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Abstract. We investigate a Cauchy problem and a boundary value
problem for a fractional order differential operator, where the order of the
operator is within the range between 2 and 3. Relationship is established
between the eigenvalues of such operators and zeroes of functions of Mittag–
Leffler type. Approximation matrices are also investigated.
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îâäæñéâ. êŽöîëéöæ öâïûŽãèæèæŽ çëöæï áŽ ïŽïŽäôãîë ŽéëùŽêâĲæ ûæèŽáæ
îæàæï áæòâîâêùæŽèñîæ ëìâîŽðëîæïŽåãæï, ïŽáŽù ëìâîŽðëîæï îæàæ éëåŽã-
ïâĲñèæŽ 2-ïŽ áŽ 3-ï öëîæï. áŽáàâêæèæŽ çŽãöæîæ Žé ëìâîŽðëîæï ïŽçñåîæã
éêæöãêâèëĲâĲïŽ áŽ éæððŽà{èâòèâîæï ðæìæï âîåæ òñêóùææï êñèâĲï öëîæï.
àŽîáŽ ŽéæïŽ, öâïûŽãèæèæŽ éŽðîæùâĲæå ŽìîëóïæéæîâĲæï ïŽçæåýâĲæ.
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1. Boundary Value Problems for Differential Equations of
Fractional Order

Let {γk}n
0 ≡

{
γ0, γ1, γ2, . . . , γn

}
be a random set of real numbers meeting

the following requirement: 0 < γk < 1 (k = 0, 1, 2, . . . , n). Denote

σn =
n∑

j=0

γj − 1, n− 1 ≤ σn ≤ n.

Let function f(x) be defined on the interval [0; 1]. Under the term “frac-
tional derivative of the order α ∈ [0; 1] of the function f(x)” it is understood
the following expression:

dαu

dxα
=

1
Γ(1− α)

d

dx

x∫

0

u(t)
(x− t)α

dt.

Consider the following differential operators

D(σ0)f(x) ≡ d−(1−γ0)

dx−(1−γ0)
f (x) ,

D(σ1)f (x) ≡ d−(1−γ1)

dx−(1−γ1)

dγ0

dxγ0
f (x) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D(σn)f (x) ≡ d−(1−γn)

dx−(1−γn)

dγn−1

dxγn−1
· · · dγ1

dxγ1

dγ0

dxγ0
f (x) .

Assume that all these operators are defined almost everywhere on [0; 1].
Consider the operator

D(σ3) (y) =
d−(1−γ3)

dx−(1−γ3)

dγ2

dxγ2

dγ1

dxγ1

dγ0

dxγ0
y

with the parameters γ0 = 1, γ1 = α, γ2 = 1, γ3 = 1 the operator takes the
form

D(σ3)y(x) =
d2

dx2

x∫

0

y′ (t)
(x− t)α dt,

its order being σ3 = 2 + α.
Pose the following boundary value problem for the selected operator:

d2

dx2

x∫

0

y′ (t)
(x− t)α dt− {λ + q (x)} y = 0, (1)

y (0) = 0, yα (0) = 0, y (1) = 0. (2)

Lemma 1.1. Let (y(x; λ) be the solution of the following Cauchy problem
for Equation (1)

y (0) = 0, yα (0) = 0, y1+α (0) = c. (3)
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Then the following identity holds:

y(x; λ) =
c

Γ(2+α)
x1+α+

c

Γ(2+α)

x∫

0

(x−t)1+α {λ+q (t)} y (t; λ) dt. (4)

The proof of the lemma is provided by word-for-word repetition of similar
arguments from [1].

Corollary. In case q(x) ≡ 0, the solution of Problem (1)–(3) satisfies
the following identity

y(x; λ) =
c

Γ (2 + α)
x1+α +

cλ

Γ (2 + α)

x∫

0

(x− t)1+α
y (t; λ) dt. (5)

For further arguments, introduce specific notation for the order of the
operator: σ3 = 2 + α = 1

ρ .

Theorem 1.1. a) λj is an eigenvalue of Problem (1)–(2) if and only if
λj is a zero of the following Mittag–Leffler function

Eρ(λ;
1
ρ
) =

∞∑

k=0

λk

Γ(ρ−1 + kρ−1)
,

that is, the eigenvalues of Problem (1)–(2) coincide with the roots of the
equation Eρ

(
λ; 1

ρ

)
= 0.

b) The eigenfunctions of Problem (1)–(2) have the form:

yj(x) = x
1
ρ−1Eρ

(
λjx

1
ρ ;

1
ρ

)
(j = 1, 2, 3, . . .),

where λj are the zeroes of the function Eρ(λ; 1
ρ ).

Proof. Rewrite (5) as

{
y(x, λ)− cλ

Γ(2 + α)

x∫

0

(x− t)1+αy(t, λ) dt

}
=

cx1+α

Γ(2 + α)
.

It is not difficult to see that

1
Γ (2 + α)

x∫

0

(x− t)1+α
y (t; λ) dt =

d
1
ρ

dx
1
ρ

y(x, λ).

Therefore, the latter equality can be rewritten as

{
y(x, λ)− cλ

d
1
ρ

dx
1
ρ

y(x, λ)
}

=
cx

1
ρ−1

Γ(ρ−1)
.

To solve that integral equation, we will use the Dzhrbashyan theorem.
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M. M. Dzhrbashyan theorem. Suppose the function f(x) belongs to
L1(0; 1). Then the equation

u(x) = f (x) + λ
d

1
ρ

dx
1
ρ

u(t)

will have a unique solution, namely:

u(x) = f (x) + λ

x∫

0

(x− t)
1
ρ−1

Eρ

(
λ (x− t)

1
ρ ;

1
ρ

)
f (t) dt.

It follows from this theorem that the solution of Problem (1)–(3) can be
represented as:

y(x; λ) = c1

[
x

1
ρ−1 + λ

x∫

0

(x− t)
1
ρ−1Eρ

(
λ(x− t)

1
ρ ,

1
ρ

)
t

1
ρ−1 dt

]
.

The integral on the right-hand side can be calculated with the use of the
known M. M. Dzhrbashyan’s formula:

l∫

0

xα−1Eρ

(
λx

1
ρ ;α

)
(l − x)β−1

Eρ

(
λ∗ (l − x)

1
ρ ; β

)
dx =

=
λEρ

(
λl

1
ρ ; α + β

)
− λ∗Eρ

(
λ∗l

1
ρ ; α + β

)

λ− λ∗
lα+β−1. (6)

Taking α = 1
ρ , λ∗ = 0 in the formula, we will express the integral as follows:

λ

x∫

0

(x− t)
1
ρ−1

Eρ

(
λ (x− t)

1
ρ ;

1
ρ

)
t

1
ρ−1 dt = λEρ

(
λx

1
ρ ,

2
ρ

)
,

wherefrom the following general solution for the Cauchy problem (1)-(3)
can be derived:

y(x, λ) = cx
1
ρ−1Eρ

(
λx

1
ρ ,

1
ρ

)
. (7)

It follows from (7) that λ is an eigenvalue of Problem (1)–(2) if and only
if λ is a zero of the function Eρ(λ; 1

ρ ), with the eigenfunctions having the
form

yj(x) = x
1
ρ−1Eρ

(
λjx

1
ρ ;

1
ρ

)
(j = 1, 2, 3, . . .).

Thus the theorem is proved. ¤

Now let us discuss inverse operators. The object of our discussion is the
operator generated by the following differential expression and appropriate
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boundary conditions:

Au =





1
Γ (1− α)

d2

dx2

x∫

0

u′ (t)
(x− t)1−α dt

u (0) = 0; u(α) (0) = 0; u (1) = 0.

It should not be forgotten that the order of the operator is within the range
between 2 and 3.

Theorem 1.2. The operator Ã inverse to the operator A looks as follows:

Ãu =
1

Γ (3− α)

[
x2−α

1∫

0

(1− t)2−α
u (t) dt−

x∫

0

(x− t)2−α
u (t) dt

]
.

Proof. We have to prove that ÃAu = AÃu = u, which can be proved by
direct integration, with the boundary conditions taken into account. ¤

Theorem 1.3. The system of eigenfunctions of the operator A is com-
plete in L2(0; 1).

Proof. To prove this, let us use the Lidskii theorem [3]. What should be
proved here is that the operator A is dissipative.

Consider the following expression:

(D(σ3)y, y) =

1∫

0

{
d2

dx2

x∫

0

y′(t)
(x−t)α

dt

}
y(x) dx=

x∫

0

y(x) d

( x∫

0

y′(t)
(x−t)α

dt

)′
=

= y(x)
{ x∫

0

y′(t)
(x− t)α

dt

}∣∣∣∣
1

0

−
1∫

0

{ x∫

0

y′(t)
(x− t)α

dt

}
y′(x) dx.

In the latter expression, the first of the summands is equal to zero due to
the boundary conditions, while the second summand equals

1∫

0

{ x∫

0

y′(t)
(x− t)α

dt

}
y′(x) dx = (D(σ2)y′, y′).

The dissipativity of the operator D(σ2) is proved in [4].
The operator Ã is nuclear, because 1

ρ − 1 = 2 + α > 2. Therefore, it
follows from the Lidskii theorem that the system of the eigenfunctions of
the operator A is complete in L2(0; 1). The theorem is proved. ¤

Note. It follows from the proof that the assertion of the theorem is true
if the function q(x) is semi-bounded.

Theorem 1.4. The operator A has at least one positive eigenvalue. Such
eigenvalue has the largest module.

Proof. The assertion of the theorem follows from the non-negative nature
of the nucleus of the operator A [4]. ¤
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2. Approximation of Inverse Operators by Matrices

Thus the operator

A−1u = Γ
1

(3− α)

[ E∫

0

(x− t)2−αu(t) dx− x2−α

1∫

0

(1− t)2−αu(t) dt

]

is inverse to the basic operator generated by the boundary value problem.
For convenience we will denote its order by µ = 2 − α. Then, to within a
factor, it is possible to represent it as follows:

A1u =

x∫

0

(x− t)µu(t) dt−
1∫

0

xµ(1− t)µu(t) dt.

Then its kernel equals

K(x, t) = θ(x, t)(x− t)µ − xµ(1− t)µ,

where θ(x, t) =

{
0, t ≥ x,

1, t < x.

For detection of some remarkable properties of the operator A, we ap-
proximate the continuous kernel by a matrix using the elementary partition
of segment the [0, 1]: x0 = 0, xi = i

n , xn = 1; t0 = 0, tj = j
n , tn = 1

(i = 0, . . . , n; j = 0, . . . , n).
Then the elements of the matrix K = ‖Kij‖ are defined by the formula

Kij = K(xi, tj) = θ(i, j)
( i− j

n

)µ

− iµ

nµ
·
(
1− j

n

)µ

.

For simplicity we will multiply all elements of the matrix Kij by n2µ

which will not change its basic properties:

K∗
ij = n2µKij = θ(i, j)nµ(i− j)µ − iµ(n− j)µ.

Thus we obtain a matrix of the order n + 1.
Let us consider the structure of the matrix K∗. The first and the last

rows, as well as the first and the last columns of the matrix are zero, since
K(0, j) = K(n, j) = K(i, 0) = K(i, n) = 0; all other elements are negative.

The elements to the right of the principal diagonal (including the diag-
onal itself) are calculated by the formula Kij = −iµ(n− j)µ, because here
θ(i, j) = 0, and this means that their modules increase across the rows and
columns from edges to the principal diagonal.

The elements below the principal diagonal (θ(i, j) = 1) are calculated by
the formula Kij = nµ(i− j)µ − iµ(n− j)µ.

Let us construct the matrix K∗ for some values of n:
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n = 4, µ = 2:

K∗
4 =




0 0 0 0 0
0 −9 −4 −1 0
0 −20 −16 −4 0
0 −17 −20 −9 0
0 0 0 0 0




,

n = 5, µ = 2:

K∗
5 =




0 0 0 0 0 0
0 −16 −9 −4 −1 0
0 −39 −36 −16 −4 0
0 −44 −56 −36 −9 0
0 −31 −44 −39 −16 0
0 0 0 0 0 0




.

Theorem 2.1. The matrix K∗ is symmetric with respect to the secondary
diagonal: Kij = Kn−j,n−i.

Proof. The statement of the theorem is verified by elementary substitution.
¤

Note. In fact, a more general statement about symmetry of the kernel
is also correct: K(x, t) = K(1− t, 1− x). Indeed:

K(1− t, 1− x) =

= θ(1− t, 1− x) · (1− t− (1− x))µ − (1− t)µ(1− (1− x))µ =

=
{
θ(1− t, 1− x) = θ(x, t)

}
= θ(x, t) · (x− t)µ − (1− t)µxµ = K(x, t).

For further study we will slightly simplify the matrix K∗ by removing
bordering zeros (the matrix becomes of the order n − 1), and multiplying
by −1 (the matrix elements become positive). We denote the new matrix
of the order n− 1 by Ln:

Lij = iµ(n− j)µ − θ(i, j)nµ(i− j)µ (i = 1, . . . , n− 1; j = 1, . . . , n− 1),
Ln =

=




1µ(n− 1)µ 1µ(n− 2)µ . . . 1µ

2µ(n− 1)µ − nµ1µ 2µ(n− 2)µ . . . 2µ

3µ(n− 1)µ − nµ2µ 3µ(n− 2)µ − nµ . . . 3µ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(n−1)µ(n−1)µ−nµ(n−2)µ (n−1)µ(n−2)µ−nµ(n−3)µ . . . (n−1)µ




.

Let us divide all the matrix rows by iµ, and the columns by (n − j)µ;
we will obtain the matrix M : Mij = Lij

iµ (n−j)µ . The matrix elements are
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calculated by the following formula:

Mij =





1, i ≤ j,

1−
[n(i− j)
i(n− j)

]µ

, i > j,

M =

=




1 1 1 . . . 1

1−
[ n

2(n−1)

]µ

1 1 . . . 1

1−
[ 2n

3(n−1)

]µ

1−
[ n

3(n−2)

]µ

1 . . . 1

1−
[ 3n

4(n−1)

]µ

1−
[ 2n

4(n−2)

]µ

1−
[ n

4(n−3)

]µ

. . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−
[n(n−2)

(n−1)2
]µ

1−
[ n(n−3)
(n−1)(n−2)

]µ

1−
[ n(n−4)
(n−1)(n−3)

]µ

. . . 1




.

This is a matrix of the order n− 1.

Theorem 2.2. The elements of the matrix M below the principal diag-
onal increase as they approach the principal diagonal, i.e. Mi,j+1 ≥ Mi,j,
Mi−1,j ≥ Mi,j, ∀ i, j.

Proof. For the elements of the principal diagonal and the ones above it the
statement is obvious: all of them equal 1. The elements below the principal
diagonal are calculated by the formula

Mij = 1−
[n(i− j)
i(n− j)

]µ

.

We will prove that they increase across rows (the increasing nature across
columns is proved similarly). We will consider n and i as constants, denote
the variable j by x, x ∈ [0, i− 1] and consider the elements of a row as a
function of x:

M(x) = 1−
(n

i

)µ( i− x

n− x

)µ

, x ∈ [0, i− 1] .

Let us calculate the derivative of this function:

M ′(x) = −
(n

i

)µ

µ
( i− x

n− x

)µ−1 −(n− x) + (i− x)
(n− x)2

=

= µ
(n

i

)µ( i− x

n− x

)µ−1 n− i

(n− x)2
.

M ′(x) > 0 because n > i > x, hence M(x) is an increasing function, i.e.
the matrix elements increase. The theorem is proved. ¤

It is known that the operator A is an oscillatory operator for µ ≥ 1 and
it has a real spectrum. For µ ∈ (0; 1) the spectrum becomes mixed, and
for µ ∈ (0; 1) it becomes complex. It is logical to assume that the same
statements are true for the matrices as well.
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A matrix is oscillatory if all its minors are positive [5]. Presently the
proof of the oscillatory nature seems to be a rather complicated task. If
at least one minor of a matrix is negative, the matrix loses its oscillatory
nature.

Theorem 2.3. The matrix M is not oscillatory if µ < 1.

Proof. It turns out that in the matrix M there is a minor which changes
its sign when the parameter µ passes 1. Note that the transformation from
the initial matrix K to the matrix M does not change the signs of minors,
therefore they do not influence the oscillatory nature.

Let us take a matrix of an odd order, i.e. n− 1 = 2k + 1.
Let us consider in it a central minor of the 2nd order symmetric with

respect to the secondary diagonal

m =
∣∣∣∣
Mk+1,k 1
Mk+2,k Mk+2,k+1

∣∣∣∣ .

Its elements are:

Mk+1,k = Mk+2,k+1 = 1−
( n · 1

(k + 1)(n− k)

)µ

= 1−
( 2

k + 2

)µ

,

Mk+2,k = 1−
( 2n

(k + 2)(n− k)

)µ

= 1−
(4(k + 1)

(k + 2)2
)µ

.

This minor equals

m = M2
k+1,k −Mk+2,k =

[
1−

( 2
k + 2

)µ]2

−
[
1−

(4(k + 1)
(k + 2)2

)µ]
=

=
[ 2
k + 2

]µ[( 2
k + 2

)µ

+
(2(k + 1)

k + 2

)µ

− 2
]
.

The second multiplier equals zero for µ = 1. It is necessary to prove that
it will be negative for µ < 1 ∀ k.

Let us introduce the function

f(µ) =
[( 2

k + 2

)µ

+
(2(k + 1)

k + 2

)µ

− 2
]

and calculate its derivative:

f ′(µ) =
( 2

k + 2

)µ

ln
( 2

k + 2

)
+

(2(k + 1)
k + 2

)µ

ln
(2(k + 1)

k + 2

)
.

This derivative is positive at the point µ = 1 for any value of k: f ′(µ) > 0.
Hence, the function f(µ) (and the considered minor together with it) will
be negative for µ < 1 and positive for µ > 1. This proves the statement of
the theorem. ¤
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