(
β − 1

2
α
)
x−b. (81)
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