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Short Communication

Ivan Kiguradze and Sulkhan Mukhigulashvili

ON PERIODIC SOLUTIONS OF THE SYSTEM
OF TWO LINEAR DIFFERENTIAL EQUATIONS

Abstract. For two-dimensional linear differential systems with periodic
coefficients, optimal in a certain sense conditions are established guaran-
teeing the existence and uniqueness of a periodic solution.� � � � � � � � � � 	 
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Problems on the existence and uniqueness of a periodic solution of nonau-
tonomous ordinary differential equations and systems have long been at-
tracting the attention of mathematicians and used as the subject of many
studies (see, for example, [1]–[29] and the references therein). And all the
same these problems still remain topical for the linear differential system

u′i = pi1(t)u1 + pi2(t)u2 + qi(t) (i = 1, 2) (1)

with ω-periodic coefficients. In this paper new and, in a certain sense,
optimal sufficient conditions for the existence of a unique ω-periodic solution
of system (1) are given.

We denote by Lω the space of functions p : R → R which are periodic
with period ω > 0 and Lebesgue integrable on [0, ω].

Throughout the paper it is assumed that pik ∈ Lω, qi ∈ Lω (i, k = 1, 2)
and the following notation is used:

[x]− =
1

2
(|x| − x) for x ∈ R,

pi(t) = pi 3−i(t) exp

(

t
∫

0

(

p3−i 3−i(s)− pii(s)
)

ds

)

(i = 1, 2),
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` =

ω
∫

0

|p1(s)| ds

ω
∫

0

|p2(s)| ds, λi = exp

(

−

ω
∫

0

pii(s) ds

)

(i = 1, 2),

ν1 = min{λ1, λ2}, ν2 = max{λ1, λ2}, κ =

1
∫

0

(1− x4)−1/2 dx,

By kγ , where γ > 0, we undestand the functions given by the equalities

kγ(x) = (γ + 3)xγ − x2γ+2 for 0 ≤ x ≤ 1,

kγ(x) = kγ(2− x) for 1 ≤ x ≤ 2, kγ(x + 2) = kγ(x) for x ∈ R.

For any function p : R → R the notation p(t) 6≡ 0 means that p is different
from zero on the set of positive measure.

The case, where for some σ ∈ {−1, 1} the inequalities

σp1(t) ≥ 0, σp2(t) ≥ 0 for t ∈ R

hold, is considered in [16].
Theorems formulated below refer to the case where the functions p1 and

p2 satisfy, for some σ ∈ {−1, 1}, one of the following four conditions:

σp1(t) ≥ 0, σp2(t) ≤ 0 for t ∈ R; (31)

σp1(t) ≥ 0, σ

t+ω
∫

t

p2(τ) dτ < 0 for t ∈ R; (32)

σp1(t) > 0, σp2(t) ≤ 0 for t ∈ R; (41)

σp1(t) > 0, σ

t+ω
∫

t

p2(τ) dτ ≤ 0 for t ∈ R. (42)

It is also required in these theorems that

(1− λ1)(λ2 − 1) 6∈ ]`ν1, `ν2[ , (51)

or
ω

∫

0

(

p22(s)− p11(s)
)

ds

ω
∫

0

p11(s) ds ≥ 0. (52)

Theorem 1. Let, for some σ ∈ {−1, 1}, either conditions (31) and (51)
or conditions (32) and (52) or conditions (42) and (52) be fulfilled. Let,

furthermore, p1(t)[σp2(t)]− 6≡ 0 and

t+ω
∫

t

|p1(s)| ds

t+ω
∫

t

[σp2(s)]− ds ≤ 16 for t ∈ R. (6)

Then system (1) has a unique ω-periodic solution.
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Example 1. For arbitrarily given ε ∈ ]0, 1[ , choose ε0 > 0, δ and δ0 such
that

(1 + ε0)
2ε2

0 < ε, exp(δω)− 1 = ε0, δ0 =
2

ω
ε0.

Let

p11(t) = −δ, p22(t) = δ for t ∈ R,

∆1(t) =







0 for 0 ≤ t ≤
ω

2
δ0 for

ω

2
< t < ω

, ∆2(t) =







δ0 for 0 ≤ t ≤
ω

2
0 for

ω

2
< t < ω

,

and p12 and p21 be ω-periodic functions such that

p12(t) = ∆1(t) exp(−2δt), p21(t) = −∆2(t) exp(2δt) for 0 ≤ t < ω.

Then

λ1 = exp(δω), λ2 = exp(−δω),

p1(t) = ∆1(t), p2(t) = −∆2(t) for 0 ≤ t < ω.

By the identities pi(t + ω) ≡ λi

λ3−i

pi(t) (i = 1, 2) we have ` = ε2
0,

t+ω
∫

t

|p1(s)| ds

t+ω
∫

t

|p2(s)| ds =

=

(

ω
∫

t

|p1(s)| ds +
λ1

λ2

t
∫

0

|p1(s)| ds

) (

ω
∫

t

|p2(s)| ds +
λ2

λ1

t
∫

0

|p2(s)| ds

)

≤

≤
λ1

λ2

ω
∫

0

|p1(s)| ds

ω
∫

0

|p2(s)| ds = exp(2δω)` = (1 + ε0)
2ε2

0 for 0 ≤ t ≤ ω,

t+ω
∫

t

|p1(s)| ds

t+ω
∫

t

|p2(s)| ds < ε for t ∈ R, (7)

and

(1− λ1)(λ2 − 1) = exp(−δω)
(

exp(2δω)− 1
)2

= `ν1.

Hence it is clear that, along with condition (6), conditions (31) and (51),
where σ = 1, are fulfilled too. However, the condition p1(t)[σp2(t)]− 6≡ 0 is
violated. Nevertheless the homogeneous system

u′i = pi1(t)u1 + pi2(t)u2 (i = 1, 2) (10)

has a nontrivial ω-periodic solution (u1, u2) with the components

u1(t)=
[

1 + ∆1(t)
(

t−
ω

2

)]

exp(−δt), u2(t)=
[

1−∆2(t)
(

t−
ω

2

)]

exp(δt)

for 0 ≤ t < ω.
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The constructed example shows that the condition p1(t)[σp2(t)]− 6≡ 0 in
Theorem 1 is essential and cannot be neglected even if condition (7), where
ε is an arbitrarily small positive number, is fulfilled instead of (6).

Example 2. For arbitrary ε ∈ ]0, 1/2[ , choose δ > 0 such that

(1− ε)−1/2 < exp(δω) < 2(1− ε)−1/2 − 1

and put

p12(t) ≡ p22(t) ≡ δ, p11(t) ≡ p21(t) ≡ −δ.

Then conditions (3k) and (4k) (k = 1, 2), where σ = 1, are fulfilled.
Moreover, ν2 = λ1 = exp(δω), ν1 = λ2 = exp(−δω), p1(t) = δ exp(2δt),
p2(t) = −δ exp(−2δt). Hence

t+ω
∫

t

|p1(s)| ds

t+ω
∫

t

|p2(s)| ds ≡ ` =
1

4
exp(−2δω)

(

exp(2δω)− 1
)2

<

<
1

4
exp(2δω) < (1− ε)−1 < 2,

(λ1 − 1)(1− λ2) = exp(−δω)
(

exp(δω)− 1
)2

=

= 4λ1

(

exp(δω) + 1
)

−2
` > (1− ε)`ν2 > `ν1.

Thus condition (6) is fulfilled, but condition (51) is violated and instead of
the latter condition we have

(1− λ1)(λ2 − 1) 6∈ ]`ν1, (1− ε)`ν2[ . (8)

On the other hand, the homogeneous system (10) has a nontrivial ω-periodic
solution (u1, u2) with the components ui(t) ≡ 1 (i = 1, 2). The constructed
example shows that condition (51) in Theorem 1 cannot be replaced by
condition (8) no matter how small ε > 0 is.

To construct the next example showing the optimality of condition (6)
in Theorem 1, we have to introduce, for any γ > 0, the function yγ : R → R

by means of the following equalities:

yγ(x) = x exp
(

−
xγ+2

γ + 2

)

for 0 ≤ x ≤ 1, (9)

yγ(x) = yγ(2− x) for 1 ≤ x ≤ 2, yγ(x + 2) = −yγ(x) for x ∈ R. (10)

By definition of the function kγ it is clear that

y′′γ (x) = −kγ(x)yγ(x), yγ(x + 4) = yγ(x) for x ∈ R. (11)

Example 3. Let ε ∈ ]0, 1[ , γ = 24/ε, p ∈ Lω, p(t) > 0 for t ∈ R and

δ = 4

(

ω
∫

0

p(s) ds

)

−1

.
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Put

p11(t) ≡ p22(t) ≡ 0, p12(t) = p(t), p21(t) = −δ2p(t)kγ

(

δ

t
∫

0

p(s) ds

)

.

Then pik ∈ Lω (i, k = 1, 2) and the functions pi(t) ≡ pi 3−i(t) (i = 1, 2)
satisfy conditions (3k), (4k) and (5k) (k = 1, 2), where σ = 1. Moreover,

t+ω
∫

t

|p1(s)| ds

t+ω
∫

t

|p2(s)| ds = δ2

ω
∫

0

p(s) ds

ω
∫

0

p(s)kγ

(

δ

s
∫

0

p(τ) dτ

)

ds =

= 4

4
∫

0

kγ(x) dx = 16

1
∫

0

kγ(x) dx = 16 +
16(3γ + 5)

(γ + 1)(2γ + 3)
<

< 16 +
24

γ
= 16 + ε.

From (9)–(11) it follows that the vector function (u1, u2) with the compo-
nents

u1(t) = yγ

(

δ

t
∫

0

p(τ) dτ

)

, u2(t) = δy′γ

(

δ

t
∫

0

p(τ) dτ

)

is a nontrivial ω-periodic solution of system (10). The constructed example
shows that in the right-hand part of inequality (6) in Theorem 1 we cannot
replace 16 by 16 + ε no matter how small ε > 0 is.

If we replace conditions (51) and (6) in Theorem 1 by the more strong
conditions

(1− λ1)(λ2 − 1) 6∈ [`ν1, `ν2] (5′1)

and
t+ω
∫

t

|p1(s)| ds

t+ω
∫

t

[σp2(s)]− ds < 16 for t ∈ R, (6′)

respectively, then the condition p1(t)[σp2(t)]− 6≡ 0 can be replaced by the
condition pi(t) 6≡ 0 (i = 1, 2). More exactly, the following theorem is valid.

Theorem 2. Let pi(t) 6≡ 0 (i = 1, 2) and there exist σ ∈ {−1, 1} such

that either conditions (31) and (5′1) or conditions (32) and (52) or conditions

(42) and (52) are fulfilled. Let, furthermore, inequality (6′) be fulfilled too.

Then system (1) has a unique ω-periodic solution.

Theorem 3. Let pi(t) 6≡ 0 (i = 1, 2), and conditions (4k) and (5k) be

fulfilled for some σ ∈ {−1, 1} and k ∈ {1, 2}. Let, furthermore, either

σp2(t) > −4π2|p1(t)|

(

t0+ω
∫

t0

|p1(s)| ds

)

−2

for t0 <t<t0 + ω, t0∈R, (12)
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or

(

t+ω
∫

t

|p1(s)| ds

)3
t+ω
∫

t

|p1(s)|
−1[σp2(s)]

2
−

ds <
1024

3
κ

4 for t ∈ R. (13)

Then system (1) has a unique ω-periodic solution.

Note that in Theorem 3 condition (12) cannot be replaced by the condi-
tion

σp2(t) ≥ −4π2|p1(t)|

(

t0+ω
∫

t0

|p1(s)| ds

)

−2

for t0 < t < t0 + ω, t0 ∈ R

and condition (13) cannot be replaced by the condition

(

t+ω
∫

t

|p1(s)| ds

)3
t+ω
∫

t

|p1(s)|
−1[σp2(s)]

2
−

ds ≤
1024

3
κ

4 for t ∈ R.

Now let us consider the differential equation of second order

u′′ = g1(t)u + g2(t)u
′ + h(t), (14)

where gi ∈ Lω (i = 1, 2), h ∈ Lω.
Put

r(t) = exp

(

t
∫

0

g2(s) ds

)

.

Theorems 1–3 immediately give rise to the following proposition.

Corollary. Let g1(t) 6≡ 0 and

t+ω
∫

t

g1(s)

r(s)
ds ≤ 0 for t ∈ R.

Let, furthermore, one of the following three conditions be fulfilled:

t+ω
∫

t

r(s) ds

t+ω
∫

t

[g1(s)]−
r(s)

ds ≤ 16 for t ∈ R;

g1(t) > −4π2r2(t)

(

t0+ω
∫

t0

r(s) ds

)

−2

for t0 < t < t0 + ω, t0 ∈ R;

(

t+ω
∫

t

r(s) ds

)3
t+ω
∫

t

r−3(s)[g1(s)]
2
−

ds <
1024

3
κ

2 for t ∈ R.

Then equation (14) has a unique ω-periodic solution.
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This corollary is a generalization of the well-known results by Lasota–
Opial [19] and J. Mawhin and J. R. Ward [23], [24] concerning the existence
of a unique ω-periodic solution of equation (14) for g2(t) ≡ 0.
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