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Abstract. The contact problems of two elastic hemitropic bodies with
different elastic properties under the condition of natural impenetrability
of one medium into the other, is investigated. Using the theory of spatial
variational inequalities, the existence and uniqueness of a weak solution
is studied. The coercive case (when an elastic medium is fixed along a
part of the boundary), as well as the non-coercive case (the boundaries of
elastic media are not fixed) is considered. In the latter case, the necessary
conditions for the existence of a solution are written out explicitly.
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1. Introduction

In the present work we consider the unilateral (one-sided) frictionless
contact of two elastic hemitropic media with different physical properties
under the condition of natural impenetrability, when under deformation
one medium does not penetrate into the other. Such kind of problems
with various modifications have been investigated in the classical theory of
elasticity [16].

Here we consider the model of the theory of elasticity in which, unlike the
classical theory, an elementary particle of a body along with displacements
undergoes rotation, and hence the condition of mechanical equilibrium of
the body is described by means of the three-component displacement vector
and three-component micro-rotation vector.

The origin of the rational theories of polar continua goes back to brothers
E. and F. Cosserat [3], [4], who gave a development of the mechanics of
continuous media in which each material point has the six degrees of freedom
defined by 3 displacement components and 3 microrotation components (for
the history of the problem see [6], [19], [26], [34], and the references therein).

A micropolar solid which is not isotropic with respect to inversion is called
hemitropic, noncentrosymmetric, or chiral. Materials may exhibit chirality
on the atomic scale, as in quartz and in biological molecules – DNA, as well
as on a large scale, as in composites with helical or screw-shaped inclusions,
certain types of nanotubes, bone, fabricated structures such as foams, chiral
sculptured thin films and twisted fibers. For more details and applications
see the references [1], [2], [3], [6], [8], [15], [20], [21], [27], [28], [34], [37],
[39], [43].

Refined mathematical models describing the hemitropic properties of
elastic materials have been proposed by Aero and Kuvshinski [1], [2]. In the
mathematical theory of hemitropic elasticity there are introduced the asym-
metric force stress tensor and moment stress tensor, which are kinematically
related with the asymmetric strain tensor and torsion (curvature) tensor via
the constitutive equations. All these quantities are expressed in terms of
the components of the displacement and microrotation vectors. In turn the
displacement and microrotation vectors satisfy a coupled complex system
of second order partial differential equations. We note that the governing
equations in this model become very involved and generate 6 × 6 matrix
partial differential operator of second order. Evidently, the corresponding
6× 6 matrix boundary differential operators describing the force stress and
couple stress vectors have also an involved structure in comparison with the
classical case.

In [29], [30], [31], [32] the fundamental matrices of the associated systems
of partial differential equations of statics and steady state oscillations have
been constructed explicitly in terms of elementary functions and the ba-
sic boundary value and transmission problems of hemitropic elasticity have
been studied by the potential method for smooth and non-smooth Lipschitz
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domains. Particular problems of the elasticity theory of hemitropic contin-
uum have been considered in [7], [20], [21], [22], [23], [34], [35], [36], [42].

The main goal of the present paper is the study of frictionless con-
tact problems for hemitropic elastic solids, their mathematical modelling
as transmission-boundary value problems with the natural impenetrability
conditions and their analysis with the help of the spatial variational inequal-
ity technique.

In classical elasticity, similar problems have been considered in many
monographs and papers (see, e.g., [5], [9], [10], [11], [14], [16], [17], [18], [38],
and the references therein).

The work consists of Introduction and a number of sections. First we
write out the basic equations of statics of the theory of elasticity for hemi-
tropic media in vector and matrix forms, introduce the stress operator and
the potential energy quadratic form. Then we formulate the contact prob-
lem for two elastic homogeneous hemitropic bodies with different elastic
properties under the condition of natural impenetrability of one body into
the other. We consider the coercive case when the bodies are fixed along
some parts of their boundaries. The problem is reduced equivalently to
the spatial variational inequality. We present an analysis of the existence
and uniqueness of a weak solution of the variational inequality and investi-
gate the question of continuous dependence of a solution on the data of the
problem. Finally, we study a non-coercive case when the contacting bodies
are not fixed. In this case, the necessary conditions for the existence of a
solution are written out explicitly.

2. The Basic Equations and Green’s Formula

Let Ω ∈ R
3 be a bounded simply connected domain with a piecewise

smooth boundary S = ∂Ω, Ω = Ω ∪ S.
We assume that Ω is occupied by a homogeneous hemitropic elastic ma-

terial. Denote by u = (u1, u2, u3)
> and ω = (ω1, ω2, ω3)

> the displacement

vector and the micro-rotation vector, respectively; here and in what follows
the symbol (·)> denotes transposition.

In the hemitropic elasticity theory we have the following constitutive
equations for the force stress tensor {τpq} and the couple stress tensor

{µpq} :

τpq = τpq(U) := (µ+ α)∂puq + (µ− α)∂qup + λδpq div u+ δδpq divω+

+ (κ + ν)∂pωq + (κ − ν)∂qωp − 2α

3∑

k=1

εpqkωk, (2.1)

µpq = µpq(U) := δδpq div u+ (κ + ν)
[
∂puq −

3∑

k=1

εpqkωk

]
+ βδpq divω+

+ (κ − ν)
[
∂qup −

3∑

k=1

εqpkωk

]
+ (γ + ε)∂pωq + (γ − ε)∂qωp, (2.2)
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where U = (u, ω)>, δpq is the Kronecker delta, ∂ = (∂1, ∂2, ∂3) with ∂j =
∂/∂xj , εpqk is the permutation (Levi-Civitá) symbol, and α, β, γ, δ, λ, µ,
ν, κ and ε are the material constants [1], [30].

The components of the force stress vector τ (n) = (τ
(n)
1 , τ

(n)
2 , τ

(n)
3 )> and

the couple stress vector µ(n) = (µ
(n)
1 , µ

(n)
2 , µ

(n)
3 )>, acting on a surface ele-

ment with a normal vector n = (n1, n2, n3), read as

τ (n)
q =

3∑

p=1

τpqnp, µ(n)
q =

3∑

p=1

µpqnp, q = 1, 2, 3. (2.3)

Denote by T (∂, n) the generalized 6 × 6 matrix differential stress operator
[30]

T (∂, n) =

[
T (1)(∂, n) T (2)(∂, n)

T (3)(∂, n) T (4)(∂, n)

]

6×6

, T (j) =
[
T (j)

pq

]
3×3

, j = 1, 4, (2.4)

where

T (1)
pq (∂, n) = (µ+ α)δpq∂n + (µ− α)nq∂p + λnp∂q,

T (2)
pq (∂, n) = (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q − 2α

3∑

k=1

εpqknk,

T (3)
pq (∂, n) = (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q ,

T (4)
pq (∂, n) = (γ + ε)δpq∂n + (γ − ε)nq∂p + βnp∂q − 2ν

3∑

k=1

εpqknk.

(2.5)

Here ∂n = ∂/∂n denotes the directional derivative along the vector n (nor-
mal derivative).

From formulas (2.1), (2.2) and (2.3) it can be easily checked that

(τ (n), µ(n))> = T (∂, n)U.

The equilibrium equations of statics in the theory of hemitropic elasticity
read as [30]

3∑

p=1

∂pτpq(x) + %Fq(x) = 0,

3∑

p=1

∂pµpq(x) +
3∑

l,r=1

εqlrτlr(x) + %Gq(x) = 0, q = 1, 2, 3,

where % is the mass density of the elastic material, and F = (F1, F2, F3)
>

and G = (G1, G2, G3)
> are the body force and body couple vectors.

Using the constitutive equations (2.1) and (2.2) we can rewrite the equi-
librium equations in terms of the displacement and micro-rotation vectors,
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(µ+ α)∆u(x) + (λ+ µ− α) graddiv u(x) + (κ + ν)∆ω(x)+

+(δ + κ − ν) graddivω(x) + 2α curlω(x) + %F (x) = 0,

(κ + ν)∆u(x) + (δ + κ − ν) graddiv u(x) + 2α curlu(x)+

+(γ + ε)∆ω(x) + (β + γ − ε) graddivω(x) + 4ν curlω(x)−

−4αω(x) + %G(x) = 0,

(2.6)

where ∆ = ∂2
1 + ∂2

2 + ∂2
3 is the Laplace operator.

Let us introduce the matrix differential operator generated by the left
hand side expressions of the system (2.6):

L(∂) :=

[
L(1)(∂) L(2)(∂)
L(3)(∂) L(4)(∂)

]

6×6

, (2.7)

where

L(1)(∂) := (µ+ α)∆I3 + (λ+ µ− α)Q(∂),

L(2)(∂) = L(3)(∂) := (κ + ν)∆I3 + (δ + κ − ν)Q(∂) + 2αR(∂),

L(4)(∂) :=
[
(γ+ε)∆−4α

]
I3+(β+γ−ε)Q(∂)+4νR(∂).

(2.8)

Here and in the sequel Ik stands for the k × k unit matrix and

Q(∂) := [∂k∂j ]3×3, R(∂) :=




0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0





3×3

.

It is easy to see that

R(∂)u =




∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1



 = curlu, Q(∂)u = graddiv u.

Equations (2.6) can be written in matrix form as

L(∂)U(x)+Ψ(x)=0 with U=(u, ω)>, Ψ=(Ψ(1),Ψ(2))> :=(%F, %G)>.

Note that the operator L(∂) is formally self-adjoint, i.e., L(∂) = [L(−∂)]>.

2.1. Green’s formulas. For real-valued vector functions U = (u, ω)> and
U ′ = (u′, ω′)> from the class [C2(Ω)]6 the following Green formula holds
[30]

∫

Ω

[
L(∂)U · U ′ +E(U,U ′)

]
dx =

∫

S

{
T (∂, n)U

}+
· {U ′}+ dS, (2.9)

where {·}+ denotes the trace operator on S from Ω, while E(·, ·) is the
bilinear form defined by the equality:

E(U,U ′) = E(U ′, U) =

3∑

p,q=1

{
(µ+ α)u′pqupq + (µ− α)u′pquqp+

+(κ+ν)(u′pqωpq+ω′pqupq)+(κ−ν)(u′pqωqp+ω′pquqp)+(γ+ε)ω′pqωpq+
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+(γ − ε)ω′pqωqp + δ(u′ppωqq + ω′qqupp) + λu′ppuqq + βω′ppωqq

}
, (2.10)

where upq and ωpq are the so called strain and torsion (curvature) tensors
for hemitropic bodies,

upq =upq(U)=∂puq−

3∑

k=1

εpqkωk, ωpq =ωpq(U)=∂pωq, p, q=1, 2, 3. (2.11)

Here and in what follows a ·b denotes the usual scalar product of two vectors
a, b ∈ R

m: a · b =
∑m

j=1 ajbj .

From formulas (2.10) and (2.11) we get

E(U,U ′) =
3λ+ 2µ

3

(
div u+

3δ + 2κ

3λ+ 2µ
divω

)(
div u′ +

3δ + 2κ

3λ+ 2µ
divω′

)
+

+
1

3

(
3β + 2γ −

(3δ + 2κ)2

3λ+ 2µ

)
(div ω)(divω′) +

(
ε−

ν2

α

)
curlω · curlω′+

+
µ

2

3∑

k,j=1,k 6=j

[∂uk

∂xj
+
∂uj

∂xk
+

κ

µ

(∂ωk

∂xj
+
∂ωj

∂xk

)][∂u′k
∂xj

+
∂u′j
∂xk

+
κ

µ

(∂ω′k
∂xj

+
∂ω′j
∂xk

)]
+

+
µ

3

3∑

k,j=1

[∂uk

∂xk
−
∂uj

∂xj
+

κ

µ

(∂ωk

∂xk
−
∂ωj

∂xj

)][∂u′k
∂xk

−
∂u′j
∂xj

+
κ

µ

(∂ω′k
∂xk

−
∂ω′j
∂xj

)]
+

+
(
γ −

κ
2

µ

) 3∑

k,j=1,k 6=j

[1

2

(∂ωk

∂xj
+
∂ωj

∂xk

)(∂ω′k
∂xj

+
∂ω′j
∂xk

)
+

+
1

3

(∂ωk

∂xk
−
∂ωj

∂xj

)(∂ω′k
∂xk

−
∂ω′j
∂xj

)]
+

+α
(

curlu+
ν

α
curlω − 2ω

)
·
(

curlu′ +
ν

α
curlω′ − 2ω′

)
. (2.12)

The potential energy density function E(U,U) is a positive definite qua-
dratic form with respect to the variables upq(U) and ωpq(U), i.e., there
exists a positive number c0 > 0 depending only on the material constants,
such that

E(U,U) ≥ c0

3∑

p,q=1

[
u2

pq + ω2
pq

]
. (2.13)

The necessary and sufficient conditions for the quadratic form E(U,U) to
be positive definite are the following inequalities (see [2], [6], [12])

µ > 0, α > 0, γ > 0, ε > 0, λ+ 2µ > 0, µγ − κ
2 > 0, αε− ν2 > 0,

(λ+ µ)(β + γ)− (δ + κ)2 > 0, (3λ+ 2µ)(3β + 2γ)− (3δ + 2κ)2 > 0,

µ
[
(λ+ µ)(β + γ)− (δ + κ)2

]
+ (λ+ µ)(µγ − κ

2) > 0,

µ
[
(3λ+ 2µ)(3β + 2γ)− (3δ + 2κ)2

]
+ (3λ+ 2µ)(µγ − κ

2) > 0.

Let us note that, if the condition 3λ + 2µ > 0 is fulfilled, which is very
natural in the classical elasticity, then the above conditions are equivalent
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to the following simultaneous inequalities

µ > 0, α > 0, γ > 0, ε > 0,

3λ+ 2µ > 0, µγ − κ
2 > 0, αε− ν2 > 0,

(µ+ α)(γ + ε)− (κ + ν)2 > 0,

(3λ+ 2µ)(3β + 2γ)− (3δ + 2κ)2 > 0.

(2.14)

For simplicity in what follows we assume that 3λ + 2µ > 0 and therefore
conditions (2.14) imply positive definiteness of the energy quadratic form
E(U,U) defined by (2.12).

The following assertion describes the null space of the energy quadratic
form E(U,U) (see [30]).

Lemma 2.1. Let U = (u, ω)> ∈ [C1(Ω)]6 and E(U,U) = 0 in Ω. Then

u(x) = [a× x] + b, ω(x) = a, x ∈ Ω,

where a and b are arbitrary three-dimensional constant vectors and symbol

[· × ·] denotes the cross product of two vectors.

Vectors of type ([a×x]+b, a) are called generalized rigid displacement vec-

tors. Note that a generalized rigid displacement vector vanishes identically
if it vanishes at a single point.

Throughout the paper Lp(Ω) (1 ≤ p < ∞) and Hs(Ω) = Hs
2 (Ω), s ∈ R

denote Lebesgue and Bessel potential spaces (see, e.g., [24], [40], [41]). The
corresponding norms we denote by symbols ‖ ·‖Lp(Ω) and ‖ ·‖Hs(Ω). Denote
by D(Ω) the class of C∞(Ω) functions with support in the domain Ω. If M
is an open proper part of the manifold ∂Ω, i.e., M ⊂ ∂Ω, M 6= ∂Ω, then by
Hs(M) we denote the restriction of the space Hs(∂Ω) onto M ,

Hs(M) :=
{
r

M
ϕ : ϕ ∈ Hs(∂Ω)

}
,

where r
M

denotes the restriction operator onto the set M . Further, let

H̃s(M) :=
{
ϕ ∈ Hs(∂Ω) : suppϕ ⊂M

}
.

From the positive definiteness of the energy form E(·, ·) with respect to the
variables (2.11) it follows that

B(U,U) :=

∫

Ω

E(U,U) dx ≥ 0. (2.15)

Moreover, there exist positive constants c1 and c2, depending only on the
material parameters, such that the inequality

B(U,U) ≥ c1

∫

Ω

{ 3∑

p,q=1

[
(∂puq)

2+(∂pωq)
2
]
+

3∑

q=1

[u2
q + ω2

q ]
}
dx

− c2

∫

Ω

3∑

q=1

[u2
q + ω2

q ] dx (2.16)
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holds for an arbitrary real-valued vector function U ∈ [C1(Ω)]6. By stan-
dard limiting arguments we easily conclude that for any U ∈ [H1(Ω)]6 the
following Korn’s type inequality holds (cf. [10, Part I, § 12])

B(U,U) ≥ c1‖U‖
2
[H1(Ω)]6 − c2‖U‖

2
[H0(Ω)]6 . (2.17)

Remark 2.1. If U ∈ [H1(Ω)]6 and on some open part S∗ ⊂ ∂Ω the trace
{U}+ vanishes, i.e., {U}+

S∗ = 0, then we have the strict Korn’s inequality

B(U,U) ≥ c‖U‖2
[H1(Ω)]6 (2.18)

with some positive constant c > 0 which does not depend on the vector
U . This follows from (2.17) and the fact that in this case B(U,U) > 0 for
U 6= 0 (see, e.g., [33], [25], Ch.2, Exercise 2.17).

Remark 2.2. By standard limiting arguments Green’s formula (2.9) can
be extended to Lipschitz domains and to vector functions U ∈ [H1(Ω)]6

with L(∂)U ∈ [L2(Ω)]6 and U ′ ∈ [H1(Ω)]6 (see, [33], [24]),
∫

Ω

[
L(∂)U · U ′ +E(U,U ′)

]
dx =

〈
{T (∂, n)U}+, {U ′}+

〉
∂Ω
, (2.19)

where 〈·, ·〉∂Ω denotes the duality between the spaces [H−1/2(∂Ω)]6 and
[H1/2(∂Ω)]6, which generalizes the usual inner product in the space
[L2(∂Ω)]6. By this relation the generalized trace of the stress operator
{T (∂, n)U}+ ∈ [H−1/2(∂Ω)]6 is correctly determined. Note that for arbi-
trary real valued vector functions V, V ′ ∈ [L2(∂Ω)]6 we have

〈V, V ′〉∂Ω =

∫

∂Ω

V · V ′ dS.

3. Statement of the Problem

Let Ωq ∈ R
3, q = 1, 2 be a simply connected bounded domain whose

Lipschitz piecewise smooth boundary Sq := ∂Ωq falls into three mutually

disjoint portions SD
q , SN

q and Sc, such that SD
q ∪S

N
q ∪Sc = Sq , S

D
q ∩Sc = ∅

and Sc ⊂ C2,α′ , α′ ∈ (0; 1). Denote by n(q)(x) the unit, outward with re-
spect to Ωq , normal at the point x ∈ Sq . Let Ω1 and Ω2 be filled with
hemitropic materials of different elastic properties. We assume that the
boundaries of the domains Ω1 and Ω2 have a part Sc in common, such that
Sc := S1∩S2. The elastic constants corresponding to the elastic medium Ωq

are α(q), β(q), γ(q), δ(q), λ(q), µ(q), ν(q), κ
(q) and ε(q), q = 1, 2. Analogously,

u(q) = (u
(q)
1 , u

(q)
2 , u

(q)
3 )> and ω(q) = (ω

(q)
1 , ω

(q)
2 , ω

(q)
3 )> denote the displace-

ment and microrotation vectors in the domain Ωq , E
(q)(U (q), U (q)) desig-

nates the corresponding potential energy density, L(q)(∂) and T (q)(∂, n(q))
are the corresponding differential operators given by formulas (2.7), (2.8)
and (2.4), (2.5).
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3.1. The statement of the problem and the corresponding varia-
tional inequality. In the sequel, we will be concerned with weak solu-
tions of the corresponding differential equations. By definition, the vector
function U (q) = (u(q), ω(q))> ∈ [H1(Ωq)]

6 is called a weak solution of the
equation

L(q)(∂)U (q) + G(q) = 0, G(q) ∈ [L2(Ωq)]
6 (3.1)

in the domain Ωq, if for every Φ ∈ [D(Ωq)]
6

B(q)(U (q),Φ) :=

∫

Ωq

E(q)(U (q),Φ) dx,=

∫

Ωq

G(q) · Φ dx, q = 1, 2,

where E(q)(U (q),Φ) is defined by formula (2.12).
Below, for the force and moment stress vectors we use the notation

T (q)U (q) = T 1(q)u(q) + T 2(q)ω(q), M(q)U (q) = T 3(q)u(q) + T 4(q)ω(q),

and for the normal and tangential components of the force stress vector we
will use, respectively, the notation

(T (q)U (q))n(q) := (T (q)U (q)) · n(q),

(T (q)U (q))t := T (q)U (q) − n(q)(T (q)U (q))n(q) .

Let

G(q) =(F (q), G(q))>∈ [L2(Ωq)]
6, Ψ(q) =(Ψ1(q),Ψ2(q))>∈

[
H̃−1/2(SN

q )
]6

and consider the following boundary-contact problem.

Problem (A). Find vector functions U (q) = (u(q), ω(q))> ∈ [H1(Ωq)]
6,

q = 1, 2 which in the domains Ω1 and Ω2 are the solutions of equation (3.1)
and satisfy the following conditions:

rSD
q
{U (q)}+ = 0 on SD

q , q = 1, 2, (3.2)

rSN
q

{
T (q)(∂, n(q))U (q)

}+
= Ψ(q) on SN

q , q = 1, 2, (3.3)

rSc

{
u(1) · n(1) + u(2) · n(2)

}+
≤ 0 on Sc, (3.4)

rSc

{
(T (1)U (1))n(1)

}+
= rSc

{
(T (2)U (2))n(2)

}+
≤ 0 on Sc, (3.5)

〈
rSc

{
(T (1)U (1))n(1)

}+
, rSc

{
u(1) · n(1)+u(2) · n(2)

}+
〉

Sc

=0 on Sc, (3.6)

rSc

{
(T (q)U (q))t

}+
= 0 on Sc, q = 1, 2, (3.7)

rSc

{
M(q)U (q)

}+
= 0 on Sc, q = 1, 2. (3.8)

We introduce here the notation

H
1 =

{
U = (U (1), U (2))> : U (q) ∈ [H1(Ωq)]

6, q = 1, 2
}
,

‖U‖2
1,Ω :=

2∑

q=1

‖U (q)‖2
[H1(Ωq)]6 , B(U, V ) =

2∑

q=1

B(q)(U (q), V (q)),
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K =
{
U ∈ H

1 : rSD
q
{U (q)}+ = 0, rSc{u

(1) · n(1) + u(2) · n(2)}+ ≤ 0
}
,

L(V ) =

2∑

q=1

[〈
Ψ(q), rSN

q
{V (q)}+

〉
SN

q
+

∫

Ωq

G(q) · V (q) dx

]
, ∀V ∈ K.

On a convex closed set K we consider the following variational inequality:
Find U ∈ K, such that the inequality

B(U, V − U) ≥ L(V − U) (3.9)

is fulfilled for all V ∈ K.
First of all, we investigate the question on the uniqueness of a solution

of Problem (A).

3.2. The uniqueness of a solution. The following theorem is valid.

Theorem 3.1. Problem (A) has no more than one solution.

Proof. Let U = (U (1), U (2))>, U (q) = (u(q), ω(q))> and W = (W (1),W (2))>,
W (q) = (v(q), w(q))> be two distinct solutions of Problem (A). Then the

difference Ũ := U−W will satisfy the conditions (3.2), (3.7), (3.8), equation
(3.1) with G(q) = 0 and the condition (3.3) with Ψ(q) = 0. From condition
(3.5) we have

rSc

{
(T (1)Ũ (1))n(1)

}+
= rSc

{
(T (2)Ũ (2))n(2)

}+
.

Using Green’s formula (see (2.19)) and taking into account the above
conditions, we have

2∑

q=1

∫

Ωq

E(q)(Ũ (q), Ũ (q)) dx =

2∑

q=1

〈{
T (q)(∂, n(q))Ũ (q)

}+
, {Ũ (q)}+

〉

Sq

=

=
2∑

q=1

〈
rSc

{
(T (q)Ũ (q))n(q)

}+
, rSc

{
ũ(q) · n(q)

}+
〉

Sc

=

=
〈
rSc

{
(T (1)Ũ (1))n(1)

}+
, rSc

{
ũ(1) · n(1) + ũ(2) · n(2)

}+
〉

Sc

=

=
〈
rSc

{
(T (1)U (1))n(1)

}+
− rSc

{
(T (1)W (1))n(1)

}+
,

rSc

{
u(1) · n(1) − v(1) · n(1) + u(2) · n(2) − v(2) · n(2)

}+〉

Sc

=

=
〈
rSc

{
(T (1)U (1))n(1)

}+
− rSc

{
(T (1)W (1))n(1)

}+
,

rSc

{
u(1) · n(1) + u(2) · n(2)

}+
− rSc

{
v(1) · n(1) + v(2) · n(2)

}+
〉

Sc

=

= −
〈
rSc

{
(T (1)U (1))n(1)

}+
, rSc

{
v(1) · n(1) + v(2) · n(2)

}+
〉

Sc

−

−
〈
rSc

{
(T (1)W (1))n(1)

}+
, rSc

{
u(1) · n(1) + u(2) · n(2)

}+
〉

Sc

≤ 0.
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Whence bearing in mind the fact that the quadratic form E(q)(Ũ (q), Ũ (q))
is positive definite (see (2.13)), we have

E(q)(Ũ (q), Ũ (q)) = 0, q = 1, 2.

By Lemma 2.1

Ũ (q) =
(
[a(q) × x] + b(q), a(q)

)>
, q = 1, 2.

Since rSD
q
{Ũ (q)}+ = 0, we conclude a(q) = b(q) = 0. Thus Ũ (q) = 0. �

3.3. The equivalence. Now we prove the following equivalence theorem.

Theorem 3.2. Problem (A) is equivalent to the variational inequality

(3.9), i.e., every weak solution of Problem (A) is a solution of inequality

(3.9), and vice versa.

Proof. Let U = (U (1), U (2))> ∈ H
1 be a solution of Problem (A). By virtue

of the interior regularity theorems (see [10]), U (q) ∈ [H2(Ω′q)]
6, q = 1, 2 for

every domain Ω′q ⊂ Ωq , and hence almost everywhere in the domain Ωq,

L(q)(∂)U (q) + G(q) = 0, q = 1, 2. (3.10)

For every vector V = (V (1), V (2))> ∈ K, Green’s formula (2.9) provides
us with

0 =

2∑

q=1

∫

Ωq

L(q)(∂)U (q) · (V (q) −U (q)) dx = −

2∑

q=1

B(q)(U (q), V (q) −U (q))+

+

2∑

q=1

〈{
T (q)(∂, n(q))U (q)

}+
,
{
V (q) − U (q)

}+
〉

Sq

. (3.11)

Since U = (U (1), U (2))> is a solution of Problem (A) and U ∈ K, in view
of conditions (3.2)–(3.8), we have

2∑

q=1

〈{
T (q)(∂, n(q))U (q)

}+
,
{
V (q) − U (q)

}+
〉

Sq

=

=
2∑

q=1

[〈
Ψ(q), rSN

q

{
V (q) − U (q)

}+〉
SN

q
+

+
〈
rSc

{
T (q)(∂, n(q))U (q)

}+
, rSc

{
V (q) − U (q)

}+
〉

Sc

]
=

=

2∑

q=1

[〈
Ψ(q), rSN

q

{
V (q) − U (q)

}+〉
SN

q
+

+
〈
rSc

{
T (q)U (q)

}+
, rSc

{
v(q) − u(q)

}+
〉

Sc

]
=
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=

2∑

q=1

[〈
Ψ(q), rSN

q

{
V (q) − U (q)

}+〉
SN

q
+

+
〈
rSc

{(
T (q)U (q)

)
n(q)

}+

, rSc

{
v(q) · n(q) − u(q) · n(q)

}+
〉

Sc

]
=

=
2∑

q=1

〈
Ψ(q), rSN

q

{
V (q) − U (q)

}+〉
SN

q
+

〈
rSc

{
(T (1)U (1))n(1)

}+
,

rSc

{
v(1) · n(1) − u(1) · n(1) + v(2) · n(2) − u(2) · n(2)

}+
〉

Sc

=

=

2∑

q=1

〈
Ψ(q), rSN

q
{V (q) − U (q)}+

〉
SN

q
+

+
〈
rSc

{
(T (1)U (1))n(1)

}+
, rSc

{
v(1) · n(1) + v(2) · n(2)

}+
〉

Sc

≥

≥

2∑

q=1

〈
Ψ(q), rSN

q
{V (q) − U (q)}+

〉
SN

q
.

Due to the obtained inequality and the relation (3.10), from (3.11) we
find that

2∑

q=1

B(q)(U (q), V (q) − U (q)) ≥

≥
2∑

q=1

[ ∫

Ωq

G(q) · (V (q) − U (q))dx+
〈
Ψ(q), rSN

q
{V (q) − U (q)}+

〉
SN

q

]
,

i.e.,
B(U, V − U) ≥ L(V − U), ∀V ∈ K.

Let now U = (U (1), U (2))> ∈ K be a solution of the variational inequality
(3.9) and Φ(q) ∈ [D(Ωq)]

6 be an arbitrary vector function. Then if we

substitute into (3.9) first U (1) ± Φ(1) instead of V (1) and null instead of
V (2), and then U (2) ± Φ(2) instead of V (2) and null instead of V (1), we will
get

B(q)(U (q),Φ(q)) =

∫

Ωq

G(q) · Φ(q)dx, q = 1, 2,

i.e., U (q) ∈ [H1(Ωq)]
6 is a weak solution of equation (3.10) in the domain

Ωq. As above, using Green’s formula for every V = (V (1), V (2))> ∈ K, from
the inequality (3.9), in view of (3.10), we obtain

2∑

q=1

[〈
rSc

{
T (q)(∂, n(q))U (q)

}+
, rSc

{
V (q) − U (q)

}+
〉

Sc

+

+
〈
rSN

q

{
T (q)(∂, n(q))U (q)

}+
−Ψ(q), rSN

q
{V (q) − U (q)}+

〉

SN
q

]
≥ 0. (3.12)



88 A. Gachechiladze, R. Gachechiladze, and D. Natroshvili

Substituting into (3.12) U (q)±Φ(q) instead of V (q), where Φ(q) ∈ [H1(Ωq)]
6

and {Φ(q)}+ ∈ [H̃1/2(SN
q )]6, we find that

rSN
q

{
T (q)(∂, n(q))U (q)

}+
= Ψ(q), q = 1, 2, (3.13)

i.e., the condition (3.3) is fulfilled. The conditions (3.2) and (3.4) are fulfilled
automatically, since U ∈ K. Taking into account (3.13), inequality (3.12)
takes the form

2∑

q=1

〈
rSc

{
T (q)(∂, n(q))U (q)

}+
, rSc

{
V (q) −U (q)

}+
〉

Sc

≥ 0, ∀V ∈K. (3.14)

Let Φ = (Φ(1),Φ(2))> ∈ H
1 be such that {Φ(q)}+ ∈ [H̃1/2(Sc)]

6, q = 1, 2,

Φ(q) = (ϕ(q), ψ(q))>, rSc{ψ
(q)}+ = 0, rSc{ϕ

(q)
s }+ = 0, rSc{ϕ

(1) · n(1)}+ =

−rSc{ϕ
(2) · n(2)}+ = ϑ, ϑ ∈ H̃1/2(Sc). Substituting in (3.14) U (q) ± Φ(q)

instead of V (q), we get
〈
rSc

{
(T (1)U (1))n(1)

}+
−rSc

{
(T (2)U (2))n(2)

}+
, ϑ

〉

Sc

=0, ∀ϑ∈H̃1/2(Sc).

Thus we can conclude that the first condition in (3.5) is fulfilled.

Analogously, if Φ(q) = (ϕ(q), ψ(q))> ∈ [H̃1/2(Sc)]
6 is such that the condi-

tions
rSc{ϕ

(1)}+ = rSc{ϕ
(2)}+ = rSc{ψ

(2)}+ = 0

and
rSc{ψ

(1)}+ = ϑ, ϑ ∈ [H̃1/2(Sc)]
3

are satisfied, then it follows from (3.14) that
〈{

rScM
(1)U (1)

}+
, ϑ

〉

Sc

= 0, ∀ϑ ∈ [H̃1/2(Sc)]
3,

i.e.,

rSc

{
M(1)U (1)

}+
= 0.

Just in the same way we find that

rSc

{
M(2)U (2)

}+
= 0.

Consequently, the condition (3.8) is fulfilled.
We now choose Φ = (Φ(1),Φ(2))> ∈ H

1 in such a way that {Φ(1)}+ ∈

[H̃1/2(Sc)]
6, {Φ(2)}+ = 0, rSc{ϕ

(1) · n(1)}+ = 0, rSc{ψ
(1)}+ = 0 and

rSc{ϕ
(1)
t }+ = ϑ, ϑ ∈ [H̃1/2(Sc)]

3. Then (3.14) yields
〈
rSc

{
(T (1)U (1))t

}+
, ϑ

〉

Sc

= 0, ∀ϑ ∈ [H̃1/2(Sc)]
3,

i.e.,

rSc

{
(T (1)U (1))t

}+
= 0.

Analogously, we obtain

rSc

{
(T (2)U (2))t

}+
= 0,

and thus the validity of equality (3.7) is proved.
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Taking into account the obtained relations, (3.14) takes the form
〈
rSc

{
(T (1)U (1))n(1)

}+
, rSc

{
(v(1)−u(1)) · n(1)+(v(2)−u(2)) · n(2)

}+
〉

Sc

≥

≥ 0, ∀V = (V (1), V (2))> ∈ K. (3.15)

Let now V = U + Φ, where

Φ = (Φ(1), 0)> ∈ H
1, Φ(1) = (ϕ(1), ψ(1))>, {Φ(1)}+ ∈

[
H̃1/2(Sc)

]6
,

rSc{ψ
(1)}+ = 0, rSc{ϕ

(2)
S }+ = 0

and

rSc{ϕ
(1) · n(1)}+ = ϑ, ϑ ∈ H̃1/2(Sc), ϑ ≤ 0.

It is not difficult to notice that V ∈ K, and from (3.15) we conclude that
〈
rSc

{
(T (1)U (1))n(1)

}+
, ϑ

〉

Sc

≥ 0, ∀ϑ ∈ H̃1/2(Sc), ϑ ≤ 0,

i.e.,

rSc

{
(T (1)U (1))n(1)

}+
≤ 0.

Thus the condition (3.5) is proved completely.
It remains to prove the condition (3.6).
We choose V = (V (1), V (2))> ∈ H

1 in such a way that {V (q)}+ ∈

[H̃1/2(Sc)]
6, q = 1, 2 and rSc{v

(1) · n(1)}+ = rSc{v
(2) · n(2)}+ = 0. It is

clear that V ∈ K, and from (3.15) we find that
〈
rSc

{
(T (1)U (1))n(1)

}+
, rSc

{
u(1) · n(1) + u(2) · n(2)

}+
〉

Sc

≤ 0. (3.16)

Let now V =(V (1), V (2))> ∈ H
1 be such that again {V (q)}+∈ [H̃1/2(Sc)]

6,
q = 1, 2, rSc{v

(1) · n(1)}+ = 2rSc{u
(1) · n(1)}+ and rSc{v

(2) · n(2)}+ =
2rSc{u

(2) · n(2)}+. Clearly, V ∈ K, and the inequality
〈
rSc

{
(T (1)U (1))n(1)

}+
, rSc

{
u(1) · n(1) + u(2) · n(2)

}+
〉

Sc

≥ 0 (3.17)

is fulfilled. The inequalities (3.16) and (3.17) leads to the condition (3.6).
The theorem is proved completely. �

4. The Existence of Solutions

4.1. Basic existence results. On a convex closed set K we consider the
functional

J(V )=
1

2
B(V, V )−

2∑

q=1

[∫

Ωq

G(q) · V (q) dx+
〈
Ψ(q), rSN

q
{V (q)}+

〉
SN

q

]
, (4.1)

∀V = (V (1), V (2))>∈K.

It is not difficult to show that owing to the symmetric form B, the ex-
istence of solutions in the variational inequality (3.9) is equivalent to the
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existence of a minimizing element on the set K of the functional (4.1), i.e.,

the problem of finding the vector Ṽ = (Ṽ (1), Ṽ (2))> ∈ K for which

J(Ṽ ) = inf
V ∈K

J(V ) (4.2)

and the variational inequality (3.9) are equivalent.
It can be shown that the functional (4.1) is continuous and strictly con-

vex. Let us show that the functional J is coercive on the set K, i.e., let us
show that

J(V ) → +∞ when V ∈ K and ‖V ‖1,Ω →∞.

Since on the set K the form B is coercive (see (2.18)), by means of the
trace operator properties, the coerciveness of J follows directly from the
following obvious estimate:

J(V )≥α0

2∑

q=1

‖V (q)‖2
[H1(Ωq)]6−α1

2∑

q=1

‖V (q)‖[H1(Ωq)]6 =α0‖V ‖
2
1,Ω−α1‖V ‖1,Ω,

where α0 > 0 and α1 > 0 are positive constants independent of V .
The general theory of variational inequalities (see [10], [13]) allows us

now to conclude that the problem (4.2) is solvable uniquely, and hence
the variational inequality (3.9) is likewise solvable uniquely owing to the
equivalence.

Thus taking into account Theorem 3.2, we finally arrive at the following
existence theorem.

Theorem 4.1. If G(q) ∈ [L2(Ωq)]
6 and Ψ(q) ∈

[
H̃−1/2(SN

q )
]6

, q = 1, 2,

then Problem (A) has a unique solution in the space H
1.

4.2. The continuous dependence of solutions on data of the prob-

lem. Let U = (U (1), U (2))> ∈ H
1 and Ũ = (Ũ (1), Ũ (2))> ∈ H

1 be two
solutions of Problem (A) (i.e., solutions of the variational inequality (3.9))

corresponding to the data G(q), Ψ(q) and G̃(q), Ψ̃(q), respectively. Since the

convex closed set K does not depend on these data and U, Ũ ∈ K, we have

2∑

q=1

B(q)
(
U (q), Ũ (q) − U (q)

)
≥

≥
2∑

q=1

[∫

Ωq

G(q) · (Ũ (q) − U (q)) dx +
〈
Ψ(q), rSN

q
{Ũ (q) − U (q)}+

〉
SN

q

]

and
2∑

q=1

B(q)
(
Ũ (q), U (q) − Ũ (q)

)
≥

≥

2∑

q=1

[ ∫

Ωq

G̃(q) · (U (q) − Ũ (q)) dx+
〈
Ψ̃(q), rSN

q
{U (q) − Ũ (q)}+

〉
SN

q

]
.
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Adding the above inequalities, we obtain

−
2∑

q=1

B(q)(U (q) − Ũ (q), U (q) − Ũ (q)) ≥

≥ −
2∑

q=1

[ ∫

Ωq

(G(q) − G̃(q)) · (U (q) − Ũ (q)) dx+

+
〈
Ψ(q) − Ψ̃(q), rSN

q
{U (q) − Ũ (q)}+

〉
SN

q

]
. (4.3)

Taking into account the coercivity of the form B on the set K (see (2.18)),
as well as Hölder’s inequality and the properties of the trace operator, we
can conclude from (4.3) that

‖U − Ũ‖1,Ω ≤ c

2∑

q=1

(∥∥G(q) − G̃(q)
∥∥

[L2(Ωq)]6
+

∥∥Ψ(q) − Ψ̃(q)
∥∥

[H̃−1/2(SN
q )]6

)
,

where c is a positive constant, independent of the data of the problem. This
implies that solutions of Problem (A) depend continuously on the data.

5. The Non-Coercive Case

5.1. The Statement of the Problem. Let SD
q = ∅, Sq = SN

q ∪ Sc,

G(q) ∈ [L2(Ωq)]
6 and Ψ(q) ∈

[
H̃−1/2(SN

q )
]6

, q = 1, 2. Consider the so-called
non-coercive problem.

Problem (B). Find a vector-function U = (U (1), U (2))> ∈ H
1 which is

a weak solution of the equation

L(q)(∂)U (q) + G(q) = 0, q = 1, 2, (5.1)

in the domain Ωq and which satisfies the boundary conditions on SN
q

rSN
q

{
T (q)(∂, n(q))U (q)

}+
= rSN

q
Ψ(q), q = 1, 2, (5.2)

and the contact conditions on Sc

rSc

{
u(1) · n(1) + u(2) · n(2)

}+
≤ 0, (5.3)

rSc

{
(T (1)U (1))n(1)

}+
= rSc

{
(T (2)U (2))n(2)

}+
≤ 0, (5.4)

〈
rSc{(T

(1)U (1))n(1)}+, rSc

{
u(1) · n(1) + u(2) · n(2)

}+
〉

Sc

= 0, (5.5)

rSc

{
(T (q)U (q))t

}+
= 0, q = 1, 2, (5.6)

rSc

{
M(q)U (q)

}+
= 0, q = 1, 2. (5.7)

To reduce the problem to the variational inequality, we introduce a closed
convex set

K0 =
{
U = (U (1), U (2))> ∈ H

1 : rSc

{
u(1) · n(1) + u(2) · n(2)

}+
≤ 0

}

and consider the following variational inequality:
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Find U = (U (1), U (2))> ∈ K0 such that

2∑

q=1

B(q)
(
U (q), V (q) − U (q)

)
≥

≥

2∑

q=1

[〈
rSN

q
Ψ(q), rSN

q
{V (q)−U (q)}+

〉
SN

q
+

∫

Ωq

G(q) · (V (q) − U (q)) dx

]
, (5.8)

∀V = (V (1), V (2))> ∈ K0.

Analogously, just as in the previous case (see Theorem 3.2), we can prove
that the variational inequality (5.8) is equivalent to Problem (B), i.e., every
solution of Problem (B) is a solution of the problem (5.8), and vice versa.

First of all, we derive the necessary conditions of solvability of inequality
(5.8). Let U = (U (1), U (2))> ∈ K0 be a solution of inequality (5.8). First,
we substitute V = 0 in (5.8) and then V = 2U . As a result, we obtain

2∑

q=1

B(q)(U (q), U (q)) =

=

2∑

q=1

[〈
rSN

q
Ψ(q), rSN

q
{U (q)}+

〉
SN

q
+

∫

Ωq

G(q) · U (q) dx

]
. (5.9)

Taking into account this identity, from (5.8) we derive

2∑

q=1

B(q)(U (q), V (q)) ≥

≥

2∑

q=1

[〈
rSN

q
Ψ(q), rSN

q
{V (q)}+

〉
SN

q
+

∫

Ωq

G(q) · V (q) dx

]
(5.10)

for all V = (V (1), V (2))> ∈ K0.
By Λ(q)(Sq), q = 1, 2 we denote the set of traces on Sq of vectors of rigid

displacements, i.e.,

Λ(q)(Sq) =
{
χ(q) =

(
[a(q) × x] + b(q), a(q)

)>
, a(q), b(q) ∈ R

3, x ∈ Sq

}

and let

Λ :=
{
χ = (χ(1), χ(2))> : χ(q) ∈ Λ(q)(Sq), q = 1, 2

}
.

Consider the set

R := K0 ∩ Λ =

=
{
χ∈Λ :

(
[a(1)×x]+b(1)

)
· n(1)+

([
a(2) × x

]
+b(2)

)
· n(2)≤0, x∈Sc

}
.

Since at the points of Sc, n
(1) = −n(2), we have
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R =
{
χ = (χ(1), χ(2))> ∈ Λ :

([
(a(1) − a(2))× x

]
+ b(1) − b(2)

)
· n(1) ≤ 0, x ∈ Sc

}
.

Let now χ ∈ R, and substitute χ into (5.10) instead of V . Then taking into
account the fact that B(q)(U (q), χ(q)) = 0, q = 1, 2, we find

2∑

q=1

[〈
rSN

q
Ψ(q), rSN

q
χ(q)

〉
SN

q
+

∫

Ωq

G(q) · χ(q)dx

]
≤ 0, ∀χ ∈ R. (5.11)

Thus we finally obtain that (5.11) is the necessary condition for the existence
of a solution in the variational inequality (5.8).

Let

R∗ :=
{
χ = (χ(1), χ(2))> ∈ R :

([
(a(1) − a(2))× x

]
+ b(1) − b(2)

)
· n(1) = 0, x ∈ Sc

}

and inequality (5.11) be fulfilled in a strong sense, i.e., equality (5.11) holds
if and only if χ ∈ R∗.

Relying on the general theory of variational inequalities (see [10], [13]),
the condition (5.11) in this case becomes also sufficient for the solvability
of inequality (5.8).

Investigate now the uniqueness of a solution of inequality (5.8).

Suppose that U = (U (1), U (2))> ∈ K0 and Ũ = (Ũ (1), Ũ (2))> ∈ K0 are
two arbitrary solutions of the variational inequality (5.8). Then

2∑

q=1

B(q)(U (q), Ũ (q) − U (q)) ≥

≥
2∑

q=1

[〈
rSN

q
Ψ(q), rSN

q
{Ũ (q) − U (q)}+

〉
SN

q
+

∫

Ωq

G(q) · (Ũ (q)−U (q)) dx

]
(5.12)

and
2∑

q=1

B(q)(Ũ (q), U (q) − Ũ (q)) ≥

≥

2∑

q=1

[〈
rSN

q
Ψ(q), rSN

q
{U (q)−Ũ (q)}+

〉
SN

q
+

∫

Ωq

G(q) · (U (q)−Ũ (q)) dx

]
. (5.13)

Adding the above inequalities and taking into account the fact that the
quadratic form B(q), q = 1, 2 is positive definite, we obtain

B(q)
(
U (q) − Ũ (q), U (q) − Ũ (q)

)
= 0, q = 1, 2,

from which we can conclude that

U (q) − Ũ (q) = χ(q), q = 1, 2.
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Since B(q)(U (q), χ(q)) = 0 and B(q)(Ũ (q), χ(q)) = 0, it follows from in-
equalities (5.12) and (5.13) that

2∑

q=1

[〈
rSN

q
Ψ(q), rSN

q
{χ(q)}

〉
SN

q
+

∫

Ωq

G(q) · χ(q) dx

]
≥ 0

and
2∑

q=1

[〈
rSN

q
Ψ(q), rSN

q
{χ(q)}

〉
SN

q
+

∫

Ωq

G(q) · χ(q) dx

]
≤ 0,

i.e.,

2∑

q=1

[〈
rSN

q
Ψ(q), rSN

q
{χ(q)}

〉
SN

q
+

∫

Ωq

G(q) · χ(q) dx

]
= 0. (5.14)

Thus we obtain the following

Theorem 5.1. Let G(q) ∈ [L2(Ωq)]
6 and Ψ(q) ∈ [H̃−1/2(SN

q )]6, q = 1, 2.
Then the condition (5.11) is necessary for Problem (B) to be solvable. If

the condition (5.11) is fulfilled in a strong sense, i.e., the equality in (5.11)
holds if and only if χ = (χ(1), χ(2))> ∈ R∗, then a solution of Problem (B)
exists and it is defined modulo a vector of rigid displacement for which the

condition (5.14) is fulfilled.
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