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Abstract. We propose an approach which allows global representation
of basic differential operators (such as Laplace–Beltrami, Hodge–Laplacian,
Lamé, Navier–Stokes, etc.) and of corresponding boundary value problems
on a hypersurface S in Rn, in terms of the standard spatial coordinates
in R

n. The tools we develop also provide, in some important cases, use-
ful simplifications as well as new interpretations of classical operators and
equations.

The obtained results are applied to the Dirichlet and Neumann boundary
value problems for the Laplace–Beltrami operator ∆C and to the system
of anisotropic elasticity on an open smooth hypersurface C ⊂ S with the
smooth boundary Γ := ∂C . We prove the solvability theorems for the
Dirichlet and Neumann BVPs on open hypersurfaces in the Bessel potential
spaces.
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1. Introduction

The purpose of this work, which is based on the joint paper with D. Mitrea
& M. Mitrea [16], is to provide a (relatively) simple calculus of Boundary
value problems (BVP’s) for partial differential equations (PDE’s) on hyper-
surfaces in Rn. Such BVPs arise in a variety of situations and have many
practical applications. See, for example, [21, § 72] for the heat conduction
by surfaces, [4, § 10] for the equations of surface flow, [8], [3] for the vacuum
Einstein equations describing gravitational fields, [38] for the Navier-Stokes
equations on spherical domains, as well as the references therein.

A hypersurface S in R
n has the natural structure of a (n−1)-dimensional

Riemannian manifold and the aforementioned PDE’s are not the immediate
analogues of the ones corresponding to the flat, Euclidean case, since they
have to take into consideration geometric characteristics of S such as cur-
vature. Inherently, these PDE’s are originally written in local coordinates,
intrinsic to the manifold structure of S .

The main aim of this paper is to demonstrate the approach which allows
representation of the most basic partial differential operators (PDO’s), as
well as their associated boundary value problems, on a hypersurface S in
Rn, in global form, in terms of the standard spatial coordinates in Rn. It
turns out that a convenient way to carry out this program is by employing
the the so-called Günter derivatives-the column of surface gradient

D := (D1,D2, . . . ,Dn)> (1.1)

(cf. [20], [23], [13]). Here, for each 1 ≤ j ≤ n, the first-order differential
operator Dj is the directional derivative along π ej , where π : R

n → TS

is the orthogonal projection onto the tangent plane to S and, as usual,
ej = (δjk)1≤k≤n ∈ Rn, with δjk denoting the Kronecker symbol.

The operator D is globally defined on (as well as tangential to) S , and
has a relatively simple structure. In terms of (1.1), the Laplace–Beltrami
operator on S simply becomes (see [26, pp. 2ff and p. 8])

∆S = D
∗
D on S . (1.2)

Alternatively, this is the natural operator associated with the Euler–Lag-
range equations for the variational integral

E [u] = −
1

2

∫

S

‖Du‖2 dS. (1.3)

A similar approach, based on the principle that, at equilibrium, the dis-
placement minimizes the potential energy, leads to the derivation of the
equation for the elastic hypersurface (cf. [16, 15] for the isotropic case).

These results are useful in numerical and engineering applications (cf.
[2], [5], [7], [10], [12], [6], [34]) and we plan to treat a number of special
surfaces in greater detail in a subsequent publication.

The layout of the paper is as follows. In § 2–§ 3 we review some basic
differential-geometric concepts which are relevant for the work at hand (e.g.,
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hypersurfaces and different methods of their identification). In § 4–§ 5 we
identify the most important partial differential operators on hypersurfaces,
such as gradient, divergence, Laplace–Beltrami operator. In § 5, starting
from first principles, we identify the natural operator of anisotropic elasticity
on a general (elastic, linear) hypersurface S (see [16] for the isotropic Lamé
operator). Our approach is based on variational methods.

In § 7, § 8 we study the Dirichlet and Neumann boundary value problems
(BVPs) on an open hypersurface. We apply two approaches-the functional-
analytic based on the Lax–Milgram Lemma, which requires less smoothness
of the underlying hypersurface, and the potential method, which appliues
the fundamental solution and imposes the condition of infinite smoothness
on the hypersurface, also allows investigation of the equivalent boundary
pseudodifferential equations in the scale of Bessel potential spaces H

s
p(Γ),

where |s| ≤ ` and 1 < p <∞, provided the boundary Γ := ∂S is `-smooth.
The same project is carried out in § 9-§ 12 for the equations of anisotropic

elasticity and we study the Dirichlet and Neumann BVPs for them on an
open hypersurface.

2. Brief Review of the Classical Theory of Hypersurfaces

The next definition of a hypersurface is basic in the present chapter
and we give two further definitions later. The alternative definitions are
very useful treating various problems and later, in Lemma 2.5, we prove
equivalence of all three definitions.

The next definition is most universal and can be used for manifolds.

Definition 2.1. A Subset S ⊂ Rn of the Euclidean space is called a

hypersurface if it has a covering S =
⋃M
j=1 Sj and coordinate mappings

Θj : ωj → Sj := Θj(ωj) ⊂ R
n, ωj ⊂ R

n−1, j = 1, . . . ,M, (2.1)

such that the corresponding differentials

DΘj(p) := matr
[
∂1Θj(p), . . . , ∂n−1Θj(p)

]
, (2.2)

have the full rank

rankDΘj(p) = n− 1, ∀ p ∈ Yj , k = 1, . . . , n, j = 1, . . . ,M,

i.e., all points of ωj are regular for Θj for all j = 1, . . . ,M .
Such mapping is called an immersion as well.

The hypersurface is called smooth if the corresponding coordinate dif-
feomorphisms Θj in (2.1) are smooth (C∞-smooth). Similarly is defined a
µ-smooth hypersurface.

Next we expose yet another definition of a hypersurface. Definition 2.1
is a particular (canonical) case of a hypograph surface represented by a
single coordinate function M = 1, while Definition 2.2 deals with a general
hypersurface.
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Definition 2.2. An open subset

ΩΦ =
{
p = (p′, pn) ∈ R

n : p′ ∈ R
n−1, pn ∈ R, pn < Φ(p′)

}
. (2.3)

in the Euclidean space Rn, generated by a real-valued function Φ : Rn−1 →
R, is called a hypograph domain.

The boundary

SΦ =
{
z ∈ R

n : z = (p′,Φ(p′)), p′ ∈ ω ⊂ R
n−1

}
(2.4)

of a hypograph domain ΩΦ is called a hypograph surface. If Φ is µ-
smooth, S is referred to a µ-smooth hypersurface.

If Φ is a Lipschitz continuous
∣∣Φ(p′)− Φ(q′)

∣∣ ≤ L|p′ − q′|, p′, q′ ∈ R
n−1. (2.5)

S is referred to as a Lipschitz hypersurface.

Definition 2.3. An open subset Ω ⊂ R
n (compact or with outlets at

infinity) is called a domain with smooth boundary (with a µ-smooth
or with the Lipschitz boundary) if there exists a finite family of open sets{
Ωj

}N
j=1

such that:

i. each Ωj , j = 1, . . . , N can be transformed into a hypograph domain
by an affine transformation, i.e., by a rotation and a translation;

ii. Ω =
N⋂
j=1

Ωj and ∂Ω ⊂
N⋂
j=1

∂Ωj .

The Ck-smooth (the Lipschitz) boundary S := ∂Ω of a hypograph do-
main Ω ⊂ Rn is called a hypograph surface.

The third definition of a hypersurface is implicit.

Definition 2.4. Let k ≥ 1 an ω ⊂ Rn be a compact domain. An implicit
Ck-smooth (an implicit Lipschitz) hypersurface in Rn is defined as the set

S =
{

X ∈ ω : ΨS (X ) = 0
}
, (2.6)

where ΨS : ω → R is a Ck-mapping (or is a Lipschitz mapping) which is
regular ∇Ψ(X ) 6= 0.

Note, that by taking a single function ΨS for the implicit definition of a
hypersurface S we does not restrict the generality: if

S =

M⋃

j=1

Sj , and Sj =
{

X ∈ ωj ⊂ R
n : Ψj(X ) = 0

}
,

we pick up a partition of unity {ψj}
M
j=1 subordinated to the covering

{ωj}
M
j=1. The surface S is then represented by formula (2.6) and a sin-

gle implicit function

ΨS :=

M∑

j=1

ψjΨj . (2.7)
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Lemma 2.5. Definition 2.1, Definition 2.3 and Definition 2.4 of a hy-
persurface S are all equivalent.

Proof. Let us fix an arbitrary point p ∈ S = ∂Ω at the boundary. Accord-
ing to Definition 2.3 locally, after an affine transformation, which brings
p to the origin p = 0 and the tangential surface at p to the hyperplane
pn = 0, a neighborhood Sj ⊂ S of the point p is given by the surface
equation Sj = {pn = Φj(p

′) : p′ ∈ Ωj ⊂ Rn−1}. Thus, modulo an affine
transformation, Sj =

{
(x′,Φ(x′)) : x′ ∈ Ωj ⊂ Rn−1

}
represents the image

of the mapping Θj(·) = (·,Φ(·)) : Ωj 7→ Sj ⊂ S and, for some integer

M ∈ N, S =
M⋃
j=1

Sj is a hypersurface according to Definition 2.1.

Vice versa, let a hypersurface S in Rn be given by the definition 2.1.
Fixing arbitrary point p ∈ S we recall that the Jacoby matrix DΘj =
∇Θj of the coordinate diffeomorphism has rank n − 1. We choose a non-
degenerate (n−1)×(n−1) minor among nminors ofDΘj(p1, . . . , pn) and let
gkj be the distinguished component of the vector-function Θj = (g1

j , . . . , g
n
j )>

not present in this minor. Due to the implicit function theorem (cf., e.g.,
[37, V. I]) there exists a small neighborhood ωj of p = 0 and the implicit
function Φj(p

′) such that gmj (Φj(p
′)) = pm, m = 1, . . . , k − 1, k + 1, . . . , n

for (p′, pn) ∈ Sj .
Next we shift the point p to the origin p = 0 and apply the rotation

which interchanges the distinguished variable pk with pn. Then, modulo
an affine transformation of the variable p, the part Sj of the surface S is
represented as the graph (p′, gkj (Φj(p

′)))>, i.e. as pn = Ψj(p) := gkj (Φj(p
′))

and S is a hypersurface according the Definition 2.3.
The implication Definition 2.3 =⇒ Definition 2.4 is trivial: a piece S

j
Φ

of a hypograph surface SΦ defined by a function Φj ∈ Ck(V ), V ⊂ Rn−1,
is an implicitly defined hypersurface and the corresponding function is

Ψj
S

(Θ) := xn − Φj(x
′), x = (x′, xn) ∈ ωj := Vj × [−ε, ε], (2.8)

ε > 0, j = 1, . . . ,M.

How to convert a local implicit representation into a global one is shown
in (2.7).

To complete the proof we only need check the implication: Definition 2.4
=⇒ Definition 2.3.

Let Sj be a part of a hypersurface S given implicitly by a single function
Ψj ∈ Ck(ωj), ωj ⊂ Rn and ∂kj

Ψj(x) 6= 0. Due to the implicit function

theorem there exists the implicit functions Φj ∈ Ck(Ωj), Ωj ⊂ Rn−1 such
that

Ψ
(
x1, . . . , xkj−1,Φj(x1, . . . , xkj−1, xkj−1, . . . , xn), xkj−1, . . . , xn

)
≡ 0

∀x ∈ Uj , j = 1, . . . , n.
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Then, modulo the affine transformation

(x1, . . . , xkj−1, xkj−1, . . . , xn) 7→ (p1, . . . , pn−1), pn = xkj
,

the part Sj := Uj∩S of the surface is represented as the graph pn = Φj(p
′)

and S is a hypersurface according the Definition 2.3. �

Remark 2.6. Redefinition of a Ck-smooth hypograph hypersurface as
an implicit hypersurface in (2.8) is not unique: we can also take

ΨS (Θ) := xn − Φ(x′) +G(x), x = (x′, xn) ∈ ω := V × R, (2.9)

where G(X ) = 0 for ∀X ∈ S . Moreover, G(x) might be non-properly
smooth G ∈ Cm(ω) with m < k.

Definition 2.4 is a powerful source of hypersurfaces.

Example 2.7. For a fixed pair R > 0 and p ∈ Rn the set

S
n−1
R (p) :=

{
x=(x1, . . . , xn)

>∈R
n : ΨR,p(x)= |x−p|

2−R2=0
}
, (2.10)

defines the sphere of radius R centered at p.
Similarly, for a pair of vectors p ∈ Rn and of r = (r1, . . . , rn)> with

positive components r1 > 0, . . . , rn > 0 the set

E
n−1
r,p :=

{
x=(x1, . . . , xn)>∈R

n : Ψr,p(x)=

n∑

j=1

(xj−pj
rj

)2

−1=0

}
(2.11)

defines the ellipsoid.
Both, S

n−1
R (p) and E n−1

r,p are hypersurfaces in Rn.

In some applications it is necessary to extend the outer unit vector field
to a hypersurface in a neighborhood of S , preserving some important fea-
tures. For example, such extension is needed to define correctly the normal
derivative (the derivative along normal vector fields, outer or inner). We
consider here a natural extension based on implicit representation of a sur-
face S and note that another possible extension is based on the hypograph
representation (2.4).

Lemma 2.8. Let S ⊂ Rn be a k-smooth hypersurface, k = 1, 2, . . . ,
given implicitly ΨS (X ) = 0 by the function ΨS ∈ Ck(ΩS ) defined in a
neighborhood ΩS of the surface S ⊂ ΩS ⊂ Rn.

i. The unit vector field

N :=
∇ΨS

|∇ΨS |
= {N1, . . . ,Nn}

>, Nj =
∂jΨS

|∇ΨS |
, j = 1, . . . , n (2.12)

is Ck−1-smooth and, for any (fixed) point x ∈ ΩS it is normal
vector to the level surface

SC :=
{
y ∈ R

n : ΨS (y) = C := ΨS (x)
}
. (2.13)



26 R. Duduchava

In particular, on the initial surface S it coincides with the unit
normal vector field

N (x) = ν(x) for all x ∈ S .

ii. If k ≥ 2 the following equality holds:

N (x) = ∇
ΨS (x)− C

|∇ΨS (x)|
or, componentwise,

Nj(x) = ∂j
ΨS (x)− C

|∇ΨS (x)|
, ∀x ∈ SC , j = 1, . . . , n.

(2.14)

iii. The following equalities

∂jNk(x) = ∂k∂Nj hold for all x ∈ SC , j, k = 1, . . . , n. (2.15)

Proof. Let {Sj ,Θj}
M
j=1 be the atlas which defines S (cf. Definition 2.1).

The pull-back functions Ψ∗
j (x) = (Θj,∗ΨS )(x) = Ψj(Θj(x)), x ∈ ωj ⊂

Rn−1, are immersions: the corresponding gradient has maximal rank

∇Ψ∗
j (x) := matr

[
∂1Ψ

∗
j (x), . . . , ∂n−1Ψ

∗
j (x)

]
,

rank∇Ψ∗
j (x) = n− 1 ∀x ∈ ωj , j = 1, . . . ,M.

Since Ψ∗
j (x) ≡ 0 for x ∈ ωj , the chain rule provides

∂kΨ
∗
j (x) =

n−1∑

m=1

(∂mΨS )(Θj(x))(∂kΘj)m(x) = 0, k = 1, . . . , n− 1

and justifies that the gradient of the hypograph function is orthogonal to
all tangential vectors

〈
∂kΘj(x), (∇ΨS )(Θj(x))

〉
≡0 ∀x∈ωj , k=1, . . . , n, j=1, . . . ,M. (2.16)

Therefore, the normed gradient

ν(X ) =
(∇ΨS )(X )

|(∇ΨS )(X )|
, X ∈ S (2.17)

coincides with the outer normal vector on the surface (cf. Fig. 1).
The same holds for the level surfaces SC , since this surface is defined by

the implicit function ΨS − C.
The equality (2.14) follows taking into account that ΨS (x) − C ≡ 0 for

all x ∈ SC :

∂j
ΨS (x)− C

|∇ΨS (x)|
=

(∂jΨS )(x)

|∇ΨS (x)|
− (ΨS (x)− C)

∂j |∇ΨS (x)|

|∇ΨS (x)|2
=

=
(∂jΨS )(x)

|∇ΨS (x)|
= Nj(x) for all x ∈ SC .

Equalities (2.15) are simple consequences of (2.14). �
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Fig. 1

Definition 2.9. Let S be a surface in Rn with the unit normal ν. A
vector filed N ∈ C1(ΩS ) in a neighborhood ΩS of S , will be referred to

as a proper extension if N

∣∣∣
S

= ν, it is unitary |N | = 1 in ΩS and if

N satisfies the condition

∂jNk(x) = ∂kNj(x) for all x ∈ ΩS , j, k = 1, . . . , n. (2.18)

not only on the surface S but in the neighborhood (cf. (2.15)).

The proper extension of the unit normal vector filed ν is organized as
follows: N (x) = ν(X ) for all x = X + tν(X ) ⊂ ΩS , where X ∈ S and
−ε < t < ε, i.e., we extend the unit normal vector field in the direction of
the normal vectors (positive and negative) as constant vectors. Obviously,
∂N N (x) ≡ 0 in ΩcS and the extension is proper.

In the sequel we will dwell on a proper extension and apply the above
properties of N .

Corollary 2.10. For any proper extension N (x), x ∈ ΩS ⊂ R
n of the

unit normal vector field ν to the surface S ⊂ ΩS the equality

∂N N (x) = 0 holds for all x ∈ ΩS . (2.19)

In particular, for the derivatives

Dk = ∂k −Nk∂N , k = 1, . . . , n, (2.20)

which are extension into the domain ΩS of Günter’s derivatives Dk = ∂k−
νk∂ν on the surface S , we have the equality:

DkNj = ∂kNj −Nk∂N = ∂kNj j, k = 1, . . . , n. (2.21)
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Proof. We apply (2.18) and proceed as follows:

∂N Nj =

n∑

k=1

Nk∂kNj =

n∑

k=1

Nk∂jNk =
1

2

n∑

k=1

∂jN
2
k = ∂j1 = 0

for all j = 1, . . . , n. �

Remark 2.11. Lemma 2.8 was proved partly in [16, § 3] for a particular
implicit function representing the given hypersurface S , namely for the
signed distance

ΨS (x) := ±dist(x,S ), x ∈ ΩS , (2.22)

where the signs “+” and “−” are chosen for x “above” (in the direction of
the unit normal vector) and “below” S , respectively.

Lemma 2.12. For an arbitrary unitary extension N (x) ∈ C1(ΩS ),
|N (x)| ≡ 1, of ν(X ), in a neighborhood ΩS of S , the following conditions
are equivalent:

i. ∂N N
∣∣
S

= 0, i.e., ∂N Nj(x) → 0 for x → X ∈ S and j =
1, 2, . . . , n;

ii. [∂kNj − ∂jNk]
∣∣
S

= Dkνj −Djνk = 0 for k, j = 1, 2, . . . , n.

Proof. The implication (ii) ⇒ (i) follows readily by writing

∂N N
∣∣
S

=
{ n∑

j=1

Nj∂jNk

}n
k=1

∣∣∣∣
S

=
{ n∑

j=1

Nj∂kNj

}n
k=1

∣∣∣∣
S

=

=
1

2
∇x|N |2

∣∣∣
S

=
1

2
∇x1 = 0. (2.23)

As for the inverse implication, we first observe that, in general,

∂V N
∣∣
S

= 0 & N
∣∣
S

= ν imply ∂V N
∣∣
S

depends only on ν (2.24)

and does not depend on a particular extension N for arbitrary vector
field V .

Let

πS : R
n → V (S ),

πS (t) = I − ν(t)ν>(t) =
[
δjk − νj(t)νk(t)

]
n×n

, t ∈ S
(2.25)

denote the canonical orthogonal projection π2
S

= πS onto the space of
tangential vector fields to S at the point t ∈ S :

(ν, πS V ) =
∑

j

νjVj −
∑

j,k

ν2
j νkVk = 0 for all V = (V1, . . . , Vn)

> ∈ R
n.

In the sequel we shall tacitly assume that the projection πS is extended
to the neighborhood ΩS

π̃S (x) =
[
δjk −Nj(x)Nk(x)

]
n×n

, π̃2
S = π̃S , x ∈ ΩS . (2.26)
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Note that U = π̃S U + 〈U ,N 〉N for arbitrary field U in the neighbor-
hood ΩS . Then

∂UN
∣∣
S

= ∂π̃S UN
∣∣
S

+ (U ,N )∂N N
∣∣
S

= ∂π̃S UN
∣∣
S

= ∂πS Uν,

because ∂N N
∣∣
S

= 0 and πS U is a tangential field to S . Thus, we can

dwell on the particular extension (2.14) and observe

∂kNj

∣∣
S

= ∂k∂j
ΨS

|∇ΨS |

∣∣∣∣
S

= ∂j∂k
ΨS

|∇ΨS |

∣∣∣∣
S

= ∂jNk

∣∣
S
,

which proves the implication (i) ⇒ (ii). �

Remark 2.13. It is clear that a normal vector field and it’s (non-
unique) extension exists for arbitrary Lipschitz surface, but almost every-
where on S .

Moreover to enjoy the properties listed in Lemma 2.8, we have to consider
smoother than Lipschitz surfaces and assume C2-smoothness of S .

3. Gauß and Stoke’s Formulae for Domains in Rn

In the present section we consider a hypersurface S , which is a bound-
ary of some domain Ω ⊂ Rn. We dwell on Definition 2.1 and 2.2 of a
(hypograph) hypersurface S , which are most convenient for the present
purposes.

The Gauß formula (3.1) is a basic result in calculus on surfaces. We refer
to [27] for the simplest proof of the following proposition.

Proposition 3.1 (Gauß formula). Let Ω ⊂ Rn be a domain with the
Lipschitz boundary S := ∂Ω, ν(t) = (ν1(t), . . . , νn(t))

> be the outer unit
normal vector to S and f ∈ W1

1(Ω). Then
∫

Ω

∂jf(y) dy =

∮

S

νj(τ)f(τ) dS (3.1)

in the following sense: the integral in the left hand side exists (since, by the
condition, ∂jf ∈ L1(Ω)) and the integral in the right-hand side is defined by
the above equality.

Remark 3.2. The last statement of the foregoing Proposition 3.1 ex-
plains the traces γS ∂jf(X ) of f ∈ W1

1(Ω) despite, a well known theorem
that the trace γS ∂jf(X ) = ∂jf(X )

∣∣
S

of a function f ∈ W1
1(Ω) on the

boundary surface S = ∂Ω does not exist for sure. The assertion does
not contradicts the trace theorem, because states existence of the trace in
combination with components of the normal vector νj(x)f(x).

Next we are going to derive some important consequences of the Gauß
formula.

Corollary 3.3. Let Ω, S = ∂Ω and ν(τ) = (ν1(τ), . . . , νn(τ))
> be as

in Lemma 3.1.
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i. The divergence formula
∫

Ω

divF (y) dy =

∮

S

〈ν(τ), F (τ)〉 dS (3.2)

holds for the divergence

divF (x) := ∂1f1(x) + · · ·+ ∂nfn(x) (3.3)

of a vector field F = (f1, . . . , fn)
> ∈ W1(Ω).

ii. The integration by parts
∫

Ω

∂jf(y)g(y) dy =

∮

S

νj(τ)f(τ)g(τ) dS −

∫

Ω

f(y)∂jg(y) dy (3.4)

holds for arbitrary f, g ∈ W1(S ).

Proof. Formula (3.2) is a direct consequences of the Gauß formula (3.1):
∫

Ω

divF (y) dy =
∑

j

∫

Ω

∂jfj(y) dy =

=
∑

j

∮

S

νj(τ), fj(τ) dS =

∮

S

〈ν(τ), F (τ)〉 dS.

Since f, g ∈ W
2
2(S ) implies fg ∈ W

2
1(S ), we can apply the Gauß formula

(3.1) to the Leibnitz equality ∂j [ψ(y)ϕ(y)] = ϕ(y)∂jψ(y) +ψ(y)∂jϕ(y) and
get (3.4) readily. �

Let us consider the normal derivative

∂νϕ := ν · ∇ϕ =

n∑

j=1

νj∂jϕ, ϕ ∈ C1(Ω). (3.5)

Corollary 3.4 (Green’s formula). Let Ω ⊂ Rn be a domain with Lips-
chitz boundary.

For the Laplace operator

∆ := ∂2
1 + · · ·+ ∂2

n (3.6)

and functions ϕ, ψ ∈ W1
2(Ω) the following I and II Green formulae are valid:

∫

Ω

(∆ψ)(y)ϕ(y) dy=

∮

∂Ω

(∂νψ)(τ)ϕ(τ) dS−

n∑

j=1

∫

Ω

(∂jψ)(y)(∂jϕ)(y) dy, (3.7)

∫

Ω

(∆ψ)(y)ϕ(y) dy =

=

∫

Ω

ψ(y)(∆ϕ)(y) dy +

∮

∂Ω

[
(∂νψ)(τ)ϕ(τ) + ψ(τ)(∂νϕ)(τ)

]
dS. (3.8)
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Proof. Let, for time being, ϕ, ψ ∈ C2(Ω). By applying (3.4) we prove I
Green formulae in (3.7).

By writing a similar formula
∫

Ω

(ψ)(y)∆ϕ(y) dy =

=

∮

∂Ω

(∂νψ)(τ)ϕ(τ) dSS −
n∑

j=1

∫

Ω

(∂jψ)(y)(∂jϕ)(y)dy (3.9)

and taking the difference with (3.7), we prove II Green formulae in (3.8).
For arbitrary ϕ, ψ ∈ W1

2(Ω) the Green formulae (3.7) and (3.7) follow by
approximation ϕj → ϕ, ψj → ψ, ϕj , ψj ∈ C

2(Ω). �

Stoke’s derivatives are concrete examples of weakly tangential opera-
tors

MS := [Mjk ]n×n , Mjk := νj∂k − νk∂j = ∂mj,k
. (3.10)

These derivatives are directional with respect to a tangential vector fields to
S (cf. (4.8) and (4.10)). Indeed, the directing vector mjk(X ) = νj(X )ek −
νk(X )ej of Mjk , where {ej}nj=1 is the Cartesian frame in Rn, is tangential
to S :

ν(X ) ·mjk(X ) = νj(X )νk(X )− νk(X )νj(X ) ≡ 0, X ∈ S . (3.11)

Therefore the Stoke’s derivative Mjk can be applied to functions defined on
the surface S only.

Corollary 3.5. Let Ω, S = ∂Ω and ν(τ) = (ν1(τ), . . . , νn(τ))
> be as

in Lemma 3.1.
The following Stoke’s formulae

∮

S

(Mjkf)(τ) dS = 0 (3.12)

holds for j, k = 1, . . . , n and for all f ∈ W1
1(S ).

The Stokes derivatives Mj,k are skew-symmetric:
∮

S

(Mjkψ)(τ)ϕ(τ) dS = −

∮

S

ψ(τ)(Mjkϕ)(τ) dS (3.13)

for j, k = 1, . . . , n and for arbitrary pair ϕ, ψ ∈ W2
2(S ).

Proof. We assume temporarily that f ∈ C1(S ) and extend this function
into the domain F ∈ C1(Ω)∩C2(Ω) with the trace on the boundary F

∣∣
S

=
f . Such extension is possible since the boundary is a Lipschitz hypersurface.
It is possible to construct a direct extension by means of function theory
(cf. E. Stein [35]). But we consider here the following indirect construction:
consider the Dirichlet problem for the Laplace operator ∆F = 0 in Ω with
a boundary condition F

∣∣
S

= f . It is well known that the solution exists
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and, moreover, F ∈ C∞(Ω) (cf., e.g., [24]). Herewith we have found the
extension.

Now apply the Gauß formula (3.1) to a function ∂j∂kf = ∂k∂jf twice:
∫

Ω

(∂j∂kF )(y) dy =

∮

S

νj(τ)(∂kf)(τ) dS,

∫

Ω

(∂k∂jF )(y) dy =

∮

S

νk(τ)(∂jf)(τ) dS.

By taking the difference we get (3.12) immediately.
Note that formula (3.12) is valid for arbitrary f ∈ C1(S ) without know-

ing an extension F (x) of f(X ) into the domain Ω, because the Stoke’s
derivative Mjk can be applied to a function defined only on the surface.

For a function ψ ∈ W
1
2(S ) formula (3.12) is proved by approximation

(cf. the concluding part of the proof of Lemma 3.1).
Formula (3.13) follows from (3.12) Since Mjk is a linear differential op-

erator

Mjk[ϕψ] = (Mjkϕ)ψ + ϕ(Mjkψ)

and by applying (3.12) we get

0 =

∮

S

(
Mjk[ψϕ]

)
(τ) dS =

∮

S

(Mjkϕ)(τ)ψ(τ) dS +

∮

S

ϕ(τ)(Mjkψ)(τ) dS.

The obtained equality completes the proof of (3.13). �

4. Calculus of Tangential Differential Operators

The content of the present section partly follows [16, § 4].
Throughout the present section we keep the following convention: S is

a hypersurface in Rn, given by an immersion

Θ : ω → S , ω ⊂ R
n−1 (4.1)

with a boundary Γ = ∂S , given by another immersion

ΘΓ : ω → Γ := ∂S , ω ⊂ R
n−2, (4.2)

ν(X ) is the outer unit normal vector field to S an N (x) denotes an ex-
tended unit field in a neighborhood ωS of S (cf. Definition 2.9). νΓ(t) is
the outer normal vector field to the boundary Γ, which is tangential to S .

A curve on a smooth surface S is a mapping

γ : I 7→ S , I := (a, b] ⊂ R, (4.3)

of a line interval I to S .
A vector field on a domain Ω in Rn is a mapping

U : Ω → R
n, U (x) =

n∑

j=1

Uj(x)e
j , (4.4)
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where U j ∈ C∞0 (Ω) and ej is the element of the natural Cartesian basis
in Rn

e1 := (1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1), (4.5)

in the Euclidean space R
n. {ej}

n
j=1 is also called the natural frame or the

Cartesian frame.
By V (Ω) we denote the set of all smooth vector fields on Ω.
Let U ∈ V (Ω) and consider the corresponding ordinary differential equa-

tions (ODE):

y′ = U (y), y(0) = x, x ∈ Ω. (4.6)

A solution y(t) of (4.6) is called an integral curve (or orbit) of the vector
field U . The mapping

y = y(t, x) = F
t
U (x) : Ω → Ω (4.7)

is called the flow generated by the vector field U at the point x.
A vector field U ∈ V (Ω) defines the first order differential operator

Uf(x) = ∂Uf(x) := lim
h→0

f(Fh
U

(x)) − f(x)

h
=

d

dt
f(F t

U (x))
∣∣
t=0

. (4.8)

By applying the chain rule to (4.8) we get

∂Uf(x) =
〈
U(x),∇f(x)

〉
=

n∑

j=1

Uj(x)
∂f

∂xj
. (4.9)

By V (S ) we denote the set of all smooth vector fields, tangential to the
hypersurface S . Note that if the vector U is tangential, i.e., U ∈ V (S ),
its orbit can be chosen as a curve on the surface S ,

F
t
U (x) : I → S , I ⊂ ω ⊂ R

n−1. (4.10)

Then the derivative ∂U defined by (4.8) is applicable to a function f ∈
C1(S ) which is defined on the surface S only.

Note, that if a function f is defined not only on the surface S , but
also in a neighborhood of S ⊂ Rn, formula (4.9) gives the rule for the
differentiation of f along a vector field U ∈ V (S ).

Definition 4.1. A derivative ∂S
U

: C1(S ) → C1(S ), U ∈ V (S ) is
called covariant if it is a linear automorphism of the space of tangential
vector fields:

∂S

U : V (S ) −→ V (S ). (4.11)

If S is embedded in Rn, a directional derivative ∂U along a tangential
vector field U ∈ V (S ) maps the space of tangential vector fields to the
space of possibly non-tangential vector fields

∂U : V (S ) 6−→ V (S ).

If composed with the projection

∂S

U V := πS ∂UV = ∂UV − 〈ν, ∂UV 〉ν (4.12)
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(cf. (2.25)), it becomes a covariant derivative, i.e., becomes an automor-
phism of the space of tangential vector fields (cf. (4.11)).

The Günter’s derivatives
{
Dj

}n
j=1

are tangent and represent a full system

(cf. (4.37)-(4.39)). But the derivative DjV is not covariant and maps the
tangential vectors to non-tangential ones Dj : V (S ) 6→ V (S ). To improve
this we just eliminate the normal component of the vector by applying the
canonical orthogonal projection πS onto V (S ) (cf. (2.25))

D
S
j V := πS DjV = DjV − 〈ν,DjV 〉ν = DjV + (∂V νj)ν, (4.13)

where ∂V ϕ :=

n∑

k=1

V 0
k ∂kϕ =

n∑

k=1

V 0
k Dkϕ

and obtain an automorphisms of the space of tangential vector fields

D
S
j : V (S ) → V (S ). (4.14)

To check the equalities in (4.13) we recall 〈ν,V 〉 =
n∑
j=1

νjV
0
j = 0 and

proceed as follows

∂V ϕ =
n∑

k=1

V 0
k ∂kϕ =

n∑

k=1

V 0
k Dkϕ+

n∑

k=1

V 0
k νk∂νϕ =

n∑

k=1

V 0
k Dkϕ,

〈ν,DjV 〉 =

n∑

m=1

νmDjV
0
m =

n∑

m=1

[
Dj(νmV

0
m)− V 0

mDjνm
]

=

= −
n∑

m=1

V 0
mDjνm = −

n∑

m=1

V 0
mDmνj = −∂V νj . (4.15)

Note that if U ∈ V (S ) is tangent then

U =

n∑

j=1

U0
j ej =

n∑

j=1

U0
j d

j since

n∑

j=1

νjU
0
j = 〈ν,U 〉 ≡ 0, (4.16)

i.e. the system {dj}nj=1 is full in V (S ). Although this system is linearly

dependent, the representation of a tangential vector by {dj}nj=1 is unique.

Definition 4.2. A tangential vector field U ∈ V (S ) is called Killing’s
field, if it generates a flow consisting of isometries and preserves the metric
on the surface S (cf. [37, V. I, Ch. 2, § 3]).

In other words the metric g(V ,W ) is invariant under the flow F t
U gen-

erated by the vector field U and can be recorded in terms of the Lie de-
rivative LU (cf. [37, V. I, Ch. 2], [16]) as follows:

LUg(V ,W ) ≡ 0 for all V ,W ∈ V (S ). (4.17)

The representation matrix DefS U of the bilinear form

2(DefS (U )V ,W ) := LUg(V ,W ), ∀U ,V ,W ∈ V (S ) (4.18)

is called the deformation tensor (cf., e.g., [37, V. I, Ch. 5, § 12]).
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Note that the deformation tensor is the symmetrized covariant derivative
(cf., e.g., [37, V. I, Ch. 5, § 12]).

(DefS U )(V ,W ) =
1

2

{
〈∂V U ,W 〉+ 〈∂W U ,V 〉

}
=

=
1

2

{
〈∂S

V U ,W 〉+ 〈∂S

W U ,V 〉
}
, ∀V ,W ∈ V (S ). (4.19)

Let

dj := πS ej ∈ V , j = 1, . . . , n, (4.20)

be the projection of the Cartesian frame onto the tangent space V (S ) to
the hypersurface S . Obviously, the frame {dj}

n
j=1 is linearly dependent

〈ν,dj〉 =

n∑

j=1

νjdj = 0, j = 1, . . . , n.

Then any tangential vector field U ∈ V (S ) has the following representation

U =
n∑

j=1

U0
j ej =

n∑

j=1

U0
j dj ∈ V (S ) (4.21)

in the canonical Cartesian frame and its projection.

Lemma 4.3. In Cartesian coordinates the deformation tensor DefS (U )=[
D0
jk(U )

]
n×n

has order n and of type (0, 2) and

D
0
jk(U ) = (DefS (U ))jk =

1

2

[
(DS

k U )j + (DS
j U)k

]
=

=
1

2

[
DjU

0
k + DkU

0
j + ∂U (νjνk)

]
, ∀ j, k = 1, . . . , n. (4.22)

where (DS
j U )k denotes the k − th component of the covariant derivative

DS
j U .

Proof. For the proof we refer to [16]. �

Remark 4.4. Let us introduce the linearly dependent but full system
of vectors

{
djk := dj ⊗ dk

}n
j=1

, dj = ej − νjν, j, k = 1, . . . , n (4.23)

in contrast to the system

{
ejk := ej ⊗ ek

}n
j=1

. (4.24)
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which is linearly independent. Then the deformation tensor can be written
as follows

DefS (U ) =
[
D

0
jk(U )

]
n×n

=

n∑

j,k=1

D
0
jk(U )djk =

=

n∑

j,k=1

V 0
kW

0
j

[
(DS

k U)j + (DS

j U )k
]
djk =

=

n∑

j,k=1

V 0
kW

0
j

[
DkU

0
j + DjU

0
k + ∂Uνjνk

]
djk =

=

n∑

j,k=1

V 0
kW

0
j

[
DkU

0
j + DjU

0
k

]
d
jk, (4.25)

since, due to (4.38)

n∑

j,k=1

∂U (νjνk)d
jk =

n∑

j,k,m=1

[
νjU

0
mDmνk + νkU

0
mDmνj

]
djk = 0.

The obtained formulae prompts the following representation for the entries

of the deformation tensor Djk(U ) =
1

2

[
(DjU)k + (DkU )j

]
, which is false

since all rows of the deformation tensor DefS (U ) (and all columns-since the
tensor is a tensor DefS (U ) is symmetric) should be tangent for U ∈ V (S ).
This is the case if DefS (U ) is written in the form (4.22).

Definition 4.5. Let S be a Lipschitz hypersurface in Rn and C ⊂ S

be an open subsurface with the Lipschitz boundary Γ = ∂C .
We say that a class of functions U (Ω) has the strong unique continuation

property from the boundary if a vector-function U ∈ U (Ω) which vanishes
U (s) = 0, ∀ s ∈ γ on an open subset of the boundary γ ⊂ Γ, vanishes on
the entire C .

Let R(S ) denote the linear space of all deformation-free tangential vec-
tor fields (or Killing’s vector fields; see Lemma 4.3).

For the proof of the next Proposition 4.6 we refer to [15].

Proposition 4.6. The set of Killing’s vector fields R(S ) coincides with
the set of all solutions to the following system of partial differential equations

D
0
jk(U )=(DS

j U )k+(DS

k U )j =DjU
0
k+DkU

0
j +∂U (νjνk)≡0 (4.26)

for 1 ≤ j ≤ k ≤ n

provided that 〈ν,U 〉 =
n∑
j=1

νjU
0
j = 0 and is finite dimensional, i.e.,

dim R(S ) < ∞ (cf. (4.21)) and R(S ) ⊂ C∞(S ) is the surface S is
infinitely smooth.
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If S is a C2-smooth hypersurface in Rn and C ⊂ S is an open C2-
smooth subsurface, the set R(S ) has the strong unique continuation prop-
erty from the boundary.

Let us find a formally adjoint operator to Dj .
With (4.50) and with (2.18) we get

D
∗
j ϕ = −∂jϕ+

n∑

k=1

∂k
(
νjνkϕ

)
=

= −∂jϕ+

n∑

k=1

[
νjνk∂kϕ+

(
νk∂kνj)ϕ+ νj

(
∂kνk

)
ϕ
]

=

= −Djϕ− νjH
0

Sϕ+ (∂ννj)ϕ, ϕ ∈ C1(ΩS ), (4.27)

since, like (2.23),

∂ννj =

n∑

k=1

νk∂kνj =

n∑

k=1

νk∂jνk =
1

2

n∑

k=1

∂jν
2
k =

1

2
∂j1 = 0 (4.28)

(cf. Lemma 2.12.ii). Here

H
0

S (X ) = −

n∑

k=1

Dkνk(X ) (4.29)

and (n − 1)−1H 0
S

(X ) = HS (X ) is actually the mean curvature of the
surface at X ∈ S .

It is obvious that the formal adjoint to the derivation ∂U with respect to

the vector field U ∈ V (S ) in Cartesian coordinates U =
n∑
j=1

U0
j dj , can be

written as follows

∂∗Uf =




n∑

j=1

U0
j Dj



∗

f = −

n∑

j=1

D
∗
j (U0

j f) = −

n∑

j=1

(Dj + HS νj)(U
0
j f) =

= −

n∑

j=1

Dj(U
0
j f) = −∂Uf −

(
divS U

)
f, (4.30)

since D∗
j = −Dj−νjH

0
S

(cf. (4.52)) and

n∑

j=1

HS νjU
0
j f = HS f〈ν,U 〉 = 0.

This further entails that

(∂S
U )∗ = πS (∂U )∗ = −∂S

U − divS U , ∀U ∈ V (S ). (4.31)

In particular, for U = dj ,
(
∂S

dj

)∗
=

(
D

S

j

)∗
= −D

S

j −divS dj = −D
S

j −νjH
0

S , j = 1, . . . , n, (4.32)
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since

divS d
j =

n∑

k=1

Dk(νjνk) =

=

n∑

k=1

[
νjDkνk + νkDkνj) = νjdivS ν + ∂ννj = νjH

0
S .

The adjoint Def∗S to DefS is defined in Cartesian coordinates by

(Def∗SZ)k =
1

2
(DS

j )∗
[
Zjk + Zkj

]
(4.33)

for each tensor field Z =
[
Zjk

]
of type (0, 2). Indeed, by assuming S a

closed surface, we get
∫

S

〈DefS U , Z〉 dS =

=

∫

S

Tr
[
(DefS U )Z>

]
dS =

1

2

∑

j,k

∫

S

[
DkUj + DjUk

]
Zjk dS

=
1

2

∑

j,k

∫

S

Uk
[(

D
∗
j Z

jk +
(
D
∗
kZ

kj
]
dS =

∫

S

〈U ,Def∗SZ〉 dS

which holds for all tangential vectors U ∈ V (S ) and all tensor fields Z =[
Zjk

]
of type (0, 2) and Def∗S defined in (4.33).

Let

P (D)u =

n∑

j=1

aj∂ju+ bu, aj , b ∈ C
1(Rm×m) (4.34)

be a first-order differential operator with real valued (variable) matrix coeffi-
cients, acting on vector-valued functions u = (uβ)β in Rn and its principal
symbol is given by the matrix-valued function

σ(P ; ξ) :=

n∑

j=1

ajξj , ξ = {ξj}
n
j=1 ∈ R

n. (4.35)

Definition 4.7. We say that P is a weakly tangential operator to the
hypersurface S , with unit normal ν, provided that

σ(P ; ν) = 0 on the hypersurface S . (4.36)

The most important weakly tangential differential operators to the hy-
persurface for us are the following:

A. The weakly tangential Günter’s derivatives

Dj := ∂j − νj∂ν = ∂j − νj

n∑

k=1

νk∂k, j = 1, . . . , n,

introduced in (2.20);
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B. The weakly tangential Stoke’s derivatives Mjk = νj∂k − νk∂j , in-
troduced in § 3.

The Günter’s and Stoke’s derivatives are tangent since their directing
vector fields are tangent

Dj := ∂dj = dj · ∇, Mjk := ∂mjk
= mjk · ∇,

dj := πS ej = ej − νjν = ν ∧
(
ν ∧ ej

)
=

n∑

k=1

(δjk − νjνk)e
k,

mjk := νjek − νkej , 〈dj ,ν〉 = 0, 〈mjk,ν〉 = 0, j, k = 1, . . . , n.

(4.37)

Here πS is the projection on the tangential space to the surface. Therefore
Dj and Mjk can be applied to functions which are defined on the surface
S only.

The generating vector fields {dj}nj=1 {mjk}
n
j,k=1 are not frame since they

are linearly dependent

n∑

j=1

νj(X )dj(X ) ≡ 0, mjj = 0, (4.38)

but both systems {dj}nj=1 and {mjk}
n
j,k=1 are complete in the space of all

tangential vector fields: any vector field U ∈ V (S ) is represented as follows

U(X ) =
n∑

j=1

U j(X )dj(X ) =
n∑

0≤j<k≤1

cjk(X )mjk(X ). (4.39)

Let N be a proper extension of the unit normal vector field ν to S (cf.
Definition 2.9). Then each operator Dj and Mjk extends accordingly by
setting (cf. (2.20))

Dj = ∂j −Nj∂N , Mjk := Nj∂k −Nk∂j , 1 ≤ j, k ≤ n (4.40)

In the sequel, we shall make no distinction between the operator Dj or Mjk

on S and the extended one in Rn given by (4.40).
Note that in a weakly tangential operator P (cf. (4.34)) the coordinate

derivatives ∂j can be replaced by the Günter’s derivatives Dj :

P (D)u =
n∑

j=1

aj∂ju+ bu =
n∑

j=1

ajDju+ σ(P ; ν)u = P (D)u. (4.41)

Therefore, any weakly tangential operator P in (4.34) is strongly tangential
to S , which means the following: there exists an extended unit field N

such that

σ(P ; N ) = 0 in an open neighborhood of S in R
n. (4.42)

In particular, the extended operators Dj and Mjk are strongly tangential.
For further reference, below we collect some of the most basic properties

of this system of differential operators.
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Lemma 4.8. Let N be a proper extension of the unit vector field of
normal vectors ν to S . The following relations are valid for j, k = 1, . . . , n:

i. Mjj = 0, Mjk = −Mkj ;

ii. ∂k =
n∑
j=1

NjMjk + Nk∂N = −
n∑
k=1

NkMjk + Nj∂N ;

iii.
n∑
k=1

MjkNk = −NjH
0

S
, where H 0

S
(X ) = −divS ν(X ) and

HS (X ) := (n− 1)−1H 0
S

(X ) is the mean curvature at X ∈ S ;

iv. Dj =
n∑
k=1

NkMkj ;

v. Mjk = NjDk −NkDj ;

vi.
n∑
j=1

NjDj = 0;

vii.
m+1∑

r,j,k=m−1

σ(r, j, k)NiMjk = 2
∑

{r,j,k}⊂{(m−1),m,(m+1)}

σ(r, j, k)NiMjk = 0

for m = 2, . . . , n− 1, where σ(r, j, k) is the permutation sign;

viii. [Dj ,Dk] =
n∑
r=1

(MjkNr)Dr +
[
Nj∂N Nk −Nk∂N Nj

]
∂N ;

ix. [Dj ,Dk] =
n∑
r=1

(MjkNr)Dr = Nk[DN , ∂j ]−Nj [DN , ∂k];

x. ∂jNk = DjNk = DkNj.

Proof. The identities (i)–(ii) and (iv)–(vii) are simple consequences of the
definitions. For the equality (iii) we have

n∑

k=1

MjkNk =

n∑

k=1

MjkNk =

n∑

k=1

(Nj∂k −Nk∂j)Nk =

= Nj div N −
1

2
∂j(‖N ‖2) = −NjH

0
S ,

as claimed.
To prove (viii) we calculate

DjDk = (∂j −Nj∂N )(∂k −Nk∂N ) = ∂j∂k − (∂jNk)∂N −

−

n∑

r=1

[
Nk(∂jNr)∂r+NkNr∂r∂j+NjNr∂r∂k

]
+Nj

(
∂N Nk

)
∂N +NjNk∂

2
N =

= −

n∑

r=1

Nk(∂jNr)∂r + Nj(∂N Nk)∂N +Bjk =

= −

n∑

r=1

Nk(∂jNr)Dr + Nj(∂N Nk)∂N +Bjk , (4.43)

since
n∑

r=1

Nk(∂jNr)Nr∂N =
1

2

n∑

r=1

Nk(∂jN
2
r )∂N =

1

2
Nk(∂j1)∂N = 0.
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The operator

Bjk = ∂j∂k − (∂jNk)∂N −

n∑

r=1

[
NkNr∂r∂j + NjNr∂r∂k

]
+ NjNk∂

2
N

is symmetric Bjk = Bkj and the desired commutator identity in (viii) follows
from (4.43).

The first commutator identity in (ix) utilizes the facts that ∂N Nk = 0 (cf.
Lemma 2.12) and follows from the identity in (viii). The second commutator
identity in (ix) applies the same identity ∂N Nk = 0, the identity ∂jNk =
∂kNj (cf. (2.19)), and follows by a routine calculations.

The identities in (x) are already proved in (2.18) and (2.21). �

The next proposition generalizes Stoke’s formulae (3.12) and (3.13). Since
the proof applies some properties of differential forms on hypersurfaces, we
drop the proof and refer [37, § 2.2, Theorem 2.1], where the case a compact
Riemannian manifolds is considered.

Proposition 4.9. Let νΓ(ξ) =
(
ν1
Γ(ξ), . . . , νnΓ(ξ)

)>
be the unit tangential

vector to S at the boundary point ξ ∈ Γ := ∂S and outward (unit) normal
vector to the boundary Γ = ∂S . Then

∫

S

MjkϕdS =

∮

Γ

[
νjν

k
Γ − νkν

j
Γ

]
ϕ+ ds, (4.44)

∫

S

DjϕdS =

∮

Γ

νjΓϕ
+ ds (4.45)

for any real-valued function ϕ ∈ C1(S ), its trace ϕ+ on the boundary Γ,
and any j 6= k, j, k = 1, . . . , n.

The formal adjoint in R
n to P in (4.34) is defined by

P ∗u = −
∑

j

∂ja
>
j u+ b>u. (4.46)

Moreover, if Ω ⊂ Rn is a smooth, bounded domain, and if P is a first-order
operator, weakly tangential to ∂Ω, then, applying (3.4), P can be integrated
by parts over Ω without boundary terms, i.e.

(Pu, v)Ω :=

∫

Ω

〈Pu, v〉 dx =

∫

Ω

〈u, P ∗v〉 dx =: (u, P ∗v)Ω (4.47)

for all vector-valued sections of vector fields u, v ∈ C1(Ω̄).
For a weakly tangential differential operator P on a closed hypersurface

S let Q∗
S

denote the “surface” adjoint:

(QSϕ, ψ)
S

:=

∮

S

〈QSϕ, ψ〉 dS=

∮

S

〈ϕ,Q∗Sψ〉 dS=(ϕ,Q∗Sψ)
S
, (4.48)

∀ϕ, ψ ∈ C1(Ω̄).
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Throughout the paper we use the following notation

(u, v)
S

:=

∮

S

u>(t)v(t) dS, (ϕ, v)Γ :=

∮

Γ

ϕ>(s) v(s) ds. (4.49)

Corollary 4.10. For a weakly tangential differential operator P in (4.34)
the surface-adjoint and the formally adjoint operators coincide, i.e.,

P ∗Sϕ = P ∗ϕ = −

n∑

j=1

∂ja
>
j ϕ+ b>ϕ. (4.50)

In particular, the Stoke’s derivatives are skew-symmetric

(M ∗
jk)S = M

∗
jk = −Mjk = Mkj , ∀ j, k = 1, . . . , n, (4.51)

while the adjoint operator to the operator Dj is given by formula

(Dj)
∗
Sϕ = D

∗
j ϕ = −Djϕ− νjH

0
Sϕ, ϕ ∈ C1(S ). (4.52)

For any real-valued function ϕ ∈ C1(S ), any 1 ≤ j < k ≤ n and for
νΓ = (ν1

Γ, . . . , ν
n
Γ)> being the the same as in Theorem 4.9 the following

integration by parts formula is valid:∫

S

[
(Djϕ)ψ − ϕD

∗
j ψ

]
dS =

∮

Γ

νjΓϕψ ds. (4.53)

Proof. We start by proving (4.51): applying the the Stoke’s formulae (3.12)
from § A.5, we get∮

S

(Mjkϕ)ψ dS =

∮

S

(Mjkϕψ) dS −

∮

S

ϕ(Mjkψ) dS = −

∮

S

ϕ(Mjkψ) dS

and the equality

(M ∗
jk)S = −Mjk = Mkj (4.54)

follows. Moreover, note that the formal adjoint to Mjk = NjDk −NkDj is

M
∗
jkϕ =

(
Nj∂k −Nk∂j

)∗
ϕ = −∂j(Nkϕ) + ∂k(Njϕ) =

= Nk∂jϕ−Nj∂kϕ+ (∂jNk)ϕ− (∂kNj)ϕ = −Mjkϕ

(cf. (2.18)), where ϕ ∈ C1(ΩS ) is defined in a neighborhood of S . (4.51)
is proved.

To prove (4.50) we note that, on S ,

Pϕ =
n∑

j=1

aj∂jϕ+ bϕ =
∑

j

aj
[
Dj + νj∂ν

]
ϕ =

=

n∑

j=1

ajDjϕ+ bϕ+ σ(P ; ν)∂νϕ =

n∑

j=1

ajDjϕ (4.55)

=

n∑

j,k=1

ajνkMkjϕ (4.56)
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due to Lemma 4.8.iv and the weak tangentiality of P . The property postu-
lated in (4.50) follows from (4.56) and (4.51):

P ∗Sϕ =

n∑

j,k=1

(Mkj)
∗
S a

>
j νkϕ+ b>ϕ =

n∑

j,k=1

(Mkj)
∗a>j νkϕ+ b>ϕ = P ∗ϕ.

(4.52) follows as in (4.27), since (cf. (2.19)) ∂N Nj = 0.
To prove (4.29) we apply (2.23) and proceed as follows

n∑

k=1

Dkνk =

n∑

k=1

(
∂kνk − νk

n∑

j=1

νj∂jνk

)
= −H

0
S −

n∑

j=1

νj
2
∂j1 = −H

0
S .

For the proof of the last formula (4.53) we apply Lemma 4.8.iv, (4.51),

the equalities
n∑
k=1

ν2
k = 1,

n∑
k=1

νkν
k
Γ = 0 and proceed as follows:

∮

S

(Djϕ)ψ dS =

n∑

k=1

∮

S

νk(Mjkϕ)ψ dS −

n∑

k=1

∮

S

ψ(Mjkνkψ) dS+

+

n∑

k=1

∮

Γ

(ν2
kν

j
Γ − νkνjν

k
Γ)ϕψ ds =

∮

S

ψ(D∗
j ψ) dS +

∮

Γ

νjΓϕψ ds. �

Lemma 4.11. Let P be, as in (4.34), a first-order differential operator
with C1-smooth coefficients. P is weakly/strongly tangential if and only if
the adjoint P ∗ operator is so.

If P is weakly tangential to S and P is defined in a neighborhood of S ,
then

(Pϕ)
∣∣
S

= P (ϕ|S ) (4.57)

for every C1 function ϕ defined in a neighborhood of S . In particular,

Djϕ
∣∣
S

= Dj(ϕ|S ), Mjkϕ
∣∣
S

= Mjk(ϕ|S ), j, k = 1, . . . , n. (4.58)

Furthermore, (4.57) is true for the adjoint P ∗, and
∫

S

〈Pϕ, ψ〉 dS =

∫

S

〈ϕ, P ∗ψ〉 dS +

∮

Γ

〈σ(P ; νΓ)ϕ, ψ〉 ds (4.59)

for any vector-valued functions ϕ, ψ ∈ S .

Proof. The first assertion follows since σ(P ∗; ξ) = −σ(P ; ξ)>, for each
ξ ∈ Rn.

Due to the representation (4.55) it suffices to prove (4.57) for only the

operator Dj = dj · ∇, where dj = πS ej = N ∧ (N ∧ ej) is at least C1-
smooth vector field in a neighborhood ΩS of S , tangent to the surface
S at surface points (cf. (4.37)). Thus, we have to justify the following
equality:

Djϕ
∣∣
S

=
(
dj · ∇

)
ϕ
∣∣
S

= dj · ∇(ϕ|S ) = Dj(ϕ|S ). (4.60)
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The vector field dj(x) = dj(θ,X ) depends on the signed distance θ =
dist(x,S ) = ±|x−X | continuously (θ > 0 for the outer domain and θ > 0

for the inner one). Let F t
dj(·)

be the integral curve of the vector field dj

and

F
t
dj(·) : ΩS → ΩS , F

t
dj(0,·) = F

t
dj (·) : S → S (4.61)

be the flow generated by this vector field `θ in the neighborhood ΩS (cf.
(4.7)). Since the flow depends continuously on the parameter θ, we get

(
dj(θ,X ) · ∇

)
ϕ
∣∣∣
S

= lim
θ→0

d

dt
ϕ
(
F
t
dj(θ,X )

)∣∣∣
t=0

=
d

dt
ϕ(F t

dj )
∣∣
t=0

=

= dj · ∇(ϕ|S ) = Dj(ϕ|S )

and (4.60) is proved.
Next, using (4.55), (4.53) and integrating by parts we get

∫

S

〈Pϕ, ψ〉 dS =

n∑

j=1

∫

S

〈ajDjϕ, ψ〉 dS +

∫

S

〈bϕ, ψ〉 dS =

=

n∑

j=1

∫

S

〈ϕ,D∗
j a

>
j ψ〉 dS +

∫

S

〈ϕ, b>ψ〉 dS +

n∑

j=1

∮

Γ

〈ϕ, νjΓa
>
j ψ〉 dS =

=

∫

S

〈ϕ, P ∗ψ〉 dS +

∮

Γ

〈σ(P ; νΓ)ϕ, ψ〉 ds

and this completes the proof. �

Based on the above formulae it is easy to write adjoint to a high order
partial differential operator

G(D) =
∑

|α|≤k

gα(X )Dα =
∑

|β|≤k

fβ(X )M β , X ∈ S ,

∇α
S := D

α1

1 . . .Dαn
n , α ∈ N

n
0 ,

M
β
S

:= M
β1

1 . . .M βm
m , β ∈ N

m
0 , m =

n(n− 1)

2

on a hypersurface S and find ample examples of self adjoint operators
among them. Below we will consider concrete examples of such self adjoint
operators which encounter in applications.

5. Differential Operators on Hypersurfaces in Rn

Let us start by the definition of the surface divergence divS , the surface
gradient ∇S and the surface Laplace–Beltrami operator ∆S .

Consider the following differential 1-form

ωf (V ) :=∂V f=
n−1∑

k=1

V k∂kf for f ∈C1(S ), V =
n−1∑

k=1

V kgk∈V (S ), (5.1)
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where V (S ) denotes the linear space of tangential vector fields to a sur-
face S . The form is well defined because the differential operator ∂V is
tangential and can be applied to a function f defined on the surface S

only.
Due to the Riesz theorem for a given f there exists a vector field ∇S f ∈

V (S ) such that

ωf (V ) := 〈∇S f,V 〉 for all V ∈ V (S ), (5.2)

which is, according the classical differential geometry, the surface Gradi-
ent of a function f ∈ C1(S ) and maps

∇S : C∞(S ) → V (S ). (5.3)

The surface divergence

divS : V (S ) → C∞(S ) (5.4)

of a smooth tangential vector field V in (5.1) is, by the definition,

divS V :=
n−1∑

k=1

V j;j , V j;k := ∂kV
j +

n−1∑

m=1

ΓjkmV
m (5.5)

where Γjkm denotes the Christoffel symbols:

Γjkm :=
1

2

n−1∑

k=1

gj`
[
∂mgk` + ∂kgm` − ∂`gkm

]
= Γjmk. (5.6)

divS is the negative dual to the surface gradient:

〈divS V , f〉 := −〈V ,∇S f〉, ∀V ∈ V (S ), ∀ f ∈ C1(S ). (5.7)

The Laplace–Beltrami operator ∆S on S is defined as the composition

∆S ψ = divS∇S ψ = −∇∗
S

(
∇Sψ

)
. (5.8)

Expressions of the surface divergence and gradient in intrinsic parameters
of the surface S (tangential vector fields, Metric tensor etc.) are rather
complicated (cf. e.g., [36]). We suggests an alternative, much simpler inter-
pretation.

Theorem 5.1. For any function ϕ ∈ C1(S ) we have

∇Sϕ =
{
D1ϕ,D2ϕ, . . . ,Dnϕ

}>
. (5.9)

Also, for a 1-smooth tangential vector field V =
n∑
j=1

V jej ∈ V (S ),

divS V = −∇∗
S V :=

n∑

j=1

DjV
j . (5.10)

The Laplace–Beltrami operator ∆S on S takes the form

∆S ψ =

n∑

j=1

D
2
j ψ =

∑

j<k

M
2
jkψ =

1

2

n∑

j,k=1

M
2
jkψ, ∀ψ ∈ C2(S ). (5.11)
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Proof. Any function ϕ ∈ C1(S ) is approximated, ‖ϕ − ϕk|C
1(S )‖ → 0

as k → ∞, by a functions ϕk ∈ C1(US ), k = 1, 2, . . . , defined in a neigh-
borhood US ⊂ Rn of S . Then, from the definition of the surface gradient
(5.2), follows

〈∇Sϕ,V 〉 := ωϕ(V ) := ∂V ϕ = lim
k→∞

∂V ϕk = lim
k→∞

n∑

j=1

V j∂jϕk =

= lim
k→∞

〈∇ϕk ,V 〉 = lim
k→∞

〈πS∇ϕk,V 〉 for ϕ ∈ C1(S ),

V =

n−1∑

k=1

Ṽ
k
gk =

n∑

k=1

V kek ∈ V (S ),

where πS denotes the orthogonal projection onto the tangential vector fields
V (S ) (cf. (2.25)); we get finally

∇Sϕ = lim
k→∞

πS∇ϕk = lim
k→∞

{
∂jϕk − νj

n∑

m=1

νm∂mϕk

}n

j=1

=

= lim
k→∞

(
D1ϕk, . . . ,Dnϕk

)>
=

(
D1ϕ, . . . ,Dnϕ

)>
.

Now we consider the divergence operator divS = ∇∗
S

(cf. (5.4), (5.7)).
Let a scalar function ϕ and a tangential vector field V ∈ V (S ) be both
smooth, S be non-closed with the boundary ∂S 6= ∅, and the supports
have no intersections with the boundary suppϕ∩∂S = ∅, supp V ∩∂S =
∅. By applying the duality, the proved formulae (5.9) and (4.52) for the
dual (Dj)

∗
S

, we get:

(divS V , ϕ)
S

= −(V ,∇Sψ)
S

=

=

∮

S

n∑

j=1

V j(X )Djϕ(X ) dS = −

∮

S

n∑

j=1

(Dj)
∗
S V

j(X )ϕ(X ) dS =

=

∮

S

n∑

j=1

DjV
j(X )ϕ(X ) dS + H

0
S

∮

S

n∑

j=1

νj(X )V j(X )ϕ(X ) dS =

=

n∑

j=1

(DjV
j , ϕ)

S
.

We applied above that V is tangent 〈ν(X ),V (X )〉 =
n∑
j=1

νj(X )V j(X ) ≡ 0.

Since the function ϕ is arbitrary, (5.10) follows.
To prove (5.8) we apply (5.9), (4.52) and proceed as follows

∆S ψ = divS∇S ψ =

= −

n∑

j=1

(Dj)
∗
Djψ =

n∑

j=1

D
2
j ψ + H

0
S

n∑

j=1

νjDjψ =

n∑

j=1

D
2
j ψ,
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since 〈ν,D〉 =
n∑
j=1

νjDj = 0 (cf. Lemma 4.8.v)).

To prove the last equality (5.11) we note that (cf. (4.28))
n∑

j=1

νjDk(νjψ) = ν2
Dkψ +

n∑

j=1

νj(Dkνj)ψ = Dkψ (5.12)

and
n∑
j=1

νjDj = 0, Mjk = νjDk−νkDj for j, k = 1, . . . , n; (cf. Lemma 4.8.vi,

4.8.v). Then

1

2

n∑

j,k=1

M
2
jkψ =

1

2

n∑

j,k=1

[
νjDk − νkDj

]2
ψ =

=
1

2

n∑

j,k=1

[
νjDkνjDkψ − νjDkνkDjψ + νkDjνkDjψ − νkDjνjDkψ

]
=

=

n∑

j,k=1

[
νjDkνjDkψ − νjDkνkDjψ

]
=

=

n∑

k=1

D
2
kψ −

n∑

j,k=1

[
νjνkDkDjψ + (Dkνk)νjDjψ

]
=

n∑

k=1

D
2
kψ = ∆Sψ. �

Lemma 5.2. Let S be µ–smooth and ` ∈ N0, ` ≤ µ. The Laplace–
Beltrami operator ∆S is elliptic on the hypersurface S and self adjoint,
i.e.,

∆S (t, ξ) ≡ |ξ|2, ∀ (t, ξ) ∈ T
∗(S ), (∆S )∗S = ∆S . (5.13)

For arbitrary ` = 0,±1, . . . the operator

−∆S : W
1
2(S ) → W

−1
2 (S ) (5.14)

is positive definite (coercive) on non–constant functions

(−∆Sϕ, ϕ)L2(S ) =

n∑

k=1

(Dkϕ,Dkϕ)L2(S ) =
∥∥∇Sϕ|L2(S )

∥∥>0 (5.15)

for ∀ϕ ∈ W
1
2(S ), ϕ 6= const.

Proof. Let us prove that ∆S is elliptic. We proceed straightforwardly:

∆S (t, ξ) =

n∑

k=1

D
2
k (t, ξ) =

n∑

k=1

[
ξk − νk(t)(~ν(t), ξ)

]2

= |ξ|2 − 2(~ν(t), ξ)2 + |~ν(t)|2(~ν(t), ξ)2 =

= |ξ|2 − (~ν(t), ξ)2 = |ξ|2 for (t, ξ) ∈ T
∗(S ). (5.16)

From the definition (5.8) and the property (5.7) it follows easily that ∆S

is self adjoint and non-negative:

(∆Sϕ, ϕ)
W`

2
(S ) = (∇Sϕ,∇Sϕ)

W`
2
(S ) = (ϕ,∆Sϕ)

W`
2
(S ),
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(∆Sϕ, ϕ)
W`

2
(S ) = −(∇Sϕ,∇Sϕ)

W`
2
(S ) =

∥∥∇Sϕ|W
`
2(S )

∥∥ > 0

provided ϕ ∈ W
`+2
2 (S ), ϕ 6= const.

The last assertion (5.15) also follows from the definition (5.8) and the
property (5.7):

(−∆Sϕ, ϕ)L2(S ) = (∇Sϕ,∇Sϕ)
L2(S ) =

∥∥∇Sϕ|W
`
2(S )

∥∥ > 0

for ϕ ∈ W
1
2(S ), ϕ 6= const. �

We remind that the surface gradient ∇S maps scalar functions to the
tangential vector fields

∇S : C∞(S ) → V (S ) := C(S ,V (S )) (5.17)

and the scalar product with the normal vector vanishes everywhere on the
surface S :

〈ν(X ),∇Sϕ(X )〉 ≡ 0 for all ϕ ∈ C1(S ). (5.18)

Tangential derivatives can be applied to the definition of Sobolev spaces
W`
p(S ) = H`(S ), ` ∈ N0, 1 ≤ p <∞ on an `-smooth surface S

H
`(S ) = W

`
p(S ) :=

:=
{
ϕ ∈ D′(S ) : ∇α

Sϕ ∈ Lp(S ), ∀α ∈ N
n
0 , |α| ≤ `

}
. (5.19)

Equivalently, W`
p(S ) is the closure of the space C`(S with respect to the

norm ∥∥ϕ|W`
p(S )

∥∥ :=
[ ∑

|α|≤`

∥∥Dαϕ|Lp(S )
∥∥
p

]1/p

.

The space W`
p(S ) can also be understood in distributional sense: deriv-

ative Djϕ ∈ L2(S ) means that there exists a function in L2(S ) denoted
by Djϕ such that

(Djϕ, ψ) := (ϕ,D∗
j ψ) :=

∫

S

ϕ(X )D∗
j ψ(X ) dS, ∀ψ ∈ L2(S )

(cf. (4.52) for the formal dual D∗
m).

Moreover, W`
2(S ) is a Hilbert space with the scalar product

(ϕ, v)
(`)
S

:=
∑

|α|≤`

∮

S

D
α
x ϕ)(X )Dα

x v(X ) dS. (5.20)

Under the space W
−`
2 (S ) with a negative order −`, ` ∈ N, is understood,

as usual, the dual space of distributions to the Sobolev space W`
2(S ).

The following Proposition 5.3 accomplishes the definition of the Banach
spaces Hm

p (S ) (cf. [15] for a simple proof).

Proposition 5.3. For ϕ ∈ C1(S ) the surface gradient vanishes ∇Sϕ ≡
0 if and only if ϕ(X ) ≡ const.
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Remark 5.4. For any smooth scalar function f , defined in a neighbor-
hood of S , there holds (see [16])

(∆Rnf)
∣∣
S

= ∆S (f |S ) + H
0

S (∂νf)
∣∣
S

+ (∂2
νf)

∣∣
S
. (5.21)

In particular, for the case the unit sphere in Rn, i.e., S = Sn−1 one can
choose ν(x) := x/‖x‖, x ∈ Rn \ 0, so that H 0

S
:= div ν = (n − 1)/‖x‖,

and ∂ν =
∑

(xj/‖x‖)∂j = ∂/∂r, the radial derivative in Rn. Then (5.21)
becomes, after a rescaling, the classical formula

∆Rn =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆Sn−1 .

A number of related identities, at least for n = 3 and special extensions
of the unit normal, can be found in [12], [7], [10], [23], [26], [31] [33] and the
references therein.

6. The Equation of Anisotropic Elastic Hypersurface

One way of understanding the genesis of the Laplace-Beltrami operator
(5.8) is to consider the energy functional

E [u] :=

∫

S

‖∇u‖2 dS, u ∈ C∞(S ). (6.1)

Then any minimizer u of the functional (6.1) should satisfy

0 =
d

dt
E [u+ tv]

∣∣
t=0

=

∫

S

[
〈∇u,∇ v〉+ 〈∇ v,∇u〉

]
dS =

= 2Re

∫

S

〈∇u,∇ v〉 dS, u ∈ C∞(S ), ∀ v ∈ C∞0 (S ), (6.2)

which implies

∆u = 0 on S . (6.3)

In other words, (6.3) is the Euler-Lagrange equation associated with the
integral functional (6.1).

We assume that the closed hypersurface S is `-smooth and ` ≥ 1.
Our aim is to adopt a similar point of view in the case of anisotropic

(Lamé) system of elasticity on S . The starting point is to consider the
total free (elastic) energy

E [U ] :=

∫

S

E(y,DS U (y)) dS, D
S U :=

[
(DS

j U )0k
]
n×n

, U ∈V (S ), (6.4)

ignoring at the moment the displacement boundary conditions (Koiter’s
model). As before, equilibria states correspond to minimizers of the above
variational integral (see [32, § 5.2]). First we should identify the correct form
of the stored energy density E(x,DS U(x)). We shall restrict attention to
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the case of linear elasticity. In this scenario, E = (SS ,DefS ) depends bi-
linearly on the stress tensor SS = [Sjk ]n×n and the deformation (strain)
tensor

DefS = [Djk ]n×n,

DjkU :=
1

2

[
(DS

k U )j + (DS
j U )k

]
=

1

2

[
DjU

0
k + DkU

0
j + ∂U (νjνk)

]
=

=
1

2

[
DjU

0
k + DkU

0
j +

n∑

q=1

UqDq(νjνk)
]
, ∀ j, k = 1, . . . , n (6.5)

(cf. [16]) which, according to Hooke’s law, satisfy SS = T DefS , for some
linear, fourth-order tensor T. If the medium is also homogeneous (i.e. the
density and elastic parameters are position-independent), it follows that E
depends quadratically on the covariant derivative DS U , i.e.

E(x,DS U (x)) =
〈
T D

S U (x),DS U (x)
〉

(6.6)

for a linear operator

T : Mn,n(R) → Mn,n(R), (6.7)

where Mn,n(R) stands for the vector space of all n × n matrices with real
entries. Hereafter, we organize Mn,n(R) as a real Hilbert space with respect
to the inner product

〈A,B〉 :=Tr(AB>)=
∑

i,j

aijbij , ∀A=[aij ]i,j , B=[bij ]i,j ∈Mn,n(R), (6.8)

where B> denotes transposed matrix, and Tr is the usual trace operator for
square matrices.

A linear operator (6.7) is a tensor of order 4, i.e., T = [cijk`]ijk` , and

TA =
[ ∑

k,`

cijk`ak`

]
ij
, for A = [ak`]k` ∈ Mn,n(R). (6.9)

T will be referred to in the sequel as the elasticity tensor. It is customary
to assume that the elasticity tensor (6.7) is self-adjoint

〈TA,B〉 = 〈A,TB〉, A,B ∈ Mn,n(R). (6.10)

The condition rescaling (6.10), written in coordinate notation, is equivalent
to the following equality

cijk` = ck`ij , ∀ i, j, k, `. (6.11)

Indeed, the equality

Tr((TA)B>) =
∑

i,j,k,`

cijk`ak`bij =
∑

i,j,k,`

ck`ijak`bij = Tr(A(TB)>)

holds, for arbitrary A = [ak`]k` and B = [bk`]k`, if and only if (6.11) holds:
by inserting the delta functions ak` = δk`, bij = δij we get the equality
(6.11).
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It is also customary to impose a symmetry condition, presented with two
natural options:

T (A>) = TA and (TA)> = TA, ∀A ∈ Mn,n(R). (6.12)

Then (6.12) amounts to the following symmetry in the indices of the elastic
tensor:

cijk` = cij`k and cijk` = cjik`, ∀ i, j, k, `, (6.13)

where the second (the first) equality follows already from (6.11) and the
first (the second) equality in (6.13).

Remark 6.1. The conditions (6.10) and the first equality in (6.12) imply
the second equality in (6.12) as well as the conditions (6.10) and the second
equality in (6.12) imply the first equality in (6.12). This is evident if we
apply an equivalent formulation for corresponding tensors and matrices:
(6.11) and (6.13).

A linear operator T in the energy functional of anisotropic elasticity (6.6)
satisfies the symmetry conditions (6.10), and (6.12). Equivalently, the cor-
responding elasticity tensor T = [cijk`]ijk` has the symmetries (6.11), (6.13)
and, therefore, might have n+ n2(n− 1)2/2 different entries only.

By inserting the value (6.5) of deformation tensor DefS U and applying
the symmetry properties (6.13), we obtain

4
〈
T DefS U (x),DefS U (x)

〉
=

=
〈
T D

S U(x),DS U (x)
〉

= E
(
x,DS U (x)

)
(6.14)

(cf. (6.6)) which means that the density of the elastic energy functional
depends quadratically also on the deformation tensor.

The density of the potential energy of an elastic medium should be strictly
positive for the non-vanishing deformation tensor DefS U 6= 0 (the energy
conservation law!). This leads to the following.

Lemma 6.2. There exists a constant C0 > 0 such that

〈T ζ, ζ〉 :=
∑

i,j,k,`

cijk`ζijζk` ≥ C0

∑

i,j

|ζi,j |
2 := C0|ζ|

2 (6.15)

for all symmetric and complex valued ζij = ζji ∈ C tensors ζ := [ζij ]n×n.

Proof. The sum in the left hand side of (6.15) is real 〈T ζ, ζ〉 = 〈T ζ, ζ〉
(easy to check applying the symmetry properties (6.13) of the real valued
coefficients). Dividing equality in (6.15) by |ζ|2 =

∑
lm

|ζlm|
2 we find that it

suffices to prove

inf
|ζ|=1

∑

i,j,k,`

cijk`ζijζk` ≥ C0 > 0. (6.16)
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If otherwise C0 = 0, we select a sequence ζ
(q)
jk = ζ

(q)
kj ∈ C, q = 1, 2, . . . such

that

lim
m→∞

∑

i,j,k,`

cijk`ζ
(q)
ij ζ

(q)
k` = 0, |ζ(q)| = 1.

Since the space of tensors [ζ
(q)
jk ]n×n is finite dimensional, there exists a

convergent subsequence ζ
(qr)
k` → ζ

(0)
k` as r → ∞. Then we get an obvious

contradiction ∑

i,j,k,`

cijk`ζ
(0)
ij ζ

(0)
k` = 0, |ζ(0)| = 1.

which proves that C0 > 0. �

Theorem 6.3. The total free (elastic) energy functional (cf. (6.4)) ac-
quires the form

E [U ] :=

∫

S

〈
T D

S U (y),DS U (y)
〉
dS =

= 4

∫

S

〈
T DefS U (y),DefS U (y)

〉
dS, U ∈ V (S ) (6.17)

and the Euler–Lagrange equation associated with the energy functional (6.17)
for a linear anisotropic elastic medium, reads

AS (t,D)U = Def∗S T DefS U =

{ n∑

j,k,m=1

[
− cjklmDm −H

0
S cjklmνj

+ νm

n∑

q=1

cjkqmDlνq

][
DkUj + νk〈Djν,U 〉

]}n

l=1

(6.18)

for U ∈ V (S ). Here again T = [cijk`]ijk` is the elasticity tensor which is
positive definite (cf. (6.15)) and has the symmetry properties (6.11), (6.13).

Proof. The representation (6.17) follows from (6.4) and (6.14).
The Euler–Lagrange equation (6.18) is derived from (6.17) as a similar

equation e3.3 is derived from (6.1):

E [U ] = 4

∫

S

〈
T DefS U (y),DefS U(y)

〉
dS =

= 4

∫

S

〈
Def∗S T DefS U (y),U (y)

〉
dS = 0

if and only if U ∈ V (S ) is a solution of equation (6.18) due to the positive
definiteness of the elasticity tensor T (cf. (6.15)).
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The vector-function U (t) = (U1(t), . . . , Un(t))
> denotes the tangential

field of elastic displacement. The strain (the deformation) tensor has the
following mapping properties

DefS : H
θ
p(S ) := (Hθ

p)
n(S ) → (Hθ−1

p )n×n(S ) (6.19)

for arbitrary θ ∈ R, 1 ≤ p ≤ ∞ and maps displacement vector field to the
tensors of order 2. The dual operator

Def∗Sw = {D∗
kw}

n
k=1, (6.20)

D
∗
kw=

1

2

[ n∑

j=1

D
∗
k (wjk+wkj)+

n∑

j,m=1

wjmDk(νjνm)
]

for w=‖wjk‖n×n

(cf. (4.33)) maps tensor functions to vector functions and has the following
mapping properties

Def∗S : (Hθ
p)
n×n(S ) → (Hθ−1)np (S ) (6.21)

for arbitrary θ ∈ R, 1 ≤ p ≤∞. Moreover,

D
∗
kw =

n∑

j=1

D
∗
kwjk +

n∑

j,m=1

νm(∂jνk)wjm for symmetric wjk = wkj (6.22)

due to the curl-free condition ∂kνj = ∂jνk (see Lemma 2.12.ii). Then, by
applying the equality

n∑

j,k=1

cjklmDj,kU =
1

2

n∑

j,k=1

cjklm

[
DkUj + DjUk +

〈
U ,∇C (νjνk)

〉]
=

=

n∑

j,k=1

cjklm

[
DkUj + νk

n∑

q=1

(Djνq)Uq

]
=

=
n∑

j,k=1

cjklm
[
DkUj + νk〈Djν,U 〉

]
, (6.23)

which exploits the symmetry of coefficients (6.13) and the symmetry
properties of the deformation tensor (6.22), we finally prove (6.18)

AS (t,D)U = Def∗S T DefS U = Def∗S

∥∥∥
n∑

j,k=1

cjklmDj,kU

∥∥∥
n×n

=

= Def∗S

∥∥∥
n∑

j,k=1

cjklm
[
DkUj + νk〈Djν,U 〉

]∥∥∥
n×n

=

=

{ n∑

j,k,m=1

[
cjklmD

∗
m + νm

n∑

q=1

cjkqmDlνq

][
DkUj + νk〈Djν,U 〉

]}n

l=1

=

=

{ n∑

j,k,m=1

[
− cjklmDm −H

0
S cjklmνj + νm

n∑

q=1

cjkqmDlνq

]
×
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×
[
DkUj + νk〈Djν,U 〉

]}n

l=1

.

since D∗
j = −Dj − νjH

0
S

(cf. (4.52)). �

If the surface S is isotropic, i.e., has the corresponding energy functional
is invariant with respect to any rotation, the elasticity tensor T has the
properties

T (BAB−1) = B(TA)B−1, ∀A,B ∈ Mn,n(R)

and unitary B> = B−1.
(6.24)

Moreover, then the tensor T has the form

TA = λ (TrA)I + µ (A+A>), A ∈ Mn,n(R), (6.25)

where λ, µ ∈ R are some constants. The corresponding lamé operator
A(D) = LS (t,D) (cf. (6.18)) on the hypersurface acquires the form

LS (t,D) = µπS∇
∗
S ∇S + (λ+ µ)∇S ∇∗

S − µH
0

S WS =

=−µ∆S −(λ+µ)∇S divS −µH
0

S WS , WS =−
[
Djνk

]
n×n

. (6.26)

For details of the formulated assertions we refer to [16].
The next Proposition 6.4 is proved in [15, Theorem 3.5] for a isotropic

case. For the anisotropic case the proof is similar.

Proposition 6.4. Let S be an `-smooth closed hypersurface in Rn. The
operator AS (D) for anisotropic/isotropic media (cf. (6.18) and (6.26)) is
elliptic. Therefore the mapping

AS (t,D) : H
s+1
p (S ) → H

s−1
p (S ) (6.27)

is Fredholm and has the trivial index Ind AS (t,D) = 0 for all 1 < p < ∞
and all s ∈ R, provided |s| ≤ `.

The kernel of the operator KerAS (t,D) ⊂ Hs
p(S ) is independent of the

parameters p and s, is finite dimensional dim R(S ) = dim KerAS (t,D) <
∞ and coincides with the space of Killing’s vector fields

KerAS (t,D) =
{
U ∈ V (S ) : AS (t,D)U = 0

}
= R(S ). (6.28)

LS is non-negative on the space H1(S ) and positive definite on the
orthogonal complement H1

R
(S ) to the kernel

(AS (t,D)U ,U)
S
≥ 0 for all U ∈ H

1(S ), (6.29)

(AS (t,D)U ,U)
S
≥C

∥∥U |H1(S )
∥∥2

for all U ∈H
1
R(S ), C>0, (6.30)

where H
1(S ) = H

1
R

(S )⊕R(S ).
Moreover, the following G̊aarding’s inequality

(AS (t,D)U ,U)
S
≥ C1

∥∥U |H1(S )
∥∥2
− C0

∥∥U |H−r(S )
∥∥2

(6.31)

holds for all U ∈ H
1(S ), with arbitrary 0 < r ≤ ` and positive constants

C0 > 0, C1 > 0.
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7. Boundary Integral Equations for the Laplace–Beltrami

Operator

To apply the potential method to the investigation of BVPs (8.1) and
(8.2) for the Laplace–Beltrami operator ∆C on an open hypersurface C

in the next section, we need a fundamental solution for ∆S when S is a
closed hypersurface, which coincides with the Schwartz kernel of the inverse
operator (see [14]). Such fundamental solution might fail to exist and we
consider an alternative.

Theorem 7.1. Let S be µ-smooth and ` ∈ N0, ` ≤ µ. Assume H ∈
C`(Rn) is real valued and non-negative H ≥ 0 with non-trivial support
0 6= mes supp H .

The perturbed Laplace–Beltrami operator

∆S −H I : H
s+1
2 (S ) → H

s−1
2 (S ) (7.1)

is invertible for arbitrary s ∈ R, i.e. ∆S −H I has the fundamental solu-
tion.

Proof. As an elliptic operator on the closed hypersurface ∆S −H I in (7.1)
is Fredholm for s = 0, 1, . . . . On the other hand,

(− (∆S −H )ϕ, ϕ)L2(S ) =

=
∥∥∇Sϕ|L2(S )

∥∥ + H ‖ϕ|L2(S )‖, ∀ϕ ∈ W
1
2(S ). (7.2)

and, therefore, Ker (∆S −H I) = ∅.
The same is true for the dual operator, which is the same and, therefore,

Coker (∆S −H I) = ∅, which yields the invertibility.
The dual operator, which is again ∆S − H I , but between spaces

W1
2(S ) → W

−1
2 (S ), is also invertible. Then for non-integer s ∈ R the

invertibility of the operator (7.1) follows by the interpolation (see [39]). �

Remark 7.2. ∆S − H I is invertible as an operator between more
general Sobolev–Slobodetski spaces Ws+1

p (S ) → W−1
p (S ) and the Bessel

potential spaces Hs+1
p (S ) → Hs−1

p (S ) for arbitrary s ∈ R, 1 < p <∞.
In fact, for p = 2 this follows from Theorem 7.1. For arbitrary 1 < p <∞

the assertion follows since the operator ∆S −H I has the same kernel and
cokernel in all these spaces (see [17]).

Remark 7.3. The function

gµ(x, y) :=
1

cos (πµ)
Pµ−1/2(−x · y), µ ∈ R, x, y ∈ S

2, (7.3)

where Pγ(t), −1 ≤ t ≤ 1, is the Legendre special function of the first kind
of order γ, represents the fundamental solution to the Laplace–Beltrami
equation

(
∆2

S + µ2 −
1

4

)
gµ(x, y) = δ(x− y) (7.4)

on the unit sphere S2 :=
{
u ∈ R3 : || = 1

}
(cf. [6], [34]).
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Thus, gµ(x, y) is the fundamental solution to the perturbed Laplace–

Beltrami operator ∆2
S + µ2 − 1/4.

Now let C ⊂ S be a smooth subsurface of a closed hypersurface S and
γ = ∂C 6= ∅ be its smooth boundary ∂C = Γ (see Fig. 2).

Following [39], by W̃s
p(C ) (and by H̃s

p(C )) we denote the subspace of
W
s
p(S ) (of H

s
p(S ), respectively) obtained by closure of the subset C∞0 (C ).

If s > 0, by an equivalent definition,

W̃
s
p(C ) :=

{
u : u∈W̃

p
s(S ), (∂kνu)

+(t)=0 for k=0, . . . ,m, t 6∈S

}
, (7.5)

where m = [s] is the integer part of s. Similar definition holds can be given

for H̃s
p(C ), s > 0.

W1
2(C ) and Hs

p(C ) denote the quotient spaces

W
s
p(C ) = W

s
p(S )/W̃s

p(S \ C ),

H
s
p(C ) = H

s
p(S )/H̃s

p(S \ C ).
(7.6)

The next Corollary 7.4 is a standard consequence of the Stoke’s formulae
(4.45).

Corollary 7.4. For the Laplace–Beltrami operator ∆C on the open hy-
persurface C with the boundary ∂C := Γ the following Green formulae are
valid

(∆C (t,D)ϕ, ψ)
C

+ (∇Cϕ,∇Cψ)
C

= −(D~νΓϕ
+, ψ+)Γ, (7.7)

(∆C (t,D)ϕ, ψ)
C
−(D~νΓϕ

+, ψ+)Γ=(ϕ,∆C (t,D)ψ)
C
−(ϕ+,D~νΓψ

+)Γ (7.8)

for arbitrary ϕ, ψ ∈ C∞(C ), where (ϕ, ψ)
C

and (ϕ, ψ)Γ denote the appro-
priate scalar products (cf. (4.49)).
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By continuity the Green formulae (7.7) and (7.8) are extended to arbi-

trary functions ϕ ∈ W1
p(C ), ψ ∈ W1

p′(C ), 1 < p <∞, p′ :=
p

p− 1
.

Let us consider the following volume (Newton), the double and the single
layer potentials, respectively

(NC f)(t)ϕ(t) :=

∮

C

K∆(t, t− τ)f(τ) dS,

(WΓψ)(t) :=

∮

Γ

[
(D~νΓ(s)K∆)(t, s− t)

]>
ψ+(s) ds,

(V Γψ)(t) :=

∮

Γ

K∆(t, t− s)ψ+(s) ds, t ∈ C ,

(7.9)

where K∆)(t, τ) is a fundamental solution to the Laplace–Beltrami operator
∆S −H I with some function H ∈ C∞(Rn).

Theorem 7.5. Let 1 < p < ∞, r ∈ R. Then the direct values of
the double and the single layer potential operators are bounded between the
spaces:

NC : H
s
p(C ) → H

s+2
p (C ),

: W
s
p(C ) → W

s+2
p (C ) ∩H

s+2
p (C ),

V Γ : H
s
p(Γ) → H

s+1+ 1

p
p (C ),

: W
s
p(Γ) → W

s+1+ 1

p
p (C ) ∩H

s+1+ 1

p
p (C ),

WΓ : H
s
p(Γ) → H

s+ 1

p
p (C ),

: W
s
p(Γ) → W

s+ 1

p
p (C ) ∩H

s+ 1

p
p (C ).

(7.10)

The following Plemelj formulae for the layer potentials hold:

(WΓϕ)±(s) = ±
1

2
ϕ(s) + W0(s,Ds)ϕ(s),

(D~νΓV Γϕ)±(s) = ∓
1

2
ϕ(s) + W∗

0(s,Ds)ϕ(s),

(V Γϕ)−(s) = (V Γϕ)+(s) = V −1(s,Ds)ϕ(s),

(D~νΓWΓϕ)−(s) = (D~νΓWΓϕ)+(s) = V +1(s,Ds)ϕ(s).

(7.11)

Here Φ−(s) denotes the trace of Φ(t) on Γ from the hypersurface C c, com-
plemented to C (outer with respect of Γ, which is the common boundary
Γ = ∂C = ∂C c). The operators W0(s,Ds) and V −1(s,Ds) are the di-
rect values of the corresponding double and the single layer potentials on
the boundary Γ and represent PsDOs of order −1. W∗

0(s,Ds) is the dual
(adjoint) PsDO to W0(s,Ds). V +1(s,Ds) is the direct values of the opera-
tor D~νΓWΓ on the boundary Γ and represent a PsDO of order +1.
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Proof. The proof is verbatim to the case of domains in Rn and we quote for
details [14], [19], [23] etc. �

By a standard approach it is proved that the operator

V −1 : H
s
p(Γ) → H

s+1
p (Γ),

: W
s
p(Γ) → W

s+1
p (Γ)

(7.12)

is invertible for all s ∈ R, 1 < p <∞ (is positive definite for p = 2, s = −
1

2
)

while the operator
V +1 : H

s
p(Γ) → H

s−1
p (Γ),

: W
s
p(Γ) → W

s−1
p (Γ)

(7.13)

has one dimensional kernel and cokernel for all s ∈ R, 1 < p < ∞, is

non-negative for p = 2, s =
1

2
(cf. [11], [17], [18], [29], [28] for a similar

assertions). Theorem 8.2 follows from these results by standard arguments
(see [11], [17], [18], [29], [28]).

Remark 7.6. The “indirect potential method” is also applicable: if we
look for a solution of the Dirichlet BVP (8.1) as the double layer potential
and for a solution of the Neumann BVP (8.2) as the single layer potential
with unknown densities, from boundary conditions we derive appropriate
boundary integral equations, which are Fredholm integral equations. These
equations can be investigated by a standard procedure (see, e.g., [23]). Later
we apply these results to prove Theorem 8.2.

In conclusion of the present section we formulate the following auxiliary
assertions.

Lemma 7.7 (Lax–Milgram). Let B be a Banach space, A(ϕ, ψ) be a
continuous, bilinear, symmetric form

A(·, ·) : B×B → R (7.14)

and positive definite

A(ϕ, ϕ) ≥ C‖ϕ
∣∣B‖2, ∀ϕ ∈ B, C > 0. (7.15)

Let L(·) : B → R be a continuous linear form (a functional).
A linear equation

A(ϕ, ψ) = L(ψ) (7.16)

has a unique solution ϕ ∈ B for arbitrary ψ ∈ B. Moreover, the same ϕ
minimizes the functional

F (ψ) :=
1

2
A(ψ, ψ) − L(ψ), (7.17)

i.e., represents a unique solution to the following problem

min
ψ∈B

[1

2
A(ψ, ψ) − L(ψ)

]
=

1

2
A(ϕ, ϕ) − L(ϕ). (7.18)

Proof. For the proof we refer to [9, § 6.3]. �
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8. Boundary Value Problems for the Laplace–Beltrami

Operator

Let again C ⊂ S be a smooth subsurface of a closed hypersurface S and
γ = ∂C 6= ∅ be its smooth boundary ∂C = Γ (see Fig. 2). Let ∆C (t,D) be
the Laplace–Beltrami operator restricted to the hypersurface C . Consider
the Dirichlet {

(∆C (t,D)ϕ)(t) = f(t), t ∈ C ,

ϕ+(s) = g(s), s ∈ Γ = ∂C
(8.1)

and the Neumann{
(∆C (t,D)ϕ)(t) = f(t), t ∈ C ,

(D~νΓ(s)ϕ)+(s) = h(s), s ∈ Γ = ∂C
(8.2)

boundary value problems for the Laplace–Beltrami operator ∆C (see (5.11))
on the open hypersurface C with the boundary Γ. The derivative D~νΓ(s) is
defined as follows

D~νΓ(s) :=
n∑

k=1

νΓ,k(s)Dk , ~νΓ(s) := (νΓ,1(s), . . . , νΓ,n(s))
>, s ∈ Γ, (8.3)

where D~νΓ(s) is a tangent derivative on the hypersurface C and the normal
derivative with respect to the boundary Γ.

Note, that BVPs (8.1) and (8.2) describe the stationary heat transfer
process in a thin conductor having the shape of the hypersurface ∗

S (see
[21, § 72]).

Corollary 8.1. For arbitrary solution ϕ ∈ W1
p(C ) of the equation

∆Sϕ = f , f ∈ W−1
p (C ) the trace (D~νΓϕ)+ exists and belongs to W

− 1

p
p (Γ).

Proof. Let ϕ ∈ W1
p(C ) be a solution of the equation ∆Sϕ = f , f ∈ W−1

p (C )

and ψ ∈ W
1
p′(C ) be arbitrary. Then (7.7) gives

(D~νΓϕ
+, ψ+)Γ = −(f, ψ)

C
− (∇Cϕ,∇Cψ)

C
. (8.4)

Since the right-hand side in (7.8) is correctly defined and ψ+ ∈ W
1− 1

p′

p′ (Γ) =

W

1

p

p′(Γ), the functional in the left-hand side is defined correctly and the

inclusion for the trace D~νΓϕ
+ ∈ W

− 1

p
p (S ) holds by duality. �

We impose the following constraints on the participating functions in
BVPs (8.1) and (8.2):

f ∈ W
s−2
p (C ), ϕ ∈ W

s
p(C ),

g ∈ W
s− 1

p
p (Γ), h ∈ W

s−1− 1

p
p (Γ), 1 < p <∞, s ≥ 1.

(8.5)

∗We consider the stationary heat conduction only for simplicity. For the time de-
pendent process, which is represented by a Hypoelliptic operator, similar results can be
obtained.
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Note that due to Corollary 7.4 the traces of solutions to the equation ∆Cϕ =
f in BVPs (8.1) and (8.2) under constraints (8.5) are defined correctly.

In the perturbed Laplace–Beltrami operator ∆S − H I (see (7.1)) we
choose the function H ∈ C∞(Rn) which is supported in the complemented

domain suppH ⊂ C c := S \ C . Then any solution of the Dirichlet (8.1),
(8.5) and the Neumann (8.2), (8.5) boundary value problems is represented
as follows

ϕ(t) = (NC f)(t) + (WΓϕ
+)(t)−

(
V Γ(D~νΓϕ)+

)
(t), t ∈ C , (8.6)

where the potential operators are defined in (7.9).
The proof of (8.6) is standard: by inserting the solution ϕ of ∆Cϕ = f

and the fundamental solution ψ = K∆(t, t− τ),

∆C K∆(t, t− τ) =

= χC (∆S −H I)K∆(t, t− τ) = χC δ(t− τ) = δ(t− τ), t, τ ∈ C

truncated properly around the diagonal t = τ on the distance ε > 0, into
the Green formula (7.8), written for ∆C −H I , we derive the representation
formula (8.6) by sending ε→ 0.

Following the “direct potential method” we apply the representation for-
mulae (8.6) and note that one of the densities either ϕ+ or (D~νΓ(s)ϕ)+ is
already known and given by the boundary conditions in (8.1) or in (8.2),
respectively. Applying also the appropriate Plemelj formulae from (7.11)
we get the following equivalent boundary pseudodifferential equations:

A. For the Dirichlet BVP (8.1)

V −1(s,Ds)ψ(s) =
(
NC (s,Ds)f

)
(s)−

1

2
g+

(
W0(s,Ds)g

)
(s), s ∈ Γ, (8.7)

where ψ(s) := (D~νΓϕ)+(s) is the unknown function and the right-hand side
is known.

B. For the Neumann BVP (8.2)

V +1(s,Ds)ω(s)=−
(
NC (s,Ds)f

)
(s)+

1

2
h+

(
W∗

0(s,Ds)h
)
(s), s∈Γ, (8.8)

where ω(s) := ϕ+(s) is the unknown function and the right-hand side is
known again.

Theorem 8.2. Let 1 < p < ∞, s ≥ 11. The Dirichlet problem (8.1),
(8.5) has a unique solution ϕ ∈ W

s
p(C ) for arbitrary right-hand side g ∈

W
s− 1

p
p (Γ).
The Neumann problem (8.2), (8.5) has a solution ϕ ∈ Ws

p(C ) only for

those right-hand sides h ∈ W
s−1− 1

p
p (Γ) which satisfy the condition
∮

Γ

h(s) ds = 0. (8.9)

If the condition (8.9) holds, the Neumann problem has a solution ϕ0 ∈
Ws
p(C ) and a general solution reads ϕ = ϕ0 + const.
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Proof. For the proof of existence in the restricted space settings (8.5) we
recall that the equivalent boundary pseudodifferential equations (8.7) and
(8.8) to BVPs (8.1) and (8.2), respectively, are Fredholm and have indices
zero. Moreover, the operator in (8.7) is even invertible, while the kernel
and cokernel of the equation in (8.8) coincide with constants (cf. (7.12)
and (7.13)). Therefore, the Dirichlet BVP (8.1) is solvable uniquely, while
for the solvability of the Neumann problem there must hold the orthogo-
nality condition (8.9) for the data with the solution v(t) ≡ const of the
homogeneous equation. �

9. BVPs for an Elastic Hypersurface and Green’s Formulae

Throughout the present section S is an open C2-smooth hypersurface
(or: the derivative of the corresponding diffeomorphisms are Lipscitz con-
tinuous) with the Lipschitz boundary ∂C = Γ 6= ∅, a subsurface of a closed
C2-smooth hypersurface S . rC denotes the restriction to the surface C

from S and

AC (t,D) := rC AC (t,D), LC (t,D) := rC LC (t,D).

Note that the imposed constraint on the surface C can not be relaxed,
because in the definition of the equation

AC (D)U = F , U ∈ H
1(C ), F ∈ H̃

−1(C ), (9.1)

is participating the gradient ∇S ν = [Djνk]n×n of the unit normal vector
field ν (cf. (6.18) and (6.26)). ν(t) is defined almost everywhere on C is
just C1-smooth (or is Lipschitz continuous, respectively).

Equation (9.1) is actually understood in a weak sense:

(AC (t,D)U ,V )
C

:= (T DefC U ,DefC V )
C

= (F ,V )
C
, (9.2)

∀U ∈ H
1(C ),V ∈ H̃

1(C )

(cf. (6.18)). In particular, for the Lamé operator in isotropic medium we
have

(LC (t,D)U ,V )
C

:= λ(∇C U ,∇C V )
C

+

+ (λ+ µ)(divC U , divC V )
C

= (F ,V )
C
, ∀V ∈ H̃

1
2(S ) (9.3)

(cf. (6.26)).
Let νΓ = (ν1

Γ, . . . , ν
n
Γ)> be the tangential to C and outer unit normal

vector field to Γ.
If a tangential vector field U ∈ H1

p(C )∩V (C ) denotes the displacement,
the natural boundary value problems for LC are the following:

I. The Dirichlet problem when the displacement is prescribed on the
boundary

{
(AC (t,D)U )(t) = F (t), t ∈ C ,

U+(τ) = G(τ), τ ∈ Γ,
(9.4)
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F ∈ H̃
−1(C ), G ∈ H

1/2(Γ), U ∈ H
1(C );

the first (basic) equation in the domain is understood in a weak
sense (see (9.2), (9.3)) and

γ+
DU := U+ (9.5)

is the Dirichlet trace operator on the boundary.
II. The Neumann problem when the traction is prescribed on the boun-

dary:
{(

AC (t,D)U
)
(t) = F (t), t ∈ C ,(

TC (νΓ,D) U
)+

(τ) = H(τ), τ ∈ Γ,
(9.6)

F ∈ H̃
−1(C ), H ∈ H

−1/2(Γ), U ∈ H
1(C );

here

γ+
NU :=

(
TC (νΓ,D)U

)+
(9.7)

and

TC (νΓ,D)U :=
[ n∑

k,m=1

cjklmν
j
Γ

[
DkUj + νk〈Djν,U 〉

]]
n×n

. (9.8)

In particular, for an isotropic case,

TC (νΓ,D)U := −λ(divC U )νΓ − 2µ

n∑

j=1

{
(νjΓ + H

0
C νj)Djk(U )

}n
k=1

=

= −µDνΓ
U − (λ+ µ)(divC U )νΓ (9.9)

is the Neumann trace operator on the boundary (the traction) with

DνΓ
ϕ :=

n∑

j=1

νjΓDjϕ, ϕ ∈ H
1(C ). (9.10)

The trace γ+
NU exists provided that U is a solution to the basic

(first) equation in (9.6) (see Corollary 9.2 below).

Later we will relax constraints on the data and the solution and replace
them by constraints in Hs

p-setting to gain some a priori smoothness of so-
lution. On the other hand we should raise constraints on the underlying
hypersurface C and require the infinite smoothness to apply the potential
method.

A crucial role in the investigation of BVPs (9.4)–(9.6) belongs to the
Green formula.

Lemma 9.1. For the operator AC (t,D) on the open hypersurface C the
following Green formulae are valid:

(AC (t,D)U ,V )
C

= E (U ,V ) + ((TC (νΓ,D)U )+,V +)Γ, (9.11)

(AC (t,D)U ,V )
C
− ((TC (νΓ,D)U )+,V +)Γ =

= (U ,AC (t,D)V )
C
− (U+, (TC (νΓ,D)V )+)Γ (9.12)
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for arbitrary U ,V ∈ H1
p(S ) and the traction operator is defined in (9.8) (see

(9.9) for an isotropic case). The energy bilinear form E (U ,V ) is defined
by the formulae

E (U ,V ) :=

∫

S

〈
T DefS U (y),DefS U (y)

〉
dS, U ∈ V (S ) (9.13)

(cf. (6.17)) and, in particular,

E (U ,V ) :=

∫

C

[
µ
〈
∇S U ,∇S V

〉
+ (λ + µ)

〈
divC U , divC V

〉]
dS (9.14)

for an isotropic case.

Proof. Using the first representation of AC (t,D) in (6.18) (for an isotropic
case – in (6.26)) and the integration by parts on surfaces (Stoke’s formulae)
(4.45) we get the following

∮

C

[
AC (t,D)U (t)

]>
V (t) dS =

(
(TC (νΓ,D)U )+,V +

)
Γ

+ E (U ,V ), (9.15)

where is defined in (9.13) (in (9.14) for an isotropic case).
To find the expression for the traction operator TC (νΓ,D we apply the

second representation of AC (t,D) in (6.18), the integration by parts on
surfaces (Stoke’s formulae) (4.45) and get the following:

∮

C

[
AC (t,D)U (t)

]>
V (t) dS =

∮

C

n∑

j,k,m,l=1

[
− cjklmDj −H

0
S cjklmνj + νm(t)

n∑

q=1

cjkqmDlνq(t)
]
×

×
[
DkUj(t) + νk

〈
Djν(t),U (t)

〉]
Vl(t) dS =

=

∮

Γ

n∑

j,k,m,l=1

cjklmν
j
Γ(s)

[
(DkUj)

+(s) + νk
〈
Djν(s),U (s)

〉]
V +
l (s) ds +

+E (U ,V ) =
(
(TC (νΓ,D)U )+,V +

)
Γ

+ E (U ,V ).

For an isotropic case we apply the representation of LS (t,D) in (6.26) and
proceed similarly. �

Corollary 9.2. For arbitrary solution U ∈ H1
p(S ) to the equation

AS (t,D)U = F , F ∈ H−1
p (C ), the trace (TC (νΓ,D)U )+ exists and be-

longs to W
− 1

p
p (S ).

Proof. The proof is based on (9.11) and is verbatim to the proof of Corol-
lary 8.1. �
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Theorem 9.3. Let S be µ-smooth and ` ∈ N0, ` ≤ µ. Assume H ∈
C`(Rn) is real valued and non-negative H ≥ 0 with non-trivial support
0 6= mes supp H .

The perturbed operator of anisotropic elasticity

AS (t,D)−H I : H
s+1
2 (S ) → H

s−1
2 (S ) (9.16)

is invertible for arbitrary s ∈ R, i.e. AS (t,D)−H I has the fundamental
solution.

Proof. The proof is based on Proposition 6.4 and follows the proof of The-
orem 7.1. �

10. The Dirichlet BVP for the Equation of Anisotropic

Elasticity

Throughout this section C is a C2-smooth hypersurface with the Lips-
chitz boundary Γ = ∂C .

Theorem 10.1. The Dirichlet problem (9.4) has a unique solution U ∈

H
1(C ) for arbitrary data F ∈ H̃

−1(C ) and G ∈ H
1/2(Γ).

The proof will be exposed at the end of the section after we prove some
auxiliary results.

Lemma 10.2 (G̊arding’s inequality “with boundary condition”). The
operator

AC (t,D) : H̃
1(C ) → H

−1(C ) (10.1)

is positive definite: there exists some constant C > 0 such that

(AC (t,D)U ,U)
C
≥ C

∥∥U |H1(C )
∥∥2
, ∀U ∈ H̃

1(C ). (10.2)

Proof. Due to (6.30) inequality (10.1) holds for all U ∈ H1
R

(S ), i.e., for

U ∈ H
1(S ) and U 6∈ R(S ). Since U ∈ H̃

1(C ) due to the strong unique
continuation from the boundary (cf. Proposition 4.6), all Killing’s vector

fields K ∈ H̃1(C ) are identically 0. Therefore, (6.30) holds for all U ∈

H̃1(C ). �

Corollary 10.3. The operator AC (t,D) in (10.1) is invertible.

Proof. From the inequality (10.2) follows that AC (t,D) is normally solvable
(has the closed range) and the trivial kernel KerAC (t,D) = {0}. Since
AC (t,D) is self adjoint, the co-kernel (the kernel of the adjoint operator) is
trivial as well KerA∗

C (t,D) = KerAC (t,D) = {0}. Therefore AC (t,D) is
invertible. �

Definition 10.4 (see [25, Ch. 2, § 1.4]). A partial differential operator

B(x,D) :=
∑

|α|≤m

aα(x)∇α
C , ∇α

C =D
α1

1 · · ·Dαn
n , aα∈C(C , CN×N) (10.3)
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is called normal on Γ if

inf
∣∣detB0(t,ν(t))

∣∣ 6= 0, t ∈ Γ, |ξ| = 1, (10.4)

where B0(x, ξ) is the homogeneous principal symbol of A

B0(x, ξ) :=
∑

|α|=m

aα(x)(−iξ)α, x ∈ C , ξ ∈ R
n. (10.5)

Definition 10.5. A system {Dj(t,Dt)}
k−1
j=0 of differential operators with

matrix N ×N coefficients is called a Dirichlet system of order k if all par-
ticipating operators are normal on Γ (see Definition 10.4) and ordDj = j,
j = 0, 1, . . . , k − 1.

Let us assume C is k-smooth and m ≤ k (m, k = 1, 2, . . . ) and define the
trace operator (cf. (9.10)):

RmU :=
{
γΓD1U , . . . , γΓDmU

}>
, U ∈ C

k
0(C ). (10.6)

Proposition 10.6. Let C be k-smooth, 1 ≤ p ≤∞, m = 1, 2, . . . , m ≤ k
and m < s− 1/p 6∈ N0. The trace operator

Rm : H
s
p(C ) →

m
⊗
j=0

W
s−1/p−j
p (Γ), (10.7)

where Wr
p(C ) = Brp,p(C ) is the Sobolev–Slobodecki–Besov space (cf. [39]

for details) is a retraction, i.e., is continuous and has a continuous right
inverse, called a coretraction

(Rm)−1 :
m
⊗
j=0

W
s−1/p−j
p (S ) → H

s
p(Ω),

Rm(Rm)−1Φ = Φ, ∀Φ ∈
m
⊗
j=0

W
s−1/p−j
p (S ).

(10.8)

Proof. The result was proved in [39, Theorem 2.7.2, Theorem 3.3.3] for
a domain Ω ⊂ R

n−1 and the classical Dirichlet trace operator Rmu :=
{γΓ∂νu, . . . , γΓ∂

m
ν u}

>. In [15] the theorem was proved for a domain Ω ⊂
Rn−1 and for arbitrary trace operator Rmu.

A surface C = ∪Nj=1Cj is covered by a finite number of local coordinate

charts κj : Ωj → Cj , Ωj ⊂ Rn−1. After transformation, the Dirichlet
trace operator Rmu on a portion Cj of the surface transform into another
Dirichlet trace operator on the coordinate domains Ωj . Therefore, we prove
the assertion locally on each coordinate chart Cj ⊂ C and, by applying a
partition of unity, extend it to the entire surface C . �

Proof of Theorem 10.1. Let G̃ = (R0)
−1G ∈ H1(C ) be the continuation of

the Dirichlet boundary data G ∈ H1/2(Γ) from BVP (9.4) into the surface C

from the boundary Γ, found with the help of a coretraction from Proposition
10.6. Then the Dirichlet BVP{

(AC (t,D)Ũ )(t) = F 0(t), t ∈ C ,

Ũ
+
(τ) = 0, τ ∈ Γ,

(10.9)
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F 0 := F −AC (t,D)G̃ ∈ H̃
−1(C ),

is an equivalent reformulation of BVP (9.4) and the solutions are related by

the equality Ũ := U − G̃. On the other hand, since

H̃
−1(C ) :=

{
U ∈ H

−1(C ) : U+ = 0
}
,

the solvability of BVP (10.9) is equivalent to the invertibility of the operator
AC (t,D) in (10.1). Now the unique solvability of BVP (10.9) (and of the
equivalent BVP (9.4)) follows from Corollary 10.3. �

11. The Neumann BVP for the Equation of Anisotropic

Elasticity

Throughout this section C is a C2-smooth hypersurface with the Lips-
chitz boundary Γ = ∂C .

Theorem 11.1. The Neumann problem (9.6) has a solution U ∈ H
1(C )

only for those right-hand sides F ∈ H̃−1(Γ) and H ∈ H−1/2(Γ) which satisfy
the equality∫

C

F (t)K(t) dS =

∮

Γ

H(τ)γ+
DK(τ) ds, ∀K ∈ R(C ). (11.1)

If the condition (11.1) holds, the Neumann problem has a general solution
U = U 0 + K ∈ H

1(C ), where U 0 ∈ H
1(C ) is a particular solution and

K ∈ R(C ) is a Killing’s vector field.

The proof will be exposed at the end of the section after we prove some
auxiliary results.

Lemma 11.2. The condition (11.1) is necessary for the Neumann prob-
lem (9.6) to have a solution U ∈ H1(C ).

Proof. First note that for a Killing’s vector field K ∈ R(C ),

AC (t,D)K = 0 and γ+
NK =

(
TC (νΓ,D)K

)+
= 0. (11.2)

Indeed, if K ∈ R(C ) is naturally extended to K̃ ∈ R(S ), then

AC (t,D)K(t) = AC (t,D)K̃(t) = 0 for t ∈ C (cf. (6.28)) and the first
equality follows.

The second equality in (11.2) follows from (9.9) if we recall that
DefC (K) = 0 (see 4.26) and this implies

TC (νΓ,D)K = Def∗S (νΓ)T DefS (D)K = 0, U ∈ V (S ). (11.3)

The latter formula can easily be seen analyzing (9.15).
From (9.13) and DefC (K) = 0 it follows

E (K,U ) :=

∫

S

〈T DefS K(y),DefS U (y)〉 dS = 0 (11.4)

for all U ∈ H
1(C ) and all K ∈ R(C ).



Partial Differential Equations on Hypersurfaces 67

Introducing into the Green formula (9.11) F = AC (t,D)U , V = K ∈
R(C ) and the obtained equality, we get the claimed orthogonality condition
(11.1). �

Lemma 11.3. The bilinear form

AN(U ,V ) := (AC (t,D)U ,V )
C
− (γ+

NU , γ+
DV )Γ = E (U ,V ) (11.5)

is well defined, symmetric AN(U ,V ) = AN(V ,U) for all U , V ∈ H1(C )
and non-negative AN(U ,U) ≥ 0 for U ∈ H1(S ) (cf. (9.13)). Moreover,
the form is positive definite

AN(U ,U) ≥M3

∥∥U |H1(S )
∥∥2
, ∀U ∈ H

1
R(S ) (11.6)

on the orthogonal complement H1
R

(S ) to the finite dimensional subspace of
Killing’s vector fields R(C ) in the Hilbert–Sobolev space H1(C ).

Proof. The proof is a direct consequence of the equality

AN(U ,V ) = E (U ,V ) := (T DefS U ,DefS U), ∀U ∈ H
1(S ) (11.7)

(cf. (9.13)) if we recall that the tensor T is positive definite (cf. Lem-
ma 6.2). �

Proof of Theorem 11.1. The space of Killing’s vector fields R(S ) is fi-
nite dimensional and consists of continuous vector-fields with bounded sec-
ond derivatives (these fields are actually as smooth as the surface C , i.e.,
are infinitely smooth if S is infinitely smooth; see Proposition 4.6). Let
K1, . . . ,Km be a finite dimensional orthonormal basis in R(C ),
(Kj ,Kr)C

= δjr, j, r = 1, . . . ,m. Consider the finite rank smoothing
operator

TU (X ) :=
m∑

j=1

(Kj ,U)
S

Kj(X ), X ∈ S . (11.8)

The operator T is symmetric and non-negative:

(TU ,V )
C

= (TV ,U)
C
, (TU ,U)

C
=

m∑

j=1

(U ,Kj)
2
C
≥ 0, (11.9)

∀U ,V ∈ H
1(C ).

Consider the modified bilinear form

A
#
N(U ,V ) := ((AC (t,D) + T )U ,V )

C
− (γ+

NU , γ+
DV )Γ =

= E (U ,V ) + (TU ,V )
C

U ,V ∈ H
1(C ). (11.10)

The form is symmetric because both summands are

A
#
N(U ,V )=E (U ,V )+(TU ,V )

C
=E (V ,U )+(TV ,U)

C
=A

#
N(V ,U)

(cf. Lemma 11.3 and the first equality in (11.9)).
Moreover, the corresponding quadratic form is strongly positive

A
#
N(U ,U) = E (U ,U ) + (TU ,U)

C
≥ C

∥∥U |H1(C )
∣∣‖ (11.11)
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for some C > 0. Indeed, due to the positivity of the summands the equality

A
#
N (U ,U ) implies E (U ,U ) = 0, and further U ∈ R(C ) (cf. Lemma 11.3).

Also (TU ,U)
C

= 0 and further (U ,Kj) = 0 for all j = 1, . . . ,m. Then

U =
m∑
j=1

(U ,Kj)Kj = 0. A non-negative symmetric form with the prop-

erty A
#
N(U ,U) = 0 if and only if U = 0 is positive definite.

According to Lax–Milgram’s Lemma 7.7 the equation

A
#
N(U ,V ) = (F ,V )

C
− (H ,V +)Γ (11.12)

has a unique solution U ∈ H1(C ) for all V ∈ H1(C ). This solves the
problem

{
(AC (t,D)U )(t) + TU (t) = F (t), t ∈ C ,

(TC (νΓ,D)U )+(τ) = H(τ), τ ∈ Γ,
(11.13)

which is a modified Neumann’s problem (9.6).

Now assume that the vector-functions F ∈ H̃−1(C ) and H ∈ H−1/2(Γ)
satisfy the orthogonality condition (11.1) from Theorem 11.1 and U 0 ∈
H1(C ) be a solution of (11.13). Since

(T U0,Kk)C
= (U 0,Kk)C

,

AN(U 0,Kk) = E (U 0,Kk) = 0, k = 1, 2, . . . ,m

(cf. (11.3)) from (11.12) we get

0 = (F ,Kk)C
− (H ,Kk)Γ = A

#
N(U 0,Kk) =

= AN(U 0,Kk) + (TU 0,Kk)C
= (U 0,Kk)C

, k = 1, 2, . . . ,m.

Therefore, TU 0 =
m∑
k=1

(U 0,Kk)C
Kk = 0 and BVP (11.13), which is

uniquely solvable, coincides with BVP (9.6) provided that the right hand
sides satisfy the orthogonality condition (11.1). Since the kernel of BVP
(9.6) coincides with the space of Killing’s vector fields R(C ), a general so-
lution of BVP (9.6) has the form U = U 0 +K with arbitrary K ∈ R(C ).

12. Potential Method and Boundary Integral Equations

In the present section we relax the constraints on the data for the BVPs
in (9.4) and (9.6):

F ∈ W
s−2
p (C ), U ∈ W

s
p(C ),

G ∈ W
s− 1

p
p (Γ), H ∈ W

s−1− 1

p
p (Γ), 1 < p <∞, s ≥ 1.

(12.1)

Note that due to Corollary 9.2 the traces of solutions to the equation
AC (t,D)U = f in BVPs (9.4) and (9.6) under constraints (12.1) are defined
correctly.
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To apply the potential method and relax constraints on the data of BVPs
we have to restrict ourselves with smooth hypersurfaces to ensure the ex-
istence of a fundamental solution to the basic equation. Thus, throughout
this section a hypersurface S will be infinitely smooth and C will be a
subsurface with the `-smooth boundary Γ = ∂C . A function B ∈ C∞(C )
is supported in the complemented domain supp B ⊂ C c := S \ C and let
KA(t, t − τ) be the fundamental solution to the perturbed elasticity oper-
ator AS (t,D) + BI , which exists due to Theorem 9.3. Then any solution
to the BVPs (9.4) and (9.6) is represented by the formulae

U (t) = (NC F )(t)+(WΓU+)(t)−
(
V Γ(TC (νΓ,D)U )+

)
(t), t ∈ C , (12.2)

where the corresponding potential operators are defined as follows

(NC (t,D)ϕ)(t) :=

∮

C

KA(t, t− τ)ϕ(τ) dS,

(WΓ(t,D)ϕ)(t) :=

∮

Γ

[(
TC (νΓ(τ),Dτ )KA

)
(t, τ − t)

]>
ϕ(τ) ds,

(V Γ(t,D)ϕ)(t) :=

∮

Γ

KA(t, t− τ)ϕ(τ) ds, t ∈ C .

(12.3)

The proof of (12.2) is standard: by inserting the solution U to AC (t,D)U =
F and the fundamental solution V = KA(t, t− τ),

AC KA(t, t− τ) = χC (AS −H I)KA(t, t− τ) =

= χC δ(t− τ) = δ(t− τ), t, τ ∈ C

truncated properly around the diagonal t = τ on the distance ε > 0, into the
Green formula (9.12) we get the representation formula (12.2) by sending
ε→ 0.

Let us consider the following pseudodifferential operators on the bound-
ary Γ, which are direct values of potential operators and their compositions
with the boundary operator TΩε(νΓ,D) (cf. (9.9)):

V −1(t,D)U := V Γ(x,D)U
∣∣
S
,

W∗
0(t,D)U := TΩε(νΓ,D)V Γ(x,D)U

∣∣
S
,

W0(t,D) := WΓ(x,D)U
∣∣
S
,

V +1(τ,D) := TΩε(νΓ,D)WΓ(x,D)U
∣∣
S
.

(12.4)
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For these operators we have the standard Plemelji formulae, proved
in [15]:

(WΓϕ)±(τ) = ±
1

2
ϕ(τ) + W0(τ,D)ϕ(τ),

(
TC (νΓ,D)V Γϕ

)±
(τ) = ∓

1

2
ϕ(τ) + W∗

0(τ,D)ϕ(τ),

(V Γϕ)−(τ) = (V Γϕ)+(τ) = V−1(τ,D)ϕ(τ),
(
TC (νΓ,D)WΓϕ

)−
(τ) =

=
(
TC (νΓ,D)WΓϕ

)+
(τ) = V +1(τ,D)ϕ(τ), τ ∈ Γ.

(12.5)

Moreover, if Γ is `-smooth and |s| ≤ `, 1 < p < ∞, the pseudodifferential
operators

V −1 = V −1(τ,D) : H
s
p(Γ) → H

s+1
p (Γ), (12.6a)

V +1 = V +1(τ,D) : H
s
p(Γ) → H

s−1
p (Γ), (12.6b)

W0 = W0(τ,D) : H
s
p(Γ) → H

s
p(Γ). (12.6c)

are bounded (cf. similar assertions in [13], [17], [18]).

Lemma 12.1. The pseudodifferential operators V −1 is elliptic, positive
definite (and, therefore, self adjoint)

(V −1U ,U)
C
≥ C

∥∥U |H−1/2(Γ)
∥∥2

(12.7)

for some C > 0.
The pseudodifferential operators

V +1 = V +1(τ,D) : H
1/2(Γ) → H

−1/2(Γ), (12.8)

is elliptic, non-positive

−(V −1Z,Z)Γ ≥ 0, ∀Z ∈ H
1/2(Γ) (12.9)

and has the trivial index Ind V +1 = 0.

Proof. For the proof of (12.7) we refer to [11], [17], [18], [29], [28] where
similar assertions are proved. �

Corollary 12.2. Let Γ is `-smooth and |s| ≤ `, 1 < p <∞.
The pseudodifferential operators V −1 in (12.6a) is invertible.
The pseudodifferential operators V +1 in (12.6a) is Fredholm, has the

trivial index, i.e., Ind V +1 = 0 and Killing’s vector fields all belong to the
kernel R(S ) ⊂ KerV +1.

Proof. For p = 2 the first two assertions are direct consequences of the
inequalities (12.7), (12.14) and of ellipticity of the corresponding ΨDOs.
Concerning the last assertion about the kernel-the proof is standard and we
refer to [11], [17], [18], [29], [28] for such proofs.

For arbitrary 1 < p <∞ the we quote [17] (also see [1], [14], [22]) where is
proved that an elliptic pseudodifferential operator on closed manifold have
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the same kernel and cokernel in the spaces Hs
p(S ) for all |s| ≤ ` and all

1 < p <∞. �

As a byproduct we prove in the next Theorem 12.3 that the kernel
KerV +1 consists of only Killing’s vector fields KerV +1 = R(S ) (cf. Corol-
lary 12.4.

Theorem 12.3. Let 1 < p <∞ and s ≥ 1.
The Dirichlet problem (9.4), (12.1) has a unique solution U ∈ Hs

p(C ) for

arbitrary data G ∈ H
s−1/p
p (Γ). This solution is written in the form

U (X ) = (NC F )(X ) + (WΓG)(X )− (V ΓZ)(X ), X ∈ C , (12.10)

where Z ∈ H
s−1/p−1
p (Γ) is a unique solution to the boundary pseudodiffer-

ential equation

(V −1Z)(t) = (NC F )(t)−
1

2
G + (W0G)(t), t ∈ Γ. (12.11)

The Neumann problem (9.6), (12.1) has a solution U ∈ Hs
p(C ) for those

data H ∈ H
s−1/p−1
p (Γ) which satisfy the condition (11.1). If this is the

case, a solution is written in the form

U (X ) = (NC F )(X )+(WΓZ)(X )−(V ΓH)(X )+V (X ), X ∈ C , (12.12)

where V ∈ R(Γ) is arbitrary Killing’s vector field and Z ∈ H
s−1/p−1
p (Γ) is

a solution to the boundary pseudodifferential equation

(V +1Z)(t)=−
(
TC (νΓ,D)NC F

)
(t)+

1

2
H(t)+(W∗

0H)(t), t∈Γ. (12.13)

Proof. By introducing the representation of a solution (12.10) into the
boundary condition in (9.4), invoking Plemelji formulae (12.5), we obtain an
equivalent boundary pseudodifferential equation (12.11). Since this bound-
ary ΨDE is uniquely solvable (see Corollary 12.2), the initial BVP has a
unique solution, the first part of the theorem is proved.

Similarly, by introducing the representation of a solution (12.12) into the
boundary condition in (9.6), invoking Plemelji formulae (12.5), we obtain
an equivalent boundary integral (pseudodifferential) equation (12.13). Due
to the equivalence, the homogeneous equation V +1Z = 0 has as solutions
Killing’s vector fields Z ∈ R(C ) only. The solvability condition (11.1) is a
consequence of the definition of a Fredholm operator. �

Corollary 12.4. The pseudodifferential operators V +1 satisfies the G̊ar-
ding’s inequality

−(V −1U ,U)
C
≥ C1

∥∥U |H1/2(Γ)
∥∥2
− C2

∥∥U |H−r(Γ)
∥∥2

(12.14)

for some C1 > 0, C2 > 0 and arbitrary 0 < r ≤ `.

Proof. Let
{
Kj

}m
j=1

be a biorthogonal basis (Kj ,Kk)Γ = δjk in the finite

dimensional space of traces of Killing’s vector fields R(Γ) on the boundary
Γ. Let us consider the smoothing (infinitely smoothing if ` = ∞) finite
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rank operator operator T : H−r(Γ) → Hr(Γ) defined in (11.8). We remind

that
{
Kj

}m
j=1

⊂ C`(Γ) is the orthonormal system of Killing’s vector fields.

Then, the operator

−V +1 + T : H
1/2(Γ) → H

−1/2(Γ)

is invertible and non-negative

((−V +1 + T )U ,U)Γ = −(V +1U ,U)Γ +

m∑

j=1

(Kj ,U)
2
Γ ≥ 0

(cf. (12.9)). This implies that −V +1 + T is positive definite

((−V +1 + T )U ,U)Γ ≥ C1

∥∥U |H1/2(Γ)
∥∥2

and we write

−(V +1U ,U)Γ := (−V +1 + TU ,U)Γ − (TU ,U)Γ ≥

≥ C1

∥∥U |H1/2(Γ)
∥∥2
− (TU ,U)Γ ≥ C1

∥∥U |H1/2(Γ)
∥∥2
− C2‖U |H

−r(Γ)
∥∥2
,

which proves (12.14). �

Remark 12.5. Not only the pseudodifferential operator V −1 in (12.6a)
is invertible for closed surface Γ of codimension 2, but also for an open part
of it ΓD ⊂ Γ:

rDV −1 : H̃
s
p(ΓD) → H

s+1
p (ΓD), (12.15)

provided that

1

p
−

1

2
< s <

1

p
+

1

2
, 1 < p <∞. (12.16)

Here rD is the restriction of functions from Γ to the subsets ΓD.
The proof is standard and can be retrieved from [17], [18], [30] and other

sources.
This assertion can be used for the investigation of the mixed type BVPs,

associated with (9.4) and (9.6).
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